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Abstract

In this manuscript we study type A nilpotent Hessenberg varieties equipped with
a natural S1-action using techniques introduced by Tymoczko, Harada-Tymoczko,
and Bayegan-Harada, with a particular emphasis on a special class of nilpotent
Springer varieties corresponding to the partition λ = (n− 2, 2) for n ≥ 4. First we
define the adjacent-pair matrix corresponding to any filling of a Young diagram
with n boxes with the alphabet {1, 2, . . . , n}. Using the adjacent-pair matrix we
make more explicit and also extend some statements concerning highest forms
of linear operators in previous work of Tymoczko. Second, for a nilpotent op-
erator N and Hessenberg function h, we construct an explicit bijection between
the S1-fixed points of the nilpotent Hessenberg variety Hess(N,h) and the set of
(h, λN )-permissible fillings of the Young diagram λN . Third, we use poset pin-
ball, the combinatorial game introduced by Harada and Tymoczko, to study the
S1-equivariant cohomology of type A Springer varieties S(n−2,2) associated to Young
diagrams of shape (n − 2, 2) for n ≥ 4. Specifically, we use the dimension pair
algorithm for Betti-acceptable pinball described by Bayegan and Harada to specify
a subset of the equivariant Schubert classes in the T-equivariant cohomology of the
flag variety F`ags(Cn) ∼= GL(n,C)/B which maps to a module basis ofH∗S1(S(n−2,2))
under the projection map H∗T(F`ags(Cn))→ H∗S1(S(n−2,2)). Our poset pinball mod-
ule basis is not poset-upper-triangular; this is the first concrete such example in the
literature. A straightforward consequence of our proof is that there exists a simple
and explicit change of basis which transforms our poset pinball basis to a poset-
upper-triangular module basis for H∗S1(S(n−2,2)). We close with open questions for
future work.
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1 Introduction

The study of Hessenberg varieties is an active field of modern mathematical research.
Indeed, Hessenberg varieties arise in many areas of mathematics, including geometric
representation theory [8, 15, 16], numerical analysis [6], mathematical physics [12, 14],
combinatorics [7], and algebraic geometry [4, 5], so it is of interest to explicitly analyze
their topology, e.g. the structure of their (equivariant) cohomology rings. In this paper
we further develop the approach, initiated and developed in [1,2,9,10], which studies the
topology of Hessenberg varieties through poset pinball and Schubert calculus techniques.

In this manuscript we focus on the case of nilpotent Hessenberg varieties, and more
particularly on nilpotent Springer varieties. We begin by briefly recalling the setting of
our results; for more details we refer the reader to Section 2. Let N : Cn → Cn be a
nilpotent operator. Let h : {1, 2, . . . , n} → {1, 2, . . . , n} be a function satisfying h(i) ≥ i
for all 1 ≤ i ≤ n and h(i+1) ≥ h(i) for all 1 ≤ i < n. In type A, nilpotent Hessenberg
varieties can be defined as the following subvariety of F`ags(Cn):

Hess(N, h) := {V• = (0 ⊆ V1 ⊆ V2 ⊆
· · · ⊆ Vn−1 ⊆ Vn = Cn) | NVi ⊆ Vh(i) for all i = 1, . . . , n}.

We equip Hess(N, h) with a natural S1-action (described precisely in Section 2) in-
duced from the diagonal torus subgroup T of U(n,C) acting in the usual fashion
on GL(n,C)/B ∼= F`ags(Cn). In the special case when the Hessenberg function
h : {1, 2, . . . , n} → {1, 2, . . . , n} is the identity h(i) = i for all 1 ≤ i ≤ n, we call
Hess(N, h) a nilpotent Springer variety and denote it by SN .

Our first results apply to general type A nilpotent Hessenberg varieties. Let N be a
nilpotent n× n matrix in Jordan canonical form with weakly decreasing block sizes and
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let λ denote the Young diagram1 (equivalently the partition) with row lengths the Jordan
block sizes of N listed in weakly decreasing order. In [17, Theorem 6.1] Tymoczko builds
a paving-by-affines of a nilpotent Hessenberg variety Hess(N, h), where the nilpotent
operator N is required to be in a highest form (see [17, Definition 4.1]). Much topological
information about a variety is encoded in a paving-by-affines, so it is useful to build tools
for dealing with the technical condition that the operator N be in a highest form. We
introduce what we call the adjacency-pair matrix, which is an n×n matrix constructed
from a filling of a Young diagram λ with n boxes by the alphabet {1, 2, . . . , n}. This
then allows us to make more explicit and also generalizes a procedure for producing
highest forms of linear operators sketched in [17, Section 4]. In particular our methods
allow us to straightforwardly derive the explicit change-of-basis permutation matrix which
puts N into any choice of a highest form (including that used by Tymoczko in [17], cf.
Corollary 3.23). The adjacent-pair matrices also allows us to see precisely the set of
permutation matrices which conjugate N to a highest form (Theorem 3.21). The explicit
nature of our results allows for other computations related to these nilpotent Hessenberg
varieties. As an example, we derive in Lemma 3.29 an explicit formula for the Lie algebra
projection induced by the inclusion of the S1 subgroup acting on a special case of nilpotent
Springer variety into the diagonal subgroup T of U(n,C) acting on F`ags(Cn). Thus we
expect our procedure to be useful for future poset pinball analysis of type A nilpotent
Hessenberg varieties.

The affine cells in Tymoczko’s paving-by-affines of Hess(N, h) are in one-to-one cor-
respondence with permissible fillings of Young diagrams (defined precisely in Sec-
tion 4); this is a useful combinatorial enumeration of the affine cells. The correspondence
arises since the affine cells are intersections of Hess(N, h) with certain Schubert cells
BwB ⊆ GL(n,C)/B ∼= F`ags(Cn). Each such Schubert cell contains a unique (coset
of a) permutation matrix wB, and each permutation w can be associated to a permis-
sible filling of λ. We extend this relationship between the permutations (which in this
manuscript we think of as S1-fixed points of Hess(N, h)) and the permissible fillings as fol-
lows. For the purpose of the discussion below assume that N is in Jordan canonical form
with weakly decreasing block sizes. We define for each permutation σ ∈ Sn a bijection φλ,σ
between the set Fi``(λ) of fillings of λ with the set of permutations Sn (Definition 4.3).
Each φλ,σ then induces a bijection between the permissible fillings PFi``(λ) of λ and the
S1-fixed points of the translated Hessenberg variety Hess(σNσ−1, h) (cf. Theorem 4.7).
Our results also provide proofs of statements quoted in [2].

Finally, we give an explicit construction of a computationally convenient module basis
for the S1-equivariant cohomology2 of a special class of type A nilpotent Springer varieties,
namely, the 2-block (also known as 2-row) nilpotent Springer varieties associated to Young
diagrams of the form (n− 2, 2), e.g.

.

1We use English notation for Young diagrams.
2We work with cohomology with coefficients in C throughout, and hence omit it from our notation.
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The motivation for our construction comes from (equivariant) geometry, and more specif-
ically from generalized Schubert calculus and geometric representation theory. We refer
the reader to [9, 10] for more discussion on the possible applications of our methods to
these research areas. Here and below we will always assume n ≥ 4, so the smallest
Springer variety we consider corresponds to the 2× 2 block

.

More specifically, we use the poset pinball methods introduced in [9] and the dimen-
sion pair algorithm for determining pinball rolldowns described in [2] to construct our
combinatorially natural module basis for H∗S1(S(n−2,2)). Our arguments use our results
above on highest forms and the explicit correspondence between permissible fillings and
S1-fixed points of the Springer variety. The module basis is obtained by taking images
under the natural projection map H∗T(F`ags(Cn))→ H∗S1(S(n−2,2)), to be described in de-
tail below, of a subset of the T-equivariant Schubert classes in H∗T(F`ags(Cn)). A similar
analysis by Bayegan and the second author in a special case of regular nilpotent Hessen-
berg varieties [2] yields a poset-upper-triangular basis in the sense of [9]. In contrast to the
results in [2], in the present manuscript we find that the module basis is not poset-upper-
triangular; this is the first such example in the literature. In addition, a straightforward
consequence of our proof is that a simple change of variables yields a module basis which
is not a poset pinball basis but is poset-upper-triangular. These results provide further
evidence for the point of view, explained in [9], that geometrically natural GKM-type
module bases can be computationally convenient even if not poset-upper-triangular.

We now outline the contents of the paper. In Section 2 we provide the necessary defi-
nitions and set some notation. In Section 3 we define the adjacent-pair matrix and prove
results concerning highest forms of linear operators. As a simple application we derive the
change-of-variable matrix required to describe the circle subgroup of T ⊆ U(n,C) acting
on a translated Springer variety. Section 4 contains our results on the bijection between
permissible fillings of a Young diagram and the S1-fixed points of Hessenberg varieties.
Section 5 is a mainly expository section which recalls the terminology and definitions of
poset pinball and the dimension pair algorithm in [2,9]. In Sections 6 and 7, poset pinball
for the case of (n − 2, 2) Springer varieties is studied in detail. The small-n cases n = 4
and n = 5 are explicitly computed and recorded in Section 6. The main pinball result is in
Section 7, where we prove that the dimension pair algorithm yields a linearly independent
set of classes in H∗S1(S(n−2,2)) and hence a module basis. We close with some directions
for future investigation in Section 8.

Acknowledgements. We thank Darius Bayegan, Erik Insko, and Aba Mbirika for help-
ful conversations and interest in this project. We are particularly grateful to Julianna
Tymoczko for her ongoing support, as well as for finding (and suggesting ways to fix!) er-
rors in an earlier draft of this paper and making many excellent suggestions for improving
exposition. We also thank the anonymous referee for a careful reading of our manuscript
and numerous helpful comments.
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2 Nilpotent Hessenberg varieties and S1-actions

We begin with the definition of the type A nilpotent Hessenberg varieties, of which the
nilpotent Springer varieties are a special case. We also recall the definition of a circle
subgroup of the maximal torus T of U(n,C) which acts on any nilpotent Hessenberg
variety. Since some of the discussion below applies to any nilpotent Hessenberg variety,
we present the general definition here. We work exclusively with type A in this manuscript
and hence omit it from our terminology below.

