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Abstract

Let m + n particles be thrown randomly, independently of each other into N
cells, using the following two-stage procedure.

1. The first m particles are allocated equiprobably, that is, the probability of a
particle falling into any particular cell is 1/N . Let the ith cell contain mi

particles on completion. Then associate with this cell the probability ai =
mi/m and withdraw the particles.

2. The other n particles are then allocated polynomially, that is, the probability
of a particle falling into the ith cell is ai.

Let ν = ν(m,N) be the number of the first particle that falls into a non-empty
cell during the second stage. We give exact and asymptotic expressions for the
expectation E ν.

1 Introduction

Problems that deal with random allocations of particles into N cells (balls into urns,
pellets into boxes) are classical in discrete probability theory and combinatorial analysis
(see [3, 7] for details). The main results are concerned with determining the probability
characteristics of (i) the number µr of cells that contain exactly r particles after allocation,
(ii) the number νr,s of the first particle that falls so that some s cells contain at least r
particles each, and other random variables.

Equiprobable allocations are the most simple and well studied. Consider, for example,
an Internet voting on the theme: “Which of the N teams will win the world cup?”. If
voters don’t know anything about the teams, then they make a choice (particle) for each
team (cell) with equal probability 1/N . The more common model is so-called polynomial
allocations. In this case, the probabilities a1, . . . , aN to fall into each cell are given. For
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example, we can assume that common preferences exist and voters make a choice for the
ith team with the probability ai.

Pose the question: how are preferences formed in the absence of a priori information?
In this paper we introduce two-stage allocations. At the first stage particles are allocated
equiprobably. The number of particles that fell into a particular cell determines the
probability to occupy this cell by particles at the second stage. In this model, preferences
are formed after the public announcement of the preliminary voting results, i. e. the
numbers m1, . . . , mN of votes for each team. We can suppose that after seeing these
results, influenced voters will make a choice for the ith team with the probability ai =
mi/m, where m = m1 + . . .+mN .

In the next section, using the generating function for the numbers µr, we obtain an
expectation of the random variable ν = ν2,1 for allocations at the second stage. To illus-
trate our interest to the analysis of ν, take the example of cryptographic hash functions [8,
chapter 9].

Let A and B be finite alphabets, |B| = N , and let A∗ be a set of all finite words over
A. The hash function h : A∗ → B is applied in cryptography for data compression such
that it is computationally infeasible to find a collision: two different words with the same
hash value.

The model of random equiprobable allocations of particles (hash values of different
input words) into N cells (elements of B) is often used in the analysis of collision search
algorithms. The collision waiting time ν is the number of the first particle that occupies
non-empty cell. The difficulty of the collision search can be measured by the expectation
E ν. From the asymptotic expansion for Ramanujan’s Q-function [6, § 1.2.11.3] it follows
that

E ν =

√
πN

2
+

2

3
+ o(1)

as N → ∞.
Most cryptographic hash functions have iterative structure based on the compression

function σ : A × B → B. The input word X = X1 . . . Xl is processed in the following
way: Beginning with a fixed symbol Y0 ∈ B, successively compute Yk = σ(Xk, Yk−1),
k = 1, . . . , l, and set the hash value h(X) to σ(L, Yl), where L is the representation of the
length l by a symbol of A.

To define σ, we must choose N values σ(L, Y ), where Y runs over B. Suppose that a
value B was chosen NB times. Now, if for a random input word of length l an intermediate
hash value Yl has uniform distribution on B, then a final hash value B will appear with
probability NB/N , that is in general not equal to 1/N . It is clear that collision waiting
time for this case is not greater on average than for the case of equiprobable allocations.
Indeed, we will show that

E ν =

√
πN

2
+

5

6
+ o(1)

for the two-stage procedure “the random choice of σ — the hashing of words with the same
length”. This expression follows from the asymptotic expansion for the double Q-function
introduced in Section 3.
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2 Two-stage allocations

Let m+ n particles be thrown randomly, independently of each other into N cells, using
the following two-stage procedure.

1. The first m particles are allocated equiprobably, that is, the probability of a particle
falling into any particular cell is 1/N . Let the ith cell contain mi particles on
completion. Then associate with this cell the probability ai = mi/m (ai = 0 if
m = 0) and withdraw the particles.

2. The next n particles are allocated polynomially, that is, the probability of a particle
falling into the ith cell is ai.

