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Abstract

A λ-ring version of a Frobenius characteristic for groups of the form G oSn is given.
Our methods provide natural analogs of classic results in the representation theory
of the symmetric group. Included is a method decompose the Kronecker product of
two irreducible representations of G o Sn into its irreducible components along with
generalizations of the Murnaghan-Nakayama rule, the Hall inner product, and the
reproducing kernel for G o Sn.

1 Introduction

Let G be a finite group and let Sn be the symmetric group on n letters. In the early
1930’s, Specht described the irreducible representations of the wreath product G o Sn in
his dissertation [16] but did not describe an analog of the Frobenius characteristic for the
symmetric group.

Since then, there have been numerous accounts of the representation theory of G o Sn

[6, 7]. Most have not attempted to generalize the Frobenius map, although at least one has
[10]. In [10], Macdonald gives a generalization of Schur’s theory of polynomial functors
before showing that a specialization of that theory naturally leads to Specht’s results on
the representations of G o Sn. Macdonald’s version of the Frobenius map for G o Sn is not
the same as the Frobenius map in this paper, but it is shown to have some of the same
properties. In particular, Macdonald verifies a sort of Frobenius reciprocity. These results
are reproduced in [11]. Our presentation of the Frobenius map for G oSn can essentially be
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viewed as a detailed version of Macdonald’s approach that exploits λ-ring notation. We
explicitly give an analog of the Hall inner product which slightly differs from that in [11]
and the reproducing kernel for G o Sn which is not found in [11]. Moreover, our approach
leads to a natural analog of the Murnaghan-Nakayama rule for GoSn and explicit formulas
for the computation of Kronecker products for G o Sn.

Our version of the Murnaghan-Nakayama rule for computing the characters of G o Sn

yields an alternative but equivalent procedure to those found in [6, 7, 10, 11, 16]. In
addition, a different proof of this rule has been given in [17]. Thus, our description
cannot be viewed as new. However, our approach to decomposing the Kronecker product
of representations of G o Sn into irreducible components gives a more efficient algorithm
than those which appear in the literature.

The approach we are taking has been developing for a number of years. In the late
1980’s and early 1990’s, Stembridge described a λ-ring version of the Frobenius charac-
teristic for the hyperoctahedral group Z2 o Sn [17, 18]. This provided an account of the
representation theory of the hyperoctahedral group through the manipulation of sym-
metric functions which paralleled the same ideas for the symmetric group [1]. The λ-
ring Frobenius characteristic for Z2 o Sn involved a class of symmetric functions over the
hyperoctahedral group—in particular, Stembridge proved that the Frobenius character-
istic of an irreducible character of Z2 o Sn is a λ-ring symmetric function of the form
sλ[X + Y ]sµ[X − Y ]. These λ-ring versions of symmetric functions have similar relation-
ships among themselves as the standard bases in the ring of symmetric functions over Sn

[3]. These λ-ring symmetric functions have been used by Beck to give proofs of a variety
of generating functions for permutation statistics for Z2 o Sn [1, 2].

In 2000, Wagner described a natural extension of this λ-ring Frobenius characteristic
for groups of the form Zk o Sn [19]. A different generalization of Frobenius characteristic
for Zk o Sn was given by Poirier in [12].

Our Frobenius characteristic extends previously defined Frobenius characteristics for
ZkoSn found in [1, 17, 18, 19]. A particularly nice aspect about our Frobenius characteristic
is that is allows for a presentation of the representation theory of G oSn which mimics the
presentation of the representation theory of the symmetric group found in [15].

The outline of this paper is as follows. The next section provides a very brief de-
scription of the group G o Sn. In Section 3, λ-ring notation is independently developed so
that the Frobenius characteristic for G o Sn may be defined in Section 4. Combinatorial
proofs of classical λ-ring identities may be found there. In Section 4, a scalar product
is defined are identified in the image of the Frobenius characteristic. Also in Section 4,
an analog of the reproducing kernel for Sn is used to provide a criterion for determining
dual bases. Characters of representations of G and Sn are induced up to the group G oSn

in Section 5 which are then found to be the characters of the irreducible representations.
The combinatorial interpretation of these irreducible characters is found in Section 6.
Section 7 shows a way to compute the coefficients of the irreducible representations of
G o Sn in the Kronecker product of two irreducible representations of G o Sn. We end by
giving an example of how the Kronecker product of two irreducible representations in the
hyperoctahedral group may be decomposed.
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2 The group G o Sn
In this section we record the results concerning wreath product groups which will be
needed later. Specifically, we will identify the conjugacy classes and their sizes. The
proofs of the assertions stated here may be found in [6, 11] (with different notation).

We define the group G o Sn to be the set of n × n permutation matrices where each
1 in the matrix is replaced with an element of G. Group multiplication is defined to be
matrix multiplication. Elements in G o Sn may be written in matrix or cyclic notation.
For example, if g1, . . . , g5 are in G, an element in G o Sn may be written as


0 g1 0 0 0
g2 0 0 0 0
0 0 0 g4 0
0 0 g3 0 0
0 0 0 0 g5




or as (g11, g22)(g33, g44)(g55).
Throughout this paper, the c conjugacy classes of G will be denoted by C1, . . . , Cc. If

g1, . . . , gk ∈ G, we define (g1i1, . . . , gkik) to be a Cj-cycle if gkgk−1 · · · g1 ∈ Cj. For any
partition γ = (γ1, . . . , γ`), we write γ ` n or |γ| = n if γ1 + · · · + γ` = n and we let `(γ)
be the number of nonzero parts in the partition γ. Define C(γ1,...,γc) to be the set

{σ ∈ G o Sn : the Cj-cycles in σ are of length γj
1, . . . , γ

j
`(γj) for j = 1, . . . , c};

that is, the set of σ ∈ G o Sn where the Cj-cycles of σ induce the partition γj .
For convenience, we will write (γ1, . . . , γc) = ~γ (where γ1, . . . , γc are partitions) and

~γ ` n, alluding to the fact that
∑c

i=1 |γi| = n.

Theorem 1. A complete set of conjugacy classes for G o Sn is {C~γ : ~γ ` n}.

Theorem 2. The conjugacy class C~γ has size n!|G|n
c∏

i=1

1

zγi

( |Ci|
|G|
)`(γi)

where for any

partition α with αi parts of size i, zα = 1α1 · · ·nαnα1! · · ·αn!.

3 λ-Ring Notation

Since the Frobenius characteristic and the irreducible characters of G o Sn will be writ-
ten in λ-ring notation, this section independently develops λ-ring versions of symmetric
functions. The idea of λ-rings have long been known to have a connection with the rep-
resentation theory of the symmetric group [8]. Previous accounts of the theory have not
included the fact that complex numbers may be factored out of the power symmetric
functions pn. Previously, it has been commonplace to only allow integer coefficients to
have this property.
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Let A be a set of formal commuting variables and A∗ the set of words in A. The empty
word will be identified with “1”. Let c ∈ C, γ = (γ1, . . . , γ`) ` n, x = a1a2 . . . ai be any
word in A∗, and X,X1, X2, . . . be any sequence of formal sums of the words in A∗ with
complex coefficients. Define λ-ring notation on the power symmetric functions by

pr[0] = 0, pr[1] = 1,

pr[x] = xr = ar
1a

r
2 . . . a

r
i , pr[cX] = c pr[X],

pr

[∑
i

Xi

]
=
∑

i

pr[Xi], pγ[X] = pγ1 [X] · · · pγ`
[X],

where r is a nonnegative integer. These definitions imply that pr[XX1] = pr[X]pr[X1]
and therefore pγ[XX1] = pγ[X]pγ [X1]. These definitions also imply that for any complex
number c and γ ` n, pγ [cX] = c`(γ)pγ[X].

When X = x1 + · · ·+ xN , then our definitions ensure that

pk[X] =

N∑
i=1

xk
i ,

which is the usual power symmetric function pk(x1, . . . , xN ). Furthermore, for any parti-
tion λ = (λ1, . . . , λ`),

pλ[X] = pλ(x1, . . . , xN ).

The power symmetric functions are a basis for the ring of symmetric functions, so if
Q is a symmetric function, then there are unique coefficients aλ such that Q =

∑
λ aλpλ.

Define Q[X] =
∑

λ aλpλ[X]. It follows that in the special case where X = x1 + · · · + xN

is a sum of letters in A, Q[X] is simply the symmetric function Q(x1, . . . , xN ). We note
that if X = x1 + x2 + · · · as an infinite sum of letters, the same reasoning will show that
for any symmetric function Q, Q[X] = Q.

In particular, our definitions extend to the homogeneous, elementary, and Schur bases
for the ring of symmetric functions, denoted by {hλ : λ ` n}, {eλ : λ ` n}, and {sλ : λ `
n}, respectively. Using the transition matrices between these symmetric functions and
the power basis, we define

hn[X] =
∑
ν`n

1

zν

pν [X], hλ[X] = hλ1 [X] · · ·hλ`(λ)
[X],

en[X] =
∑
ν`n

(−1)n−`(ν)

zν

pν [X], eλ[X] = eλ1 [X] · · · eλ`(λ)
[X], and

sλ[X] =
∑
ν`n

χλ
ν

zν
pν [X]

where χλ
µ is the irreducible character of Sn indexed by λ evaluated at the conjugacy class

indexed by µ. Because ‖χλ
ν

zν
‖λ,ν`n and ‖χν

λ‖λ,ν`n are inverses of each other,

pν [X] =
∑

λ

χλ
νsλ[X].
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Given two partitions λ, µ, we write λ ⊆ µ provided the Ferrers diagram of λ fits inside
the Ferrers diagram of µ. If λ ⊆ µ, we let |µ/λ| = |µ| − |λ| and we associate µ/λ with the
cells in the Ferrers diagram of µ that are not in the Ferrers diagram of λ. The resultant
cells are known as the skew shape µ/λ. Below, the skew shape (2,4,9,9,11)/(2,2,9,9) has
been colored in teal.

A column strict tableau T of shape µ/λ is a filling of the skew shape µ/λ with positive
integers such that the integers weakly increase when read from left to right and strictly
increase when read from bottom to top. Let CS(µ/λ) be the set of all column strict
tableaux of shape µ/λ. Given T ∈ CS(µ/λ), let wi(T ) be the number of occurrences of

i in T and let w(T ) =
∏

i x
wi(T )
i . Below we have provided an example of a column strict

tableau T with w(T ) = x3
1x

3
2x

4
4x

3
5.

