Orthogonal systems in vector spaces over finite rings

Pham Van Thang
Faculty of Mathematics, Mechanics and Informatics
Hanoi University of Science
Vietnam National University, Hanoi
phmanhthang@gmail.com
Le Anh Vinh*
University of Education
Vietnam National University, Hanoi
vinhla@vnu.edu.vn

Submitted: Mar 19, 2012; Accepted: Jun 21, 2012; Published: Jun 28, 2012
Mathematics Subject Classification: 05C35, 05C38

Abstract

We prove that if a subset of the d-dimensional vector space over the ring of integers modulo p^{r} is large enough, then the number of k-tuples of mutually orthogonal vectors in this set is close to its expected value.

1 Introduction

The classical Erdős distance problem asks for the minimal number of distinct distances determined by a finite point set in $\mathbb{R}^{l}, l \geqslant 2$. This problem in the Euclidean plane has recently been solved by Guth and Katz ([8]). They showed that a set of N points in \mathbb{R}^{2} has at least $c N / \log N$ distinct distances. For the latest developments on the Erdős distance problem in higher dimensions, see [11, 15], and the references contained therein. Let \mathbb{F}_{q} denote a finite field with q elements, where q, a power of an odd prime, is viewed as an asymptotic parameter. For $\mathcal{E} \subset \mathbb{F}_{q}^{l}(l \geqslant 2)$, the finite analogue of the classical Erdős distance problem is to determine the smallest possible cardinality of the set

$$
\Delta(\mathcal{E})=\left\{\|\boldsymbol{x}-\boldsymbol{y}\|=\left(x_{1}-y_{1}\right)^{2}+\ldots+\left(x_{l}-y_{l}\right)^{2}: \boldsymbol{x}, \boldsymbol{y} \in \mathcal{E}\right\} \subset \mathbb{F}_{q} .
$$

The first non-trivial result on the Erdős distance problem in vector spaces over finite fields is due to Bourgain, Katz, and Tao ([2]), who showed that if q is a prime, $q \equiv 3(\bmod$

[^0]4), then for every $\varepsilon>0$ and $\mathcal{E} \subset \mathbb{F}_{q}^{2}$ with $|\mathcal{E}| \leqslant C_{\varepsilon} q^{2-\epsilon}$, there exists $\delta>0$ such that $|\Delta(\mathcal{E})| \geqslant C_{\delta}|\mathcal{E}|^{\frac{1}{2}+\delta}$ for some constants $C_{\varepsilon}, C_{\delta}$. The relationship between ϵ and δ in their arguments, however, is difficult to determine. In addition, it is quite subtle to go up to higher dimensional cases with these arguments. Iosevich and Rudnev ([10]) used Fourier analytic methods to show that there are absolute constants $c_{1}, c_{2}>0$ such that for any odd prime power q and any set $\mathcal{E} \subset \mathbb{F}_{l}^{d}$ of cardinality $|\mathcal{E}| \geqslant c_{1} q^{l / 2}$, we have
\[

$$
\begin{equation*}
|\Delta(\mathcal{E})| \geqslant c_{2} \min \left\{q, q^{\frac{l-1}{2}}|\mathcal{E}|\right\} \tag{1}
\end{equation*}
$$

\]

In [22], Van Vu gave another proof of (1) using the graph theoretic method (see also [16] for a similar proof). Iosevich and Rudnev reformulated the question in analogy with the Falconer distance problem: how large does $\mathcal{E} \subset \mathbb{F}_{q}^{l}, l \geqslant 2$, needed to be ensure that $\Delta(\mathcal{E})$ contains a positive proportion of the elements of \mathbb{F}_{q}. The above result implies that if $|\mathcal{E}| \geqslant 2 q^{\frac{l+1}{2}}$ then $\Delta(\mathcal{E})=\mathbb{F}_{q}$ directly in line with Falconer's result in Euclidean setting that for a set \mathcal{E} with Hausdorff dimension greater than $(l+1) / 2$, the distance set is of positive measure. At first, it seems reasonable that the exponent $(l+1) / 2$ may be improvable, in line with the Falconer distance conjecture described above. However, Hart, Iosevich, Koh and Rudnev discovered in [6] that the arithmetic of the problem makes the exponent $(l+1) / 2$ best possible in odd dimensions, at least in general fields. In even dimensions, it is still possible that the correct exponent is $l / 2$, in analogy with the Euclidean case. In [3], Chapman et al. took a first step in this direction by showing that if $\mathcal{E} \subset \mathbb{F}_{q}^{2}$ satisfies $|\mathcal{E}| \geqslant q^{4 / 3}$ then $|\Delta(\mathcal{E})| \geqslant c q$. This is in line with Wolff's result for the Falconer conjecture in the plane which says that the Lebesgue measure of the set of distances determined by a subset of the plane of Hausdorff dimension greater than $4 / 3$ is positive.

A classical result due to Furstenberg, Katznelson and Weiss ([7]) states that if $\mathcal{E} \subset \mathbb{R}^{2}$ of positive upper Lebesgue density, then for any $\delta>0$, the δ-neighborhood of \mathcal{E} contains a congruent copy of a sufficiently large dilate of every three-point configuration. An example of Bourgain ([1]) showed that it is not possible to replace the thickened set \mathcal{E}_{δ} by \mathcal{E} for arbitrary three-point configurations. In the case of k-simplex, that is the $k+1$ points spanning a k-dimensional subspace, Bourgain ([1]), using Fourier analytic techniques, showed that a set \mathcal{E} of positive upper Lebesgue density always contains a sufficiently large dilate of every non-degenerate k-point configuration where $k<l$. In the case $k=l$, the problem still remains open. Using Fourier analytic methods, Akos Magyar ($[13,14]$) considered this problem over the integer lattice \mathbb{Z}^{l}. He showed that a set of positive density will contain a congruent copy of every large dilate of a non-degenerate k-simplex where $l>2 k+4$.