Given a nilpotent operator N : Cn → Cn, consider its Jordan canonical form with
weakly decreasing sizes of Jordan blocks. Let λN denote the partition of n with entries
the sizes of the Jordan blocks of N . Throughout this manuscript we identify partitions of
n with the corresponding Young diagram. For example, if N : C5 → C5 is the operator
with corresponding matrix 

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0


with respect to the standard basis of C5, then since the matrix has 2 Jordan blocks of
sizes 3 and 2 respectively, it has associated Young diagram

which in turn corresponds to the partition λN = (3, 2).
A Hessenberg function is a function h : {1, 2, . . . , n} → {1, 2, . . . , n} satisfying

h(i) ≥ i for all 1 ≤ i ≤ n and h(i + 1) ≥ h(i) for all 1 ≤ i < n. We frequently denote a
Hessenberg function by listing its values in sequence h = (h(1), h(2), . . . , h(n) = n).

The (nilpotent) Hessenberg variety Hess(N, h) associated to N and a Hessenberg
function h is a subvariety of the flag variety F`ags(Cn) ∼= GL(n,C)/B. Recall that
F`ags(Cn) is the projective variety of nested subspaces in Cn, i.e.

F`ags(Cn) = {V• = (Vi) : 0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Vn = Cn such that dimC(Vi) = i}.

Then Hess(N, h) is defined to be the following subvariety of F`ags(Cn):

Hess(N, h) := {V• ∈ F`ags(Cn) | NVi ⊆ Vh(i) for all 1 ≤ i ≤ n}. (1)

The (nilpotent) Springer varieties3 are Hessenberg varieties for the special case where the
Hessenberg function is the identity function h(i) = i for all 1 ≤ i ≤ n:

3In the literature they are also called Springer fibres because they arise as fibres of the symplectic
resolution T ∗F`ags(Cn)→ N where N denotes the subspace of nilpotent matrices in gl(n,C), but we do
not need or use this perspective here.
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Definition 2.1. Let N : Cn → Cn be a nilpotent operator. The Springer variety SN
associated to N is defined as

SN := {V• ∈ F`ags(Cn) | NVi ⊆ Vi for all 1 ≤ i ≤ n}.

For any g ∈ GL(n,C), it is straightforward to see that the Hessenberg variety
Hess(gNg−1, h) for the conjugate gNg−1 of N is homeomorphic (in fact, isomorphic as
algebraic varieties) to Hess(N, h), with explicit homeomorphism given by translation by
g, i.e.,

Hess(N, h) // Hess(gNg−1, h)

k
� // gk

(2)

where k ∈ GL(n,C) denotes a flag [k] ∈ GL(n,C)/B ∼= F`ags(Cn).
There exists a circle action on any nilpotent Hessenberg variety. Recall first that the

maximal torus T of U(n,C), identified with the diagonal subgroup of U(n,C), acts on the
flag variety F`ags(Cn). Consider the following circle subgroup of T:

S1 :=



tn 0 · · · 0
0 tn−1 0

0 0
. . . 0

0 0 t


∣∣∣∣∣∣∣∣∣ t ∈ C, ‖t‖ = 1

 ⊆ T ⊆ U(n,C). (3)

It is shown in [9, Lemma 5.1] that the S1 of (3) preserves the nilpotent Hessenberg variety
Hess(N, h) ⊆ F`ags(Cn) when the nilpotent operator N has matrix in Jordan canonical
form with respect to the standard basis of Cn. Moreover, the S1-fixed points Hess(N, h)S

1

are isolated and are a subset of F`ags(Cn)T, the T-fixed points of F`ags(Cn). Using the
identification F`ags(Cn)T ∼= Sn we henceforth think of S1-fixed points of Hess(N, h) as
permutations in Sn.

3 Adjacent-pair matrices and highest forms of nilpo-

tent operators

Let N0 be a nilpotent matrix in Jordan canonical form with weakly decreasing Jordan
block sizes. We think of N0 as a linear operator on Cn written with respect to the standard
basis of Cn. As mentioned in Section 2, in addition to the Hessenberg variety Hess(N0, h)
we may also consider the translated Hessenberg varieties Hess(gN0g

−1, h) = g ·Hess(N0, h)
for various g ∈ GL(n,C). For the purposes of poset pinball (discussed in more detail in
Section 5) it turns out to be necessary to use conjugates σNσ−1 where σ is a permutation
matrix and σNσ−1 is in a so-called highest form [17, Definition 4.2]; this is because
Tymoczko’s construction of a paving-by-affines of a Hessenberg variety Hess(N, h) [17,
Theorem 6.1] assumes that N is in a highest form. Motivated by this, in this section
we develop a theory which relates highest forms of N0 with fillings of the corresponding
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Young diagram λ = λN0 . First we introduce a bijection φλ : Fi``(λ)→ Sn from the set of
fillings Fi``(λ) of λ to the permutation group Sn. Secondly we associate to each filling
T of λ a matrix NT which we call the adjacent-pair matrix of T . The main result of
this section is Theorem 3.21, in which we prove that NT = σN0σ

−1 is in a highest form
precisely when T arises from a certain simple algorithm which we describe below. This
yields a straightforward enumeration of all permutation matrices σ for which σN0σ

−1 is
in a highest form, and in particular in Corollary 3.26 we give a count of the number of
conjugates σN0σ

−1 for σ ∈ Sn which are in a highest form.
The discussion in this section has several motivations and consequences. Firstly, our

results (e.g. Corollary 3.23) both make explicit and also generalize a procedure for produc-
ing highest forms of linear operators which is sketched in [17, Section 4, text near Figure
4]. Secondly, our explicit correspondence between certain fillings of λ and highest forms of
N0 allows us to easily determine the permutation σ = φλ(T ) (see e.g. Example 3.27) and
thus make further explicit computations with σ. As a sample computation and for use in
Section 7, at the end of this section we give a concrete description in coordinates of the
conjugated circle σS1σ−1 which acts on the Springer variety SσN0σ−1 for N0 correspond-
ing to λ = (n − 2, 2), as well as a computation of the associated Lie algebra projection
Lie(T) → Lie(σS1σ−1). Thus some of the results in this section are preliminary to the
arguments in the sections below. Third, we believe that the theory of highest forms in
relation to poset pinball and Springer varieties will be useful in the future; we describe
some open questions motivated by this in Section 8.

We recall some definitions.

Definition 3.1. ( [17, Definition 4.1]) Let X be any m× n matrix. We call the entry
Xik a pivot of X if Xik is nonzero and if all entries below and to its left vanish, i.e.,
Xij = 0 if j < k and Xjk = 0 if j > i.

Moreover, given i, define ri to be the row of Xri,i if the entry is a pivot, and 0 otherwise.

Example 3.2. Let

X =


0 1 1 0
0 0 5 0
0 1 0 0
0 0 0 3

 .
Then r1 = 0, r2 = 3, r3 = 2, and r4 = 4.

Definition 3.3. ( [17, Definition 4.2]) An upper-triangular nilpotent n×n matrix is in
a highest form if its pivots form a nondecreasing sequence, namely r1 ≤ r2 ≤ · · · ≤ rn.

Example 3.4. The nilpotent matrix

N =


0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


the electronic journal of combinatorics 19 (2012), #P56 7



is in a highest form since r1 = r2 = r3 = 0, r4 = 2, r5 = 3, r6 = 5.

Recall that a filling of λ by the alphabet [n] := {1, 2, . . . , n} is an injective placing
of the integers {1, 2, . . . , n} into the boxes of λ. Following tableaux notation we denote
by T a filling of λ by [n]. We denote by Fi``(λ) the set of all fillings of λ by [n]. For
λ a Young diagram with n boxes, we have |Fi``(λ)| = n!. In the theory below we use a
particular bijective correspondence between Fi``(λ) and Sn. We introduce the following
terminology.

Definition 3.5. Let λ be a Young diagram. Let T be a filling of λ with alphabet [n] for
some n ∈ N. By the English reading of T we mean the reading of the entries of T from
left to right along rows, starting at the top row and proceeding in sequence to the bottom
row. The word of T obtained via the English reading of T is called the English word of
T . If λ is a Young diagram with n boxes then we define

φλ : Fi``(λ)→ Sn (4)

where φλ(T ) is the permutation whose one-line notation is given by the English word of
T . Finally, if λ has n boxes then the English filling of λ is the filling T such that φλ(T )
is the identity permutation in Sn.

For λ a Young diagram with n boxes, it is immediate from the definition that φλ is a
bijection from Fi``(λ) to Sn.

Example 3.6. For

T =
1 2 3 4
5 6
7

and T ′ =
3 5 6 7
2 4
1

we have that φλ(T ) and φλ(T
′) are respectively the permutations (in one-line notation)

1234567 and 3567241. Moreover T is the English filling of λ = (4, 2, 1).

Next we introduce a different reading of fillings which appears in the theory of highest
forms and Hessenberg varieties developed by Tymoczko in [17] (but the terminology we
use is new). In particular, this reading plays a significant role in our poset pinball methods
in Sections 5-7 (cf. in particular Theorem 5.5).

Definition 3.7. Let λ be a Young diagram. Let T be a filling of a Young diagram with
alphabet [n] for some n ∈ N. By the rotated English reading of T we mean the reading
of the entries of T from the bottom to the top along columns, starting at the leftmost
column and proceeding to the rightmost column. The word of T obtained via the rotated
English reading is the rotated English word of T . Let λ be a Young diagram with
n boxes. The rotated English filling of λ is the filling T of λ with [n] such that its
rotated English reading is the identity permutation in Sn.
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Example 3.8. Suppose that λ = . Then the rotated English filling of λ is the

filling
3 5 6 7
2 4
1

.

Remark 3.9. Note that the rotated English filling is not the same thing as the conjugate of
the English filling of the conjugate Young diagram. For instance for the λ in Example 3.8

the conjugate of the English filling of the conjugate Young diagram λ̃ is
1 4 6 7
2 5
3

whereas the rotated English filling of λ is
3 5 6 7
2 4
1 .

Remark 3.10. In the next section we develop a more general framework in which both
Definition 3.5 and Definition 3.7 are special cases, but we do not need this perspective
here.

Given a Young diagram with n boxes and any filling T of λ by [n], we now construct
a matrix we call the adjacent-pair matrix. Our construction is a generalization of a
procedure sketched by Tymoczko in [17, Section 4] (see in particular [17, Figure 4]). We
begin by defining adjacency in λ and in a filling T .

Definition 3.11. Let λ be a Young diagram. We say that two boxes of λ are adjacent
if the two boxes are in the same row, and one box is directly to the left of the other. That
is, the two boxes are of the form within the Young diagram λ. Similarly, given a
filling T of λ, we say that two entries of T are adjacent, or that they form an adjacent
pair, if they occur in adjacent boxes.

Example 3.12. For

T =

1 2 3
4 5
6

the pairs {1, 2}, {2, 3}, and {4, 5} are the adjacent pairs of entries of T .

