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Abstract

We prove that if a subset of the d-dimensional vector space over the ring of inte-
gers modulo pr is large enough, then the number of k-tuples of mutually orthogonal
vectors in this set is close to its expected value.

1 Introduction

The classical Erdős distance problem asks for the minimal number of distinct distances
determined by a finite point set in Rl, l > 2. This problem in the Euclidean plane has
recently been solved by Guth and Katz ([8]). They showed that a set of N points in
R2 has at least cN/ logN distinct distances. For the latest developments on the Erdős
distance problem in higher dimensions, see [11, 15], and the references contained therein.
Let Fq denote a finite field with q elements, where q, a power of an odd prime, is viewed
as an asymptotic parameter. For E ⊂ Flq (l > 2), the finite analogue of the classical Erdős
distance problem is to determine the smallest possible cardinality of the set

∆(E) = {‖x− y‖ = (x1 − y1)2 + . . .+ (xl − yl)2 : x,y ∈ E} ⊂ Fq.

The first non-trivial result on the Erdős distance problem in vector spaces over finite fields
is due to Bourgain, Katz, and Tao ([2]), who showed that if q is a prime, q ≡ 3 (mod
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4), then for every ε > 0 and E ⊂ F2
q with |E| 6 Cεq

2−ε, there exists δ > 0 such that

|∆(E)| > Cδ|E|
1
2

+δ for some constants Cε, Cδ. The relationship between ε and δ in their
arguments, however, is difficult to determine. In addition, it is quite subtle to go up to
higher dimensional cases with these arguments. Iosevich and Rudnev ([10]) used Fourier
analytic methods to show that there are absolute constants c1, c2 > 0 such that for any
odd prime power q and any set E ⊂ Fdl of cardinality |E| > c1q

l/2, we have

|∆(E)| > c2 min
{
q, q

l−1
2 |E|

}
. (1)

In [22], Van Vu gave another proof of (1) using the graph theoretic method (see also
[16] for a similar proof). Iosevich and Rudnev reformulated the question in analogy with
the Falconer distance problem: how large does E ⊂ Flq, l > 2, needed to be ensure that
∆(E) contains a positive proportion of the elements of Fq. The above result implies that if

|E| > 2q
l+1
2 then ∆(E) = Fq directly in line with Falconer’s result in Euclidean setting that

for a set E with Hausdorff dimension greater than (l+ 1)/2, the distance set is of positive
measure. At first, it seems reasonable that the exponent (l + 1)/2 may be improvable,
in line with the Falconer distance conjecture described above. However, Hart, Iosevich,
Koh and Rudnev discovered in [6] that the arithmetic of the problem makes the exponent
(l + 1)/2 best possible in odd dimensions, at least in general fields. In even dimensions,
it is still possible that the correct exponent is l/2, in analogy with the Euclidean case. In
[3], Chapman et al. took a first step in this direction by showing that if E ⊂ F2

q satisfies

|E| > q4/3 then |∆(E)| > cq. This is in line with Wolff’s result for the Falconer conjecture
in the plane which says that the Lebesgue measure of the set of distances determined by
a subset of the plane of Hausdorff dimension greater than 4/3 is positive.

A classical result due to Furstenberg, Katznelson and Weiss ([7]) states that if E ⊂ R2

of positive upper Lebesgue density, then for any δ > 0, the δ-neighborhood of E contains
a congruent copy of a sufficiently large dilate of every three-point configuration. An
example of Bourgain ([1]) showed that it is not possible to replace the thickened set
Eδ by E for arbitrary three-point configurations. In the case of k-simplex, that is the
k + 1 points spanning a k-dimensional subspace, Bourgain ([1]), using Fourier analytic
techniques, showed that a set E of positive upper Lebesgue density always contains a
sufficiently large dilate of every non-degenerate k-point configuration where k < l. In the
case k = l, the problem still remains open. Using Fourier analytic methods, Akos Magyar
([13, 14]) considered this problem over the integer lattice Zl. He showed that a set of
positive density will contain a congruent copy of every large dilate of a non-degenerate
k-simplex where l > 2k + 4.