Hart and Iosevich ([9]) made the first investigation in an analog of this question in finite field geometries. Let P_{k} denote a k-simplex. Given another k-simplex P_{k}^{\prime}, we say $P_{k} \sim P_{k}^{\prime}$ if there exist $\tau \in \mathbb{F}_{q}^{l}$, and $O \in S O_{l}\left(\mathbb{F}_{q}\right)$, the set of l-by-l orthogonal matrices over \mathbb{F}_{q}, such that $P_{k}^{\prime}=O\left(P_{k}\right)+\tau$. Under this equivalent relation, Hart and Iosevich ([9]) observed that one may specify a simplex by the distances determined by its vertices. They showed that if $\mathcal{E} \subset \mathbb{F}_{q}^{l}\left(l \geqslant\binom{ k+1}{2}\right)$ of cardinality $|\mathcal{E}| \gtrsim q^{\frac{k l}{k+1}+\frac{k}{2}}$ then \mathcal{E} contains a congruent copy of every k-simplex (with the exception of simplices with zero distances).

Using graph theoretic methods, the second listed author ([19]) showed that the same result holds for $l \geqslant 2 k$ and $|\mathcal{E}| \gg q^{\frac{l-1}{2}+k}$. Here and throughout, $X \gtrsim Y$ means that $X \geqslant C Y$ for some large constant C and $X \gg Y$ means that $Y=o(X)$, where X, Y are viewed as functions of the parameter q. In [18], the author studied the triangles in threedimensional vector spaces over finite fields. Using a combination of graph theory methods and Fourier analytic techniques, the second listed author showed that if $\mathcal{E} \subset \mathbb{F}_{q}^{l}(l \geqslant 3)$ of cardinality $|\mathcal{E}| \gtrsim q^{\frac{l+2}{2}}$, the set of triangles, up to congruence, has density greater than c. Using Fourier analytic techniques, Chapman et al ([3]) extended this result to higher dimensional cases. More precisely, they showed that if $|\mathcal{E}| \gtrsim q^{\frac{l+k}{2}}(l \geqslant k)$ then the set of k-simplices, up to congruence, has density greater than c. They also obtained a stronger result when \mathcal{E} is a subset of the l-dimensional unit sphere $S^{l}=\left\{\boldsymbol{x} \in \mathbb{F}_{q}^{l}:\|\boldsymbol{x}\|=1\right\}$. In particular, it was proven $\left(\left[3\right.\right.$, Theorem 2.15]) that if $\mathcal{E} \subset S^{l}$ of cardinality $|\mathcal{E}| \gtrsim q^{\frac{l+k-1}{2}}$ then \mathcal{E} contains a congruent copy of a positive proportion of all k-simplices (see also [19] for a different proof of these results using graph-theoretic methods).

In [4], Iosevich and Senger showed that a sufficiently large subset of \mathbb{F}_{q}^{d}, the d dimensional vector space over the finite field with q elements, contains many k-tuple of mutually orthogonal vectors. Using geometric and character sum machinery, they proved the following result.

Theorem 1 ([4, Theorem 1.1]) Let $E \subset \mathbb{F}_{q}^{d}$, such that

$$
\begin{equation*}
|E| \gtrsim q^{d \frac{k-1}{k}+\frac{k-1}{2}+\frac{1}{k}}, \tag{2}
\end{equation*}
$$

where $0<\binom{k}{2}<d$. Then the number of k-tuples of k mutually orthogonal vectors in E is

$$
\begin{equation*}
(1+o(1)) \frac{|E|^{k}}{k!} q^{-\binom{k}{2}} . \tag{3}
\end{equation*}
$$

In [17], the second listed author obtained a stronger result using graph theoretic methods.

Theorem 2 ([17, Theorem 1.2]) Let $E \subset \mathbb{F}_{q}^{d}$, such that

$$
\begin{equation*}
|E| \gg q^{\frac{d}{2}+k-1}, \tag{4}
\end{equation*}
$$

where $d>2(k-1)$. Then the number of k-tuples of k mutually orthogonal vectors in E is

$$
\begin{equation*}
(1+o(1)) \frac{|E|^{k}}{k!} q^{-\binom{k}{2}} . \tag{5}
\end{equation*}
$$

Note that Theorem 1 only works in the range $d>\binom{k}{2}$ (as larger tuples of mutually orthogonal vectors are out of range of the methods used) while Theorem 2 works in a wider range $d>2(k-1)$. Moreover, Theorem 2 is stronger than Theorem 1 in the same range. It is also interesting to note that the exponent $\frac{d}{2}+1$ cannot be improved in the case
$k=2$. In [4], Iosevich and Senger constructed a set $E \subset \mathbb{F}_{q}^{d}$ such that $|E| \geqslant c q^{\frac{d+1}{2}+1}$, for some $c>0$, but no pair of its vectors are orthogonal (see Lemma 3.2 in [4]). Their basic idea is to construct $E=E_{1} \oplus E_{2}$ where $E_{1} \subset \mathbb{F}_{q}^{2}$ and $E_{2} \subset \mathbb{F}_{q}^{d-2}$, such that $\left|E_{1}\right| \approx q^{1 / 2}$, $\left|E_{2}\right| \approx q^{\frac{d-1}{2}}$ and the sum set of their respective dot product sets does not contain 0 .