1

44441
52

1

22

55

Define the skew Schur function sµ/λ by

sµ/λ(x1, x2, . . . ) =
∑

T∈CS(µ/λ)

w(T ).

When λ = ∅, this coincides with the definition of sµ. Further, the decomposition of the
skew Schur symmetric function sµ/λ in terms of the Schur basis can be found via the
well known Littlewood-Richardson coefficients. That is, if cµλ,α is the nonnegative integer
coefficient of sµ in sλsα, then

sµ/λ =
∑

α

cµλ,αsα.

A rim hook in µ/λ is a sequence of cells along the northeast edge of the skew shape of
µ/λ such that every pair of consecutive cells share an edge, there is not a 2 by 2 block of
cells, and the removal of the cells from µ/λ leaves another skew shape. The sign of a rim
hook ρ, sgn(ρ), is (−1)r−1 where r is the number of rows in µ/λ which have a cell in ρ.

A rim hook tableau of shape µ/λ and type ν is a sequence of partitions λ = λ0,. . . ,λj =
µ such that for each 1 ≤ i ≤ j, λi−1 is equal to λi with a rim hook of size νi removed.
The sign of the rim hook tableau T , sgn(T ), is the product of the signs of the rim hooks
in T . If

χµ/λ
ν =

∑
sgn(T )
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where the sum runs over all rim hook tableaux T of shape µ/λ and type ν, then

sµ/λ =
∑

ν

χ
µ/λ
ν

zν
pν (1)

[11]. The sum of signs of all rim hook tableaux is the same for any one order of the parts
of ν. That is, the order that the parts of ν are placed in a rim hook tableau changes
the appearance of the rim hook tableau but does not change the total sum of signs over
all possible such objects. Unless otherwise specified, place rim hooks in a skew shape in
order from smallest to largest. Below we have displayed all rim hook tableaux of shape
(1, 4, 5)/(1, 2) and type (1, 1, 2, 3).

The rim hooks were placed in the above tableau according to darkness of color; that is,
the darkest rim hook was placed first in the tableau and the lightest rim hook was placed
last in the tableau.

If α, β are partitions of possibly different integers, let α + β be the partition created
by combining the parts of the partitions α and β.

Lemma 3. Suppose α, β are partitions such that α + β = ν. Then

χµ/λ
ν =

∑
λ⊆δ⊆µ

χδ/λ
α χ

µ/δ
β .

Proof. This lemma is a result of placing the rim hooks in the skew shape µ/λ in two
different ways. Instead of filling µ/λ with rim hooks in increasing order as usual, first fill
µ/λ with the rim hooks with lengths found in α, then with the rim hooks with lengths
found in β. Let δ be the partition formed by the rim hooks of α atop the partition λ. For
different fillings of the rim hooks in α, different partitions δ may arise–each having the
property that λ ⊆ δ ⊆ µ. For any fixed such δ, the sum over the weights of the fillings of
δ/λ with rims hooks corresponding to the parts of α is χ

δ/λ
α and the sum over the weights

of the fillings of µ/δ with rims hooks corresponding to the parts of β is χ
µ/δ
β . Thus, the

proof of the lemma is complete by summing over all possible δ.
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Theorem 4. For X, Y formal sums of words in A∗ with complex coefficients,

sµ/λ[X + Y ] =
∑

λ⊆δ⊆µ

sµ/δ[X]sδ/λ[Y ], (2)

sµ/λ[−X] = (−1)|µ
′/λ′|sµ′/λ′ [X], and (3)

sµ[XY ] =
∑
λ,ν

Kµ,λ,νsλ[X]sν [Y ], (4)

where λ′ denotes the conjugate partition to λ and Kµ,λ,ν =
∑

ρ
1
zρ
χµ

ρχ
λ
ρχ

ν
ρ.

Proof. Suppose |µ/λ| = n. We have

sµ/λ[X + Y ] =
∑
ν`n

χ
µ/λ
ν

zν

pν [X + Y ]

=
∑

ν=(1v1 ,...,nvn)

χ
µ/λ
ν

zν

n∏
i=1

(pi[X] + pi[Y ])vi

=
∑

ν=(1v1 ,...,nvn)

χ
µ/λ
ν

zν

n∏
i=1

vi∑
ji=0

(
vi

ji

)
pi[X]vi−jipi[Y ]ji.

By letting α = (1v1−j1, . . . , nvn−jn), β = (1j1, . . . , njn), and simplifying the binomial coef-
ficients, the above string of equalities is equal to

∑
ν`n

χµ/λ
ν

∑
α+β=ν

1

zα

pα[X]
1

zβ

pβ[Y ].

Using Lemma 3, this expression may be written as

∑
ν`n

∑
α+β=ν

∑
λ⊆δ⊆µ

χ
µ/δ
α

zα

pα[X]
χ

δ/λ
β

zβ

pβ[Y ] =
∑

λ⊆δ⊆µ

∑
ν`n

∑
α+β=ν

χ
µ/δ
α

zα

pα[X]
χ

δ/λ
β

zβ

pβ[Y ]

=
∑

λ⊆δ⊆µ


 ∑

α`|µ/δ|

χ
µ/δ
α

zα

pα[X]




 ∑

β`|δ/λ|

χ
δ/λ
β

zβ

pβ[Y ]




=
∑

λ⊆δ⊆µ

sµ/δ[X]sδ/λ[Y ],

which proves (2).
As for (3), we have

sµ/λ[−X] =
∑

ν

χ
µ/λ
ν

zν
pν [−X] =

∑
ν

(−1)`(ν)χ
µ/λ
ν

zν
pν [X]. (5)

the electronic journal of combinatorics 11 (2004), #R56 7



Every rim hook tableau of shape µ/λ and type ν is in one to one correspondence with a
rim hook tableau of shape µ′/λ′ of type ν via conjugation. Suppose that α1, α2, . . . , α`(ν)

are the rim hooks in a rim hook tableau of shape µ/λ and type ν. For every i = 1, . . . , `(ν),
sgn(α′

i) = (−1)|αi|−1sgn(αi). Therefore, the sign of a rim hook tableau of shape µ′/λ′ and
type ν is (−1)|µ/λ|−`(ν) times the sign of the corresponding rim hook tableau of shape µ/λ
and type ν because

`(ν)∏
i=1

sgn(α′
i) =

`(ν)∏
i=1

(−1)|αi|−1sgn(α) = (−1)|µ/λ|−`(ν)

`(ν)∏
i=1

sgn(αi).

Using this in conjunction with (5) gives

∑
ν`n

(−1)`(ν)(−1)|µ/λ|−`(ν)χ
µ′/λ′
ν

zν

pν [X] =
∑
ν`n

(−1)|µ
′/λ′|χ

µ′/λ′
ν

zν

pν [X] = (−1)|µ
′/λ′|sµ′/λ′ [X],

thereby proving (3).
Finally, we have

sµ[XY ] =
∑
ρ`n

χµ
ρ

zρ
pρ[XY ]

=
∑
ρ`n

χµ
ρ

zρ

pρ[X]pρ[Y ]

=
∑
ρ`n

χµ
ρ

zρ

(∑
λ`n

χλ
ρsλ[X]

)(∑
ν`n

χν
ρsν [X]

)

=
∑
λ,ν`n

Kµ,λ,νsλ[X]sν [Y ],

which shows (4) and completes the proof.

A consequence of theorem 4 is corollary 5 below.

Corollary 5. For X, Y formal sums of words in A∗ with complex coefficients,

hr[X + Y ] =

r∑
i=0

hi[X]hr−i[Y ] and (6)

hr[XY ] =
∑
ν`r

sν [X]sν [Y ]. (7)

Proof. This corollary follows from noting that hr = s(r) and writing down the special
cases of Theorem 4 which follow. For (6), we have

hr[X + Y ] = s(r)[X + Y ] =
∑
δ⊆(r)

sδ[X]s(r)/δ[Y ] =

r∑
i=0

hi[X]hr−i[Y ].
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For (7) we have

hr[XY ] = s(r)[XY ] =
∑
λ,ν,ρ

1

zρ
χ(r)

ρ χλ
ρχ

ν
ρsλ[X]sν [Y ] =

∑
λ,ν,ρ

1

zρ
χλ

ρχ
ν
ρsλ[X]sν [Y ].

To complete the proof, notice that
∑

ρ
1
zρ
χλ

ρχ
ν
ρ is 1 when λ = ν and 0 otherwise because

‖χλ
ν

zν
‖λ,ν`n and ‖χν

λ‖λ,ν`n are inverses of each other.

Finally, note that combining (2) and (3) in Theorem 4 gives Corollary 6 below.

Corollary 6. For X, Y formal sums of words in A∗ with complex coefficients,

sµ/λ[X − Y ] =
∑

λ⊆δ⊆µ

(−1)|δ/λ|sµ/δ[X]sδ′/λ′ [Y ].

4 The Frobenius Characteristic

In this section, a Frobenius characteristic for G oSn which preserves the inner product for
functions constant on the conjugacy classes of G o Sn (class functions) is defined. Dual
bases in the space of λ-ring symmetric functions will be identified using an analog of the
reproducing kernel.

For any group H , let R(H) be the center of the group algebra of H ; that is, let R(H)
be the set of functions mapping H into the complex numbers C which are constant on the
conjugacy classes of H . Let 1~γ ∈ R(G o Sn) be the indicator function such that 1~γ(σ) = 1
provided σ ∈ C~γ and 0 otherwise. Then {1~γ : ~γ ` n} is a basis for the center of the group
algebra of G o Sn because it is basis for the class functions. For i = 1, . . . , c and variables
x

(i)
1 , x

(i)
2 , . . . , x

(i)
N , let X i = x

(i)
1 + · · ·+ x

(i)
N . Define

Λc,n =
⊕

n1+n2+···+nc=n

c⊗
i=1

Λni
(X i)

where Λni
(X i) is the space of homogeneous symmetric functions of degree ni in the vari-

ables in X i. Note that if {aλ : λ ` n} is a basis for Λn(X
i), it follows that{

c∏
i=1

aγi [X i] : ~γ = (γ1, . . . , γc) ` n
}

is a basis for Λc,n.
Define the Frobenius characteristic F as a map from the center of the group algebra

of G o Sn to Λc,n by

F (1~γ) =

c∏
i=1

pγi [X i]

zγi

. (8)

We may extend the map F by linearity to an isomorphism from R(G o Sn) onto Λc,n

because
{∏c

i=1 pγi [X i]
}

~γ`n
is a basis for Λc,n.
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Any group G has a natural scalar product on the center of the group algebra R(G)
defined by

〈f, g〉G =
1

|G|
∑
σ∈G

f(σ)g(σ)

where c denotes the complex conjugate of c ∈ C. A scalar product 〈·, ·〉Λc,n may be defined
so that the Frobenius map is an isometry with respect to this scalar product. The scalar
product on indicator functions gives

〈1~γ, 1~δ〉GoSn =
1

n!|G|n
∑

σ∈GoSn

1~γ(σ)1~δ(σ)

=

{
1

n!|G|n |C~γ| if ~γ = ~δ

0 otherwise

=



∏c

i=1
1

z
γi

(
|Ci|
|G|

)`(γi)

if ~γ = ~δ

0 otherwise.