Hart and Iosevich ([9]) made the first investigation in an analog of this question in
finite field geometries. Let Pk denote a k-simplex. Given another k-simplex P

′

k, we say
Pk ∼ P

′

k if there exist τ ∈ Flq, and O ∈ SOl(Fq), the set of l-by-l orthogonal matrices

over Fq, such that P
′

k = O(Pk) + τ . Under this equivalent relation, Hart and Iosevich
([9]) observed that one may specify a simplex by the distances determined by its vertices.

They showed that if E ⊂ Flq (l >
(
k+1

2

)
) of cardinality |E| & q

kl
k+1

+ k
2 then E contains a

congruent copy of every k-simplex (with the exception of simplices with zero distances).
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Using graph theoretic methods, the second listed author ([19]) showed that the same

result holds for l > 2k and |E| � q
l−1
2

+k. Here and throughout, X & Y means that
X > CY for some large constant C and X � Y means that Y = o(X), where X, Y are
viewed as functions of the parameter q. In [18], the author studied the triangles in three-
dimensional vector spaces over finite fields. Using a combination of graph theory methods
and Fourier analytic techniques, the second listed author showed that if E ⊂ Flq (l > 3)

of cardinality |E| & q
l+2
2 , the set of triangles, up to congruence, has density greater than

c. Using Fourier analytic techniques, Chapman et al ([3]) extended this result to higher

dimensional cases. More precisely, they showed that if |E| & q
l+k
2 (l > k) then the set of

k-simplices, up to congruence, has density greater than c. They also obtained a stronger
result when E is a subset of the l-dimensional unit sphere Sl = {x ∈ Flq : ‖x‖ = 1}. In

particular, it was proven ([3, Theorem 2.15]) that if E ⊂ Sl of cardinality |E| & q
l+k−1

2

then E contains a congruent copy of a positive proportion of all k-simplices (see also [19]
for a different proof of these results using graph-theoretic methods).

In [4], Iosevich and Senger showed that a sufficiently large subset of Fdq , the d-
dimensional vector space over the finite field with q elements, contains many k-tuple of
mutually orthogonal vectors. Using geometric and character sum machinery, they proved
the following result.

Theorem 1 ([4, Theorem 1.1]) Let E ⊂ Fdq, such that

|E| & qd
k−1
k

+ k−1
2

+ 1
k , (2)

where 0 <
(
k
2

)
< d. Then the number of k-tuples of k mutually orthogonal vectors in E is

(1 + o(1))
|E|k

k!
q−(k2). (3)

In [17], the second listed author obtained a stronger result using graph theoretic meth-
ods.

Theorem 2 ([17, Theorem 1.2]) Let E ⊂ Fdq, such that

|E| � q
d
2

+k−1, (4)

where d > 2(k−1). Then the number of k-tuples of k mutually orthogonal vectors in E is

(1 + o(1))
|E|k

k!
q−(k2). (5)

Note that Theorem 1 only works in the range d >
(
k
2

)
(as larger tuples of mutually

orthogonal vectors are out of range of the methods used) while Theorem 2 works in a
wider range d > 2(k − 1). Moreover, Theorem 2 is stronger than Theorem 1 in the same
range. It is also interesting to note that the exponent d

2
+1 cannot be improved in the case
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k = 2. In [4], Iosevich and Senger constructed a set E ⊂ Fdq such that |E| > cq
d+1
2

+1, for
some c > 0, but no pair of its vectors are orthogonal (see Lemma 3.2 in [4]). Their basic
idea is to construct E = E1 ⊕ E2 where E1 ⊂ F2

q and E2 ⊂ Fd−2
q , such that |E1| ≈ q1/2,

|E2| ≈ q
d−1
2 and the sum set of their respective dot product sets does not contain 0.