Definition 3.13. Let λ be a Young diagram with n boxes and T a filling of λ with entries
from [n]. Then we define the adjacent-pair matrix corresponding to T , denoted NT , to
be the matrix NT = (aij)1≤i,j≤n such that its (i, j)-th entry is given by

aij :=

{
1 if i and j are adjacent in T and i is left of j,

0 otherwise.
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Example 3.14. Suppose that λ = and that T =

3 2 4
1 5
6 . Then

NT =


0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Remark 3.15. The adjacent-pair matrix NT corresponding to the English filling of λ is the

nilpotent matrix in Jordan canonical form corresponding to λ. For example if T =

1 2 3
4 5
6

then

NT =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

The following is a basic computation which relates adjacent-pair matrices to highest
forms. Although simple, requiring no more than undergraduate algebra, we find this
formulation most convenient for our purposes so we record it here. Given a permutation
σ ∈ Sn by slight abuse of notation we denote also by σ its n × n permutation matrix
with respect to the standard basis of Cn, i.e., the matrix with i-th column equal to the
standard basis vector eσ(i).

Lemma 3.16. Let N be an n× n nilpotent matrix in Jordan canonical form with weakly
decreasing sizes of Jordan blocks. Let λN be the corresponding Young diagram. Let T be a
filling on λN with alphabet [n] and σ := φλ(T ) ∈ Sn the permutation given by the English
word of T . Then the adjacent-pair matrix NT corresponding to T is equal to the conjugate
σNσ−1.

Proof. Both NT and σNσ−1 are matrices which contain a 1 in precisely n − ` entries
and 0’s elsewhere. Hence, it suffices to check that the (i, j)-th entry of NT is a 1 if and
only if the same holds for σNσ−1. This can be easily checked using the definition of the
adjacent-pair matrix and the English reading.

Remark 3.17. Observe, from Lemma 3.16, that an adjacent-pair matrix is a permutation
matrix with some entries changed to 0.
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We now wish to determine the set of fillings T such that the adjacent-pair matrix NT

is in a highest form. Throughout this discussion we use the following assumptions and
notation. Let λ be a Young diagram with n boxes, ` rows, k rows of distinct length, and
r columns. If λ1 > λ2 > · · · > λk are the distinct row lengths of λ we let di for 1 ≤ i ≤ k
denote the number of rows of λ with length λi. Thus the row lengths of λ are

(λ1, λ1, . . . , λ1︸ ︷︷ ︸
d1

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
d2

, · · · , λk, λk, . . . , λk︸ ︷︷ ︸
dk

)

with
∑k

i=1 di = `. We also let (µ1 ≥ µ2 ≥ · · · ≥ µr) denote the column lengths of λ. Note
µ1 = `.

We begin with some observations about the pivots of an adjacent-pair matrix NT .

Lemma 3.18. Let λ be a Young diagram with n boxes and T a filling of λ by [n]. Let NT

be the adjacent-pair matrix of T . Then NT is in a highest form if and only if T satisfies
the following conditions:

(a) the leftmost column of λ is filled with the integers {1, 2, . . . , µ1 = `}, and

(b) if i1 j1 and i2 j2 both appear as adjacent pairs in T then

i1 < i2 if and only if j1 < j2.

Proof. First suppose NT is in a highest form. By Remark 3.17, every nonzero entry in
NT is a pivot of NT . Therefore, if i j appears as an adjacent pair in T then rj = i > 0.
For j ∈ [n], the index j does not appear in the right hand box of any adjacent pair in
T (so the j-th column of NT is identically 0) precisely when j appears in the leftmost
(i.e. first) column of λ. In this case, by definition of pivots, rj = 0. Since NT is in a
highest form we must have r1 ≤ r2 ≤ · · · ≤ rn and in particular any rj with rj = 0
must occur before any rj with rj > 0. We conclude that j is in the leftmost column of λ
precisely when 1 ≤ j ≤ µ1 = `. This proves (a). Now suppose i1 j1 and i2 j2 both
appear as adjacent pairs in T . Then again since all nonzero entries are pivots, we know
rj1 = i1, rj2 = i2. If NT is in a highest form then the pivots must be increasing so j1 < j2
if and only if i1 < i2. This proves (b). If T satisfies conditions (a) and (b) then reversing
this reasoning shows that NT must be in a highest form.

We now describe an algorithm which produces a filling T of λ which satisfies certain
conditions, starting from the data of a filling of the leftmost column of λ. As we show
in Theorem 3.21 below, the algorithm gives an explicit method for producing precisely
those fillings T for which the corresponding NT are in a highest form. We follow notation
established above.

1. Fix an arbitrary filling of the leftmost (i.e. first) column
of λ with the alphabet [µ1]. This filling specifies a linear
ordering of the rows of λ.

2. For the s-th column of λ for 2 ≤ s ≤ r, place the µs
integers {(

∑s−1
t=1 µt) + 1, . . . ,

∑s
t=1 µt} in the µs boxes of

the s-th column in the linear order specified by step (1).

(5)
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Note that, by definition of this algorithm, the filling of the leftmost column completely
specifies the rest of the filling.

Example 3.19. If the Young diagram λ and the initial filling of its leftmost column are

and

5
1
4
3
2

then the algorithm (5) determines the rest of the filling to be

5 9 12 15 16
1 6 10 13
4 8 11 14
3 7
2 .

Remark 3.20. Suppose the filling of the leftmost column of λ is given by placing the
integer i, for 1 ≤ i ≤ µ1, in the i-th box from the bottom. Then the filling of λ obtained
by applying the algorithm (5) is precisely the rotated English filling of Definition 3.7.

We now prove that the fillings T for which NT is in a highest form are precisely those
produced from the algorithm (5).

Theorem 3.21. Let λ be a Young diagram with n boxes and T a filling of λ by [n]. Then
the adjacent-pair matrix NT is in a highest form if and only if the algorithm (5) applied
to the filling of the leftmost column of T produces the filling T .

To prove the proposition we use the following lemma. We use the notation established
above.

Lemma 3.22. Let λ be a Young diagram with n boxes and T a filling of λ by [n]. Suppose
T satisfies the conditions (a) and (b) of Lemma 3.18. Then the s-th column of λ for
1 ≤ s ≤ r contains precisely the integers {(

∑s−1
t=1 µt) + 1, . . . ,

∑s
t=1 µt}.

Proof. We sketch an argument by induction. Condition (a) already implies the leftmost
column is filled with [µ1], which proves the base case s = 1. Assume the conclusion holds
for the first s columns, and suppose for a contradiction that it fails for the (s + 1)th
column. It is then straightforward to construct two adjacent pairs violating condition
(b). The result follows.

Proof of Theorem 3.21. By Lemma 3.18 it suffices to prove that a filling T satisfies con-
ditions (a) and (b) of Lemma 3.18 if and only if it arises from (5). So suppose T satisfies
Lemma 3.18(a) and (b). From Lemma 3.22 we already know that the set of entries in
each column agrees with that specified by (5), so it remains to show that the ordering
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of the entries also agrees, i.e. that the entries of the s-th column for 2 ≤ s ≤ r respects
the linear order imposed on the rows by the filling of the leftmost column. We argue by
induction. Suppose s = 2. Then the entries of the 2nd column respect the ordering in the
1st column precisely when the following holds: if i1 j1 and i2 j2 are two adjacent
pairs with j1, j2 in the 2nd column of λ then i1 < i2 if and only if j1 < j2. But this follows
from condition (b). Moreover if this condition holds it follows that the linear ordering
of the boxes in the 2nd column given by its filling by {µ1 + 1, . . . , µ1 + µ2} agrees with
that induced by the linear ordering of the rows of λ corresponding to the filling of the 1st
column. Assuming the first s columns are obtained by (5), the same argument as above
shows that the (s+ 1)st column must also be filled according to (5), as desired.

Conversely, suppose T is obtained from (5). By construction T satisfies condition (a).
Now suppose i1 j1 and i2 j2 are two adjacent pairs appearing in T . We consider
cases. Suppose i1 and i2 appear in the sth and s′th columns of T . Without loss of
generality we may assume s < s′. Then i1 ≤

∑s
t=1 µt while i2 ≥ (

∑s′−1
t=1 µt)+1 ≥ i1. Thus

we wish to show j1 < j2. This follows because the adjacency with i1 and i2 respectively
implies that j1 is in the (s + 1)th column and j2 is in the (s′ + 1)th column. Since
s+ 1 < s′ + 1 an argument similar to that above implies j1 < j2 as desired. On the other
hand suppose i1 and i2 appear in the same column, say the sth. Then j1 and j2 appear
in the s + 1th column. Suppose further that i1 appears in the ri1th row and i2 appears
in the ri2th row. If i1 < i2 then by definition of the algorithm (5) the entry in the ri1th
row of the first column is less than that in the ri2th row, which in turn implies j1 < j2.
Similarly j1 < j2 implies i1 < i2. This concludes the proof.

The following, asserted in [17, Section 4, see e.g. Figure 4], is now a straightforward
consequence.

Corollary 3.23. Let λ be a Young diagram with n boxes and TRE be the rotated English
filling of λ. Let σ := φλ(TRE) be the permutation given by the English reading of TRE.
Then NTRE = σNσ−1 is in a highest form.

Proof. Immediate from Lemma 3.16 and Theorem 3.21 and Remark 3.20.

We have just seen that each filling T obtained from (5) yields a conjugate NT = σNσ−1

of N in a highest form. Since a filling given in (5) is specified by the filling of its leftmost
column, there are µ1! = |Sµ1| many such fillings. However, different such fillings T and T ′

may yield the same adjacent-pair matrix NT = NT ′ . The next lemma makes this precise,
for the purpose of which we use the following terminology. We say a filling T ′ is obtained
from T by a row swap if the entries of 2 equal-length rows of T have been interchanged.

Example 3.24. Suppose that λ = , and T =

3 4 2
1 7 6
5 and T ′ =

1 7 6
3 4 2
5 are two

fillings of λ. Then T ′ is obtained from T by a row swap of the rows 1 7 6 and 3 4 2 .
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With the terminology in place, we have the following lemma.

Lemma 3.25. Let λ be a Young diagram with n boxes and let T and T ′ be fillings of λ
obtained from (5). Then NT = NT ′ if and only if T ′ is obtained from T by a sequence of
row swaps.