This tells us that in order to force the Frobenius map to be an isometry, we should define
the scalar product on the basis

{∏c
i=1 pγi [X i]

}
~γ`n

of Λc,n by

〈
c∏

i=1

pγi [X i]

zγi

,

c∏
i=1

pδi [X i]

zδi

〉
Λc,n

=



∏c

i=1
1

z
γi

(
|Ci|
|G|

)`(γi)

if ~γ = ~δ

0 otherwise.

This definition of a scalar product immediately provides a self dual basis for Λc,n:


c∏
i=1

pγi [X i]√
zγi

(
|Ci|
|G|

)`(γi)
: ~γ ` n


 .

Before we continue with our development of a criterion for dual bases in Λc,n using
an analog of the reproducing kernel in the space of symmetric functions, we digress to
discuss the difference between our Frobenius map for G o Sn and that of Macdonald [11].
His approach is slightly different than one presented in this paper, but the resulting
Frobenius characteristic and inner product is simply a scalar multiple of ours. We will
rejoin our approach with Lemma 7 on page 12.

Macdonald defines a graded C-algebra R(G o S) by
⊕

n≥0 R(G o Sn) where the multi-
plication on R(G o S) is defined as follows. Given u ∈ R(G o Sn) and v ∈ R(G o Sm), then
u× v ∈ R(G o Sn ×G o Sm). Since one can naturally embed G o Sn ×G o Sm into G o Sn+m,
one can define the induced representation

A× B ↑GoSn+m

GoSn×GoSm
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for any representations A of G o Sn and B of G o Sm. Thus we can define

ind
GoSn+m

GoSn×GoSm
(χA × χB) = χA×B↑GoSn+m

GoSn×GoSm . (9)

Since all irreducible characters G o Sn × G o Sm are of the form χA×B as A and B run
over the irreducible representations of G o Sn and G o Sm respectively, we can define
ind

GoSn+m

GoSn×GoSm
(u × v) for any u× v ∈ R(G o Sn × G o Sm) by linearity. Then we define the

product of u and v in R(G o S) by

uv = ind
GoSn+m

GoSn×GoSm
(u× v). (10)

In addition, R(G o S) carries a scalar product defined by

〈f, g〉GoS =
∑
n≥0

〈fn, gn〉GoSn

where f =
∑

n≥0 fn and g =
∑

n≥0 gn for fn, gn ∈ G o Sn. For r ≥ 1, i = 1, . . . , c,
Macdonald lets pr(i) be independent indeterminates over C and defines Λ(G o S) by

Λ(G o S) = C[pr(i) : r ≥ 1, i = 1, . . . , c].

For a partition λ = (λ1, . . . , λk), Macdonald defines pλ(i) =
∏k

j=1 pλj
(i) and for any

sequence ~ρ = (λ1, . . . , λc) of partitions, he lets P~ρ =
∏c

i=1 pλi(i). The set of all P~ρ, as ~ρ
varies over all sequences of partitions of length c, forms a basis for Λ(G o S). Macdonald
defines a scalar product on Λ(G o S) by declaring that

〈P~ρ, P~γ〉 =



∏c

i=1 zρi

(
|G|
|Ci|

)`(ρi)

if ~ρ = ~γ

0 otherwise.

where ~ρ = (ρ1, . . . , ρc). Next, Macdonald defines a function Ψn : G o Sn → Λ(G o S) such
that Ψn(g) = P~ρ if g is in the conjucacy class indexed by ~ρ. He then defines a C-linear
mapping by defining for each f ∈ R(G o Sn)

ch(f) = 〈f,Ψn〉GoSn

=
1

|G o Sn|
∑

g∈GoSn

f(g)Ψn(g)

=
∑
~ρ`n

c∏
i=1

1

zρi

( |Ci|
|G|
)`(ρi)

f~ρP~ρ (11)

where f~ρ is the value of f on the conjugacy class of G o Sn indexed by ρ. Macdonald then
shows that his characteristic map ch is an isometric isomorphism of graded C-algebras.
To see the connection with our Frobenius characteristic F for G o Sn, we can follow
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Macdonal’s suggestion and think of pr(i) as the power symmetric function pr[X
i]. Thus,

if ~ρ = (ρ1, . . . , ρc), then

P~ρ =
c∏

i=1

pρi [X i].

It is not difficult to see from (11) that

ch(1~ρ) =
c∏

i=1

pρi [X i]

zρi

( |Ci|
|G|
)`(ρi)

(12)

Thus comparing (12) with (8), we see that the only difference between our definition
of the Frobenius characteristic for G o Sn and Macdonald’s version is the extra factor of

c∏
i=1

( |Ci|
|G|
)`(ρi)

. This causes our scalar product to differ from Macdonald’s scalar product

by a constant. That is, under Macdonald’s scalar product,〈
c∏

i=1

pρi[X i],
c∏

i=1

pδi [X i]

〉
Λn,c

=



∏c

i=1 zρi

(
|G|
|Ci|

)`(ρi)

if ~ρ = ~δ

0 otherwise

while for our scalar product on Λn,c,〈
c∏

i=1

pρi [X i],
c∏

i=1

pδi [X i]

〉
Λn,c

=



∏c

i=1 zρi

(
|Ci|
|G|

)`(ρi)

if ~ρ = ~δ

0 otherwise.

Next we shall develop a criterion for dual bases in Λc,n. We start by proving a technical
lemma which will be crucial for our criterion.

Lemma 7. For a conjugacy class Ci of G,

∏
j,k

(1 − xjyk)
− |G|

|Ci|

∣∣∣∣∣
2n

=
∑
µ`n

pµ[X]pµ[Y ]

zµ

(
|Ci|
|G|

)`(µ)

where ·|2n picks out the degree 2n terms from ·, X = x1 +x2 + · · · , and Y = y1 + y2 + · · · .
Proof. The proof of this lemma is a result of formal power series manipulations.

∏
j,k

(1 − xjyk)
− |G|

|Ci|

∣∣∣∣∣
2n

= exp

(
|G|
|Ci|

∑
j,k

log

(
1

1 − xjyk

))∣∣∣∣∣
2n

= exp

(∑
`≥1

|G|
|Ci|

p`[X]p`[Y ]

`

)∣∣∣∣∣
2n

=
∑
m≥0

1

m!

(∑
`≥1

|G|
|Ci|

p`[X]p`[Y ]

`

)m∣∣∣∣∣
2n

.
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Since our concern is of terms of degree 2n, the tail of this last sum may be chopped off.
This gives

n∑
m=1

1

m!

∑
a1+···+an=n

(
m

a1, a2, . . . , an

) n∏
j=1

( |G|
|Ci|

pj [X]pj[Y ]

j

)aj

=
n∑

m=1

∑
a1+···+an=n

n∏
j=1

( |G|
|Ci|

)aj pj[X]ajpj [Y ]aj

jajaj!

=
∑
µ`n

( |G|
|Ci|

)`(µ)
pµ[X]pµ[Y ]

zµ
,

which completes the proof of this lemma.

Just as we let X i = x
(i)
1 + · · ·+x

(i)
N for i = 1, . . . , c, let Y i = y

(i)
1 + · · ·+y

(i)
N be a sum of

variables for i = 1, . . . , c. Let Ω2n = Ω2n(X1, . . . , Xc, Y 1, . . . , Y c) be the terms of degree
2n in the expression

c∏
i=1

∏
j,k

(1 − x
(i)
j y

(i)
k )

− |G|
|Ci| .

We will show that Ω2n is the reproducing kernel for Λc,n.

Theorem 8.

Ω2n =
∑
~γ`n




c∏
i=1

pγi[X i]√
zγi

(
|Ci|
|G|

)`(γi)






c∏
i=1

pγi [Y i]√
zγi

(
|Ci|
|G|

)`(γi)


 .

Proof. We have

Ω2n =
∑

n1+···+nc=n

c∏
i=1


∏

j,k

(1 − x
(i)
j y

(i)
k )

− |G|
|Ci|

∣∣∣∣∣
2ni


 ,

which by Lemma 7 is equal to

∑
n1+···+nc=n

c∏
i=1


∑

µi`ni

( |G|
|Ci|

)`(µi) pµi [X i]pµi [Y i]

zµi




=
∑

n1+···+nc=n

∑
µ1`n1

· · ·
∑
µc`nc

c∏
i=1

( |G|
|Ci|

)`(µi) pµi [X i]pµi [Y i]

zµi

=
∑
~γ`n




c∏
i=1

pγi[X i]√
zγi

(
|Ci|
|G|

)`(γi)






c∏
i=1

pγi [Y i]√
zγi

(
|Ci|
|G|

)`(γi)


 .

This completes the proof of the theorem.
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Theorem 9. Two bases {a~γ : ~γ ` n} and {b~γ : ~γ ` n} of Λc,n are dual if and only if∑
~γ`n

a~γ(X
1, . . . , Xc)b~γ(Y

1, . . . , Y c) = Ω2n.

Proof. Let ~γ1, . . . , ~γm be some ordering of the set {~γ : ~γ ` n} and let us think of the

bases {a~γ : ~γ ` n}, {b~γ : ~γ ` n}, and




c∏
i=1

pγi [X i]√
zγi

(
|Ci|
|G|

)`(γi)
: ~γ ` n


 as m-dimensional

column vectors where the ith entry is equal to the corresponding basis element indexed
by ~γi. Let ~a,~b, and ~p denote these column vectors. Let A and B be the two matrices such
that ~a = A~p and ~b = B~p.