Covert, Iosevich, and Pakianathan ([5]) extended (1) to the setting of finite cyclic rings $\mathbb{Z}_{p^{l}}=\mathbb{Z} / p^{l} \mathbb{Z}$, where p is a fixed odd prime and $l \geqslant 2$. One reason for considering this situation is that if one is interested in answering questions about sets $\mathcal{E} \subset \mathbb{Q}^{d}$ of rational points, one can ask questions about distance sets for such sets and how they compare to the current results in \mathbb{R}^{d}. By scale invariance of these questions, the problem of obtaining sharp bounds for the relationship of $|\Delta(\mathcal{E})|$ and $|\mathcal{E}|$ for a subset \mathcal{E} of \mathbb{Q}^{d} would be the same as for subsets of \mathbb{Z}^{d}. Covert, Iosevich, and Pakianathan ([5]) obtained a nearly sharp bound for the distance problem in vector spaces over finite ring \mathbb{Z}_{q}. More precisely, they proved that if $\mathcal{E} \subset \mathbb{Z}_{q}^{d}$ of cardinality

$$
|\mathcal{E}| \gg r(r+1) q^{\frac{(2 r-1) d}{2 r}+\frac{1}{2 r}},
$$

then

$$
\mathbb{Z}_{q}^{\times} \subset \Delta(\mathcal{E})
$$

where \mathbb{Z}_{q}^{\times}is the set of units of \mathbb{Z}_{q}. In [21], the second listed author reproved this result using graph-theoretic methods. Furthermore, the author showed that if \mathcal{E} is sufficiently large then there exists a very large subset of \mathcal{E} such that every point in this subset determines almost all possible distances to the set \mathcal{E}. The main purpose of this paper to extend Theorem 1 and Theorem 2 in the setting of finite cyclic rings $\mathbb{Z}_{p^{l}}=\mathbb{Z} / p^{l} \mathbb{Z}$. Note that, the arithmetic of finite rings allows for a richer orthogonal structure. More precisely, we have the following theorem.

Theorem 3 Let $q=p^{r}$ be an odd prime power and $E \subset \mathbb{Z}_{q}^{d}$. Suppose that

$$
|E| \ggg p^{r(d+k-2)+\left(1-\frac{d}{2}\right)}
$$

where $d \geqslant 2 r-2$. Then the number of k-tuples of k mutually orthogonal vectors in E is

$$
(1+o(1)) \frac{|E|^{k}}{k!} q^{-\binom{k}{2}}
$$

Note that Theorem 3 only works in the range $d / 2>r(k-2)+1$ (as larger tuples of mutually orthogonal vectors are out of range of the methods used). Recall that Iosevich and Senger ([4, Lemma 3.2]) constructed a subset $E \subset \mathbb{F}_{p}^{d}$ such that $|E| \gtrsim p^{\frac{d+1}{2}}$ but no pair of its vectors are orthogonal. Under the projection homomorphism $\pi: \mathbb{Z}_{q}^{d} \rightarrow \mathbb{Z}_{p}^{d}$, let $L=\pi^{-1}(E)$. Then

$$
|L|=p^{(r-1) d}|E| \gtrsim p^{r d+\frac{1}{2}-\frac{d}{2}}
$$

and $\boldsymbol{u} \cdot \boldsymbol{v} \neq 0$ for any $\boldsymbol{u}, \boldsymbol{v} \in L$. Hence, Theorem 3 is best possible up to a factor of $p^{1 / 2}$ in the case $k=2$. The authors believe that the above example can be generalized to obtain results about how large a set in $\mathbb{Z}_{p^{r}}^{d}$ can be without containing orthogonal k-tuples for $k>2$.

2 Zero-product graphs

We call a graph $G=(V, E)(n, l, \lambda)$-graph if G is a l-regular graph on n vertices with the absolute values of each of its eigenvalues but the largest one is at most λ. It is well-known that if $\lambda \ll l$ then an (n, l, λ)-graph behaves similarly to a random graph $G(n, l / n)$, in which every possible edge occurs independently with probability l / n. Let H be a fixed graph of order v with e edges and with automorphism group Aut (H). Using the second moment method, it is not difficult to show that for every constant p, the random graph $G(n, p)$ contains

$$
\begin{equation*}
(1+o(1)) p^{e}(1-p)^{\binom{v}{2}-e} \frac{n^{v}}{|\operatorname{Aut}(H)|} \tag{6}
\end{equation*}
$$

induced copies of H. Alon extended this result to (n, l, λ)-graphs. He proved that every large subset of the set of vertices of an (n, l, λ)-graph contains the "correct" number of copies of any fixed small subgraph (Theorem 4.10 in [12]).

Theorem 4 ([12]) Let H be a fixed graph with e edges, v vertices and maximum degree Δ, and let $G=(V, E)$ be an (n, l, λ)-graph, where, say, $l \leqslant 0.9 n$. Let $m<n$ satisfy $m \gg \lambda\left(\frac{n}{l}\right)^{\Delta}$. Then, for every subset $U \subset V$ of cardinality m, the number of (not necessarily induced) copies of H in U is

$$
\begin{equation*}
(1+o(1)) \frac{m^{v}}{|\operatorname{Aut}(H)|}\left(\frac{l}{n}\right)^{e} . \tag{7}
\end{equation*}
$$

Note that the above theorem, proved for simple graphs in [12], remains true if we allow loops (i.e. edges that connects a vertex to itself) in the graph G. There is no different between the proof in [12] for simple graphs and the proof for graphs with loops.