Let µr(N,m, n) be the number of cells that contain exactly r particles, r = (r1, . . . , rs)
be the vector of different non-negative integers, and x = (x1, . . . , xs). Consider the
generating function

ΦN,r(x, y, z) =
∑
k≥0

m,n≥0

Nmmn

m!n!
xkymznP {µr(N,m, n) = k} , (1)

where 00 = 1, k = (k1, . . . , ks), xk = xk1
1 . . . xks

s and

P {µr(N,m, n) = k} = P {µri
(N,m, n) = ki, i = 1, . . . , s} .

Theorem 1. The generating function (1) has the form:

ΦN,r(x, y, z) =

(
exp(yez) +

s∑
i=1

(xi − 1)ψri
(y)

zri

ri!

)N

, (2)

where ψr(y) =
∑

m≥0
mr

m!
ym and moreover ψ0(y) = ey, ψr+1(y) = yψ′

r(y), r = 0, 1, . . ..

Proof. Divide N cells into two groups of sizes N1 and N2 = N − N1. By the total
probability theorem,

P {µr(N,m, n) = k} =
∑

k1+k2=k, ki≥0
m1+m2=m, mi≥0
n1+n2=n, ni≥0

(
m

m1

)(
N1

N

)m1
(
N2

N

)m2
(
n

n1

)(m1

m

)n1
(m2

m

)n2

× P {µr(N1, m1, n1) = k1}P {µr(N2, m2, n2) = k2} ,

where mi/m = 0 if m = 0. Multiplying both sides by Nmmn

m!n!
xkymzn and then summing

over all k ≥ 0, m,n ≥ 0, we obtain

ΦN,r(x, y, z) = ΦN1,r(x, y, z)ΦN2,r(x, y, z).
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This yields
ΦN,r(x, y, z) = (Φ1,r(x, y, z))

N

and it is enough to note that

Φ1,r(x, y, z) =
∑

m,n≥0

mnymzn

m!n!
+

s∑
i=1

(xi − 1)
zri

ri!

∑
m≥0

mriym

m!

= exp(yez) +

s∑
i=1

(xi − 1)ψri
(y)

zri

ri!
.

For comparison, if n particles are equiprobably allocated into N cells, then [7]:

ΦN,r(x, z) =
∑
k≥0
n≥0

Nn

n!
xkznP {µr(N, n) = k} =

(
ez +

s∑
i=1

(xi − 1)
zri

ri!

)N

.

Let ν = ν(m,N) be the number of the first particle that falls into a non-empty cell at
the second stage.

Theorem 2. If m ≥ 1, then the expectation

E ν(m,N) =

min(m,N)∑
n=0

m[n]N [n]

mnNn
, (3)

where u[k] = u(u− 1) . . . (u− k + 1) is the kth factorial power of u, u[0] = 1.

Proof. Obviously, P {ν = n} = 0 if n > m or n > N . Therefore,

E ν =

min(m,N)∑
n=1

nP {ν = n} =

min(m,N)∑
n=0

P {ν > n}

and it is enough to show that

P {ν > n} =
m[n]N [n]

mnNn

for n ≤ min(m,N). We have

P {ν > n} = P {µ0(N,m, n) = N − n} =
m!n!

Nmmn

[
xN−nymzn

]
ΦN,0(x, y, z).
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By Theorem 1, ΦN,0(x, y, z) = (exp(yez) + (x− 1)ey)N and

[xN−nymzn]ΦN,0(x, y, z) =[ymzn]

(
N

n

)
(exp(yez) − ey)n e(N−n)y

=[ymzn]

(
N

n

)( ∑
i≥0, j≥1

yiijzj

i!j!

)n

e(N−n)y

=[ym]

(
N

n

)(∑
i≥0

iyi

i!

)n

e(N−n)y = [ym]

(
N

n

)
(yey)n e(N−n)y

=[ym−n]

(
N

n

)
eNy =

(
N

n

)
Nm−n

(m− n)!
.

This implies the required result.

For comparison, if particles are equiprobably allocated into N cells and ν(N) is the
number of the first particle that falls into a non-empty cell, then

E ν(N) =

N∑
n=0

N [n]

Nn
.

In the next section we will give an asymptotic analysis of the sum in the right-hand
side of (3).