The proof of this theorem is entirely linear algebra and does not depend on Ω2n itself.
We will show that two bases are dual if and only if AB> = Im after which it will be shown
that AB> = Im if and only if

∑
~γ a~γ(X

1, . . . , Xc)b~γ(Y
1, . . . , Y c) = Ω2n.

Let ~a�~b> denote the m×m matrix∥∥〈a~γ(X
1, . . . , Xc), b~δ(Y

1, . . . , Y c)〉Λc,n

∥∥
~γ,~δ`n

.

The bases {a~γ : ~γ ` n} and {b~γ : ~γ ` n} are dual if and only if ~a�~b> = Im. We have that

~a�~b> = (A~p) � (B~p)> = A~p� ~p>B> = AB>

because ~p � ~p> = Im and because this product is associative. Therefore, the bases are
dual if and only if AB> = Im = A>B.

We have that∑
~γ`n

a~γ(X
1, . . . , Xc)b~γ(Y

1, . . . , Y c) = ~a>~b = (A~p)> (B~p) = ~p>A>B~p.

From Theorem 8, ~p>~p is equal to Ω2n, which means that the equation in the statement
of this theorem holds if and only if ~p>A>B~p = ~p>~p. Using the fact that a basis for Λc,n

is




c∏
i=1

pγi[X i]√
zγi

(
|Ci|
|G|

)`(γi)
: ~γ ` n


, it is easy to see that the equation in the statement of

this theorem holds if and only if A>B = Im. This completes the proof.

Let {χ1, · · · , χc} be a complete set of characters of irreducible representations of G.

Theorem 10. Let χi
j be the irreducible character of the representation indexed by i on

the conjugacy class Cj of the group G. Then{
c∏

i=1

sγi

[∑c
j=1χ

i
jX

j
]

: ~γ ` n
}

and

{
c∏

i=1

sγi

[∑c
j=1χ

i
jX

j
]

: ~γ ` n
}

are dual.
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Proof. By Theorem 9, we need only show that

∑
~γ`n

(
c∏

i=1

sγi

[∑c
j=1χ

i
jX

j
])( c∏

i=1

sγi

[∑c
j=1χ

i
jY

j
])

= Ω2n.

The left hand side of the above equality may be rewritten to look like

∑
n1+···+nc=n

c∏
i=1

∑
γi`ni

sγi

[∑c
j=1χ

i
jX

j
]
sγi

[∑c
j=1χ

i
jY

j
]

which by (7) in Corollary 5 is equal to

∑
n1+···+nc=n

c∏
i=1

hni

[(∑c
j=1χ

i
jX

j
)(∑c

j=1χ
i
jY

j
)]

=
∑

n1+···+nc=n

c∏
i=1

hni

[∑
j,k

χi
jχ

i
kX

jY k

]
.

By an iterated application of (6) in Corollary 5, this may be changed to look like

hn

[
c∑

i=1

∑
j,k

χi
jχ

i
kX

jY k

]
= hn

[∑
j,k

XjY k

(
c∑

i=1

χi
jχ

i
k

)]
.

The (column-wise) orthogonality of the irreducible characters of the group G tells us that(
c∑

i=1

χi
jχ

i
k

)
=

{ |G|
|Cj | if j = k

0 otherwise.

Therefore, the left hand side of the first equality in this proof is equal to

hn

[
c∑

i=1

|G|
|Ci|X

iY i

]
=

∑
n1+···+nc=n

c∏
i=1

hni

[ |G|
|Ci|X

iY i

]

=
∑

n1+···+nc=n

c∏
i=1

∑
γi`ni

1

zγi

pγi

[ |G|
|Ci|X

iY i

]

=
∑

n1+···+nc=n

c∏
i=1

∑
γi`ni

pγi [X i]pγi [Y i]

zγi

(
|Ci|
|G|

)`(γi)
.

The sum in the last equality is the right hand side of Theorem 8 after breaking the
denominator into two square roots. Thus, our string of equalities is equal to Ω2n.

5 Induced and Irreducible Characters

In this section, representations of subgroups of G o Sn are induced to construct the irre-
ducible representations of G o Sn. Just as in the case of the symmetric group, the image
of the irreducible characters involves the Schur basis.
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Let Aλ be the irreducible representation of Sn corresponding to the partition λ and
let χλ be the character of Aλ. Let ε denote the identity element in G and let us write
G = {ε = τ1, . . . , τk}.

Define Âλ as the representation of G o Sn with the property that Âλ ((εi, ε(i+ 1))) is
equal to Aλ ((i, i+ 1)) and that Âλ ((τjn)) is equal to the identity matrix of the proper

dimension for i = 1, . . . , n − 1. This uniquely defines Âλ because (εi, ε(i+ 1)) and (τjn)

may be shown to generate G o Sn. Let χ̂λ
~γ be the character of Âλ on the conjugacy class

C~γ. It follows that
χ̂λ

~γ = χλ
γ1+···+γc

where γ1 + · · · + γc is the partition of n formed by combining the parts of the partitions
γ1, . . . , γc.

The character χi of the group G may be extended to the group G oSn in a similar way.
Let Ai be the representation ofG corresponding to χi. Define Âi to be the representation of
the group G oSn such that Âi ((εi, ε(i+ 1))) is the identity matrix of the proper dimension
and Âi((τjn)) = Ai(τj). Let χ̂i be the character of Âi. For g ∈ Cj, one Cj-cycle of length
k is

(gi1, εi2, . . . , εik) = (εi1, . . . , εik)(gi1)

= (εi1, . . . , εik)(εi1, εn)(gn)(εi1, εn),

so it may be seen that

χ̂i
~γ =

c∏
j=1

(
χi

j

)`(γj )

where χ̂i
~γ is the value of the character χ̂i on the conjugacy class C~γ.

Let Ai be the representation of G corresponding to χi and Aλ be the irreducible
representation of Sn corresponding to the partition λ. The Kronecker product Âi ⊗ Âλ

of the representations Âi and Âλ is defined such that for any σ ∈ G, Âi ⊗ Âλ(σ) =
Âi(σ)⊗Âλ(σ). Here, for any matrices A = ||ai,j|| and B, A⊗B is the block matrix ||ai,jB||.
It is not difficult to see that the character of Âi⊗Âλ is χ̂iχ̂λ where χ̂iχ̂λ(σ) = χ̂i(σ) · χ̂λ(σ)
for any σ ∈ G o Sn.

Lemma 11. For λ ` n and i = 1, . . . , c,

sλ

[∑c
j=1χ

i
jX

j
]

= F (χ̂iχ̂λ).

Proof. An iterated application of (2) in Theorem 4 gives

sλ

[∑c
j=1χ

i
jX

j
]

=
∑

νc−1⊆···⊆ν1⊆λ

sλ/ν1 [χi
1X

1] · · · sνc−2/νc−1[χi
c−1X

c−1]sνc−1 [χi
cX

c]

=
∑

νc−1⊆···⊆λ


 ∑

γ1`|λ/ν1|

χ
λ/ν1

γ1

zγ1

pγ1 [χi
1X

1]


 · · ·


 ∑

γc`|νc−1|

χνc−1

γc

zγc

pγc [χi
cX

c]




=
∑

n1+···+nc=n

∑
γ1`n1

· · ·
∑
γc`nc

∑
νc−1⊆···⊆λ

χ
λ/ν1

γ1 · · ·χνc−1

γc

c∏
j=1

pγj [χi
jX

j ]

zγj

.
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An iterated application of Lemma 3 gives a simplification of the product of skew rim hook
tableaux in the above equation. The above string of equalities is equal to

∑
n1+···+nc=n

∑
γ1`n1

· · ·
∑
γc`nc

χλ
γ1+γ2+···+γc

c∏
j=1

pγj [χi
jX

j]

zγj

=
∑
~γ`n

χ̂λ
~γ

c∏
j=1

(
χi

j

)`(γj) pγj [X i]

zγi

=
∑
~γ`n

χ̂i
~γχ̂

λ
~γ

c∏
j=1

pγj [X i]

zγi

= F (χ̂iχ̂λ).

If A is any representation of H where H is a subgroup of a group G, let A↑G
H denote

the induced representation of A to G. If φA↑G
H is the character of A↑G

H , then for any
τ ∈ G,

φA↑G
H (τ) =

1

|H|
∑
g∈G

φA(g−1τg) (13)

where φA is extended to the entire group by defining φA(τ) = 0 for τ 6∈ H . If B is any
representation of G, let B↓G

H be the restriction of B to the subgroup H .
Suppose n1, . . . , nc ≥ 0 are such that n1 + · · ·+ nc = n. We may think of

(G o Sn1) × · · · × (G o Snc)

as a subgroup of GoSn where Snj
permutes

{
1 +

∑
i<j ni, 2 +

∑
i<j ni, . . . , nj +

∑
i<j ni

}
.

Let A1, . . . , Ac be representations of G o Sn1 , . . . , G o Snc , respectively, and φ1, . . . , φc the
characters of these representations. We may form a representation A1 × · · · × Ac such
that if (g1, . . . , gc) ∈ (G o Sn1) × · · · × (G o Snc), then

A1 × · · · × Ac(g1, . . . , gc) = A1(g1) ⊗ · · · ⊗ Ac(gc).

We will denote the character of this representation induced to GoSn by φ1 × · · · × φc
xGoSn

.

Lemma 12.

F (φ1 × · · · × φc
xGoSn

) =
c∏

i=1

F (φi).

Proof. We have that

F (φ1 × · · · × φc
xGoSn

) =
∑
~γ`n

(φ1 × · · · × φc
xGoSn

)~γ

c∏
i=1

pγi [X i]

zγi

=
1

n!|G|n
∑
~γ`n

|C~γ|(φ1 × · · · × φc
xGoSn

)~γ

c∏
i=1

pγi [X i]

( |G|
|Ci|

)`(γi)

.
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Let ψn be a function mapping G oSn into Λc,n, which is constant on conjugacy classes,

such that if σ ∈ C~γ, then ψn(σ) =
∏c

i=1 pγi [X i]
(

|G|
|Ci|

)`(γi)

. Then our above string of

equalities is equal to

1

n!|G|n
∑

σ∈GoSn

φ1 × · · · × φc
xGoSn

(σ)ψn(σ)

=
1

n!|G|n
∑

σ∈GoSn

1

n1! · · ·nc!|G|n
∑

τ∈GoSn

φ1 × · · · × φc(τστ−1)ψn(σ)

=
1

n!n1! · · ·nc!|G|2n

∑
ξ,τ∈GoSn

φ1 × · · · × φc(ξ)ψn(τ−1ξτ)

=
1

n1! · · ·nc!|G|n
∑

ξ∈(GoSn1 )×···×(GoSnc )

φ1 × · · · × φc(ξ)ψn(ξ).