Suppose that $q=p^{r}$ for some odd prime p and $r \geqslant 2$. We identify \mathbb{Z}_{q} with $\{0,1, \ldots, q-$ $1\}$, then $p \mathbb{Z}_{p^{r-1}}$ is the set of nonunits in \mathbb{Z}_{q}. For any $d \geqslant 2$, the zero-product graph $\mathcal{Z} \mathcal{P}_{q, d}$ is defined as follows. The vertex set of the zero-product graph $\mathcal{Z} \mathcal{P}_{q, d}$ is the set $V\left(\mathcal{Z} \mathcal{P}_{q, d}\right)=\mathbb{Z}_{p^{r}}^{d} \backslash\left(p \mathbb{Z}_{p^{r-1}}\right)^{d}$. Two vertices \boldsymbol{a} and $\boldsymbol{b} \in V\left(\mathcal{Z} \mathcal{P}_{q, d}\right)$ are connected by an edge, $(\boldsymbol{a}, \boldsymbol{b}) \in E\left(\mathcal{Z} \mathcal{P}_{q, d}\right)$, if and only if $\boldsymbol{a} \cdot \boldsymbol{b}=0 \in \mathbb{Z}_{q}$. We have the following pseudo-randomness of the zero-product graph $\mathcal{Z} \mathcal{P}_{q, d}$.

Theorem 5 For any $d \geqslant 2$, the zero-product graph $\mathcal{Z P}_{q, d}$ is an

$$
\left(p^{r d}-p^{(r-1) d}, p^{r(d-1)}-p^{(r-1)(d-1)}, r \sqrt{p^{(2 r-1) d-2 r+2}}\right)-\operatorname{graph} .
$$

Proof

It follows from the definition of the zero-product graph $\mathcal{Z P}_{q, d}$ that $V\left(\mathcal{Z P}_{q, d}\right)$ is a graph of order $p^{r d}-p^{(r-1) d}$. The valency of the graph is also easy to compute. Given a vertex $\boldsymbol{x} \in V\left(\mathcal{Z} \mathcal{P}_{q, d}\right)$, there exists an index i such that $x_{i} \in \mathbb{Z}_{q}^{\times}$. We can assume that $x_{1} \in \mathbb{Z}_{q}^{\times}$.If we choose $y_{2}, \ldots, y_{d} \in \mathbb{Z}_{q}$ not simultaneously nonunits arbitrarily, then y_{1} is determined uniquely such that $\boldsymbol{x} \cdot \boldsymbol{y}=0$ (note that, if $y_{2}, \ldots, y_{d} \in p \mathbb{Z}_{p^{r-1}}$ then so is y_{1}.) Hence, $\mathcal{Z} \mathcal{P}_{q, d}$ is a regular graph of valency $p^{r(d-1)}-p^{(r-1)(d-1)}$.

It remains to estimate the eigenvalues of this multigraph (i.e. graph with loops). Note that, in order to bound the second largest eigenvalue of a matrix A, it is sometimes easier to work with A^{2}. For any $\boldsymbol{a} \neq \boldsymbol{b} \in \mathbb{Z}_{p^{r}}^{d} \backslash\left(p \mathbb{Z}_{p^{r-1}}\right)^{d}$, we count the number of solutions of the following system

$$
\begin{equation*}
\boldsymbol{a} \cdot \boldsymbol{x} \equiv \boldsymbol{b} \cdot \boldsymbol{x} \equiv 0 \quad \bmod p^{r}, \boldsymbol{x} \in \mathbb{Z}_{p^{r}}^{d} \backslash\left(p \mathbb{Z}_{p^{r-1}}\right)^{d} . \tag{8}
\end{equation*}
$$

There exist uniquely $0 \leqslant \alpha \leqslant r-1$ and $\boldsymbol{b}_{1} \in\left(\mathbb{Z}_{p^{r-\alpha}}\right)^{d} \backslash\left(p \mathbb{Z}_{p^{r-1-\alpha}}\right)^{d}$ such that $\boldsymbol{b}=$ $\boldsymbol{a}+p^{\alpha} \boldsymbol{b}_{1}$. The system (8) above becomes

$$
\begin{equation*}
\boldsymbol{a} \cdot \boldsymbol{x} \equiv p^{\alpha} \boldsymbol{b}_{1} \cdot \boldsymbol{x} \equiv 0 \quad \bmod p^{r}, \boldsymbol{x} \in\left(\mathbb{Z}_{p^{r}}\right)^{d} \backslash\left(p \mathbb{Z}_{p^{r-1}}\right)^{d} . \tag{9}
\end{equation*}
$$