Proof. If T and T ′ differ only by a sequence of row swaps, then T and T ′ have precisely
the same sets of adjacent pairs. Thus from the definition of the adjacent-pair matrix
it follows that NT = NT ′ . Now suppose T and T ′ differ by more than a sequence of
row swaps. Since both T and T ′ are obtained from (5), this means that there exists an
element s ∈ [µ1] which appears in T in a row of length d and appears in T ′ in a row of
length d′, with d 6= d′. Without loss of generality we assume d′ > d. We wish to show
that NT 6= NT ′ . For this it suffices to show that there exists some adjacent pair i j
which occurs in T but not in T ′, or vice versa. Consider the entries in the row of T
and T ′ which contain s. By assumption these are of the form a1 = s a2 · · · ad and
a′1 = s a′2 · · · a′d · · · a′d′ respectively where d′ > d. We take cases. Suppose there

exists an index 1 < i ≤ d for which ai 6= a′i. Then in particular there exists a minimal
such, denote it i. Then there is an adjacent pair ai−1 ai in T and a pair a′i−1 a′i in
T ′ where ai−1 = a′i−1 but ai 6= a′i, so NT 6= NT ′ . Now suppose ai = a′i for all 1 ≤ i ≤ d. In
particular ad = a′d. Then a′d = ad a′d+1 is an adjacent pair in T ′ which does not occur
in T . Hence NT 6= NT ′ also in this case. The result follows.

The following is now straightforward. Recall µ1 = ` is the total number of rows of λ
and d1, . . . , dk are the numbers of rows of λ of length λ1, . . . , λk respectively.

Corollary 3.26. There exist precisely

`!

d1!d2! · · · dk!

highest forms of N obtained as σNσ−1 for a permutation matrix σ ∈ Sn.

Proof. There are µ1! = `! fillings T arising from the algorithm (5). From Lemma 3.25 we
know that the matrices NT do not change precisely when the entries in the first column
contained in equal-length rows are permuted. The di count the numbers of equal-length
rows so the result follows.

Our constructions allow us to do explicit computations. For instance, given the discus-
sion above it is straightforward to list the permutation matrices σ for which the associated
conjugate σNσ−1 is in a highest form. For instance, let TRE be the rotated English filling
of λ. It follows from the results above that the permutation σ for which σNσ−1 is the
highest form of N used in [17, Section 4] is precisely σ := φλ(T ).

Example 3.27. Consider the following Young diagram
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which corresponds to the nilpotent matrix N in Example 3.4. Then the rotated English
filling is

3 5 6
2 4
1

and the permutation σ such that σNσ−1 is in the highest form used in [17, Section 4] is
σ = 356241.

As another application of our discussion and for use in Section 7 we close this section
with a brief discussion about the circle action on Hessenberg varieties defined in (3). Con-
sider the translated Hessenberg variety Hess(σNσ−1, h) where N is in Jordan canonical
form and σ is a permutation matrix. In this case the circle subgroup of (3) does not
necessarily act on Hess(σNσ−1, h). Instead we consider the conjugated circle subgroup
σS1σ−1 of T, which is easily seen to preserve Hess(σNσ−1, h). Here and below we con-
sider each such Springer variety to be equipped with this conjugated circle group action,
which by slight abuse of notation we sometimes denote also by S1 (instead of σS1σ−1).
It is immediate that the fixed points Hess(σNσ−1, h)S

1
under the S1-action are isolated

and are a subset of Sn ∼= F`ags(Cn)T; indeed, under the homeomorphism (2) the set of
S1-fixed points Hess(σNσ−1, h)S

1
is precisely the σ-translate

σ · Hess(N, h)S
1 ⊆ Sn

of the S1-fixed points of Hess(N, h).
In Section 7 we focus attention on a choice of Springer variety SσNσ−1 specified by

λ = (n − 2, 2) with nilpotent matrix N and the choice of permutation σ determined
by the rotated English filling. In this setting we give below an explicit computation of
the conjugate circle subgroup σS1σ−1 and the linear projection Lie(T)∗ → Lie(S1)∗. We
illustrate with a concrete example.

Example 3.28. Let λ = (4, 2). Then the corresponding matrix in Jordan canonical form
is

N =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


and the associated permutation determined from the rotated English filling is σ = 245613.
The standard S1 in (3) is then conjugated to the circle subgroup

S1 ∼= σS1σ−1 =




t2 0 0 0 0 0
0 t6 0 0 0 0
0 0 t 0 0 0
0 0 0 t5 0 0
0 0 0 0 t4 0
0 0 0 0 0 t3




.
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The corresponding linear projection Lie(T6)∗ = t∗ → Lie(S1)∗ induced by the inclusion
S1 ∼= σS1σ−1 ↪→ T6 is given by

t1 7→ 2t, t2 7→ 6t, t3 7→ t, t4 7→ 5t, t5 7→ 4t, t6 7→ 3t. (6)

where t denotes the variable in Lie(S1) and the ti the variables in Lie(T6) ∼= R6.

The general computation follows.

Lemma 3.29. Let n ≥ 4. Let λ = (n−2, 2) and let S1 denote the standard circle subgroup
in (3). Then the permutation σ determined by the rotated English filling of λ is

σ = 2 4 5 6 7 · · ·n− 1n 1 3

in one-line notation and the conjugated subgroup σS1σ−1 is given by

S1 ∼= σS1σ−1 =





t2 0 0 0 0 · · · 0
tn

t
tn−1

tn−2

. . .

t3




⊆ T. (7)

Moreover, the linear projection t∗ → Lie(S1)∗ determined by the inclusion of this circle
subgroup S1 ∼= σS1σ−1 ↪→ T is given by

t1 7→ 2t, t2 7→ nt, t3 7→ t, and tk 7→ (n+ 3− k)t, for 4 ≤ k ≤ n. (8)

Proof of Lemma 3.29. By definition λ is the partition with n − 2 boxes in the first row

and 2 boxes in the second row. Its rotated English filling is 2 4 5 · · · n− 2 n− 1 n
1 3

from which the form of σ (obtained by the English reading of the above filling) follows.
Moreover the inverse of the given σ is σ−1 = n − 1 1 n 2 3 4 · · ·n − 2. Equation (7)
then follows by conjugating the circle subgroup of (3) by the n × n permutation matrix
corresponding to σ. For the last statement of the lemma we identify the subgroup (7)
with the standard circle S1 ⊆ C∗ via the map t 7→ diag(t2, tn, t, tn−1, tn−2, . . . , t3). The
derivative of this map takes the standard basis vector in Lie(S1) ∼= R to

(2, n, 1, n− 1, n− 2, . . . , 3)

in Rn with respect to the standard basis, where the k-th coordinate for 4 ≤ k ≤ n is
n+ 3− k. The final statement of the lemma now follows.
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4 S1-fixed points in Hessenberg varieties and permis-

sible fillings

In this section we give an explicit bijection from the S1-fixed points of Hess(N, h), for
various choices of N , to the set of permissible fillings of λN . The last result of the
section, Corollary 4.10, is used in Sections 5-7 but the discussion is also of independent
interest. Our results further develop some ideas in [17], in which Tymoczko constructs a
paving-by-affines of a nilpotent Hessenberg variety Hess(N, h) by using certain Schubert
cells. (In [17] Tymoczko considers more general Hessenberg varieties but we focus on
the nilpotent case here.) Since each Schubert cell BwB in GL(n,C) contains a unique
coset wB with w a permutation matrix, it follows from her construction that there is a
unique such w associated to each of the affine cells in her paving of Hess(N, h), which
in turn can be encoded in a filling of a Young diagram [17, Theorem 7.1]. Our main
result in this section, Theorem 4.7, is another interpretation of this bijection; our main
contribution is to make more explicit and precise the bijective correspondence between
the permissible fillings of λN and the cosets wB for w a permutation matrix which lie in
Hess(σNσ−1, h) (thought of as S1-fixed points of Hess(σNσ−1, h)) for different choices of
conjugates σNσ−1. We also refer the reader to [2] for related discussion; in particular,
Corollary 4.10 proves a claim used in [2, Section 2].

We begin by defining permissible fillings following [13].

Definition 4.1. Let λ be a Young diagram with n boxes and h a Hessenberg function.
A filling of λ is a (h, λ)-permissible filling if for every horizontal adjacency k j we
have k ≤ h(j). (When the h and λ are understood from context we sometimes omit the
(h, λ) from terminology and refer simply to permissible fillings.)

Remark 4.2. In the context of Springer varieties, for which h(j) = j for all j, the condition
k ≤ h(j) becomes k ≤ j. Thus in this case permissible fillings are precisely the row-strict
fillings.

Given λ and h, we denote by

PFi``(λ, h) ⊆ Fi``(λ)

the set of permissible fillings of λ. Let N be a nilpotent n×n matrix in Jordan canonical
form with corresponding Young diagram λ, and let h : {1, 2, . . . , n} → {1, 2, . . . , n} be a
Hessenberg function. Our goal is to construct an explicit identification between Hessen-
berg fixed points Hess(σNσ−1, h) and permissible fillings PFi``(λ, h) for any permutation
matrix σ.

As a first step we define an identification between Sn and Fi``(λ) which depends on
the choice of permutation σ. Recall that φλ : Fi``(λ) → Sn is the mapping given by the
English reading of a filling.

Definition 4.3. Let σ be a permutation in Sn and λ a Young diagram with n boxes.
Consider the filling φ−1λ (σ) of λ corresponding to σ via the English reading. The filling
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φ−1λ (σ) specifies a linear ordering on the boxes of λ. Define the map

φλ,σ : Fi``(λ)→ Sn (9)

by associating to any filling T of λ the permutation whose one-line notation is the reading
of the entries of T with respect to the linear ordering given by φ−1λ (σ).

Example 4.4. Suppose λ = (3, 2, 1) and σ = 253416. Then φ−1λ (σ) is the filling
2 5 3
4 1
6

so for the filling T =

4 1 6
2 3
5 the reading φλ,σ(T ) would yield 346215.

Remark 4.5. By definition the mapping φλ,id corresponding to σ = id the identity per-
mutation coincides with the map φλ obtained via the English reading. Similarly the
permutation σ for which φλ,σ(T ) is the rotated English reading is precisely the permuta-
tion corresponding under φλ to the rotated English filling of λ.

Remark 4.5 shows that both the English and the rotated English readings of Fi``(λ)
are special cases of φλ,σ. The point of Definition 4.3 is to emphasize that other choices,
corresponding to different choices of translated Hessenberg varieties, are possible. We
need the following lemma.

Lemma 4.6. Let λ be a Young diagram with n boxes and σ, τ ∈ Sn. Then

φ−1λ,σ(τ) = φ−1λ (τσ).