The last line of the above equality follows from the fact that ψn is constant on conjugacy
classes and from (13). It may be noted that these last few equalities provide a sort of
Frobenius reciprocity for this group. Continuing this string of equalities, we have

c∏
i=1

1

ni!|G|ni

∑
σi∈GoSni

ψni
(σi)φ

i(σi) =

c∏
i=1

1

ni!|G|ni

∑
~γi`ni

|C~γi|(φi)~γi

c∏
j=1

p~γij [X
j ]

( |G|
|Ci|

)`(~γij )

=
c∏

i=1

∑
~γi`ni

(φi)~γi

c∏
j=1

p~γij [Xj]

z~γij

=

c∏
i=1

F (φi).

Suppose Ai is an irreducible representation of the group G, Aγi
an irreducible repre-

sentation of the group Sni
, and Âi and Âγi

are their extensions to the group G oSni
. Then

we shall show that the representation

A~γ =
(
Â1 ⊗ Âγ1

)
×
(
Â2 ⊗ Âγ2

)
× · · · ×

(
Âc ⊗ Âγc

)xGoSn

GoSn1×···×GoSnc

(14)

is irreducible for every ~γ ` n. The character of A~γ will be denoted by

χ~γ = χA~γ

= χ̂1χ̂γ1 × · · · × χ̂cχ̂γc
xGoSn

GoSn1×···×GoSnc

. (15)

If χi is an irreducible character of the group G, then so is χi. This means that χi = χk

for some k. Thus,

χ̂
1
χ̂γ1 × · · · × χ̂

c
χ̂γc
xGoSn

GoSn1×···×GoSnc

is equal to χ
~δ for some ~δ. Let us denote this character by χ~γ. Combining Lemma 11 and

Lemma 12, we have the following corollary.
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Corollary 13. If ~γ ` n,

F (χ~γ) =

c∏
i=1

sγi

[∑c
j=1χ

i
jX

j
]

and F (χ~γ) =

c∏
i=1

sγi

[∑c
j=1χ

i
jX

j
]
.

Now we are ready to identify the irreducible characters of G o Sn.

Theorem 14. The set {χ~γ : ~γ ` n} is a complete set of irreducible characters of G o Sn.

Proof. Corollary 13 and Theorem 10 show

〈
χ~γ , χ

~δ
〉

GoSn

=

〈
c∏

i=1

sγi

[∑c
j=1χ

i
jX

j
]
,

c∏
i=1

sδi

[∑c
j=1χ

i
jX

j
]〉

Λc,n

=

{
1 if ~γ = ~δ

0 otherwise.
(16)

As ~δ varies, χ
~δ runs through all possible characters of the form χ~γ . Therefore, since

〈χ~γ, χ~γ〉 is greater than or equal to 1 for any ~γ, equation (16) implies that 〈χ~γ, χ~γ〉 is
actually equal to 1.

The scalar product of a character of a representation A with itself gives the sum of the
squares of the multiplicities of the irreducible representations occurring in A. Thus, χ~γ is
irreducible for every ~γ. Since we now have the same number of irreducible characters as
the number of conjugacy classes, {χ~γ : ~γ ` n} must be a complete set.

Theorem 14 not only tells us the characters of the irreducible representations of G oSn,
but the actual irreducible representations as well. Suppose Ai is an irreducible represen-
tation of the group G, Aγi

an irreducible representation of the group Sni
, and Âi and Âγi

are the representations of G o Sni
described in the beginning of this section. Then the

representations (
Â1 ⊗ Âγ1

)
× · · · ×

(
Âc ⊗ Âγc

)xGoSn

GoSn1×···×GoSnc

as ~γ runs over all ~γ ` n form a complete set of representatives of the irreducible repre-
sentations of G (up to conjugation).

6 An Analog of the Murnaghan-Nakayama Rule

In this section we provide a combinatorial interpretation for the irreducible characters
of G o Sn. Embedded within this interpretation is the Murnaghan-Nakayama rule for
computing the irreducible characters of the symmetric group (consider G = {1}). This
combinatorial interpretation may be used to find the value of the character indexed by ~γ
on the conjugacy class C~δ. It also can provide algorithms to find the character table of
G o Sn.

Given ~γ, let γ1 ? · · · ? γc be the skew shape formed by placing the Ferrers diagrams
of γ1, . . . , γc corner to corner. Let ?~γ be shorthand notation for the resultant shape. For
instance, below we have drawn the shape (1, 3, 3) ? (1) ? (2, 4) ? (4).
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The shape ?~γ may be thought of as a skew shape µ/λ for some partitions µ, λ for
which we have defined the notion of rim hook in Section 3. Note that our definitions
ensure that if ρ is a rim hook of ?~γ, then ρ is a rim hook in γi for some i = 1, . . . , c.
Suppose ρ is a rim hook of length k in γi in the shape ?~γ where k is a part of the partition
δj. We define the weight of ρ as sgn(ρ)χi

j where sgn(ρ) is the usual sign of a rim hook;
that is, sgn(ρ) is (−1)r−1 where r is the number of rows occupied by ρ. As in the rest of
this document, χi

j denotes the irreducible character indexed by i on the conjugacy class
j of the group G.

The definition of rim hook tableaux may be extended by defining a ?-rim hook tableau
of shape ~γ and type ~δ as a rim hook tableaux of shape ?~γ where the lengths of the rim
hooks are found in the parts of the partitions in ~δ. Define the weight of a ?-rim hook
tableau T of shape ~γ and type ~δ as the product of the weights of the rim hooks in T .

As an example, suppose G has 4 conjugacy classes. Then ~γ = ((1, 3, 3), (1), (2, 4), (4))

and ~δ = ((1, 4), (1, 1, 3, 5), (2), (1)) are both indices of conjugacy classes of G o S18. The

rim hooks in a ?-rim hook tableau of shape ~γ and type ~δ must have lengths found in ~δ.
A ?-rim hook tableau of shape ~γ and type ~δ is found below.

31

4

2

1

2

The colors in the rim hook tabloid depicted above correspond to the colors in the parts
of ~δ = ((1, 4), (1, 1, 3, 5), (2), (1)) and the numbers in some of the rim hooks indicate the
order in which the rim hooks were placed into the tabloid among other rim hooks of the
same color. The order of placement of the rim hooks in ?~γ is done in the order of the
partitions in ~δ. That is, we first place the rim hooks corresponding to the parts of δ1,
then we place the rim hooks corresponding to δ2, etc. In this example, the weight of the
?-rim hook tableau is

χ1
2χ

1
3(−χ1

1)χ
2
2χ

3
4(−χ3

2)χ
4
1χ

4
2.

Define ?χ~γ
~δ

to be equal to
∑
?w(T ) where the sum runs over all ?-rim hook tableaux

of shape ~γ and type ~δ. Throughout this document, every incarnation of the symbol “χ”
has been used to denote the character of an irreducible representation (or a generalization
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thereof as in χ
µ/λ
ν ). At no time has the symbol “χ” been used for any other purpose. Our

current definition is no exception as shown by the following theorem, the aforementioned
analog to the Murnaghan-Nakayama rule.

Theorem 15. The value of the irreducible character indexed by ~γ on the conjugacy class
C~δ is equal to ?χ~γ

~δ
. In other words, χ~γ

~δ
= ?χ~γ

~δ
.

Proof. Let T be a ?-rim hook tableau of shape ~γ and type ~δ. Let ηj,i(T ) be the partition
formed by the lengths of the rim hooks of δj placed in the Ferrers diagram of γi in
T . For example, in the ?-rim hook tableau T displayed on page 20, η3,1(T ) = (2) and
η2,3(T ) = (5). Notice that

?w(T ) = sgn(T )

c∏
i,j

(
χi

j

)`(ηj,i(T ))

where sgn(T ) is the product of the signs of the rim hooks in T as usual. Suppose δj =
(1d1,j , . . . , ndn,j ) and ηj,i = (1m1,j,i , . . . , nmn,j,i). Then we know that for every k = 1, . . . , n,

dk,j = mk,j,1 + · · ·+mk,j,c.

The number of ?-rim hook tableau T ′ of shape ~γ and type ~δ with ηj,i(T ′) = ηj,i(T ) for all
j, i is equal to

c∏
j=1

n∏
k=1

(
dk,j

mk,j,1, . . . , mk,j,c

)
=

c∏
j=1

n∏
k=1

dk,j!

mk,j,1! · · ·mk,j,c!

=
c∏

j=1

n∏
k=1

kdk,jdk,j!

kmk,j,1mk,j,1! · · · kmk,j,cmk,j,c!

=

c∏
j=1

zδj

zηj,1 · · · zηj,c

.

By definition, ?χ~γ
~δ

=
∑
?w(T ) where the sum runs over all possible ?-rim hook

tableaux of shape ~γ and type ~δ. Counting this sum by partitions of the form ηj,i, we
have that

?χ~γ
~δ

=
∑
ηj,i

c∏
i=1

∑
∅=β0,i⊆···⊆βc,i=γi

|βj,i/βj−1,i|=|ηj,i|

c∏
j=1

zδj

zηj,1 · · · zηj,c

χ
βj,i/βj−1,i

ηj,i

(
χi

j

)`(ηj,i)
(17)

where the first sum runs over all possible ηj,i such that for all j, i, we have that both
|η1,i|+ · · ·+ |ηc,i| = |γi| and ηj,1 + · · ·+ ηj,c = δj. The condition that ηj,1 + · · ·+ ηj,c = δj

may be eliminated from the sum as well as terms of the form zδj if we multiply each term
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by pηj,i [Xj] and then take the coefficient of
∏c

j=1

p
δj [Xj ]

z
δj

. That is, if we use the notation

·|Qc
j=1

p
δj [Xj ]

z
δj

to denote the coefficient of
∏c

j=1

p
δj [Xj ]

z
δj

in ·, then (17) is equal to

∑
ηj,i

c∏
i=1

∑
∅=β0,i⊆···⊆βc,i=γi

|βj,i/βj−1,i|=|ηj,i|

c∏
j=1

χ
βj,i/βj−1,i

ηj,i

zηj,1 · · · zηj,c

(
χi

j

)`(ηj,i)
pηj,i [Xj]

∣∣∣∣∣∣∣∣Qc
j=1

p
δj [Xj ]

z
δj

=
∑
ηj,i

c∏
i=1

∑
∅=β0,i⊆···⊆βc,i=γi

|βj,i/βj−1,i|=|ηj,i|

c∏
j=1

χ
βj,i/βj−1,i

ηj,i

zηj,1 · · · zηj,c

pηj,i [χi
jX

j]

∣∣∣∣∣∣∣∣Qc
j=1

p
δj [Xj ]

z
δj

=

c∏
i=1

∑
∅=β0,i⊆···⊆βc,i=γi

c∏
j=1

∑
ηj,i`|βj,i/βj−1,i|

χ
βj,i/βj−1,i

ηj,i

zηj,i

pηj,i [χi
jX

j]

∣∣∣∣∣∣Qc
j=1

p
δj [Xj ]

z
δj

.

