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Abstract

In this note, we show that any n-vertex graph without even cycles of length
at most 2k has at most %n”l/ k 4 O(n) edges, and polarity graphs of generalized
polygons show that this is asymptotically tight when k € {2,3,5}.

1 Introduction

In this note, we study graphs without cycles of prescribed even lengths. For a finite or
infinite set C of cycles, define ex(n,C) to be the maximum possible number of edges in an
n-vertex graph which does not contain any of the cycles in C. The asymptotic behaviour
of the function ex(n,C) is particularly interesting when at least one of the cycles in C
is of even length, and was initiated by Erdés [5]. In general, it is the lower bounds for
ex(n,C) — that is, the construction of dense graphs without certain even cycles — which
are hard to come by. The best known lower bounds are based on finite geometries, such
as polarity graphs of generalized polygons [9], and the algebraic constructions given by
Lazebnik, Ustimenko and Woldar [8] and Ramanujan graphs of Lubotsky, Phillips and
Sarnak [11]; see also [10]. In the direction of upper bounds, the first major result is
known as the even circuit theorem, due to Bondy and Simonovits [3], who proved that
ex(n, {Cy}) < 100kn't%. A more extensive study of ex(n,C) was carried out by Erdds
and Simonovits [6]. Our point of departure is the study of ex(n,C) when C consists only
of the even cycles of length at most 2k. The main result of this article is the following:

Theorem 1 Let k > 2 be an integer. Then, for all n,
ex(n, {Cy,Cs,...,Co}) < %n“r% + 2k,

Furthermore, when k € {2,3,5}, the n-vertex polarity graphs of generalized (k + 1)-gons
in [9] have in'*1/* 4 O(n) edges and no even cycles of length at most 2k.
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For the statement about the number of edges in the polarity graphs, see [9], page 9.
Theorem 1 extends the Moore bound (see [2]) up to an additive term, and a more recent
result of Alon, Hoory, and Linial [1], who proved that an n-vertex graph without cycles of
length at most 2k has at most 1(n'*/* +n) edges (see Proposition 6). In other words, we
do not require that the odd cycles be forbidden, and the same bound still holds, but with
a weaker additive linear term. Our result is also best possible in the following sense: if we
forbid only the 2k-cycle in our graphs, then the upper bounds in Theorem 1 no longer hold
— it was shown recently, in [7], that ex(n, {Cs}) > 0.534n*/? and ex(n, {C1o}) > 0.598n5/°
as n tends to infinity.

2 Local Structure

Let G be a graph with no even cycles of length less than or equal to 2k. We write Plu, v]
to indicate that a path P C G has end vertices u and v, and we order the vertices of P
from u to v. Let < denote this ordering along P. A vine on a path P is a graph consisting
of the union of P together with paths Q[u;,v;] which are internally disjoint from P for
1 =1,2,...,r, and where u < u; < v; R Uy < Vg X -+ R u, < v, 2 v. A wv-path
of shortest length is called a uv-geodesic. A 6-graph consists of three internally disjoint
paths with the same pair of endpoints.

Lemma 2 Any 0-graph contains an even cycle.

Proof. If P, and R are the internally disjoint paths in the #-graph with the same pair
of endpoints, then |PUQ|+|QUR|+|PUR| = 2| P|+2|Q|+2|R|, which is even. Therefore
one of the cycles PU @, QU R or P U R must have even length. i

Lemma 3 Let P* be a uv-geodesic of length at most k. Then the union H of all uv-paths
of length at most k is a vine on P* and P* is the unique uv-geodesic.

Proof. Suppose, for a contradiction, that H is not a vine on P*. Let x < v be a vertex of
P* at a maximum distance from v on P* such that the union of all uz-paths in H is a vine
on P*[u,z]|. By the maximality of x, there is a uv-path P of length at most k& such that
x has degree three in P U P*. If P has minimum possible length, then P[z,y] U P*[z,y]
is the only cycle in P U P* for some y > x on P*. By the maximality of x, the union of
all uy-paths in H is not a vine. Therefore there must be a uv-path @ of length at most k
such that Q U PU P* is not a vine on P*. If () has minimum possible length, then P U @)
and P* U @ each have exactly one cycle. It follows that there is a path Q[w, z] C @ such
that
Qlu, z] = P*[u,x] and Q[z,w]UQ[z,v] C Plz,v]U P*[x,v]

and Qlw, z] is internally disjoint from P U P*. Since P U P* U @ is not a vine, w €
Plz,y]| U P*[x,y] and w # y. If z € P*[y,v], then P*[z, 2] U P[x, 2] U Q[w, z] is a #-graph
(see Figure 1).
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Figure 1 : A f-graph in Q U P U P*.

The cycles in this 6 graph are Plw, z] U Qw, z] C PUQ and P[z,y|U P*[z,y] C P U P*
and P*[x,z] U Qx, 2] C P*U Q. Each of these cycles has length at most 2k, since the
paths P, ) and P* each have length at most k. By Lemma 2, one of these cycles has even
length, which is a contradiction. A similar argument works when z ¢ P*[y, v]. Therefore
H is a vine on P*.

To complete the proof, we must show that P* is the unique uv-geodesic. By definition,
H consists of the union of P* and paths P, = P;[u;, v;] for ¢ € [r], and let P = P*[u;, v;].
Since each cycle P’ U P; is of length at most 2k, each cycle in the vine has odd length.
Now suppose P is another uv-geodesic. Then P; C P for some 7. Since P, U P} is an odd
cycle, we may assume |P;| < |P}|. By replacing P with P, on P*, we obtain a uv-path
of length |P*| — |Pf| + |P;| < |P*|, which contradicts the fact that P* is a uv-geodesic.
So P* is the unique uv-geodesic. i

Henceforth, the paths in the vine on P* will be denoted P; = P;[u;, v;], and P*[u;, v;] = Pf,
for i € [r]. Let Pr(u,v) denote the set of all uv-paths of length k, and define the map

[ Pr(u,v) — ol Ty f(Py={ie|r] | Plu;,v] C P}.