Proof. This follows from the definition of φλ,σ and the fact that multiplication by σ on
the right re-orders the entries in the one-line notation for τ precisely by replacing the i-th
entry τ(i) by τ(σ(i)) for all i.

The main theorem of this section is the following. We consider Hess(σNσ−1, h)S
1

to
be a subset of Sn and PFi``(λ) to be a subset of Fi``(λ).

Theorem 4.7. Let N be an n × n nilpotent matrix in Jordan canonical form with
weakly decreasing sizes of Jordan blocks with respect to the standard basis of Cn and let
h : {1, 2, . . . , n} → {1, 2, . . . , n} be a Hessenberg function. Let PFi``(λ, h) denote the cor-
responding set of permissible fillings of λ. Let σ ∈ Sn and denote by Hess(σNσ−1, h) the
associated nilpotent Hessenberg variety equipped with the S1-action described in Section 2.
Then the association

Φλ,σ : w 7→ φ−1λ,σ(w−1) (10)

defines a bijection from Hess(σNσ−1, h)S
1

to PFi``(λ, h).
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In the proof of Theorem 4.7 we use the following terminology. Suppose
h : {1, 2, . . . , n} → {1, 2, . . . , n} is a Hessenberg function. We define the Hessenberg
space H corresponding to h to be the subspace of gl(n,C) defined by

H := {X ∈ gl(n,C) |Xij = 0 if i > h(j)} (11)

where Xij denotes the (i, j)-th entry of the matrix X.

Example 4.8. Suppose h = (2, 3, 4, 4). Then

H = {X ∈ gl(4,C) |X3,1 = X4,1 = X4,2 = 0} =



? ? ? ?
? ? ? ?
0 ? ? ?
0 0 ? ?


 ⊆ gl(n,C)

where the ? denotes free variables.

It is straightforward to reformulate the definition (1) of Hessenberg varieties as follows:
for a given Hessenberg function h with corresponding Hessenberg space H,

Hess(N, h) = {[g] ∈ GL(n,C)/B | g−1Ng ∈ H}. (12)

In particular, the S1-fixed points of Hess(N, h) are precisely

Hess(N, h)S
1 ∼= {w ∈ Sn |w−1Nw ∈ H}. (13)

We use the following lemma.

Lemma 4.9. Let λ be a Young diagram with n boxes and h : {1, 2, . . . , n} → {1, 2, . . . , n}
a Hessenberg function with corresponding Hessenberg space H. Let T be a filling of λ
by the alphabet [n] and let M be the n × n matrix obtained by applying the adjacency
algorithm to T . Then

T is (h, λ)-permissible ⇐⇒ M ∈ H.

Proof. By definition of the adjacency algorithm, the (i, j)-th entry of M is non-zero
precisely when i j occurs in the filling of T . Hence by definition of H the matrix
M is in H precisely if, for all such adjacent pairs (i, j) in T , we have i ≤ h(j). This is
exactly the definition of a (h, λ)-permissible filling.

Proof of Theorem 4.7. We first prove the claim for the special case σ = id. Here φλ,id = φλ
(cf. Remark 4.5) and we want to prove the map w 7→ Φλ,id(w) := φ−1λ (w−1) defines a
bijection between Hess(N, h)S

1
and PFi``(λ, h). Since taking inverses is a bijection on Sn

and φλ is also a bijection from Fi``(λ) to Sn, the content of the claim is that a permutation
w is in Hess(N, h)S

1
precisely when the filling φ−1λ (w−1) is permissible. Recall from (13)

that
w ∈ Hess(N, h)S

1 ⇐⇒ w−1Nw ∈ H.
By Lemma 3.16, the matrix w−1Nw is precisely the adjacent-pair matrix for the fill-
ing φ−1λ (w−1). The claim now follows from Lemma 4.9. The statement for arbitrary
σ ∈ Sn follows from the special case σ = id by Lemma 4.6 and by the equality
Hess(σNσ−1, h)S

1
= σ · Hess(N, h)S

1
.
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The following is used below in Sections 5-7 as well as in [2]. Given a Young diagram
λ with n boxes, denote by TRE the rotated English filling of λ.

Corollary 4.10. Let N be an n × n nilpotent matrix in Jordan canonical form and
weakly decreasing sizes of Jordan blocks with respect to the standard basis of Cn and
let h : {1, 2, . . . , n} → {1, 2, . . . , n} be a Hessenberg function. Let PFi``(λ, h) denote
the corresponding set of permissible fillings of λ. Let σ = φλ(TRE) be the permutation
corresponding to the rotated English filling of λ. Then

Φλ,σ : w 7→ φ−1λ,σ(w−1) (14)

is a bijection from Hess(σNσ−1, h)S
1

to PFi``(λ, h).

5 Betti-acceptable pinball and linear independence

For the rest of the manuscript we restrict attention to nilpotent Springer varieties, i.e., the
case in which the Hessenberg function is the identity function h(i) = i for all 1 ≤ i ≤ n. In
this section we recount for the convenience of the reader several ideas developed in [2, 9]
which both motivate and are used in the next two sections in our study of a special
class of nilpotent Springer varieties. First we recall the dimension pair algorithm
introduced in [2] which associates to each S1-fixed point in a nilpotent Hessenberg variety
a permutation in Sn. We also recall the interpretation of the algorithm in terms of the
poset pinball game introduced in [9]. More specifically, in the case of nilpotent Springer
varieties, the algorithm has an interpretation as producing the output of a successful
game of Betti poset pinball, as is shown in [2, Proposition 3.6]. We keep exposition
brief and refer the reader to [2] for details.

We begin with the definition of dimension pairs for the special case of the identity
Hessenberg function h(i) = i.

Definition 5.1. Let λ a Young diagram with n boxes and T a permissible filling of λ.
The pair (a, b) is a dimension pair of T if the following conditions hold:

1. b > a,

2. b is either

• below a and in the same column, or

• anywhere in a column strictly to the left of the column of a,

and

3. if there exists a box with filling c directly adjacent to the right of a, then b ≤ c.

For a dimension pair (a, b) of T , we will refer to b as the top part of the dimension pair.
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Example 5.2. Let λ = (2, 2). For the permissible filling

1 3
2 4

the dimension pairs are {(1, 2), (3, 4)}.

Given a permissible filling T of λ, denote by DP T the set of dimension pairs of T . For
each integer ` with 2 ≤ ` ≤ n, define

x` := |{(a, `) | (a, `) ∈ DP T}|. (15)

We call the integral vector x = (x2, x3, . . . , xn) the list of top parts of T . To each such
x we associate a permutation in Sn as follows. As a preliminary step, for each ` with
2 ≤ ` ≤ n define

u`(x) :=

{
s`−1s`−2 · · · s`−x` if x` > 0

1 if x` = 0

where si denotes the simple transposition (i, i + 1) in Sn and 1 denotes the identity
permutation. We define an association x 7→ ω(x) ∈ Sn by

ω(x) := u2(x)u3(x) · · ·un(x) ∈ Sn. (16)

With the terminology in place we now recall the dimension pair algorithm intro-
duced in [2]. Suppose N is a nilpotent n×n matrix in Jordan canonical form and weakly
decreasing sizes of Jordan blocks, with corresponding Young diagram λ. Following nota-
tion in Section 4 denote by TRE the rotated English filling of λ and let σ := φλ(TRE) be
the permutation such that Nhf := σNσ−1 is the highest form of N used in [17, Section
4]. The algorithm explicitly constructs, for each S1-fixed point w ∈ SS

1

Nhf
, a permutation

in Sn (which we denote ro``(w)).

Definition of ro`` : SS
1

Nhf
→ Sn:

1. Let w ∈ SS
1

Nhf
and let φ−1λ,σ(w−1) be its corresponding permissible filling.

2. Let DP φ−1
λ,σ(w

−1) be the set of dimension pairs in the permissible filling φ−1λ,σ(w−1).

3. For each ` with 2 ≤ ` ≤ n, set

x` := |{(a, `) | (a, `) ∈ DP φ−1
λ,σ(w

−1)}|

as in (15) and define x := (x2, . . . , xn).

4. Define ro``(w) := (ω(x))−1 where ω(x) is the permutation associated to the integer
vector x defined in (16).

We illustrate the algorithm by an example which will be used later (cf. Section 6).
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Example 5.3. Let λ = (3, 2) and let w = 24135 = s1s3s2. Then the associated permissi-
ble filling φ−1λ,σ(w−1) can be computed to be

1 2 5
3 4

and the corresponding set of dimension pairs DP φ−1
λ,σ(w

−1) is {(2, 3), (2, 4)}. (Note (1, 3)
is not a dimension pair because 3 6< 2.) Here n = 5, so the vector x is (0, 1, 1, 0). The
permutation ω(x) is then 13425, and finally ro``(w) = ω(x)−1 = 14235 = s3s2.

We call ro``(w) the rolldown of w. The nomenclature is justified by the fact that
the association w 7→ ro``(w) satisfies properties which allow it to be interpreted as the
rolldowns in a game of poset pinball, as introduced in [9].

Remark 5.4. The dimension pair algorithm in fact makes sense more generally, not just
for (n−2, 2) Springer varieties. Indeed, it was originally introduced in [2] for any (type A)
nilpotent Hessenberg variety. However, it is only for special cases (such as the (n− 2, 2)
Springer varieties considered here) that we are currently able to prove that the rolldowns
correspond to a module basis in equivariant cohomology. It is an open question (cf.
Question 8.2) whether or not the arguments in this paper can be further generalized
to also yield module bases for equivariant cohomology rings of more general nilpotent
Hessenberg varieties.

Our main motivation for introducing the dimension pair algorithm comes from the
following geometric theorem (the statement is actually more general, but we restrict to
the case at hand). The statement assumes that Nhf is in the highest form corresponding
to the rotated English filling of Definition 3.7.

Theorem 5.5. ( [17, Theorem 1.1]) Let Nhf : Cn → Cn be a nilpotent matrix in
the highest form chosen as above and let λ := λNhf . Let SNhf denote the corresponding
nilpotent Springer variety. There is a paving by (complex) affine cells of SNhf such that:

• the affine cells are in one-to-one correspondence with SS
1

Nhf
, and

• the (complex) dimension of the affine cell Cw corresponding to a fixed point w ∈ SS
1

Nhf

is
dimC(Cw) = |DP φ−1

λ,σ(w
−1)| (17)

where σ = φλ(TRE).

For our purposes, the point of Theorem 5.5 is that, by construction of our dimension
pair algorithm, the Bruhat lengths of the rolldowns of the Springer fixed points precisely
encodes the Betti numbers of the Springer variety. This implies that our algorithm can
in fact be viewed as a successful outcome of a game of Betti pinball, which is a refined
version of poset pinball [9, Section 3.1].

