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Abstract

Let c be a positive constant. We show that if r = ⌊cn1/3⌋ and the members of
([n]
r

)

are chosen sequentially at random to form an intersecting hypergraph then with
limiting probability (1 + c3)−1, as n → ∞, the resulting family will be of maximum
size

(n−1
r−1

)

.

1 Introduction

An intersecting hypergraph is one in which each pair of edges has a non-empty intersection. Here,
we consider r-uniform hypergraphs which are those for which all edges contain r vertices.

The motivating idea for this paper is the classical Erdős-Ko-Rado theorem [4] which states that
a maximum size r-uniform intersecting hypergraph has

(n−1
r−1

)

edges if r ≤ n/2 and
(n
r

)

edges if
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r > n/2. Furthermore, for r < n/2 any maximum-sized family must have the property that all
edges contain a common vertex.

In the last four decades this theorem has attracted the attention of many researchers and it has
been generalized in many ways. It is worth mentioning for example the famous conjecture of
Frankl on the structure of maximum t-intersecting families in a certain range of n(t, r) which was
investigated by Frankl and Füredi [6] and completely solved only a few years ago by Ahlswede
and Khachatrian [1]. Another type of generalization can be found in [2].

The first attempt (and as far as we know the only one) to ‘randomize’ this topic was given by
Fishburn, Frankl, Freed, Lagarias and Odlyzko [5]. Also note that other random hypergraph
structures were considered already by Rényi e.g., in [7], he identified the anti-chain threshold.
Here we try to continue this line of investigation. Our goal is to describe the structure of random
intersecting systems. More precisely, we consider taking edges on-line; that is, one at a time,
ensuring that at each stage, the resulting hypergraph remains intersecting. I.e., we consider the
following random process:

choose random intersecting system
Choose e1 ∈

([n]
r

)

. Given Fi := {e1, . . . , ei}, let A(Fi) = {e ∈
([n]
r

)

: e /∈ Fi and e ∩ ej 6= ∅ for
1 ≤ j ≤ i}. Choose ei+1 uniformly at random from A(Fi). The procedure halts when A(Fi) = ∅
and F = Fi is then output by the procedure.

It should be made clear that sets are chosen without replacement.

2 Definitions

Let [n] be the set of vertices of the hypergraph H.

A star is collection of sets such that any pair in the collection has the same one-element inter-
section {x}, which is referred to as the kernel. A star with i ≥ 2 edges is referred to as an i-star.
A single edge is a 1-star, by convention. We say that H is fixed by x if every member of H
contains x.

For any sequence of events En, we will say that En occurs with high probability (i.e., whp) if
limn→∞Pr(En) = 1.

3 The Erdős-Ko-Rado Threshold

The following theorem determines the threshold for the event that edges chosen online to form
an intersecting hypergraph will attain the Erdős-Ko-Rado bound.

Theorem 1. Let En,r be the event that |F| =
(

n−1
r−1

)

. For r < n/2, this is equivalent to F fixing
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some x ∈ [n]. Then if r = cnn
1/3 < n/2,

lim
n→∞

Pr(En,r) =











1 cn → 0
1

1+c3
cn → c

0 cn → ∞
.

Note: If r > n/2, then all of
([n]
r

)

is an intersecting hypergraph. If r = n/2 then for any H
chosen online to be an intersecting hypergraph, it will have size

(

n− 1

n/2− 1

)

=
1

2

(

n

n/2

)

.

In the case of r = n/2, however, a vertex will not necessarily be fixed for even n ≥ 4.

4 Proof of Theorem 1

4.1 Main Lemmas

Before we prove relevant lemmas, we need to define some events.

• Let Ai be the event that Fi is an i-star, for i ≥ 1.

• Let Bi be the event that ∩i
j=1ej 6= ∅, for i ≥ 3.

• Let C be the event that e3 contains all of e1∩ e2 as well as at least one vertex in (e1 \e2)∪
(e2 \ e1).