Let $\boldsymbol{a}_{\alpha} \in\left(\mathbb{Z}_{p^{r-\alpha}}\right)^{d} \backslash\left(p \mathbb{Z}_{p^{r-1-\alpha}}\right)^{d} \equiv \boldsymbol{a} \bmod p^{r-\alpha}$ and $\boldsymbol{x}_{\alpha} \in\left(\mathbb{Z}_{p^{r-\alpha}}\right)^{d} \backslash\left(p \mathbb{Z}_{p^{r-1-\alpha}}\right)^{d}$, $\boldsymbol{x}_{\alpha} \equiv \boldsymbol{x} \bmod p^{r-\alpha}$. To solve (9), we first solve the following system

$$
\begin{equation*}
\boldsymbol{a}_{\alpha} \cdot \boldsymbol{x}_{\alpha} \equiv \boldsymbol{b}_{1} \cdot \boldsymbol{x}_{\alpha} \equiv 0 \quad \bmod p^{r-\alpha}, \boldsymbol{x}_{\alpha} \in\left(\mathbb{Z}_{p^{r-\alpha}}\right)^{d} \backslash\left(p \mathbb{Z}_{p^{r-1-\alpha}}\right)^{d} \tag{10}
\end{equation*}
$$

Let $\boldsymbol{a}_{\alpha}=\left(a_{1}, \ldots, a_{d}\right), \boldsymbol{x}_{\alpha}=\left(x_{1}, \ldots, x_{d}\right)$ and $\boldsymbol{b}_{1}=\left(b_{1}, \ldots, b_{d}\right)$. Since $\boldsymbol{a}_{\alpha} \in\left(\mathbb{Z}_{p^{r-\alpha}}\right)^{d} \backslash$ $\left(p \mathbb{Z}_{p^{r-1-\alpha}}\right)^{d}$, there exists $a_{i} \in \mathbb{Z}_{q}^{\times}$. W.l.o.g., we can assume that $a_{1} \in \mathbb{Z}_{q}^{\times}$. Let $k_{1}=$ $a_{2} x_{2}+\ldots+a_{d} x_{d}$ and $k_{2}=b_{2} x_{2}+\ldots+b_{d} x_{d}$. System (10) is equivalent to the following system.

$$
\begin{equation*}
a_{1} x_{1}+k_{1} \equiv 0 \quad \bmod p^{r-\alpha}, \quad b_{1} x_{1}+k_{2} \equiv 0 \quad \bmod p^{r-\alpha} \tag{11}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
a_{1} k_{2}-b_{1} k_{1} \equiv 0 \quad \bmod p^{r-\alpha} . \tag{12}
\end{equation*}
$$

Therefore, if \boldsymbol{x}_{α} is a solution of (10) then $\left(x_{2}, \ldots, x_{d}\right)$ satisfies Eq. (12). We now count the number of solutions of this equation. Note that Eq. (12) can be written as

$$
\begin{equation*}
\left(a_{1} b_{2}-a_{2} b_{1}\right) x_{2}+\ldots+\left(a_{1} b_{d}-a_{d} b_{1}\right) x_{d} \equiv 0 \quad \bmod p^{r-\alpha} . \tag{13}
\end{equation*}
$$

Let p^{β} be the greatest common divisor of $a_{1} b_{2}-a_{2} b_{1}, \ldots, a_{1} b_{d}-a_{d} b_{1}$. Note that, Eq. (13) equivalent to $\boldsymbol{a}_{\alpha} \equiv t \boldsymbol{b}_{1} \bmod p^{\beta}$ for some $t \in \mathbb{Z}_{p^{\beta}}^{\times}$. Set $t_{i}=\left(a_{1} b_{i}-a_{i} b_{1}\right) / p^{\beta}$, then Eq. (13) becomes

$$
\begin{equation*}
p^{\beta}\left(t_{2} x_{2}+\ldots t_{d} x_{d}\right) \equiv 0 \quad \bmod p^{r-\alpha} \tag{14}
\end{equation*}
$$

By the way of choosing β, there exists an index $t_{i} \notin p \mathbb{Z}_{p^{r-1-\alpha}}$. We can assume that $t_{2} \notin p \mathbb{Z}_{p^{r-1-\alpha}}$. If we choose $x_{3}, \ldots, x_{d} \in \mathbb{Z}_{p^{r-\alpha}}$ not simultaneously nonunits arbitrarily, then x_{2} is determined uniquely. (Note that, if $x_{3}, \ldots, x_{d} \in p \mathbb{Z}_{p^{r-1-\alpha}}$ then $x_{2} \in p \mathbb{Z}_{p^{r-1-\alpha}}$. This also implies that $x_{1} \in p \mathbb{Z}_{r-1-\alpha}$, which contradicts the definition of \boldsymbol{x} in Eq. (10).) Hence, Eq. (14) has $p^{(r-\alpha)(d-1)}-p^{(r-\alpha-1)(d-1)}$ solutions if $\beta=r-\alpha$ and has $\left(p^{(r-\alpha)(d-2)}-\right.$ $\left.p^{(r-\alpha-1)(d-2)}\right) p^{\beta}$ solutions otherwise.