One of the main goals of poset pinball, and also of this manuscript, is to build explicit
module bases for equivariant cohomology rings. For this purpose, for any u ∈ Sn let
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σu denote the classical equivariant Schubert class in H∗T(F`ags(Cn)) corresponding to u.
Denote by pu the image of σu under the projection

π : H∗T(F`ags(Cn))→ H∗S1(SNhf ) (18)

induced by the inclusion of groups S1 ↪→ T and the S1-equivariant inclusion of spaces
SNhf ↪→ F`ags(Cn). In analogy with the terminology in [2, 10], we refer to the images pu
as Springer Schubert classes.

The goal of the remainder of this manuscript is to show that the set {pro``(w)}w∈SS1Nhf
of Springer Schubert classes, corresponding to the rolldowns of the Springer fixed points,
is linearly independent over H∗S1(pt) in H∗S1(SNhf ). This achieves our goal of constructing
module bases because, once linear independence is established, we may use the following
proposition to conclude that the set {pro``(w)}w∈SS1Nhf

also spans H∗S1(SNhf ) and hence is

indeed a module basis.

Proposition 5.6. Let N : Cn → Cn be a nilpotent operator in Jordan canonical form
with weakly decreasing Jordan block sizes with corresponding Young diagram λ. Let SNhf
be the Springer variety corresponding to the highest form Nhf := σNσ−1 where σ is the
permutation corresponding to the rotated English filling of λ, equipped with the S1 action
defined in (7). Let ro`` : SS

1

Nhf
→ Sn be the dimension-pair algorithm defined above.

Suppose the classes {pro``(w) | w ∈ SS
1

Nhf
} are linearly independent in H∗S1(SNhf ). Then the

set {pro``(w) | w ∈ SS
1

Nhf
} of Springer Schubert classes form a H∗S1(pt)-module basis for the

S1-equivariant cohomology ring H∗S1(SNhf ).

Proof. Since ro`` : SS
1

Nhf
→ Sn represents a possible outcome of a successful game of Betti

poset pinball by [2, Proposition 3.7] the assertion follows from [9, Proposition 4.13].

We now briefly recall two ideas used in our proof of the linear independence of
the classes {pro``(w)}w∈SS1Nhf

: injectivity in equivariant cohomology and poset-upper-

triangularity. First recall that the restriction homomorphism

H∗T(F`ags(Cn))→ H∗T(F`ags(Cn)T)

is injective, and F`ags(Cn)T ∼= Sn, so a Schubert class σu is uniquely determined by its
restrictions, denoted σu(w), to the fixed points w ∈ Sn. Some known facts about the
topology of Springer varieties [16] and a standard argument in equivariant cohomology
(see e.g. [9, Remark 4.11 and Proposition 6.2]) shows that a similar statement holds for
H∗S1(SNhf ).

Proposition 5.7. Let N : Cn → Cn be a nilpotent operator in Jordan canonical form
with weakly decreasing Jordan block sizes with corresponding Young diagram λ. Let SNhf
be the Springer variety corresponding to the highest form Nhf := σNσ−1 where σ is the
permutation corresponding to the rotated English filling of λ, equipped with the S1-action
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defined in (7). Then the inclusion ι : SS
1

Nhf
↪→ SNhf induces an injection in S1-equivariant

cohomology

ι∗ : H∗S1(SNhf ) ↪→ H∗S1(SS
1

Nhf
) ∼=

⊕
w∈SS1Nhf

H∗S1(pt) ∼=
⊕

w∈SS1Nhf

C[t].

The next result, which we use later, is straightforward.

Proposition 5.8. Let N, λ, SNhf be as above. If the columns of the matrix

(pro``(w)(u))
w,u∈SS1Nhf

(where the variable w is the index of the columns and u the index of the rows) are linearly
independent over H∗S1(pt) ∼= C[t], then the set of Springer Schubert classes {pro``(w)}w∈SS1Nhf
is linearly independent.

Next recall that equivariant Schubert classes satisfy a poset-upper-triangularity
condition, by which we mean

σv(w) = 0 if w 6≥ v (19)

for all w, v ∈ Sn. It follows that if the rolldowns ro``(w) of the Hessenberg fixed points
satisfy the poset-upper-triangularity condition

ro``(w) ≤ u⇔ w ≤ u (20)

for all w, u ∈ SS
1

Nhf
, then the corresponding Springer Schubert classes are linearly inde-

pendent [9, Section 2]. Unfortunately, in the (n − 2, 2) Springer case studied below, the
condition (20) is not satisfied, so we cannot immediately conclude linear independence.
Instead it requires further analysis to determine that the classes {pro``(w)}w∈SS1Nhf

are lin-

early independent; this is the content of Section 7 below, where (following Proposition 5.8)
we check explicitly that the matrix (pro``(w)(u))

w,u∈SS1Nhf
has linearly independent columns

over H∗S1(pt) ∼= C[t]. The poset-upper-triangularity notion is still useful, however, since
in our case the failure of (20) is still rather mild, and we see (cf. Question 8.1) that a
simple change of coordinates does produce a poset-upper-triangular basis.

Remark 5.9. The (n− 2, 2) Springer variety example studied here is the first example in
the poset pinball literature of an instance of successful Betti pinball which does not yield
a poset-upper-triangular basis.

6 The cases n = 4 and n = 5

In this section and Section 7 we restrict attention to the nilpotent Springer varieties cor-
responding to Young diagrams of the form (n− 2, 2) for n ≥ 4. In this setting we denote
by S(n−2,2) the Springer variety SNhf corresponding to the nilpotent matrix Nhf := σNσ−1
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with associated Young diagram (n− 2, 2) in the highest form where σ is the permutation
corresponding to the rotated English filling of (n − 2, 2). The goal, as explained in Sec-
tion 5, is to prove that the dimension pair algorithm produces in this case a module basis
for H∗S1(S(n−2,2)). To this end we concretely compute the Springer fixed points, associated
permissible fillings, dimension pairs, and rolldowns for the cases n = 4 and n = 5, i.e. for
the Springer varieties corresponding to the Young diagrams

and .

We also explicitly check in these cases that the corresponding Springer Schubert classes
are poset-upper-triangular and hence linearly independent. The inductive argument we
give in the next section requires the n = 4 case as its base case. We choose to additionally
explicitly compute and record the n = 5 case because it suggests the outline of the general
inductive argument.

Below we present two tables of data. The columns correspond to the following:

• w: an S1-fixed point in the Springer variety S(n−2,2).

• w−1: the inverse of w.

• perm filling: the permissible filling φ−1λ,σ(w−1).

• dim pair: the dimension pairs of the permissible filling.

• deg: the number of dimension pairs of the permissible filling (equivalently, the
cohomology degree of the associated Springer Schubert class).

• ω(x): the permutation associated to the list x of top parts of the dimension pairs.

• ro``(w): inverse of ω(x), and by definition of the dimension pair algorithm, the
rolldown of w.

Example 6.1. Let n = 4 and λN = (2, 2). The following table records the data outlined
above. Part of these computations are also contained in [13].

From this table it can be seen explicitly that the only Springer fixed point w in S(2,2)

with ro``(w) 6= w is w = 2413. Moreover it is straightforward to check that the rolldown
1423 of w = 2413 is not Bruhat-less than any of the other Springer fixed points. These
facts together imply that these Springer fixed points and associated rolldowns satisfy the
poset-upper-triangularity property

ro``(w) ≤ u⇔ w ≤ u (21)

for all fixed points w, u. By an argument identical to [2, Lemma 4.4] which uses the
poset-upper-triangularity property (19) of the equivariant Schubert classes {σw}w∈Sn , this
implies that the Springer Schubert classes {pro``(w)}w∈SS1

(2,2)
are poset-upper-triangular and

hence linearly independent and a H∗S1(pt)-module basis for H∗S1(S(2,2)).
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Table 1: Dimension pair data for the Springer variety S(2,2).

w w−1 perm filling dim pair deg ω(x) ro``(w)

1234 = e 1234
2 4
1 3 ∅ 0 1234 1234 = e

2134 = s1 2134
1 4
2 3 {(1, 2)} 1 2134 2134 = s1

1324 = s2 1324
3 4
1 2 {(2, 3)} 1 1324 1324 = s2

1243 = s3 1243
2 3
1 4 {(3, 4)} 1 1243 1243 = s3

2143 = s1s3 2143
1 3
2 4 {(1, 2), (3, 4)} 2 2143 2143 = s1s3

2413 = s1s3s2 3142
1 2
3 4 {(2, 4), (2, 3)} 2 1342 1423 = s3s2

We have just explicitly checked that in the case n = 4, the dimension pair algorithm
interpreted in terms of Betti pinball produces a module basis of H∗S1(S(2,2)). We now
compute the n = 5 case and relate it to the n = 4 case, thereby illustrating the outline of
the general inductive argument.

Example 6.2. Let n = 5 and λ = (3, 2). Suppose T is a permissible filling of (3, 2) where
the entry 5 is in the top row. Since the rows in a permissible filling are increasing this
means that the 5 occurs in the rightmost box of the top row of T . Deleting this box yields
a valid permissible filling of (2, 2) which therefore occurs in the previous n = 4 example.
For permissible fillings T of this form the corresponding fixed point w and its rolldown are
easily seen to be identical to those obtained in the previous example (viewed as elements
of S5 instead of S4 via the usual embedding S4 ↪→ S5). Hence the permissible fillings in
the n = 5 case which do not occur in the n = 4 case are precisely those for which the
entry 5 is in the bottom row. There are four such permissible fillings as may be seen in
the table below.

We claim that, as in the n = 4 case, the rolldowns satisfy the condition (21), which
then implies by the same argument that the corresponding Springer Schubert classes are
poset-upper-triangular and hence linearly independent and a module basis. To prove this
claim it suffices to check (21) for those w for which ro``(w) 6= w. We check each case by
hand.

For w = s1s3s2 with ro``(w) = s3s2, we see that ro``(w) < s3s4s1s2 and also that
ro``(w) < s3s4s1s2s3. Since also w < s3s4s1s2 and w < s3s4s1s2s3, the claim holds in this
case. Next observe that the last four fixed points in the above table are linearly ordered
with respect to the Bruhat order, i.e.

s3s4 < s3s4s1 < s3s4s1s2 < s3s4s1s2s3.