3 The double Q-function

For positive integers m and n define the double Q-function

Q(m,n) =

min(m,n)∑
k=0

m[k]n[k]

mknk
.

The ordinary Q-function

Q(n) =

n∑
k=1

n[k]

nk

was studied by Ramanujan [1], Watson [10], Knuth [6]. Using the integral representation

Q(n) + 1 =

∫ ∞

0

e−z
(
1 +

z

n

)n

dz,

they derived the asymptotic expansion

Q(n) ∼
√
πn

2
− 1

3
+

1

12

√
π

2n
− 4

135n
+ . . . .
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In [4] Ramanujan’s conjecture on the remainder term of this expansion was proven
using another representation:

Q(n) =
n!

nn−1
[zn] log

1

1 − t(z)
, t(z) =

∑
n≥1

nn−1

n!
zn = zet(z)

(t(z) is the exponential generating function of rooted labeled trees).
There exists the third representation

Q(n) + 1 =
n!

nn
[zn]

enz

1 − z

that provides the next “double” analog

Q(m,n) =
m!n!

mmnn
[xmyn]

emx+ny

1 − xy
. (4)

Use (4) to prove the following theorem.

Theorem 3. Let m,n→ ∞ so that 0 < c1 ≤ n/m ≤ c2 <∞. Then

Q(m,n) =

√
πmn

2(m+ n)
+

2

3

(
1 +

mn

(m+ n)2

)
+ o(1). (5)

Proof. Without loss of generality, assume that n ≤ m. Consider the generating function

f(x, y) =
e−m(1−x)−n(1−y)

1 − xy
=
∑
k,l≥0

qklx
kyl.

By (4),

Q(m,n) = m!n!
( e
m

)m ( e
n

)n

qmn. (6)

To obtain numbers qmn, n > 1, we use the Cauchy formula

qmn =
1

(2πi)2

∮
|x|=1

∮
Γ1∪Γ2

f(x, y)

xm+1yn+1
dydx.

Here for fixed x = eiθ, −π ≤ θ ≤ π, the positively oriented contour Γ1∪Γ2 in the complex
plane y is given by (see Fig. 1):

Γ1 = Γ1(θ) =
{
y = e−iθ(1 − reiϕ) | −π/2 + δ ≤ ϕ ≤ π/2 − δ

}
,

Γ2 = Γ2(θ) =
{
y = eiϕ | −π ≤ ϕ ≤ π, |θ + ϕ| ≥ 2δ

}
,

where r = n−2+6ε, 0 < ε < 1
12

, δ = arcsin r
2
, and the result of the summation θ + ϕ is

reduced to the interval [−π, π] by adding ±2π as needed. Note that δ < r because

sin r ≥ r − r3

6
> r − r

6
>
r

2
= sin δ.
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Figure 1: The contour Γ1 ∪ Γ2

The chosen integration surface in two-dimensional complex space (x, y) encircles the
origin and does not intersect with the surface xy = 1 of poles of f(x, y).

Denote

Ik =
1

(2πi)2

∮
|x|=1

∮
Γk

f(x, y)

xm+1yn+1
dydx.

After some calculations,

I1 =
1

4π2

∫ π

−π

exp(g1(θ))

∫ π/2−δ

−π/2+δ

exp(−nrei(ϕ−θ))

(1 − reiϕ)n+1
dϕdθ,

I2 =
1

4π2

∫∫
−π≤θ,ϕ≤π
|θ+ϕ|≥2δ

exp(g2(θ, ϕ))

1 − ei(θ+ϕ)
dϕdθ,

where

g1(θ) = −m(1 − eiθ) −miθ − n(1 − e−iθ) + niθ,

g2(θ, ϕ) = −m(1 − eiθ) −miθ − n(1 − eiϕ) − niϕ.

Further we prove that the integral I1 gives the main contribution to Q(m,n) (the
first term in the right-hand side of (5)). To estimate I1, we use the technique related
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to Laplace’s method (see [9] for references). Firstly, we approximate the integrand near
θ = 0 by a simpler function and evaluate the contribution of the approximation. Then
we show that remaining regions of integration contribute a negligible amount.

We apply a similar technique to the integral I2. The main difficulty is to estimate
the contribution of a punctured neighborhood of the singularity ϕ = −θ. The integration
regions near this singularity contribute large in magnitude, but these contributions mostly
cancel each other. The chosen integration path Γ2(θ) allows us to control this cancellation
with desired accuracy.