Since $a_{1} \in \mathbb{Z}_{q}^{\times}$, we have a unique choice of x_{1} for each solution $\left(x_{2}, . ., x_{d}\right)$. Given a solution, \boldsymbol{x}_{α}, of (10), upon putting everything back into the system

$$
\begin{equation*}
\boldsymbol{a} \cdot \boldsymbol{x} \equiv 0 \quad \bmod p^{r}, \boldsymbol{x} \equiv \boldsymbol{x}_{\alpha} \quad \bmod p^{r-\alpha}, \tag{15}
\end{equation*}
$$

we get $p^{\alpha(d-1)}$ solutions of the system (9). Therefore, set

$$
v_{\alpha, \beta}=\left(p^{(r-\alpha)(d-1)}-p^{(r-\alpha-1)(d-1)}\right) p^{\alpha(d-1)} \text { if } \beta=r-\alpha
$$

and

$$
v_{\alpha, \beta}=\left(p^{(r-\alpha)(d-2)}-p^{(r-\alpha-1)(d-2)}\right) p^{\beta} p^{\alpha(d-1)} \text { if } \beta<r-\alpha,
$$

then the system (8) has $v_{\alpha, \beta}$ solutions.
For any $0 \leqslant \alpha \leqslant r-1,0 \leqslant \beta \leqslant r-\alpha$, let $B_{E_{\alpha, \beta}}$ be a graph with the vertex set $V\left(B_{E_{\alpha, \beta}}\right)=V\left(\mathcal{Z} \mathcal{P}_{q, d}\right)$. For any two vertices $\boldsymbol{a}, \boldsymbol{b} \in\left(\mathbb{Z}_{q}\right)^{d} \backslash\left(p \mathbb{Z}_{p^{r-1}}\right)^{d},(\boldsymbol{a}, \boldsymbol{b})$ is an edge of $B_{E_{\alpha, \beta}}$ if and only if $\boldsymbol{b}=\boldsymbol{a}+p^{\alpha} \boldsymbol{b}_{1}$ for some $\boldsymbol{b}_{1} \in\left(\mathbb{Z}_{p^{r-\alpha}}\right)^{d} \backslash\left(\mathbb{Z}_{p^{r-1-\alpha}}\right)^{d}$. Let $\boldsymbol{a}_{\alpha} \in$ $\left(\mathbb{Z}_{p^{r-\alpha}}\right)^{d} \backslash\left(p \mathbb{Z}_{p^{r-\alpha-1}}\right)^{d} \equiv \boldsymbol{a} \bmod p^{r-\alpha}$ then $\boldsymbol{a}_{\alpha} \equiv t \boldsymbol{b}_{1} \bmod p^{\beta}$ for some $t \in \mathbb{Z}_{p^{\beta}}^{\times}$. It is easy to see that $B_{E_{\alpha, \beta}}$ is a regular graph of valency

$$
\phi\left(p^{\beta}\right)\left(\left(p^{r-\alpha-\beta}\right)^{d}-\left(p^{r}-\phi\left(p^{r-\alpha-\beta}\right)\right)^{d}\right)<\phi\left(p^{\beta}\right)\left(p^{r-\alpha-\beta}\right)^{d},
$$

where ϕ is the Euler function. Let $E_{\alpha, \beta}$ be the adjacency matrix of $B_{E_{\alpha, \beta}}$ then absolute values of eigenvalues of $E_{\alpha, \beta}$ are bounded by $\phi\left(p^{\beta}\right)\left(p^{r-\alpha-\beta}\right)^{d}$.

Let A be the adjacency matrix of $\mathcal{Z} \mathcal{P}_{q, d}$. It follows that

$$
\begin{align*}
A^{2} & =\left(p^{r(d-1)}-p^{(r-1)(d-1)}\right) I+\sum_{\substack{0 \leqslant \alpha \leqslant r-1 \\
0 \leqslant \beta \leqslant r-\alpha}} v_{\alpha, \beta} E_{\alpha, \beta} \\
& =\left(p^{r(d-1)}-p^{(r-1)(d-1)}-v_{0,0}\right) I+v_{0,0} J+\sum_{\substack{0 \leqslant \ll r-1 \\
0 \leqslant \beta \leqslant r-\alpha}}\left(v_{\alpha, \beta}-v_{0,0}\right) E_{\alpha, \beta}, \tag{16}
\end{align*}
$$

where I is the identity matrix and J is the all-one matrix. Note that, the assumption $\boldsymbol{a} \neq \boldsymbol{b}$ means that we are substracting the off-diagonal from the sum with $E_{\alpha, \beta}$ in the last part of Eq. (16).

Since $\mathcal{Z} \mathcal{P}_{q, d}$ is a $p^{r(d-1)}-p^{(r-1)(d-1)}$-regular graph, $p^{r(d-1)}-p^{(r-1)(d-1)}$ is an eigenvalue of A with the all-one eigenvector 1 . The graph $\mathcal{Z} \mathcal{P}_{q, d}$ is connected, therefore the eigenvalue $p^{r(d-1)}-p^{(r-1)(d-1)}$ has multiplicity one. Since the graph $\mathcal{Z} \mathcal{P}_{q, d}$ contains (many) triangles, it is not bipartite. Hence, for any other eigenvalue θ then $|\theta|<p^{r(d-1)}-p^{(r-1)(d-1)}$. Let \boldsymbol{v}_{θ} denote the corresponding eigenvector of θ. Note that $\boldsymbol{v}_{\theta} \in \mathbf{1}^{\perp}$, so $J \boldsymbol{v}_{\theta}=0$. It follows from (16) that

$$
\left(\theta^{2}-p^{(d-1) r}+p^{(r-1)(d-1)}+v_{0,0}\right) \boldsymbol{v}_{\theta}=\left(\sum_{\substack{0 \leqslant \alpha \leqslant r-1 \\ 0 \leqslant \beta \leqslant r-\alpha}}\left(v_{\alpha, \beta}-v_{0,0}\right) E_{\alpha, \beta}\right) \boldsymbol{v}_{\theta} .
$$