In the case of w = s3s4 we have ro``(w) = s4. Moreover s4 is not Bruhat-less than any
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Table 2: Dimension pair data for the Springer variety S(3,2).

w w−1 perm filling dim pair deg ω(x) ro``(w)

12345 = e 12345
2 4 5
1 3 ∅ 0 12345 12345 = e

21345 = s1 21345
1 4 5
2 3 {(1, 2)} 1 21345 21345 = s1

13245 = s2 13245
3 4 5
1 2 {(2, 3)} 1 13245 13245 = s2

12435 = s3 12435
2 3 5
1 4 {(3, 4)} 1 12435 12435 = s3

21435 = s1s3 21435
1 3 5
2 4 {(1, 2), (3, 4)} 2 21435 21435 = s1s3

24135 = s1s3s2 31425
1 2 5
3 4 {(2, 3), (2, 4)} 2 13425 14235 = s3s2

12453 = s3s4 12534
2 3 4
1 5 {(4, 5)} 1 12354 12354 = s4

21453 = s3s4s1 21534
1 3 4
2 5 {(1, 2), (4, 5)} 2 21354 21354 = s4s1

24153 = s3s4s1s2 31524
1 2 4
3 5 {(2, 3), (4, 5)} 2 13254 13254 = s4s2

24513 = s3s4s1s2s3 41523
1 2 3
4 5 {(3, 4), (3, 5)} 2 12453 12534 = s4s3

of the fixed points occurring in the n = 4 case and is Bruhat-less than all of the last four
fixed points, so the claim holds in this case. Similarly, the rolldowns for the last three
fixed points satisfy

ro``(s3s4s1) = s4s1 6< s3s4,

ro``(s3s4s1s2) = s4s2 6< s3s4s1,

ro``(s3s4s1s2s3) = s4s3 6< s3s4s1s2,

so the claim holds in all cases. This proves the claim and hence that the Springer Schubert
classes are poset-upper-triangular in the n = 5 case and hence a module basis, as desired.

7 A poset pinball module basis for (n− 2, 2) Springer

varieties

The main result of this section is that the dimension pair algorithm produces a set of
Springer Schubert classes {pro``(w)}w∈SS1

(n−2,2)
which are a module basis, in the case of

(n− 2, 2) Springer varieties for any n ≥ 4. We have the following.
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Theorem 7.1. Let n ≥ 4. Let N : Cn → Cn be a nilpotent operator in Jordan canonical
form with weakly decreasing Jordan block sizes n − 2 and 2. Let Nhf := σNσ−1 be the
choice of the highest form of N where σ is the permutation corresponding to the rotated
English filling of (n − 2, 2). Let S(n−2,2) be the Springer variety corresponding to Nhf

equipped with the S1-action defined in (7). Let ro`` : SS
1

(n−2,2) → Sn be the function defined
by the dimension-pair algorithm. Then the columns of the matrix

(pro``(w)(u))
w,u∈SS1

(n−2,2)

with entries in H∗S1(pt) ∼= C[t] are linearly independent over H∗S1(pt). (Here w is the
variable indexing the columns and u the index of the rows.) In particular, the Springer
Schubert classes {pro``(w)}w∈SS1

(n−2,2)
form a H∗S1(pt)-module basis for the equivariant coho-

mology ring H∗S1(S(n−2,2)) of the Springer variety.

Remark 7.2. The above theorem extends the subregular Springer case (which corresponds
to Young diagrams of shape (n−1, 1)), for which it was shown in [9] that the set of Springer
Schubert classes obtained by the dimension pair algorithm is poset-upper-triangular, so
in particular linearly independent. (Although the results in [9] are not phrased using the
terminology of this paper it is straightforward to see that the classes used in [9] agree
with those arising from the dimension pair algorithm.)

Since the rows are increasing in a Springer permissible filling, we can naturally de-
compose the set of (n− 2, 2) permissible fillings into two subsets: namely, those for which
the largest entry n occupies the top row, and those for which n occupies the bottom
row. As observed in Example 6.2 above, when n is in the top row, the permissible filling
obtained by removing the rightmost box in the top row is a permissible filling for the
Young diagram (n − 3, 2), corresponding to the smaller Springer variety S(n−3,2). This
sets us up for an inductive argument. Since we have already seen in Section 6 the linear
independence for the cases n = 4 and n = 5, we start the induction at n = 6. We begin
with a preliminary lemma generalizing the observations made in Example 6.2, for which
we refer to the table given below.

Lemma 7.3. Let n ≥ 6. Let N,Nhf , S(n−2,2) and ro`` be as in Theorem 7.1. Then

• there are precisely n− 1 permissible fillings of (n− 2, 2) with n in the bottom row,

• the n− 1 such permissible fillings, their corresponding Springer fixed points w, and
their rolldowns ro``(w) are precisely those listed in the table,

• these n − 1 Springer fixed points are linearly ordered with respect to Bruhat order,
i.e.

s3s4 · · · sn−2sn−1 < s3s4 · · · sn−2sn−1s1 < · · · < s3s4 · · · sn−2sn−1s1s2 · · · sn−3sn−2. (22)

Proof of Lemma 7.3. Since the Springer permissible fillings are precisely those which are
row-strict, it is immediate that the permissible fillings listed in the table are precisely
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Table 3: Dimension pair algorithm data for the Springer fixed points in SS
1

(n−2,2) corre-
sponding to permissible fillings with n in the bottom row.

pf w−1 w vhf

2 3 4 · · · n− 1
1 n 1 2 n 3 4 · · · s3s4 · · · sn−2sn−1 sn−1
1 3 4 · · · n− 1
2 n 2 1 n 3 4 · · · s3s4 · · · sn−2sn−1s1 sn−1s1
1 2 4 · · · n− 1
3 n 3 1 n 2 4 · · · s3s4 · · · sn−2sn−1s1s2 sn−1s2
1 2 3 · · · n− 1
4 n 4 1 n 2 3 · · · s3s4 · · · sn−2sn−1s1s2s3 sn−1s3

...
...

...
...

1 2 · · · n− 3 n− 2
n− 1 n n− 1 1 n 2 3 · · · s3s4 · · · sn−2sn−1·

s1s2 · · · sn−3sn−2
sn−1sn−2

those with n in the bottom row. In particular there are exactly n − 1 such permissible
fillings as claimed. Moreover, it follows from the definition of φλ,σ (which corresponds
to the rotated English reading) that the one-line notation of the w−1 are those given in
the table. Explicit computation also verifies that the following expressions in the simple
transpositions are indeed reduced word decompositions of the w−1:

• 1 2 n 3 4 · · · = sn−1sn−2 · · · s4s3

• 2 1 n 3 4 · · · = s1sn−1sn−2 · · · s4s3

• 3 1 n 2 4 · · · = s2s1sn−1sn−2 · · · s4s3

• 4 1 n 2 3 · · · = s3s2s1sn−1sn−2 · · · s4s3
and so on, up to

• n− 1 1 n 2 3 · · · = sn−2sn−1 · · · s2s1sn−1sn−2 · · · s4s3,

from which it follows that the w are those given in the list. For k with 1 ≤ k ≤ n − 1,
the definition of dimension pairs implies that the permissible filling with k and n in the
bottom row contains as dimension pairs {(k − 1, k), (n − 1, n)} for 2 ≤ k ≤ n − 1 and
{(n− 1, n)} for k = 1. From this it follows from the definition of ω(x) that ro``(w) is as
given in the table. Finally, from the given reduced word decompositions and the definition
of Bruhat order we obtain (22) as desired.

Before proceeding with the proof of Theorem 7.1 we briefly recall the Billey formula
for computing restrictions of Schubert classes. For the purposes of this discussion only,
let w, u denote arbitrary elements in Sn. Billey’s formula gives a computation of the
restriction σw(u) of the class σw at u. We use the formulation given in [11]. Let αi denote
the simple root ti − ti+1 and α̂i the operator on H∗T(pt) which multiplies by αi.
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Theorem 7.4. ( [3, Theorem 4], also cf. [11]) Suppose I is a reduced word expression
for u ∈ Sn. For each w ∈ Sn we have

σw(u) =
∑
J⊆I

∏
i∈I

(
α̂i

[i∈J ]ri

)
· 1 (23)

where the sum is over reduced subwords J of I with product w, the notation α̂
[i∈J ]
i means

that α̂i is included only if i ∈ J , and ri is the reflection corresponding to si.

We record the following fact, used in the proof below, which follows straightforwardly
from the Billey formula.

Fact 7.5. Suppose w, u ∈ Sn with w ≤ u in Bruhat order. Suppose there exists a decom-
position u = u′ · u′′ for u′, u′′ ∈ Sn where w ≤ u′ and, for all simple transpositions si such
that si < w, we have si 6≤ u′′. Then σw(u) = σw(u′).

Having recalled the Billey formula, for the remainder of this discussion we will use
the letters w, u to denote Springer fixed points. Recall (cf. Section 5) that we wish to
compute the restrictions pro``(w)(u) for w, u ∈ SS

1

Nhf
. Since pro``(w) is by definition the

image of the equivariant Schubert class σro``(w) under the ring map (18) and because the
diagram

H∗T(F`ags(Cn)) � � //

��

H∗T((F`ags(Cn))T) ∼=
⊕

w∈W H∗T(pt)

��

H∗S1(S(n−2,2))
� � // H∗S1(S(n−2,2))

S1
) ∼=

⊕
w∈Hess(h)S1 H

∗
S1(pt)

commutes, the polynomial pro``(w)(u) ∈ H∗S1(pt) ∼= C[t] can be computed by first evaluat-
ing σro``(w)(u) by the Billey formula (23) and then using the linear projection t∗ → Lie(S1)∗

for our choice of S1 in (7) given in Lemma 3.29. We use this technique repeatedly in the
proof below.

Proof of Theorem 7.1 . By Propositions 5.7 and 5.8, it suffices to prove that the matrix
obtained from the restrictions to fixed points

(pro``(w)(u))
w,u∈SS1

(n−2,2)

has H∗S1(pt)-linearly independent columns.
Let n ≥ 4. We have seen in Section 6 that the above assertion holds for the cases

n = 4 and n = 5. Hence assume now that n ≥ 6. We assume by induction that for
the n− 1 case, i.e. for the case of the partition (n− 3, 2), the above matrix has linearly
independent columns.

For concreteness and for the remainder of the argument, we assume that the fixed
points w ∈ SS

1

(n−2,2) have been linearly ordered so that the fixed points corresponding to
permissible fillings containing the n in the top row appear first, and that the fixed points
associated to fillings with n in the bottom row are given the ordering in the table in
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Lemma 7.3 (reading from top to bottom). Ordered in this manner, we may write the
above matrix in terms of submatrices as follows:

(pro``(w)(u))
w,u∈SS1

(n−2,2)
=

[
A B
C D

]
(24)

where the submatrix A has entries pro``(w)(u) where both w, u correspond to fillings with
n in the top row, D corresponds to those where both w, u have n in the bottom row, and
so on.