Then f(P) records the set of integers i for which the path P € Py (u,v) uses the path
P[u;, v;] in the vine on P* instead of P*[u;, v;]. Let F be the image of Py (u,v) under f.

Lemma 4 The map f is an injection, and the family F is an antichain of sets of size at
most k — |P*| in the partially ordered set of all subsets of [r].

Proof. By Lemma 3, each P € Py (u,v) is the union of some (possibly none) of the paths
P; together with internally disjoint subpaths of P*. Therefore the set f(P) uniquely
determines P, and f is an injection. If two sets in F are comparable, say f(P) C f(Q),
then |Q| > |P| and @ & Px(u,v), which is a contradiction. So F is an antichain. Finally,
any path P € Pg(u,v) has length at least |P*| + |f(P)|, by Lemma 3, so all sets in F
have size at most k — | P*|. |
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Theorem 5 Let G be a graph containing no even cycles of length at most 2k. Then

Putwo)l < max ()< bandm =min {|7 |-k r}).

The equality is achieved when r = |P*| and the vine on P* comprises |P*| triangles.

Proof. The family F is an antichain, by Lemma 4. By Sperner’s Theorem and the LYM
inequality [4], this means that |F| < () where m = min {|5], k — |P*|}. i

A non-returning walk of length r in G is a walk whose consecutive edges are distinct.
Let W, be the set of non-returning r-walks (for » = 0, W, consists of single vertices).
The final result required for the proof of Theorem 1 is the following lower bound on the
number of non-returning walks, by Alon, Hoory and Linial [1], which gives the best known
upper bound on ex(n, {Cs, Cy, ..., Coy}):

Proposition 6 Let G be an n-vertex graph of average degree d > 2. Then |[W,| >
nd(d — 1)"t. Moreover, if G has average degree d > 2 and no cycles of length at most
2k, then d(d — 1)1 < n.

In [1], the number W, /nd is denoted N,_; and shown to be less than (d — 1)"~'. The
second statement of the Proposition is an immediate consequence of the main theorem
there.

3 Proof of Theorem 1

Let GG be a counterexample to Theorem 1 with minimal number of vertices n and average
degree d. Then d > n* + 2¥, and G has minimum degree at least |d/2] + 1, otherwise
we remove a vertex of lower degree, keeping the average degree non-increasing, to obtain
a smaller counterexample than G. We may also assume n > 2. Now let v be a vertex
of G of maximum degree, A. Pick a breadth-first search tree T rooted at v, and let T,
be the set of vertices of G at distance at most r from v. Then no vertex of 7T, is joined
to two vertices in 7,_;, and the set of edges in T,_1\7,_» form a matching, for all r < k.
So every vertex of T" has degree at least 0 — 2, where § is the minimum degree in G, from
which we deduce

T+ A+AG=2)+---+ A6 -2 < [V(T)] < n.
Since 0 > |d/2] and d > nt +4, we find A < 26~1ni.

Now let P, be the set of paths of length r in G, and let O, = W, — P, be the set of
non-returning walks with r edges which are not paths. There are at least § — k extensions
of a given path of length r in G, for any r < k. Therefore

Pl > (6 — k)P and |Qx < AFkn < K2tV (1)
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By Lemma 3, for any pair (u,v) of distinct vertices, joined by at least two paths of length
k, there is a uv-geodesic of length ¢ < k. By Theorem 5, |Py(u,v)| < 2*, so the number
of ordered pairs of vertices joined by exactly one k-path is at least

k-1 o
ok > 1 —=
P25 Pl 2 P (1 5

_ <|wk|—\Qk\>-(1—$)

k

In the last line, we used (1) and Proposition 6. There are n(n — 1) (ordered) pairs of
distinct vertices which could be joined by a unique path of length £, so the expression
above is less than n?. Using 6 — k — 1 > % and substituting d = nE + 2% into the last
line, we get

k+2
n? > (n(n% 25 (k4 28 — 1) = kQ(k_l)2n2klc_1> (1 - 127>
nk + 2k

k+2
- (rf’“ﬁl (nk +28)(1+n k(28 — 1) — k2<’f*1>2n2’3§1> (1 7 )
nk + 2+

) ) B k+2
> (nLﬁl(n% + 214 nk(k—1)(2Y — 1)) — k2<’“*1)2n2kT1> (1 - 27)

1
nk + 2k
o, 20 N (o2 :
> n |1+ — 1 T > n
nk 4 2k nk 4 2k

which gives a contradiction. We must thus have d < nt + 2% 1

4 Concluding Remarks

If G is d-regular, then picking a breadth first search tree as in the calculation of the
maximum degree we obtain

1+d+d(d—2)+-+d(d—2)""<n.

So in this case we have d < n¥ + 2. The main points at which the large linear term is
introduced in the proof of Theorem 1 is in the estimate of the maximum degree and the
upper bound on |Qy|. We believe it should be possible to circumvent these bounds to
obtain a linear term of the form cn, for some absolute constant c. Finally, we note that
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the analogous extremal problem when some of the short odd cycles are forbidden seems
to be very difficult. For example, it is known that

(TL, {037 C4}) : eX(na {037 C4}) 1
2\[ e 032 < limsup n3/2 s 3

but the asymptotic value of ex(n, {Cs, C4}) remains an open question (posed by Erdés).
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