Hence, \boldsymbol{v}_{θ} is also an eigenvector of

$$
\sum_{\substack{0 \leqslant \alpha \leqslant r-1 \\ 0 \leqslant \beta \leqslant r-\alpha}}\left(v_{\alpha, \beta}-v_{0,0}\right) E_{\alpha, \beta} .
$$

Since eigenvalues of the sum of the matrices are bounded by the sum of the largest eigenvalues of summands. We have

$$
\begin{align*}
\theta^{2} \leqslant & p^{r(d-1)}-p^{(r-1)(d-1)}-v_{0,0}+\sum_{\substack{1 \leqslant \alpha \leqslant r-1 \\
\beta=0}}\left(v_{\alpha, 0}-v_{0,0}\right) \phi(1) p^{(r-\alpha) d} \\
& +\sum_{\substack{0 \leqslant \alpha \leqslant r-1 \\
\beta=r-\alpha}}\left(v_{\alpha, r-\alpha}-v_{0,0}\right) \phi\left(p^{r-\alpha}\right) \\
& +\sum_{\substack{0 \leqslant \alpha \leqslant r-1 \\
1 \leqslant \beta \leqslant-\alpha-1}}\left(v_{\alpha, \beta}-v_{0,0}\right) \phi\left(p^{\beta}\right) p^{(r-\alpha-\beta) d} . \tag{17}
\end{align*}
$$

Next, we estimate each term of (17). We have

$$
\begin{align*}
\sum_{\substack{1 \leqslant \alpha \leqslant r-1 \\
\beta=0}}\left(v_{\alpha, 0}-v_{0,0}\right) \phi(1) p^{(r-\alpha) d} & \leqslant \sum_{\substack{1 \leqslant \alpha \leqslant r-1 \\
\beta=0}} p^{(r-\alpha) d} p^{(r-\alpha)(d-2)} p^{\alpha(d-1)} \\
\sum_{\substack{0 \leqslant \alpha \leqslant r-1 \\
\beta=r-\alpha}}\left(v_{\alpha, r-\alpha}-v_{0,0}\right) \phi\left(p^{r-\alpha}\right) & \leqslant \sum_{\substack{0 \leqslant \alpha<r-1 \\
\beta=r-1) d-2 r+1}} p^{r d-\alpha}<r p^{r d} . \tag{18}\\
\sum_{\substack{0 \leqslant \alpha \leqslant-1 \\
1 \leqslant \beta \leqslant r-\alpha-1}}\left(v_{\alpha, \beta}-v_{0,0}\right) \phi\left(p^{\beta}\right) p^{(r-\alpha-\beta) d} & \leqslant \sum_{\substack{0 \leqslant \alpha \leqslant r-1 \\
1 \leqslant \beta \leqslant r-\alpha-1}} p^{(r-\alpha)(d-2)} p^{2 \beta} p^{\alpha(d-1)} p^{(r-\alpha-\beta) d} \tag{19}\\
& <\sum_{\substack{0 \leqslant \alpha \leqslant r-1 \\
1 \leqslant \beta \leqslant r-\alpha-1}} p^{2 r d-2 r-\alpha(d-1)-\beta(d-2)} \\
& <r^{2} p^{(2 r-1) d-2 r+2} .
\end{align*}
$$

Putting (17), (18), (19), and (20) together, the theorem follows.

3 Orthogonal systems

We are now ready to give a proof of Theorem 3 . Let K_{k} be a complete graph with k vertices. Then K_{k} has $\binom{k}{2}$ edges and the degree of each vertex is $k-1$. Let $E \subset \mathbb{Z}_{q}^{d}$ such that $|E| \gg p^{r(d+k-2)+\left(1-\frac{d}{2}\right)}$. We consider E as a subset of the vertex set of $\mathcal{Z} \mathcal{P}_{q, d}$. Then the number of k-tuples of k mutually orthogonal vectors in E is the number of copies of K_{k} in E. Set $E_{1}=E \backslash\left(p \mathbb{Z}_{p^{r-1}}\right)^{d}$, then we have $|E|-p^{(r-1) d} \leqslant\left|E_{1}\right| \leqslant|E|$. Note that

$$
|E| \gg p^{r(d+k-2)+\left(1-\frac{d}{2}\right)}=p^{r d+r(k-2)+1-\frac{d}{2}} \gg p^{r d-d}=p^{(r-1) d},
$$

which implies that $\left|E_{1}\right|=(1+o(1))|E|$. We have

$$
\begin{equation*}
\left|E_{1}\right| \geqslant|E|-p^{(r-1) d} \gg p^{r(d+k-2)+\left(1-\frac{d}{2}\right)} \gtrsim\left(r p^{\frac{(2 r-1) d-2 r+2}{2}}\right)\left(\frac{p^{r d}-p^{(r-1) d}}{p^{r(d-1)}-p^{(r-1)(d-1)}}\right)^{k-1} \tag{21}
\end{equation*}
$$

From Theorem 4 and (21), the number of copies of K_{k} in E_{1} is

$$
\begin{equation*}
(1+o(1)) \frac{\left|E_{1}\right|^{k}}{k!}\left(\frac{p^{r(d-1)}-p^{(r-1)(d-1)}}{p^{r d}-p^{(r-1) d}}\right)^{\binom{k}{2}}=(1+o(1)) \frac{|E|^{k}}{k!} q^{-\binom{k}{2}} . \tag{22}
\end{equation*}
$$