Consider the submatrix A. For an entry pro``(w)(u) in A, by assumption w is in the
subgroup Sn−1 ⊆ Sn and it is straightforward to see from the definition of the dimension
pair algorithm that ro``(w) is equal to the rolldown of w considered as an element of
SS

1

(n−3,2). Since u ∈ Sn−1 also this submatrix is equal to the matrix of restrictions to fixed

points obtained in the (n − 3, 2) case and so by induction A has linearly independent
columns.

Next consider the submatrix B corresponding to pro``(w)(u) where φ−1λ,σ(w−1) has n in

the bottom row and φ−1λ,σ(u−1) has n in the top row. From Lemma 7.3 and the table given
there, we know that the rolldown ro``(w) of any such w contains the simple transposition
sn−1 in its reduced word decomposition. On the other hand, for u with n in the top
row, u is an element in the subgroup Sn−1 which fixes the element n, and in particular a
reduced word decomposition for u may be written solely with the simple transpositions
s1, s2, . . . , sn−2. Hence ro``(w) 6≤ u in Bruhat order, and by the upper-triangularity
property (19) of equivariant Schubert classes this implies pro``(w)(u) = 0. We conclude
that the entire submatrix is 0 and the matrix (24) is in fact of the form[

A 0
C D

]
where A has linearly independent columns. In order to prove that the full matrix has
linearly independent columns, we wish to prove that the submatrix D has linearly inde-
pendent columns. The remainder of the proof is dedicated to the justification of this last
claim, for which we explicitly compute the appropriate entries pro``(w)(u) using the Billey
formula (23).

We compute each column of D in the linear order given by the enumeration in
Lemma 7.3 of those w with n in the bottom row. For the Billey computations below
we use the choices of reduced word decompositions for w and ro``(w) given in the same
lemma.

First consider the case w = s3s4 · · · sn−2sn−1. Then ro``(w) = sn−1. We claim σsn−1

evaluates to t3 − tn at all fixed points u. Indeed, recalling that the reflection ri acts on
the variables tj by ri(ti) = ti+1, ri(ti+1) = ti and ri(tj) = tj for all j 6= i, i+ 1, we have for
instance

σsn−1(s3s4 · · · sn−2sn−1) = r3r4 · · · rn−2(tn−1 − tn)

= r3r4 · · · rn−3(tn−2 − tn)

...

= t3 − tn,

(25)
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which proves the claim for u = w. For all other u with n in the bottom row, the
computation of the Billey formula differs from (25) only in that there are extra simple
transpositions occurring after the sn−1 in the reduced word decomposition of u. By
Fact 7.5 these extra transpositions make no difference in the evaluation of σsn−1(u) and
so σsn−1(u) = t3 − tn for all u. The restriction pro``(w)(u) = psn−1(u) is equal to the
image of σsn−1(u) ∈ H∗T(pt) under the projection map H∗T(pt) → H∗S1(pt) induced from
the inclusion S1 ↪→ T. By Lemma 3.29 we know t3 7→ t and tn 7→ (n+ 3− n)t = 3t under
this projection, from which we conclude that the first (leftmost) column of D is[

(t− 3t) = −2t −2t · · · −2t
]t

where we have written in transposed form for typographical convenience.
For the next several cases, the computations are similar to the example above, so we

keep explanation brief. Consider the case w = s3s4 · · · sn−2sn−1s1 and ro``(w) = sn−1s1.
In this case, σsn−1s1(s3s4 · · · sn−2sn−1) = 0 since sn−1s1 does not occur as a subword of
s3s4 · · · sn−2sn−1. Also, σsn−1s1 evaluates to (t3 − tn)(t1 − t2) at all other u. Thus the
column corresponding to this w is[

0 2(n− 2)t2 2(n− 2)t2 · · · 2(n− 2)t2
]t
.

Next consider the case w = s3s4 · · · sn−2sn−1s1s2 and ro``(w) = sn−1s2. In this case

σsn−1s2(s3s4 · · · sn−2sn−1) = σsn−1s2(s3s4 · · · sn−2sn−1s1) = 0

since there are no reduced subwords in s3s4 · · · sn−2sn−1 equal to ro``(w) = sn−1s2. Fur-
thermore, σsn−1s2 evaluates to (t1 − t4)(t3 − tn) on all other u. Hence the column corre-
sponding to this w is [

0 0 2(n− 3)t2 · · · 2(n− 3)t2
]t
.

Next consider the case w = s3s4 · · · sn−2sn−1s1s2s3 where ro``(w) is sn−1s3. In this case,
σsn−1s3 evaluates to (t3 − t4)(t3 − tn) on the first 3 fixed points listed in the table in
Lemma 7.3. Moreover σsn−1s3 evaluates to (t3− t4)(t3− tn) + (t1− t5)(t3− tn) at all other
u. Thus the column corresponding to this w is[

2nt2 2nt2 2nt2 4(n− 1)t2 · · · 4(n− 1)t2
]t
,

where there are (n− 1)− 3 = n− 4 entries of the form 4(n− 1)t2.
For the next case, suppose n ≥ 7. (In the special case n = 6, this case is vacu-

ous.) Suppose k ∈ Z with 4 ≤ k ≤ n − 3. Let w = s3s4 · · · sn−2sn−1s1s2 · · · sk−1sk and
ro``(w) = sn+1sk. By assumption on k, the simple transposition sk commutes with sn−1.
In this case σsn−1sk evaluates to (t3− tk+1)(t3− tn) on all fixed points listed in Lemma 7.3
up to s3s4 · · · sn−2sn−1s1s2 · · · sk−1. There are k fixed points in all of this form. Moreover,
σsn−1sk evaluates to (t3− tk+1)(t3− tn) + (t1− tk+2)(t3− tn) on the remaining fixed points
u which contain s3s4 · · · sn−2sn−1s1s2 · · · sk−1sk. Hence when projected to H∗S1(pt), the
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column corresponding to such a w is

2(n− k + 3)t2

...
2(n− k + 3)t2

(2(n− k + 3) + 2(n− k + 1))t2

...
(2(n− k + 3) + 2(n− k + 1))t2


where there are k entries of the form 2(n − k + 3)t2 and n − 1 − k entries of the form
(2(n− k + 3) + 2(n− k + 1))t2.

Finally, consider the case w = s3s4 · · · sn−2sn−1s1s2 . . . sn−3sn−2 and
ro``(w) = sn−1sn−2. Since sn−1 and sn−2 do not commute, this computation is
somewhat different from the ones given above; in particular ro``(w) is not Bruhat-less
than any of the fixed points u except for the last one listed in Lemma 7.3. Hence in this
case σsn−1sn−2(u) = 0 at all u except for u = s3s4 · · · sn−2sn−1s1s2 · · · sn−3sn−2, and at this
last u, we can compute

σsn−1sn(s3s4 · · · sn−2sn−1s1s2 · · · sn−3sn−2) = (t3 − tn)(t1 − tn).

Hence the column corresponding to this last w is[
0 0 · · · 0 2t2

]t
.

We now prove that the columns pw for w as above are linearly independent over the
ring H∗S1(pt) ∼= C[t]. The first column pw with w = s3s4 · · · sn−2sn−1 has a −2t in each
entry. We may add or subtract any multiple of this column to or from any other column,
and if the resulting set of columns is linearly independent, then so is the original set of
columns. It is straightforward to check that for all k with 3 ≤ k ≤ n − 1, subtracting
2(n − k + 3) times the first column from the column corresponding to w with rolldown
ro``(w) = sn−1sk yields[

0 · · · 0 2(n− k + 1)t2 · · · 2(n− k + 1)t2
]t

where there are k zeroes at the top of the column and (n− 1)− k entries at the bottom
of the form 2(n − k + 1)t2. In particular, adjusted in this manner, the resulting matrix
is lower-triangular with non-zero entries along the diagonal, so its columns are linearly
independent. As argued above, this implies that the matrix D has linearly independent
columns, as was desired. This completes the proof.

8 Open questions

We close with some open questions for future work.
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Question 8.1. The computations in the proof of Theorem 7.1 explicitly show that the
set of classes {pro``(w)}w∈SS1

(n−2,2)
are not poset-upper-triangular for n ≥ 6 since the sub-

matrix D discussed in the proof has non-zero entries both above and below its main
diagonal. However the proof also shows that a simple change of basis does yield a poset-
upper-triangular basis, the elements of which are linear combinations of Springer Schubert
classes. We do not know whether this is an instance of a more general phenomenon. It
would be of interest to clarify the situation for other cases of Springer varieties.

Question 8.2. Both Tymoczko’s paving by affines of Hessenberg varieties and the inter-
pretation of our dimension pair algorithm via poset pinball depend on using a Hessenberg
variety Hess(N, h) for which the nilpotent operator N is in a highest form. In the case
of Tymoczko’s paving, this choice can be viewed as a matter only of convenience in the
sense that any other translated Hessenberg variety Hess(σNσ−1, h) can be given a paving
simply by using translated Schubert cells σ · BwB instead of the usual Schubert cells
BwB. On the other hand, the poset pinball game delicately depends on the choice of
initial subset

Hess(N, h)S
1 ⊆ Sn.

Although the sets Hess(N, h)S
1

and Hess(σNσ−1, h)S
1

are also related by a simple trans-
lation by σ, multiplication by a permutation does not preserve Bruhat order, so pinball
results do not immediately translate from Hess(N, h) to Hess(σNσ−1, h). One of the
main results of this manuscript is that, for a certain special family of Hessenberg varieties
Hess(N, h) = SNhf (where Nhf is a particular choice of a highest form) we can use the
poset pinball and the dimension pair algorithm to obtain a module basis for H∗S1(SNhf ).

1. It seems plausible that there may be other choices of highest forms (cf. Theo-
rem 3.21), different from that used in this manuscript, which are particularly well-
suited for poset pinball.

2. Furthermore, among the choices of highest forms which behave well for poset pin-
ball, there may also be choices best suited for further applications of pinball bases.
More specifically, there may be choices of highest forms NT such that a pinball basis
for H∗S1(SNT ) has good properties when mapped to H∗S1(SS

1

NT
). Such choices could

then prove useful for e.g. constructions of representations on equivariant cohomol-
ogy (analogous to the lifts of the classical Springer representations constructed via
pinball in [9]).
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