At this point, we may use (1) along with an iterated application of (2) in Theorem 4 to
write the above expression in terms of Schur functions. In doing so, the above equalities
are equal to

c∏
i=1

∑
∅=β0,i⊆···⊆βc,i=γi

c∏
j=1

sβj,i/βj−1,i

[
χi

jX
j
]∣∣∣∣∣∣Qc

j=1

p
δj [Xj ]

z
δj

=

c∏
i=1

sγi

[∑c
j=1χ

i
jX

j
]∣∣∣∣∣Qc

j=1

p
δj [Xj ]

z
δj

.

(18)
Corollary 13 helps complete the proof of this theorem as the right hand side of (18) may
be rewritten to look like

F (χ~γ)
∣∣
Qc

j=1

p
δj [Xj ]

z
δj

=
∑
~δ`n

χ~γ
~δ

c∏
j=1

pδj [Xj]

zδj

∣∣∣∣∣∣Qc
j=1

p
δj [Xj ]

z
δj

= χ~γ
~δ
.

We have shown that ?χ~γ
~δ

= χ~γ
~δ
, as desired.

Theorem 15 is the analog to the Murnaghan-Nakayama rule as it provides a combi-
natorial interpretation for the characters of the irreducible representations of G o Sn. We
may now use this combinatorial interpretation to produce the following corollary.

Let h?~γ
(i,j) denote 1 plus the number of cells in ?~γ to the right or above cell (i, j) in ?~γ.

These are known as the hook numbers.

Corollary 16. The degree of the irreducible representation of G oSn indexed by ~γ is equal
to

n!∏
i,j h

?~γ
(i,j)

c∏
k=1

(
fk
)`(γk)
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where fk is the dimension of the kth irreducible representation of G.

Proof. We are concerned about the dimension of the representation corresponding to
~γ. This number is given by the character of this representation on the conjugacy class
((1n),∅, . . . ,∅) because this is the conjugacy class which contains the identity element in
G o Sn. According to our combinatorial interpretation of the characters of G o Sn, we only
need to count the number of ways to fill ?~γ with rim hooks of length 1 and then multiply

by the factor
∏c

k=1

(
fk
)`(γk)

in order to find the dimension of the representation.
Frame, Robinson, and Thrall proved that fλ = n!Q

i,j hλ
(i,j)

where fλ is the dimension of

the irreducible character of Sn indexed by the partition λ [4]. Therefore, if |γi| = ni, we
have

χ~γ
((1n),∅,...,∅) =

(
n

n1, . . . , nc

)
fγ1 · · · fγc

c∏
k=1

(
fk
)`(γk)

=
n!

n1! · · ·nc!

c∏
l=1

ni!∏
i,j h

γl

(i,j)

c∏
k=1

(
fk
)`(γk)

=
n!∏

i,j h
?~γ
(i,j)

c∏
k=1

(
fk
)`(γk)

.

We conclude this section with an example of one of the character tables which can
be easily computed using Theorem 15. Let us enumerate the conjugacy classes of the
alternating group on five letters so that the character table reads like that below. For
convenience, let g= 1+

√
5

2
and g′= 1−√

5
2

.

C1 C2 C3 C4 C5
X1 1 1 1 1 1
X2 4 1 0 −1 −1
X3 5 −1 1 0 0
X4 3 0 −1 g g′
X5 3 0 −1 g′ g

The character table for A5 o S2 will be found. The vector partitions of 2 with 5 parts
indexing the conjugacy classes of the group are listed along with the sizes of the conjugacy
classes themselves. The conjugacy classes corresponding to the first two vector partitions
have been flipped in order to list the dimension of the irreducible characters in the first
column of the character table. Below is the character table of A5 o S2:

vector partition size
X1 ((2),∅,∅,∅,∅) C2 60
X2 ((1, 1),∅,∅,∅,∅) C1 1
X3 ((1),(1),∅,∅,∅) C3 40
X4 (∅,(2),∅,∅,∅) C4 1200
X5 (∅,(1, 1),∅,∅,∅) C5 400
X6 ((1),∅,(1),∅,∅) C6 30
X7 (∅,(1),(1),∅,∅) C7 600
X8 (∅,∅,(2),∅,∅) C8 900
X9 (∅,∅,(1, 1),∅,∅) C9 225

X10 ((1),∅,∅,(1),∅) C10 24

vector partition size
X11 (∅,(1),∅,(1),∅) C11 480
X12 (∅,∅,(1),(1),∅) C12 360
X13 (∅,∅,∅,(2),∅) C13 720
X14 (∅,∅,∅,(1, 1),∅) C14 144
X15 ((1),∅,∅,∅,(1)) C15 24
X16 (∅,(1),∅,∅,(1)) C16 480
X17 (∅,∅,(1),∅,(1)) C17 360
X18 (∅,∅,∅,(1),(1)) C18 288
X19 (∅,∅,∅,∅,(2)) C19 720
X20 (∅,∅,∅,∅,(1,1)) C20 144
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
X1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 1 −1 1 −1 1 1 1 −1 1 1 1 1 −1 1 1 1 1 1 −1 1
X3 8 0 5 0 2 4 1 0 0 3 0 −1 0 −2 3 0 −1 −2 0 −2
X4 16 4 4 1 1 0 0 0 0 −4 −1 0 −1 1 −4 −1 0 1 −1 1
X5 16 −4 4 −1 1 0 0 0 0 −4 −1 0 1 1 −4 −1 0 1 1 1
X6 10 0 4 0 −2 6 0 0 2 5 −1 1 0 0 5 −1 1 0 0 0
X7 40 0 1 0 −2 4 1 0 0 −5 1 −1 0 0 −5 1 −1 0 0 0
X8 25 5 −5 −1 1 5 −1 1 1 0 0 0 0 0 0 0 0 0 0 0
X9 25 −5 −5 1 1 5 −1 −1 1 0 0 0 0 0 0 0 0 0 0 0

X10 6 0 3 0 0 2 −1 0 −2 3+g g g−1 0 2g 3+g′ g′ g′−1 1 0 2g′
X11 24 0 3 0 0 −4 −1 0 0 4g−3 g 1 −g g2 4g′−3 g′ 1 −1 −g′ g′2
X12 30 0 −3 0 0 −2 1 0 −2 5g −g g 0 0 5g′ −g′ g′ 0 0 0
X13 9 3 0 0 0 −3 0 −1 1 3g 0 −g g g2 3g′ 0 −g′ −1 g′ g′2
X14 9 −3 0 0 0 −3 0 1 1 3g 0 −g −g g2 3g′ 0 −g′ −1 −g′ g′2
X15 6 0 3 0 0 2 −1 0 −2 3+g′ g′ g′−1 0 2g′ 3+g g g−1 1 0 2g
X16 24 0 3 0 0 −4 −1 0 0 4g′−3 g′ 1 −g′ g′2 4g−3 g 1 −1 −g g2

X17 30 0 −3 0 0 −2 1 0 −2 5g′ −g′ g′ 0 0 5g −g g 0 0 0
X18 18 0 0 0 0 −6 0 0 2 3 0 −1 0 −2 3 0 −1 3 0 −2
X19 9 3 0 0 0 −3 0 1 1 3g′ 0 −g′ g′ g′2 3g 0 −g −1 g g2

X20 9 −3 0 0 0 −3 0 1 1 3g′ 0 −g′ −g′ g′2 3g 0 −g −1 −g g2

As an example, note that X19 corresponds to the vector partition ~γ = (∅,∅,∅,∅, (2))

and C15 corresponds the vector partition ~δ = ((1),∅,∅,∅, (1)). It is easy to check that

there is exactly one rim hook tableau of shape ~γ and type ~δ and the weight of that rim
hook tableau is χ5

1χ
5
5 = 3g. Thus the value of X19 at C15 is 3g. The other entries in the

table are computed in a similar manner.

7 Kronecker Products

In this section, we prove a generalization of a theorem of Littlewood which allows the
Kronecker product of two irreducible representations of G o Sn to be decomposed into
irreducible components. In addition, we show that our analog of Littlewood’s theorem
can be used to give a natural extension of the algorithm developed by Garsia and Remmel
to compute Kronecker products of representation of G o Sn [5]. Specifically, let Aλ, Aµ

be irreducible representations of Sn. Define sλ ⊗ sµ to be the image of χAλ⊗Aµ
under the

Frobenius characteristic for the symmetric group. Let cνλ,µ be the Littlewood-Richardson
coefficients which give the occurrences of sν in sλsµ. Littlewood proved the following
theorem in [9].

Theorem 17. Let λ ` n, µ ` m, and ν ` n +m. Then

sλsµ ⊗ sν =
∑
α`m
β`n

cνα,β(sλ ⊗ sα)(sµ ⊗ sβ). (19)

Later, Garsia and Remmel showed that Littlewood’s theorem could be rewritten in
the following way [5].

Theorem 18. Let λ ` n, µ ` m, and ν ` n +m. Then

sλsµ ⊗ sν =
∑
α`m
α⊆ν

(sλ ⊗ sα)(sµ ⊗ sν/α). (20)
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We can use either (19) or (20) to compute Kronecker products for the symmetric
group Sn as follows. Suppose one wants to compute sλ ⊗ sν . First we can employ the
Jacobi-Trudi identity to express sλ as a signed sum of homogeneous symmetric functions
hµ so that we can reduce the problem of computing sλ ⊗ sν to the problem of computing
hµ ⊗ sν . Then Theorem 17 may be iterated to prove the following.