Covert, Iosevich, and Pakianathan ([5]) extended (1) to the setting of finite cyclic rings
Zpl = Z/plZ, where p is a fixed odd prime and l > 2. One reason for considering this
situation is that if one is interested in answering questions about sets E ⊂ Qd of rational
points, one can ask questions about distance sets for such sets and how they compare to
the current results in Rd. By scale invariance of these questions, the problem of obtaining
sharp bounds for the relationship of |∆(E)| and |E| for a subset E of Qd would be the
same as for subsets of Zd. Covert, Iosevich, and Pakianathan ([5]) obtained a nearly sharp
bound for the distance problem in vector spaces over finite ring Zq. More precisely, they
proved that if E ⊂ Zdq of cardinality

|E| � r(r + 1)q
(2r−1)d

2r
+ 1

2r ,

then
Z×q ⊂ ∆(E),

where Z×q is the set of units of Zq. In [21], the second listed author reproved this result
using graph-theoretic methods. Furthermore, the author showed that if E is sufficiently
large then there exists a very large subset of E such that every point in this subset
determines almost all possible distances to the set E . The main purpose of this paper to
extend Theorem 1 and Theorem 2 in the setting of finite cyclic rings Zpl = Z/plZ. Note
that, the arithmetic of finite rings allows for a richer orthogonal structure. More precisely,
we have the following theorem.

Theorem 3 Let q = pr be an odd prime power and E ⊂ Zdq. Suppose that

|E| � pr(d+k−2)+(1− d
2),

where d > 2r − 2. Then the number of k-tuples of k mutually orthogonal vectors in E is

(1 + o(1))
|E|k

k!
q−(k2).

Note that Theorem 3 only works in the range d/2 > r(k − 2) + 1 (as larger tuples of
mutually orthogonal vectors are out of range of the methods used). Recall that Iosevich

and Senger ([4, Lemma 3.2]) constructed a subset E ⊂ Fdp such that |E| & p
d+1
2 but no

pair of its vectors are orthogonal. Under the projection homomorphism π : Zdq → Zdp, let
L = π−1(E). Then

|L| = p(r−1)d|E| & prd+ 1
2
− d

2

and u ·v 6= 0 for any u,v ∈ L. Hence, Theorem 3 is best possible up to a factor of p1/2 in
the case k = 2. The authors believe that the above example can be generalized to obtain
results about how large a set in Zdpr can be without containing orthogonal k-tuples for
k > 2.
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2 Zero-product graphs

We call a graph G = (V,E) (n, l, λ)-graph if G is a l-regular graph on n vertices with the
absolute values of each of its eigenvalues but the largest one is at most λ. It is well-known
that if λ � l then an (n, l, λ)-graph behaves similarly to a random graph G(n, l/n), in
which every possible edge occurs independently with probability l/n. Let H be a fixed
graph of order v with e edges and with automorphism group Aut(H). Using the second
moment method, it is not difficult to show that for every constant p, the random graph
G(n, p) contains

(1 + o(1))pe(1− p)(
v
2)−e nv

|Aut(H)|
(6)

induced copies of H. Alon extended this result to (n, l, λ)-graphs. He proved that every
large subset of the set of vertices of an (n, l, λ)-graph contains the “correct” number of
copies of any fixed small subgraph (Theorem 4.10 in [12]).

Theorem 4 ([12]) Let H be a fixed graph with e edges, v vertices and maximum degree
∆, and let G = (V,E) be an (n, l, λ)-graph, where, say, l 6 0.9n. Let m < n satisfy

m � λ
(
n
l

)∆
. Then, for every subset U ⊂ V of cardinality m, the number of (not

necessarily induced) copies of H in U is

(1 + o(1))
mv

|Aut(H)|

(
l

n

)e
. (7)

Note that the above theorem, proved for simple graphs in [12], remains true if we allow
loops (i.e. edges that connects a vertex to itself) in the graph G. There is no different
between the proof in [12] for simple graphs and the proof for graphs with loops.