• Let D be the event that there is some r-set that intersects all currently chosen edges but
fails to contain any vertex in their common intersection.

Lemma 1. If r = o(n1/2) then
Pr(A2) = 1− o(1).

The fulcrum on which Theorem 1 rests is Lemma 2.

Lemma 2. If r = o(n1/2) then

Pr(A3) =
1− o(1)

1 + (r−1)3

n (1 + o(1))

Lemma 3. If r = o(n2/5) and m = O(n1/2/r) then

Pr(Am | A3) = exp

{

−m2r2

4n
+ o(1)

}
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Remark 1. Observe that Lemmas 1, 2, 3 imply that if r = dnn
1/4, then the probability of the

event Ar+1 approaches exp{−d4/4} as dn → d. Furthermore, the occurrence of Ar+1 immedi-
ately implies As for s > r + 1.

Lemma 4. If r = o(n1/2) then
Pr(C | A2) = o(1).

Lemma 5. If r = o(n3/8) then

Pr(B3r | A4) = 1− o(1).

Lemma 6. If r = o(n2/5) then
Pr(D | B3r,A4) = o(1).

Lemma 7. If r = ω(n1/3) (i.e. r/n1/3 → ∞) and r = o(n2/3) then

Pr(B3) = o(1).

Lemma 8. If r = ω(n1/2) and 2 log2 n ≤ m = o(er
2/n) then

Pr(Bm) = o(1).

4.2 Using these lemmas

Case 1: r ≤ n1/3 log n.

Suppose first that cn → c. Then Lemma 1 shows that A2 occurs whp. Given A2 there are 3
disjoint possibilities

A3 ∪̇ B3 ∪̇ C. (1)

Lemma 4 shows that the conditional probability of C tends to zero. Lemma 2 shows that A3

occurs with limiting probability 1
1+c3

and so given A2 the probability of B3 tends to c3

1+c3
. If B3

does not occur then F cannot fix an element.

Suppose then that A3 occurs and e1 ∩ e2 ∩ e3 = {v}. We use Lemma 3 with m = 4 to show that
A4 occurs with conditional probability 1 − o(1). Then, given A4 we can use Lemma 5 to show
that B3r occurs whp and Lemma 6 to show that with conditional probability 1− o(1), F must
fix v.

If cn → 0 then A3 occurs whp and we conclude as in the previous paragraph that with condi-
tional probability 1− o(1), F must fix v, where e1 ∩ e2 ∩ e3 = {v}.
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Now assume that cn → ∞. We still have A2 occuring whp, but now A3 occurs whp. Using
decomposition (1) and Lemma 4 to rule out event C we see that B3 occurs whp and so F cannot
fix any element.

Case 2: n1/3 log n ≤ r ≤ n1/2 log n.
Here we use Lemma 7, which immediately gives that whp F3 has no vertex of degree 3; thus F
cannot fix any element.

Case 3: n1/2 log n ≤ r < n/2.

In this case, we apply Lemma 8 with m = exp
{

r2

3n

}

and we see that

Pr(Bm) = O

(

exp

{

− r2

3n

})

= o(1).

So Fm fails, whp, to have a vertex of degree m, in which case F cannot fix any element. ✷

5 Proofs of Lemmas

5.1 Proof of Lemma 1

First we see that

Pr(A1) = 1. (2)

Pr (A2 | A1) =
r
(

n−r
r−1

)

(

n
r

)

−
(

n−r
r

) (3)

=

rnr−1

(r−1)!

(

1 +O
(

r2

n

))

nr

r!

(

1− 1 + r2

n +O
(

r3

n2

))

= 1 +O

(

r2

n

)

.

✷

5.2 Proof of Lemma 2

Continuing as in (3),

Pr (Ai+1 | Ai) =

(n−i(r−1)−1
r−1

)

(n−1
r−1

)

+Ni − i
, i ≥ 2. (4)

For i ≥ 2, the quantity Ni is the number of r sets that intersect all of Fi but fail to contain the
one-vertex kernel of Fi. Thus,

(r − 1)i
(

n− i(r − 1)− 1

r − i

)

≤ Ni ≤ (r − 1)i
(

n− i− 1

r − i

)

. (5)
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The lower bound comes from taking a single vertex (not the kernel) from each of the edges and
r − i vertices from the remainder of the vertex set. The upper bound comes from taking one
vertex (not the kernel) from each of the edges and r − i other non-kernel vertices.