Theorem 19. Let µ = (µ1, . . . , µk) ` n and ν ` n. Then

hµ1 · · ·hµk
⊗ sν =

∑
αi`|µi|

cνα1,...,αk

k∏
i=1

hµi
⊗ sαi

=
∑

αi`|µi|
cνα1,...,αk

k∏
i=1

sαi
. (21)

Here, cνα1,...,αk
= 〈sα1 · · · sαk

, sν〉. The second equality follows since hn ⊗ sλ = sλ for all
n and λ ` n. Similarly, one can iterate Theorem 18 to prove the following.

Theorem 20. Let µ = (µ1, . . . , µk) ` n and ν ` n. Then

hµ1 · · ·hµk
⊗ sν =

∑
∅=α0⊂α1⊂···⊂αk=ν

|αi/αi−1|=|µi|

sν/αk
· · · sα2/α1

sα1 . (22)

From an algorithmic point of view, the advantage of (22) over (21) is that it usually has
far fewer terms. Moreover, for (21), one often has to waste time computing Littlewood-
Richardson coefficients cνα1,...,αk

which turn out to be zero and thus make no contribution
to the final sum. One might think that a disadvantage of (22) versus (21) is that we
end up having to take a product of skew Schur functions rather the product of ordinary
Schur functions. However, versions of the Littlewood-Richardson rule appearing in the
literature imply that there is no difference in the complexity of computing the product
of skew Schur functions versus computing the product of ordinary Schur functions; see,
for example, the version of the Littlewood-Richardson rule due to Remmel and Whitney
[14].

We shall show that a similar situation arises in GoSn. For this section, let s~γ denote the

analog the Schur function in the space Λc,n; in other words, s~γ =
∏c

i=1 sγi

[∑c
j=1χ

i
jX

j
]
.

In the same vein, let s~γ =
∏c

i=1 sγi

[∑c
j=1χ

i
jX

j
]
. Let A~γ and A

~δ be irreducible represen-

tations of G o Sn and let us denote F (χA~γ⊗A
~δ
) by s~γ ⊗ s~δ and let F (χA~ν

) = s~ν (the former
will be known as the Kronecker product of Schur functions over G o Sn).

If ~ξ = (ξ1, . . . , ξc) and ~ν = (ν1, . . . , νc), then we say ~ξ ⊆ ~ν if ξi ⊆ νi for i = 1, . . . , c.

If ~ξ ⊆ ~ν, then we let ~ν/~ξ = (ν1/ξ1, . . . , νc/ξc). These are generalizations of the notions
of ξ ⊆ ν and ν/ξ for partitions as defined in Section 3. Then we have the following
generalization of Theorem 17.
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Theorem 21. Let ~γ ` n, ~δ ` m and ~ν ` n+m. Then

s~γs~δ ⊗ s~ν =
∑
~ξ`n
~η`m

c∏
i=1

cν
i

ξi,ηi

(
s~γ ⊗ s~ξ

) (
s~δ ⊗ s~η

)

where the sum runs over all ~ξ = (ξ1, . . . , ξc) and ~η = (η1, . . . , ηc) such that |ξi|+ |ηi| = |νi|
for all i = 1, . . . , c.

Similarly, we have the following analog of Theorem 18.

Theorem 22. Let ~γ ` n, ~δ ` m and ~ν ` n+m. Then

s~γs~δ ⊗ s~ν =
∑
~ξ`n
~ξ⊆~ν

(
s~γ ⊗ s~ξ

)(
s~δ ⊗ s~ν/~ξ

)
.

Proof. A special case of Lemma 12 shows that

F

(
χ

A~γ⊗A
~δ

x
?
?

GoSn+m

GoSn×GoSm

)
= F (χA~γ

)F (χA
~δ

).

According to Corollary 13, this is equal to s~γs~δ. Within the proof of Lemma 12, a class
function ψn+m was defined on G o Sn+m such that if σ ∈ C~λ, then

ψn+m(σ) =

c∏
i=1

pλi [X i]

( |G|
|Ci|

)`(λi)

.

With this definition, if α ∈ GoSn and β ∈ GoSm, then (α, β) is an element in GoSn×GoSm

such that ψn+m(α, β) = ψn(α)ψm(β). This fact follows from the multiplicative property
of the power basis.

The Littlewood-Richardson coefficients for the analogs of Schur symmetric functions
can be found:

s~γs~δ =
c∏

i=1

sγi

[∑c
j=1χ

i
jX

j
]
sδi

[∑c
j=1χ

i
jX

j
]

=

c∏
i=1

∑
νi`|γi|+|δi|

cν
i

γi,δisνi

[∑c
j=1χ

i
jX

j
]

=
∑

~ν`n+m

c∏
i=1

cν
i

γi,δisνi

[∑c
j=1χ

i
jX

j
]
.
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Due to Frobenius’ reciprocity, we have that〈
χ

A~ν
?
?
y

GoSn+m

GoSn×GoSm , χA~γ⊗A
~δ

〉
GoSn×GoSm

=

〈
χA~ν

, χ
A~γ⊗A

~δ
x
?
?

GoSn+m

GoSn×GoSm

〉
GoSn+m

=
〈
s~ν , s~γs~δ

〉
Λc,n+m

=

〈
s~ν ,
∑
~α`n

c∏
i=1

cα
i

γi,δisαi

〉
Λc,n+m

=

c∏
i=1

cν
i

γi,δi .

This shows that

χ
A~ν

?
?
y

GoSn+m

GoSn×GoSm =
∑
~γ`n
~δ`m

c∏
i=1

cν
i

γi,δiχA~γ

χA
~δ

. (23)

Therefore,

s~γs~δ ⊗ s~ν = F

(
χ

A~γ⊗A
~δ

x
?
?

GoSn+m

GoSn×GoSm
⊗A~ν

)

=
1

|G o Sn+m|
∑

σ∈GoSn+m

χ
A~γ⊗A

~δ
x
?
?

GoSn+m

GoSn×GoSm (σ)χA~ν
(σ)ψn+m(σ)

=
1

|G o Sn+m|
∑

σ∈GoSn+m

1

|G o Sn||G o Sm|
∑

τ∈GoSn+m

χA~γ⊗A
~δ

(τστ−1)χA~ν
(σ)ψn+m(σ)

=
1

|G o Sn||G o Sm|
∑

α∈GoSn
β∈GoSm

χA~γ

(α)χA
~δ

(β)χA~ν
(α, β)ψn+m(α, β)

=
1

|G o Sn||G o Sm|
∑

α∈GoSn
β∈GoSm

χA~γ

(α)χA
~δ

(β)
∑
~ξ`n
~η`m

c∏
i=1

cν
i

ξi,ηiχA
~ξ

(α)χA~η

(β)ψn(α)ψm(β)

where this last equality comes from (23) and steps similar to those found in the proof of
Lemma 12. Finally, we have that the above equation is equal to

∑
~ξ`n
~η`m

c∏
i=1

cν
i

ξi,ηi

( ∑
α∈GoSn

χA~γ
(α)χA

~ξ
(α)ψn(α)

|G o Sn|

)( ∑
β∈GoSm

χA
~δ
(β)χA~η

(β)ψm(β)

|G o Sm|

)

which may be written as

∑
~ξ`n
~η`m

c∏
i=1

cν
i

ξi,ηi

(
s~γ ⊗ s~ξ

) (
s~δ ⊗ s~η

)
. (24)
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This proves Theorem 21. To prove Theorem 22, one need only to observe that

∑
~ξ`n
~η`m

c∏
i=1

cν
i

ξi,ηi

(
s~γ ⊗ s~ξ

) (
s~δ ⊗ s~η

)
=
∑
~ξ`n
~ξ⊆~ν

(
s~γ ⊗ s~ξ

)s~δ ⊗
∑
~η`m

c∏
i=1

cν
i

ξi,ηis~η




=
∑
~ξ`n
~ξ⊆~ν

(
s~γ ⊗ s~ξ

)(
s~δ ⊗ s~ν/~ξ

)
.

Retracing the proof of the above theorem and examining where the conjugation of s~ν

took effect, Theorem 22 may be restated to read that for ~γ ` n, ~δ ` m and ~ν ` n +m,

s~γs~δ ⊗ s~ν =
∑
~ξ`n
~ξ⊆~ν

(
s~γ ⊗ s~ξ

)(
s~δ ⊗ s~ν/~ξ

)
. (25)

The proof of the following corollary exploits the linearity of the Kronecker product
and uses a simple iterated application of Theorem 22 and its above restatement.

Corollary 23. Let ~γ1, . . . , ~γk be vector partitions of n1, . . . , nk, respectively and let ~ν be
a vector partition of n1 + · · · + nk. Then,

s~γ1 · · · s~γk ⊗ s~ν =
∑(

s~γk ⊗ s~ν/~ξk−1

)(
s~γk−1 ⊗ s~ξk−1/~ξk−2

)
· · ·
(
s~γ1 ⊗ s~ξ1

)

where the sum runs over all vector partitions ~ξ1 ` n1, ~ξ
2 ` n1 + n2, . . . , ~ξ

k ` n1 + · · ·+ nk

where ~ξ1 ⊆ · · · ⊆ ~ξk ⊆ ~ν. Conjugation of the skew Schur functions alternates except for
the final two terms which are either both conjugated or both not conjugated.

Corollary 23 above reduces the problem of taking the Kronecker product of a product
of Schur functions to finding the Kronecker product of two Schur functions. By definition,
we have that for any ~γ, s(γ1,...,γk) = s(γ1,∅,...,∅) · · · s(∅,...,∅,γk). The Jacobi-Trudy identity may
be applied to change functions of the form s(∅,...,γi,...,∅) into a sum of products of Schur
functions of the form s(∅,...,(l),...,∅). Applying Corollary 23 over this sum of Schur functions,
the problem of finding s~γ ⊗ s~δ boils down to finding the Kronecker product of two Schur
functions of the form s(∅,...,(l),...,∅). That is, the situation is reduced to finding

s(∅,...,(l),...,∅) ⊗ s(∅,...,(k),...,∅) = F
(
χA(∅,...,(l),...,∅)⊗A(∅,...,(k),...,∅)

)
.