The integral I1. Since∫ π/2−δ

−π/2+δ

exp(−nrei(ϕ−θ))

(1 − reiϕ)n+1
dϕ =

∫ π/2−δ

−π/2+δ

(1 +O(nr))dϕ = (π − 2δ)(1 +O(nr)),

we get

I1 =
1

4π

∫ π

−π

exp(g1(θ))(1 +O(n−1+6ε))dθ.

Denote θ0 = m−1/2+ε and split the integral into two parts: |θ| ≤ θ0 and θ0 ≤ |θ| ≤ π.
We have

g1(θ) = −(m+ n)θ2/2 − i(m− n)θ3/6 +O(mθ4
0)

in the first part and

| exp(g1(θ))| = exp(−(m+ n)(1 − cos θ)) < exp(−m(1 − cos θ0)) = O(exp(−mθ2
0/3))

in the second one. So, accurate to an exponentially small term,

I1 =
1

4π

∫ θ0

−θ0

exp(−(m+ n)θ2/2 − i(m− n)θ3/6)(1 +O(n−1+6ε))dθ

=
1

4π

∫ θ0

0

exp(−(m+ n)θ2/2)
(
e−i(m−n)θ3/6 + ei(m−n)θ3/6

)
(1 +O(n−1+6ε))dθ

=
1

4π

∫ θ0

0

exp(−(m+ n)θ2/2)(2 +O((m− n)2θ6))(1 +O(n−1+6ε))dθ

=
1

2π

∫ θ0

0

exp(−(m+ n)θ2/2)(1 +O(n−1+6ε))dθ.

Integrating from 0 to ∞, we get

I1 =
1

2π

√
π

2(m+ n)
(1 +O(n−1+6ε)). (7)

The integral I2. If θ0 ≤ |θ| ≤ π, then∣∣∣∣exp(g2(θ, ϕ))

1 − ei(θ+ϕ)

∣∣∣∣ ≤ r−1| exp(g2(θ, ϕ))| = r−1O(exp(−mθ2
0/3)) = O(exp(−mθ2

0/4)).
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Similarly, if ϕ0 = n−1/2+2ε and ϕ0 ≤ |ϕ| ≤ π, then the integrand has the order
O(exp(−nϕ2

0/4)). For m and n sufficiently large we have ϕ0 ≥ θ0 + 2δ and accurate to an
exponentially small term

I2 =
1

4π2

∫∫
S0∪S1

exp(g2(θ, ϕ))

1 − ei(θ+ϕ)
dϕdθ,

where

Sk = {(θ, ϕ) | 0 ≤ (−1)kθ ≤ θ0, ϕ ∈ [−ϕ0,−θ − 2δ] ∪ [−θ + 2δ, ϕ0]}.
Expanding

g2(θ, ϕ) = −mθ2/2 − imθ3/6 − nϕ2/2 − inϕ3/6 +O(mθ4
0 + nϕ4

0)

and changing in S1 directions of integration, we obtain

I2 =
1

4π2

∫∫
S0

exp(−mθ2/2 − nϕ2/2)J(α, β)(1 +O(n−1+8ε))dϕdθ,

where α = mθ3/6 + nϕ3/6, β = θ + ϕ,

J(α, β) =
e−iα

1 − eiβ
+

eiα

1 − e−iβ
=

cosα− cos(α+ β)

1 − cos β
= cosα +

sinα

sin β
(1 + cosβ)

= 1 +O(α2) +
2α

β
(1 +O(α2) +O(β2))

=

(
1 +

n

3
(θ2 − θϕ+ ϕ2) +

(m− n)θ3

3(θ + ϕ)

)
(1 +O(n−1/2+6ε)).

So,

I2 =

(
1

4π2
I21 +

m− n

12π2
I22

)
(1 +O(n−1/2+6ε)),

where

I21 =

∫∫
S0

exp(−mθ2/2 − nϕ2/2)
(
1 +

n

3
(θ2 − θϕ+ ϕ2)

)
dϕdθ,

I22 =

∫∫
S0

exp(−mθ2/2 − nϕ2/2)
θ3

θ + ϕ
dϕdθ.