For any $1 \leqslant s \leqslant k$, let K_{k-s} be the complete graph with $k-s$ vertices then K_{k-s} has $\binom{k-s}{2}$ edges and the degree of each vertex is $k-s-1$. It is clear that

$$
\left(r p^{\frac{(2 r-1) d-2 r+2}{2}}\right)\left(\frac{p^{r d}-p^{(r-1) d}}{p^{r(d-1)}-p^{(r-1)(d-1)}}\right)^{k-1} \geqslant\left(r p^{\frac{(2 r-1) d-2 r+2}{2}}\right)\left(\frac{p^{r d}-p^{(r-1) d}}{p^{r(d-1)}-p^{(r-1)(d-1)}}\right)^{k-s-1}
$$

From Theorem 4 and (21), the number of copies of K_{k-s} in E_{1} is

$$
(1+o(1)) \frac{\left|E_{1}\right|^{k-s}}{(k-s)!}\left(\frac{p^{r(d-1)}-p^{(r-1)(d-1)}}{p^{r d}-p^{(r-1) d}}\right)^{\binom{k-s}{2}}=(1+o(1)) \frac{|E|^{k-s}}{(k-s)!} q^{-\binom{k-s}{2}} .
$$

For any $1 \leqslant s \leqslant k$, the number of s-element subsets of $E \backslash E_{1}$ is $\binom{p^{(r-1) d}}{s} \leqslant p^{d s(r-1)}$. Note that $d \geqslant 2 r-2$ so

$$
(1+o(1)) \frac{|E|^{k-s}}{(k-s)!} q^{-\binom{k-s}{2}} p^{d s(r-1)} \ll \frac{|E|^{k}}{k!} q^{-\binom{k}{2}}
$$

Hence, the number of copies of K_{k}, in which s vertices in $E \backslash E_{1}$ and $k-s$ vertices in
 vectors in E is

$$
(1+o(1)) \frac{|E|^{k}}{k!} q^{-\binom{k}{2}}
$$

completing the proof of Theorem 3.

References

[1] J. Bourgain, A Szemerédi type theorem for sets of positive density, Israel J. Math. 54 (1986), no. 3, 307-331.
[2] J. Bourgain, N. Katz, and T. Tao, A sum product estimate in finite fields and Applications, Geom. Funct. Analysis, 14 (2004), 27-57.
[3] J. Chapman, M. B. Erdoğan, Derrick Hart, Alex Iosevich, and Doowon Koh, Pinned distance sets, k-simplices, Wolff's exponent in finite fields and sum-product estimates, Mathematische Zeitschrift (to appear).
[4] A. Iosevich and S. Senger, Orthogonal systems in vector spaces over finite fields, Electronic J. Combin., 15 (2008), \#R151.
[5] D. Covert, A. Iosevich, and J. Pakianathan, Geometric configurations in the ring of integers modulo p^{l}, Indiana University Mathematics Journal (to appear).
[6] D. Hart, A. Iosevich, D. Koh and M. Rudnev, Averages over hyperplanes, sumproduct theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Transactions of the AMS, 363 (2011) 3255-3275.
[7] H. Furstenberg, Y. Katznelson, and B. Weiss, Ergodic theory and configurations in sets of positive density, Mathematics of Ramsey theory, 184-198, Algorithms Combin., 5, Springer, Berlin (1990).
[8] L. Guth and N. Katz, On the Erdős distinct distances problem in the plane, (preprint) arXiv:1011.4105 (2010).
[9] D. Hart and A. Iosevich, Ubiquity of simplices in subsets of vector spaces over finite fields, Analysis Mathematika, 34 (2007).
[10] A. Iosevich and M. Rudnev, Erdős distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc., 359 (2007), 6127-6142.
[11] N. H. Katz and G. Tardos, A new entropy inequality for the Erdős distance problem, Contemp. Math. 342, Towards a theory of geometric graphs, 119-126, Amer. Math. Soc., Providence, RI (2004).
[12] M. Krivelevich and B. Sudakov, Pseudo-random graphs, Conference on Finite and Infinite Sets Budapest, Bolyai Society Mathematical Studies X, pp. 164.
[13] A. Magyar, On distance sets of large sets of integers points, Israel J. Math. 164 (2008), 251-263.
[14] A. Magyar, k-point configurations in sets of positive density of \mathbb{Z}^{n}, Duke Math J. (to appear) (2007).
[15] J. Solymosi and V. Vu, Near optimal bounds for the number of distinct distances in high dimensions, Combinatorica, (2005).
[16] L. A. Vinh, Explicit Ramsey graphs and Erdős distance problem over finite Euclidean and non-Euclidean spaces, Electronic J. Combin., 15 (2008), \#R5.
[17] L. A. Vinh, On orthogonal systems in vector spaces over finite fields, The Electronic Journal of Combinatorics, 15 (2008), N32.
[18] L. A. Vinh, Triangles in vector spaces over finite fields, Online Journal of Analytic Combinatorics (to appear).
[19] L. A. Vinh, The solvability of norm, bilinear and quadratic equations over finite fields via spectral of graphs, Forum Mathematicum (in press).
[20] L. A. Vinh, Product sets and distance sets of random point sets in vector spaces over finite rings, Indiana University Mathematics Journal (to appear).
[21] L. A. Vinh, Pinned distance sets and k-simplices in vector spaces over finite rings, preprint (2011).
[22] V. H. Vu, Sum-product estimates via directed expanders, Math. Res. Lett. 15 (2008), no. 2, 375-388.

[^0]: *The research is supported by University of Education, Vietnam National University, Hanoi, Grant No. QS.12.04