The description of the irreducible characters given in Section 5 may be used to see that
the representation A(∅,...,(l),...,∅) where (l) appears in the ith place is equal to Âi ⊗ Â(l);
however, Â(l) is the trivial representation, so A(∅,...,(l),...,∅) is actually the ith irreducible
representation of G. Therefore, the problem of breaking the Kronecker product of irre-
ducible representations of G o Sn into its irreducible components is reduced to finding the
Kronecker product of irreducible representations in G.
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For some groups, breaking the Kronecker products of irreducible representations into
irreducible components is well known. For instance, all characters of finite abelian groups
are linear, making Kronecker products simply point-wise multiplication. For these groups,
the methods outlined above provide a way to break apart Kronecker products in G o Sn.

Let us turn our attention to groups of the form Zk oSn since the irreducible characters
of this group are linear—making Kronecker products in this group easy to find. We
will explicitly calculate an example of how to decompose Kronecker products for the
hyperoctahedral group Z2 oSn. Recall that the character table of Zk is ‖ε(i−1)(j−1)‖i,j=1,...,k

where ε = e2πi/k is a primitive kth root of unity.

Theorem 24. For the group Zk o Sn,

χ(γ1,...,γk) = χ(∅,(n),∅,...,∅)χ(γ2,...,γk,γ1).

Proof. We give a bijective, combinatorial proof using the notion of ?-rim hook tableaux
developed in Section 6. Let {χ1, . . . , χk} be the irreducible characters of the group Zk =
{1, σ, . . . , σk−1} such that χj(σs) = εs(j−1) where ε = e2πi/k is a primitive kth root of unity.
This way, since the conjucagy classes of Zk are of the form {σi}, the value χi

j is equal to

ε(i−1)(j−1) and thus the character table of Zk is ‖ε(i−1)(j−1)‖i,j=1,...,k.

Let T be a ?-rim hook tableau of shape ~γ and type ~δ. Let us form a ?-rim hook tableau
T ′ of shape (γ2, . . . , γk, γ1) by cyclically rotating the Ferrers diagrams of γ1, . . . , γk. This
process is 1-1. We will track how the parts in δj affect the weight of T ′ with respect to
the weight of T .

Say there are ji−1 parts of δj found in γi. This means j0 + · · · + jk−1 = `(δj). The
contributing factor of δj in w(T ) is

(ε0(j−1))j0 · · · (ε(k−2)(j−1))jk−2(ε(k−1)(j−1))jk−1

while the contributing factor of δj in w(T ′) is

(ε0(j−1))j1 · · · (ε(k−2)(j−1))jk−1(ε(k−1)(j−1))j0.

Thus, by this cyclic rotation of T into T ′, a factor of

(ε0(j−1))j0−j1(ε1(j−1))j1−j2 · · · (ε(k−2)(j−1))jk−2−jk−1(ε(k−1)(j−1))jk−1−j0 (26)

arises. Using the fact that ε is a primitive kth root of unity, the factor in (26) may be
rewritten to look like ε(j−1)(j0+···+jk−1) which is equal to ε(j−1)`(δj ).

This means the change in weight when rotating T to create T ′ can be found. Since the
rim hooks in T are not changing, the only possible difference in w(T ) and w(T ′) can come
from the weights of powers of ε from the parts found in δ1, . . . , δk. It follows that w(T ) =
ε0`(δ1)ε1`(δ2) · · · ε(k−1)`(δk)w(T ′). This coincides with the combinatorial interpretation of the
character corresponding to the vector partition (∅, (n),∅, . . . ,∅) because

χ
(∅,(n),∅,...,∅)
~δ

= (ε0)`(δ1)(ε1)`(δ2) · · · (ε(k−1))`(δk).
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Therefore,

χ
(γ1,...,γk−1,γk)
~δ

=
∑

T of shape (γ1, . . . , γk)

and type ~δ

w(T )

=
∑

T ′ of shape (γ2, . . . , γk , γ1)

and type ~δ

χ
(∅,(n),∅,...,∅)
~δ

w(T ′)

= χ
(∅,(n),∅,...,∅)
~δ

χ
(γ2,...,γk,γ1)
~δ

.

Corollary 25. For the group Zk o Sn,

χ(γ1,...,γk) = χ(∅,...,(n),...,∅)χ(γi,γi+1,...,γi−1)

where the part (n) in χ(∅,...,(n),...,∅) appears in the ith component and (γi, γi+1, . . . , γi−1) is
a cyclic rotation of the partitions in (γ1, . . . , γk).

Proof. According to Theorem 24,

χ(∅,(n),∅,...,∅)χ(∅,...,(n)j ,...,∅) = χ(∅,...,(n)j+1,...,∅) (27)

where (n)j means that the partition (n) appears in the jth component. Therefore,

χ(γ1,...,γk) = χ(∅,(n),∅,...,∅) · · ·χ(∅,(n),∅,...,∅)χ(γi,γi+1,...,γi−1) = χ(∅,...,(n)i,...,∅)χ(γi,γi+1,...,γi−1)

via i applications of (27).

Corollary 26. For the group Zk o Sn,

s(∅,...,(n),...,∅) ⊗ s(γi,γi+1,...,γi−1) = s(γ1,...,γk)

where the part (n) in the vector partition (∅, . . . , (n), . . . ,∅) appears in the ith component
and (γi, γi+1, . . . , γi−1) is a cyclic rotation of the partitions in (γ1, . . . , γk).

Proof. Corollary 16 in Section 6 shows A(∅,...,(n),...,∅) is one dimensional where A~γ is the
irreducible representation of Zk o Sn associated with ~γ. Corollary 25 gives that

s(∅,...,(n),...,∅) ⊗ s(γi,γi+1,...,γi−1) = F
(
χA(∅,...,(n),...,∅)⊗A(γi,γi+1,...,γi−1)

)
= F

(
χ(∅,...,(n),...,∅)χ(γi,γi+1,...,γi−1)

)
= F

(
χ(γ1,...,γk)

)
= s(γ1,...,γk).
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It may be noted that Theorem 24, Corollary 25, and Corollary 26 all may be generalized
to arbitrary finite abelian groups. After all, any finite abelian group is a product of groups
of the form Zk.

We conclude this paper with an example of how to break Kronecker products into
irreducible components in the case of the hyperoctahedral group Z2 o Sn. The Schur
analog in Z2 o Sn is {sγ1[X1 +X2]sγ2 [X1 −X2]} where |γ1| + |γ2| = n. These characters
are invariant under complex conjugation, providing the self-duality of this basis for Λn,2.
Also due to this observation, the statement of Theorem 22 and (25) are the same. This
means that there is no conjugation to keep track of when using this theorem or associated
equation.

Suppose we are interested in decomposing A((3),(3)) ⊗ A((22),(12)) into irreducible com-
ponents. Equation (25) may be employed to the Frobenius image of the character of this
representation which is s((3),(3))⊗s((22),(12)). The strategy is to break s((3),(3)) into a product
of the two Schur functions s((3),∅) and s(∅,(3)) and then use Corollary 26. Throughout our
calculations, the reader is assumed to know a method to find the coefficient of sν in the
product sαsβ (this is the Littlewood-Richardson coefficient cνα,β).

We have according to Theorem 22 that

s((3),(3)) ⊗ s((22),(12)) = s((3),∅)s(∅,(3)) ⊗ s((22),(12))

=
∑
~ξ`3

~ξ⊆((22),(12))

(
s((3),∅) ⊗ s~ξ

)(
s(∅,(3)) ⊗ s((22),(12))/~ξ

)

=
∑

|ξ1|+|ξ2|=3
ξ1⊆(22),ξ2⊆(12)

s(ξ1,ξ2)s((12)/ξ2,(22)/ξ1). (28)

The Kronecker products in the second line of the above equation were simplified using
Corollary 26. In general, for partitions other than (n) or (1n), the Jacobi-Trudy identity
can be employed so that the resultant Kronecker products are in terms of partitions with
corresponding linear characters.

There are only a few possibilities for partitions ξ1 and ξ2 which satisfy |ξ1| + |ξ2| =
3, ξ1 ⊆ (22), and ξ2 ⊆ (12). Below we give the ?-shape of ((22), (12)) with the four
possibilities for ξ1 and ξ2 shaded in teal.

Thus, we have four cases to consider:

Case 1 Case 2 Case 3 Case 4
~ξ ((1, 2),∅) ((12), (1)) ((2), (1)) ((1), (12))

((12)/ξ2, (22)/ξ1) ((12), (1)) ((1), (12)) ((1), (2)) (∅, (1, 2))
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In case 4, note that s(22)/(1) = s(1,2). Equation (28) shows that we must multiply s~ξ

together with s((12)/ξ2,(22)/ξ1) for each case and then sum the results to find s((3),(3)) ⊗
s((22),(12)). Since s~ξ = s(ξ1,∅)s(∅,ξ2), we now have reduced the situation to the relatively
easy problem of multiplying Schur functions. Via methods in [13], it may be found that

s((1,2),∅)s((12),(1)) = s((13,2),(1)) + s((1,22),(1)) + s((12,3),(1)) + s((2,3),(1)) (29)

s((12),(1))s((1),(12)) = s((13),(13)) + s((13),(1,2)) + s((1,2),(13)) + s((1,2),(1,2)) (30)

s((2),(1))s((1),(2)) = s((1,2),(1,2)) + s((1,2),(3)) + s((3),(1,2)) + s((3),(3)) (31)

s((1),(12))s(∅,(1,2)) = s((1),(13 ,2)) + s((1),(1,22)) + s((1),(12 ,3)) + s((1),(2,3)) (32)

Cases 1-4 are represented in (29) through (32), respectively. Therefore, the sum on the
right hand sides of (29) through (32) is the Schur function expansion of s((3),(3))⊗s((22),(12)).
Interpreting this in terms of irreducible representations of the hyperoctahedral group, if

we let A
~ξ be the irreducible representation indexed by the vector partition ~ξ, we have

found

A((3),(3)) ⊗ A((22),(12)) = A((13,2),(1)) ⊕ A((1,22),(1)) ⊕ A((12,3),(1)) ⊕A((2,3),(1))

⊕A((13),(13)) ⊕A((13),(1,2)) ⊕ A((1,2),(13)) ⊕A((1,2),(1,2))

⊕A((1,2),(1,2)) ⊕ A((1,2),(3)) ⊕ A((3),(1,2)) ⊕ A((3),(3))

⊕A((1),(13 ,2)) ⊕ A((1),(1,22)) ⊕A((1),(12 ,3)) ⊕A((1),(2,3)).
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