Simple computations give, for r = o(n1/2),

N2 = (1 + o(1))
(r − 1)3

n

(

n− 1

r − 1

)

. (6)

N3 ≤ (1 + o(1))

(

n− 1

r − 1

)

. (7)

(

n− i(r − 1) − 1

r − 1

)

= (1 + o(1))

(

n− 1

r − 1

)

. (8)

It follows from (4), (6), (7) and (8) that

Pr(A3 | A2) =
1− o(1)

1 + (r−1)3

n (1 + o(1))
.

Lemma 1 then gives that

Pr(A3) =
1− o(1)

1 + (r−1)3

n (1 + o(1))
. (9)

✷

5.3 Proof of Lemma 3

We estimate for 3 ≤ i ≤ r:

(r − 1)i
(n−i−1

r−i

)

(n−1
r−1

) ≤
ri
(n−1
r−i

)

(n−1
r−1

) = O

(

r2i−1

ni−1

)

. (10)

It then follows from (4), (5) and (10) that for 3 ≤ i ≤ r,

Pr(Ai+1 | Ai) =

(n−i(r−1)−1
r−1

)

(n−1
r−1

)

(

1 +O
(

r2i−1

ni−1

))

= 1− ir2

2n
+O

(

i2r3

n2
+

r2i−1

ni−1

)

. (11)

Equation (11) implies that

Pr(Am+1 | A3) =
m
∏

i=3

Pr(Ai+1 | Ai)

=

m
∏

i=3

(

1− ir2

2n
+O

(

i2r3

n2
+

r2i−1

ni−1

))

=

m
∏

i=3

exp

{

− ir2

2n
+O

(

i2r4

n2
+

r2i−1

ni−1

)}

= exp

{

−m2r2

4n
+ o(1)

}

.
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✷

5.4 Proof of Lemma 4

A simple computation suffices:

Pr(C | A2) ≤
2r
(

n−2
r−2

)

(

n−1
r−1

)

− 2
≤ 2r2

n− 2r
(n−1
r−1

)−1 = O

(

r2

n

)

.

✷

5.5 Proof of Lemma 5

Assuming that both A4 and Bi occur for i ≥ 4, there are at most (r − 1)4
(n−1
r−4

)

r-sets which do

not contain v and which meet e1, e2, e3, e4. On the other hand there are
(n−1
r−1

)

− i r-sets which
contain v and are not edges of Fi. As a result, for i ≥ 4,

Pr(Bi+1 | Bi,A4) ≤
(r − 1)4

(n−1
r−4

)

(n−1
r−1

)

− i
≤ 2r7

n3
. (12)

Thus

Pr(B3r | A4) =

3r−1
∏

i=4

Pr(Bi+1 | Bi,A4)

≥
3r−1
∏

i=4

(

1− 2r7

n3

)

≥ 1− 6r8

n3
.

✷

5.6 Proof of Lemma 6

Assume that B3r ∩A4 occurs and that v is the unique vertex of degree 3r in F3r. We show that
whp v ∈ ei for i > 3r.

Claim 1. Suppose that B3r ∩ A4 occurs. Then e′i = ei \ {v}, 1 ≤ i ≤ 3r is a collection of 3r
randomly chosen (r − 1)-sets from [n] \ {v}.