Suppose that q = pr for some odd prime p and r > 2. We identify Zq with {0, 1, ..., q−
1}, then pZpr−1 is the set of nonunits in Zq. For any d > 2, the zero-product graph
ZPq,d is defined as follows. The vertex set of the zero-product graph ZPq,d is the set
V (ZPq,d) = Zdpr\(pZpr−1)d. Two vertices a and b ∈ V (ZPq,d) are connected by an edge,
(a, b) ∈ E(ZPq,d), if and only if a ·b = 0 ∈ Zq. We have the following pseudo-randomness
of the zero-product graph ZPq,d.

Theorem 5 For any d > 2, the zero-product graph ZPq,d is an(
prd − p(r−1)d, pr(d−1) − p(r−1)(d−1), r

√
p(2r−1)d−2r+2

)
− graph.

Proof
It follows from the definition of the zero-product graph ZPq,d that V (ZPq,d) is a graph

of order prd − p(r−1)d. The valency of the graph is also easy to compute. Given a vertex
x ∈ V (ZPq,d), there exists an index i such that xi ∈ Z×q . We can assume that x1 ∈ Z×q .If
we choose y2, . . . , yd ∈ Zq not simultaneously nonunits arbitrarily, then y1 is determined
uniquely such that x ·y = 0 (note that, if y2, . . . , yd ∈ pZpr−1 then so is y1.) Hence, ZPq,d
is a regular graph of valency pr(d−1) − p(r−1)(d−1).
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It remains to estimate the eigenvalues of this multigraph (i.e. graph with loops). Note
that, in order to bound the second largest eigenvalue of a matrix A, it is sometimes easier
to work with A2. For any a 6= b ∈ Zdpr\(pZpr−1)d, we count the number of solutions of the
following system

a · x ≡ b · x ≡ 0 mod pr, x ∈ Zdpr\(pZpr−1)d. (8)

There exist uniquely 0 6 α 6 r − 1 and b1 ∈ (Zpr−α)d\(pZpr−1−α)d such that b =
a + pαb1. The system (8) above becomes

a · x ≡ pαb1 · x ≡ 0 mod pr, x ∈ (Zpr)d\(pZpr−1)d. (9)

Let aα ∈ (Zpr−α)d\(pZpr−1−α)d ≡ a mod pr−α and xα ∈ (Zpr−α)d\(pZpr−1−α)d,
xα ≡ x mod pr−α. To solve (9), we first solve the following system

aα · xα ≡ b1 · xα ≡ 0 mod pr−α, xα ∈ (Zpr−α)d\(pZpr−1−α)d. (10)

Let aα = (a1, . . . , ad), xα = (x1, . . . , xd) and b1 = (b1, . . . , bd). Since aα ∈ (Zpr−α)d \
(pZpr−1−α)d, there exists ai ∈ Z×q . W.l.o.g., we can assume that a1 ∈ Z×q . Let k1 =
a2x2 + . . . + adxd and k2 = b2x2 + . . . + bdxd. System (10) is equivalent to the following
system.

a1x1 + k1 ≡ 0 mod pr−α, b1x1 + k2 ≡ 0 mod pr−α, (11)

which implies that
a1k2 − b1k1 ≡ 0 mod pr−α. (12)

Therefore, if xα is a solution of (10) then (x2, . . . , xd) satisfies Eq. (12). We now count
the number of solutions of this equation. Note that Eq. (12) can be written as

(a1b2 − a2b1)x2 + . . .+ (a1bd − adb1)xd ≡ 0 mod pr−α. (13)

Let pβ be the greatest common divisor of a1b2 − a2b1, . . . , a1bd − adb1. Note that, Eq.
(13) equivalent to aα ≡ tb1 mod pβ for some t ∈ Z×

pβ
. Set ti = (a1bi − aib1)/pβ, then Eq.