Since ∣∣∣1 +
n

3
(θ2 − θϕ + ϕ2)

∣∣∣ = O(nθ2
0)

for 0 ≤ θ ≤ θ0 and ϕ ∈ [−θ − 2δ,−θ + 2δ], we obtain

I21 =

∫ θ0

0

∫ ϕ0

−ϕ0

exp(−mθ2/2 − nϕ2/2)
(
1 +

n

3
(θ2 − θϕ+ ϕ2)

)
dϕdθ + 4δθ0O(nθ2

0)

=

∫ ∞

0

∫ ∞

−∞
exp(−mθ2/2 − nϕ2/2)

(
1 +

n

3
(θ2 + ϕ2)

)
dϕdθ +O(n−5/2+9ε)

=
π√
mn

(
1 +

1

3
+

n

3m

)
+O(n−5/2+9ε).
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Further,

I22 =

∫ θ0

0

[∫ −2δ

−ϕ0+θ

+

∫ ϕ0+θ

2δ

]
exp(−mθ2/2 − n(ϕ− θ)2/2)

θ3

ϕ
dϕdθ

=

∫ θ0

0

∫ ϕ0

2δ

exp(−(m+ n)θ2/2 − nϕ2/2)
θ3(enθϕ − e−nθϕ)

ϕ
dϕdθ+

+

∫ θ0

0

[
−
∫ −ϕ0+θ

−ϕ0

+

∫ ϕ0+θ

ϕ0

]
exp(−mθ2/2 − n(ϕ− θ)2/2)

θ3

ϕ
dϕdθ.

The last term is exponentially small and∣∣∣∣θ3(enθϕ − e−nθϕ)

ϕ

∣∣∣∣ = O(nθ4
0)

for 0 ≤ θ ≤ θ0 and ϕ ∈ [0, 2δ]. Therefore,

I22 =

∫ θ0

0

∫ ϕ0

0

exp(−(m+ n)θ2/2 − nϕ2/2)
θ3(enθϕ − e−nθϕ)

ϕ
dϕdθ + 2δθ0O(nθ4

0)

=

∫ ∞

0

∫ ∞

0

exp(−(m+ n)θ2/2 − nϕ2/2)
θ3(enθϕ − e−nθϕ)

ϕ
dϕdθ +O(n−7/2+11ε).

Write the integrand as the series

2
∑
k≥0

exp(−(m+ n)θ2/2 − nϕ2/2)
n2k+1θ2k+4ϕ2k

(2k + 1)!

and interchange the summation and integrations (it is easy to justify). We get

I22 =
π
√
n

(m+ n)5/2

(
3 +

∑
k≥1

(
n

m+ n

)k

(2k + 3)

k∏
l=1

(
1 − 1

2l

))
+O(n−7/2+11ε).

Additionally,

3 +
∑
k≥1

uk(2k + 3)
k∏

l=1

(
1 − 1

2l

)
= 3(1 − u)−1/2 + u(1 − u)−3/2

for a real u, |u| < 1. Thus

I22 =
π
√
n

(m+ n)2
√
m

(
3 +

n

m

)
+O(n−7/2+11ε)

and, therefore,

I2 =
1

2π
√
mn

(
2

3
+

n

6m
+
n(m− n)

(m+ n)2

(
1

2
+

n

6m

))
(1 +O(n−1/2+6ε)). (8)

Applying the Stirling formula to (6), we have

Q(m,n) = 2π
√
mn(I1 + I2)(1 +O(n−1)).

Using here estimates (7) and (8), we obtain the result stated.
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The proof above can be easily adapted to the one-dimensional case. In this case, we
obtain the first two terms of the asymptotic expansion for Q(n) by estimating the integral

∮
Γ1∪Γ2

e−n(1−y)

(1 − y)yn+1
dy, Γk = Γk(0).

Note that the chosen contour Γ1 ∪ Γ2 differs from ones used in the saddle point
method [2, 9] or in the singularity analysis [5], the most useful tools for obtaining asymp-
totic expansions for the coefficients of generating functions. The saddle point technique
cannot be applied to our generating function e−n(1−y)(1− y)−1 due to a small singularity
at y = 1 that yields a slow decay of the corresponding integrand near its saddle point.
The singularity analysis works with generating functions of the form L((1−y)−1)(1−y)−1,
where L(u) must be a special “slowly varying at infinity” function, but this does not hold
in our case.
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