The claim can be argued as follows: ei is chosen uniformly from all r-sets which meet e1, e2, . . . , ei−1.
If we add the condition v ∈ ei i.e. Bi occurs, then ei is equally likely to be any such r-set con-
taining v. ✷

the electronic journal of combinatorics 10 (2003), #R00 7



Recall that D is the event that there is an r-set which meets all edges but does not contain the
kernel. Then

Pr(D | B3r,A4) ≤
(

n− 1

r

)

(

1−
(

n−r−1
r−1

)

(

n−1
r−1

)

)3r

≤
(ne

r

)r
(

r2

n− 2r

)3r

=

(

ner5

(n− 2r)3

)r

≤
(

2er5

n2

)r

✷

5.7 Proof of Lemma 7

We show that Pr(B3) = o(1). We write

Pr(B3) =
r−1
∑

i=1

f(i)g(i) (13)

where

f(i) = Pr(|e1 ∩ e2| = i)

=

(

r
i

)(

n−r
r−i

)

(

n
r

)

−
(

n−r
r

) (14)

and
g(i) = Pr(B3 | |e1 ∩ e2| = i)

=

(n
r

)

−
(n−i

r

)

(n
r

)

− 2
(n−r

r

)

+
(n−2r+i

r

) (15)

Now for 0 ≤ s ≤ 2r we have

(

n−s
r

)

(n
r

) =
r−1
∏

j=0

(

1− s

n− j

)

=

r−1
∏

j=0

exp

{

− s

n
+O

(

r2

n2

)}

= exp

{

−rs

n
+O

(

r3

n2

)}

. (16)
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Furthermore,

(r
i

)(n−r
r−i

)

(n
r

) ≤ ri

i!
·
(n−r
r−i

)

(n−r
r

) ·
(

n−r
r

)

(n
r

)

≤ ri

i!
· ri

(n − 2r)i
exp

{

−r2

n
+O

(

r3

n2

)}

.

Thus

f(i) ≤ r2i

i!(n − 2r)i
· 1 + o(1)

exp
{

r2

n

}

− 1
. (17)

Using (16) in (15) we see that

g(i) =
1− exp

{

− ir
n +O

(

r3

n2

)}

1− 2 exp
{

− r2

n +O
(

r3

n2

)}

+ exp
{

− r(2r−i)
n +O

(

r3

n2

)}

≤ (1 + o(1))

ir
n +O

(

r3

n2

)

(

1− exp
{

− r2

n

})2 .

So,

r−1
∑

i=1

f(i)g(i) ≤ (1 + o(1))
exp

{

2r2

n

}

(

exp
{

r2

n

}

− 1
)3

r−1
∑

i=1

r2i

i!(n − 2r)i

(

ir

n
+O

(

r3

n2

))

= O







exp
{

2r2

n

}

(

exp
{

r2

n

}

− 1
)3

r3

n2
exp

{

r2

n− 2r

}







= O







r3

n2
· 1
(

1− exp
{

− r2

n

})3







= o(1).

✷

5.8 Proof of Lemma 8

Consider m members of
([n]
r

)

being chosen at random (without replacement).

The probability that these m edges fail to form an intersecting family is at most

(

m

2

)

(n−r
r

)

(n
r

) ≤ m2

2

(

1− r

n

)r
≤ m2

2
exp

{

−r2

n

}
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Let us take

m = exp

{

r2

3n

}

.

For r = ω(
√
n) we can use the fact that Fm has the same distribution as m distinct randomly

chosen r-sets, conditional on the event (of probability 1− o(1)) that Fm is intersecting. To see
this consider sequentially choosing m distinct sets at random. If we ignore the cases when the
m chosen sets are not intersecting then we will produce a collection with the same distribution
as Fm.

Using r < n/2, the probability that Fm has a vertex of degree m is at most

1

2
exp

{

− r2

3n

}

+ n

(
(n−1
r−1

)

(n
r

)

)m

= O

(

exp

{

− r2

3n

})

+ rmn1−m

= O

(

exp

{

− r2

3n

})

+ n2−m.

✷

6 Open Problem

It is known that a maximal intersecting system, i.e, a system to which we can not add any
additional edge without making it non-intersecting, may have various structures. Thus we finish
by posing the following problem.

Problem: What is the structure of F in different ranges of n1/3 ≪ r < n/2?
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