(13) becomes
pβ(t2x2 + . . . tdxd) ≡ 0 mod pr−α. (14)

By the way of choosing β, there exists an index ti /∈ pZpr−1−α . We can assume that
t2 /∈ pZpr−1−α . If we choose x3, . . . , xd ∈ Zpr−α not simultaneously nonunits arbitrarily,
then x2 is determined uniquely. (Note that, if x3, . . . , xd ∈ pZpr−1−α then x2 ∈ pZpr−1−α .
This also implies that x1 ∈ pZr−1−α, which contradicts the definition of x in Eq. (10).)
Hence, Eq. (14) has p(r−α)(d−1)−p(r−α−1)(d−1) solutions if β = r−α and has (p(r−α)(d−2)−
p(r−α−1)(d−2))pβ solutions otherwise.

Since a1 ∈ Z×q , we have a unique choice of x1 for each solution (x2, .., xd). Given a
solution, xα, of (10), upon putting everything back into the system

a · x ≡ 0 mod pr, x ≡ xα mod pr−α, (15)

we get pα(d−1) solutions of the system (9). Therefore, set

vα,β = (p(r−α)(d−1) − p(r−α−1)(d−1))pα(d−1) if β = r − α
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and
vα,β = (p(r−α)(d−2) − p(r−α−1)(d−2))pβpα(d−1) if β < r − α,

then the system (8) has vα,β solutions.
For any 0 6 α 6 r − 1, 0 6 β 6 r − α, let BEα,β be a graph with the vertex set

V (BEα,β) = V (ZPq,d). For any two vertices a, b ∈ (Zq)d\(pZpr−1)d, (a, b) is an edge
of BEα,β if and only if b = a + pαb1 for some b1 ∈ (Zpr−α)d\(Zpr−1−α)d. Let aα ∈
(Zpr−α)d\(pZpr−α−1)d ≡ a mod pr−α then aα ≡ tb1 mod pβ for some t ∈ Z×

pβ
. It is easy

to see that BEα,β is a regular graph of valency

φ(pβ)((pr−α−β)d − (pr − φ(pr−α−β))d) < φ(pβ)
(
pr−α−β

)d
,

where φ is the Euler function. Let Eα,β be the adjacency matrix of BEα,β then absolute

values of eigenvalues of Eα,β are bounded by φ(pβ)
(
pr−α−β

)d
.

Let A be the adjacency matrix of ZPq,d. It follows that

A2 = (pr(d−1) − p(r−1)(d−1))I +
∑

06α6r−1
06β6r−α

vα,βEα,β

= (pr(d−1) − p(r−1)(d−1) − v0,0)I + v0,0J +
∑

06α6r−1
06β6r−α

(vα,β − v0,0)Eα,β, (16)

where I is the identity matrix and J is the all-one matrix. Note that, the assumption
a 6= b means that we are substracting the off-diagonal from the sum with Eα,β in the last
part of Eq. (16).

Since ZPq,d is a pr(d−1)−p(r−1)(d−1)-regular graph, pr(d−1)−p(r−1)(d−1) is an eigenvalue of
A with the all-one eigenvector 1. The graph ZPq,d is connected, therefore the eigenvalue
pr(d−1)−p(r−1)(d−1) has multiplicity one. Since the graph ZPq,d contains (many) triangles,
it is not bipartite. Hence, for any other eigenvalue θ then |θ| < pr(d−1) − p(r−1)(d−1). Let
vθ denote the corresponding eigenvector of θ. Note that vθ ∈ 1⊥, so Jvθ = 0. It follows
from (16) that

(θ2 − p(d−1)r + p(r−1)(d−1) + v0,0)vθ =

 ∑
06α6r−1
06β6r−α

(vα,β − v0,0)Eα,β

vθ.

Hence, vθ is also an eigenvector of∑
06α6r−1
06β6r−α

(vα,β − v0,0)Eα,β.
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Since eigenvalues of the sum of the matrices are bounded by the sum of the largest
eigenvalues of summands. We have

θ2 6 pr(d−1) − p(r−1)(d−1) − v0,0 +
∑

16α6r−1
β=0

(vα,0 − v0,0)φ(1)p(r−α)d

+
∑

06α6r−1
β=r−α

(vα,r−α − v0,0)φ(pr−α)

+
∑

06α6r−1
16β6r−α−1

(vα,β − v0,0)φ(pβ)p(r−α−β)d. (17)

Next, we estimate each term of (17). We have∑
16α6r−1
β=0

(vα,0 − v0,0)φ(1)p(r−α)d 6
∑

16α6r−1
β=0

p(r−α)dp(r−α)(d−2)pα(d−1)

< rp(2r−1)d−2r+1. (18)∑
06α6r−1
β=r−α

(vα,r−α − v0,0)φ(pr−α) 6
∑

06α6r−1
β=r−α

prd−α < rprd. (19)

∑
06α6r−1

16β6r−α−1

(vα,β − v0,0)φ(pβ)p(r−α−β)d 6
∑

06α6r−1
16β6r−α−1

p(r−α)(d−2)p2βpα(d−1)p(r−α−β)d

<
∑

06α6r−1
16β6r−α−1

p2rd−2r−α(d−1)−β(d−2)

< r2p(2r−1)d−2r+2. (20)

Putting (17), (18), (19), and (20) together, the theorem follows. �

3 Orthogonal systems

We are now ready to give a proof of Theorem 3. Let Kk be a complete graph with k
vertices. Then Kk has

(
k
2

)
edges and the degree of each vertex is k − 1. Let E ⊂ Zdq such

that |E| � pr(d+k−2)+(1− d
2). We consider E as a subset of the vertex set of ZPq,d. Then

the number of k-tuples of k mutually orthogonal vectors in E is the number of copies of
Kk in E. Set E1 = E\ (pZpr−1)d, then we have |E| − p(r−1)d 6 |E1| 6 |E|. Note that

|E| � pr(d+k−2)+(1− d
2) = prd+r(k−2)+1− d

2 � prd−d = p(r−1)d,

which implies that |E1| = (1 + o(1))|E|. We have

|E1| > |E| − p(r−1)d � pr(d+k−2)+(1− d
2) &

(
rp

(2r−1)d−2r+2
2

)( prd − p(r−1)d

pr(d−1) − p(r−1)(d−1)

)k−1

. (21)
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From Theorem 4 and (21), the number of copies of Kk in E1 is

(1 + o(1))
|E1|k

k!

(
pr(d−1) − p(r−1)(d−1)

prd − p(r−1)d

)(k2)
= (1 + o(1))

|E|k

k!
q−(k2). (22)

For any 1 6 s 6 k, let Kk−s be the complete graph with k − s vertices then Kk−s has(
k−s

2

)
edges and the degree of each vertex is k − s− 1. It is clear that

(
rp

(2r−1)d−2r+2
2

)( prd − p(r−1)d

pr(d−1) − p(r−1)(d−1)

)k−1

>
(
rp

(2r−1)d−2r+2
2

)( prd − p(r−1)d

pr(d−1) − p(r−1)(d−1)

)k−s−1

.

From Theorem 4 and (21), the number of copies of Kk−s in E1 is

(1 + o(1))
|E1|k−s

(k − s)!

(
pr(d−1) − p(r−1)(d−1)

prd − p(r−1)d

)(k−s2 )
= (1 + o(1))

|E|k−s

(k − s)!
q−(k−s2 ).

For any 1 6 s 6 k, the number of s-element subsets of E\E1 is
(
p(r−1)d

s

)
6 pds(r−1).

Note that d > 2r − 2 so

(1 + o(1))
|E|k−s

(k − s)!
q−(k−s2 )pds(r−1) � |E|

k

k!
q−(k2).

Hence, the number of copies of Kk, in which s vertices in E\E1 and k − s vertices in

E1, is dominated by |E|k
k!
q−(k2). This implies that the number of k mutually orthogonal

vectors in E is

(1 + o(1))
|E|k

k!
q−(k2),

completing the proof of Theorem 3.
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