Hamiltonicity of minimum distance graphs of 1-perfect codes

Alexander M. Romanov*
Sobolev Institute of Mathematics 630090 Novosibirsk, Russia
rom@math.nsc.ru

Submitted: Jan 18, 2012; Accepted: Mar 18, 2012; Published: Mar 31, 2012
Mathematics Subject Classifications: 05C45, 94B25

Abstract

A 1-perfect code \mathcal{C}_{q}^{n} is called Hamiltonian if its minimum distance graph $G\left(\mathcal{C}_{q}^{n}\right)$ contains a Hamiltonian cycle. In this paper, for all admissible lengths $n \geq 13$, we construct Hamiltonian nonlinear ternary 1-perfect codes, and for all admissible lengths $n \geq 21$, we construct Hamiltonian nonlinear quaternary 1-perfect codes. The existence of Hamiltonian nonlinear q-ary 1-perfect codes of length $N=q n+1$ is reduced to the question of the existence of such codes of length n. Consequently, for $q=p^{r}$, where p is prime, $r \geq 1$ there exist Hamiltonian nonlinear q-ary 1-perfect codes of length $n=\left(q^{m}-1\right) /(q-1), m \geq 2$. If $q=2,3,4$, then $m \neq 2$. If $q=2$, then $m \neq 3$.

1 Introduction

Let \mathbf{F}_{q}^{n} be a vector space of dimension n over the Galois field \mathbf{F}_{q}. The Hamming distance between two vectors $\mathbf{x}, \mathbf{y} \in \mathbf{F}_{q}^{n}$ is the number of coordinates in which they differ and it is denote by $d(\mathbf{x}, \mathbf{y})$. An arbitrary subset \mathcal{C}_{q}^{n} of \mathbf{F}_{q}^{n} is called q-ary 1-perfect code of length n, if for every vector $\mathbf{x} \in \mathbf{F}_{q}^{n}$ there exists a unique vector $\mathbf{c} \in \mathcal{C}_{q}^{n}$ such that $d(\mathbf{x}, \mathbf{c}) \leq 1$. It is known that q-ary 1-perfect codes of length n exist only if $n=\left(q^{m}-1\right) /(q-1)$, where m is a natural number not less than two. We shall assume that the all-zero vector $\mathbf{0}$ is in code. A code is called linear if it is a linear space over \mathbf{F}_{q}. The linear 1-perfect codes are called Hamming codes.

The sum of the vectors $\mathbf{x}, \mathbf{y} \in \mathbf{F}_{q}^{n}$ is denoted by $\mathbf{x}+\mathbf{y}$. Two codes $\mathcal{C}_{q}^{n}, \mathcal{D}_{q}^{n} \subseteq \mathbf{F}_{q}^{n}$ are said to be isomorphic if there exists a permutation π such that $\mathcal{D}_{q}^{n}=\left\{\pi(\mathbf{c}): \mathbf{c} \in \mathcal{C}_{q}^{n}\right\}$. They are said to be equivalent if there exist a vector $\mathbf{u} \in \mathbf{F}_{q}^{n}$ and a permutation π such

[^0]that $\mathcal{D}_{q}^{n}=\left\{\pi(\mathbf{c})+\mathbf{u}: \mathbf{c} \in \mathcal{C}_{q}^{n}\right\}$. There exist at least $q^{q^{c n}}$ pairwise nonequivalent q-ary 1 -perfect codes of length n where a constant $c=\frac{1}{q}-\varepsilon$. See [1, 2, 6, 7].

The minimum distance of a code $\mathcal{C}_{q}^{n} \subseteq \mathbf{F}_{q}^{n}$ is defined by $d\left(\mathcal{C}_{q}^{n}\right)=\min \{d(\mathbf{x}, \mathbf{y}): \mathbf{x}, \mathbf{y} \in$ $\left.\mathcal{C}_{q}^{n}, \mathbf{x} \neq \mathbf{y}\right\}$. Let \mathcal{C}_{q}^{n} be a 1-perfect code of length n. Then, $d\left(\mathcal{C}_{q}^{n}\right)=3$ and the minimum distance graph of the code \mathcal{C}_{q}^{n} is a graph $G\left(\mathcal{C}_{q}^{n}\right)$ whose vertex set is \mathcal{C}_{q}^{n} and vertices $\mathbf{x}, \mathbf{y} \in \mathcal{C}_{q}^{n}$ are adjacent if and only if $d(\mathbf{x}, \mathbf{y})=3$. A path in a graph is a sequence of vertices such that two consecutive vertices in this path are connected by at least one edge. A finite path always has a first vertex, called its start vertex, and a last vertex, called its end vertex. A cycle is a path such that the start vertex and end vertex are the same. A cycle that contains each vertex of the graph exactly once is called Hamiltonian cycle. A 1-perfect code \mathcal{C}_{q}^{n} is called Hamiltonian if its minimum distance graph $G\left(\mathcal{C}_{q}^{n}\right)$ contains a Hamiltonian cycle.

The weight of a vector $\mathbf{x} \in \mathbf{F}_{q}^{n}$ is the number of its nonzero coordinates. A vector of weight 3 of the Hamming code \mathcal{H}_{q}^{n} is called triple. It is known that the set of all triples of the code \mathcal{H}_{q}^{n} generates the code. Therefore, the Hamming codes are Hamiltonian, except $q=2, m=2$.

A mapping $\phi: \mathcal{C}_{q}^{n} \rightarrow \mathbf{F}_{q}^{n}$ is called an isometry from the code \mathcal{C}_{q}^{n} to the code $\phi\left(\mathcal{C}_{q}^{n}\right)$ if $d(\mathbf{x}, \mathbf{y})=d(\phi(\mathbf{x}), \phi(\mathbf{y}))$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{C}_{q}^{n}$. Obviously, two codes \mathcal{C}_{q}^{n} and \mathcal{D}_{q}^{n} are isometric if there are n permutations $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$ of q elements in Galois field \mathbf{F}_{q} and permutation σ of the n coordinates such that $\mathcal{D}_{q}^{n}=\left\{\sigma\left(\tau_{1}\left(c_{1}\right), \tau_{2}\left(c_{2}\right), \ldots, \tau_{n}\left(c_{n}\right)\right): \mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathcal{C}_{q}^{n}\right\}$.

For $q \geq 5$ there are nonlinear q-ary 1-perfect codes that are isometric to the Hamming codes. Therefore, for $q \geq 5$ and for all admissible lengths there are nonlinear q-ary 1-perfect codes whose minimum distance graphs contain a Hamiltonian cycle.

The question of the existence of Hamiltonian nonlinear binary 1-perfect codes remained an open for a long time. The existence of Hamiltonian nonlinear binary codes for all admissible lengths $n \geq 15$ was constructively proved in [4].

In this paper, for all admissible lengths $n \geq 13$, we construct Hamiltonian nonlinear ternary 1-perfect codes, and for all admissible lengths $n \geq 21$, we construct Hamiltonian nonlinear quaternary 1-perfect codes. The existence of Hamiltonian nonlinear q-ary 1perfect codes of length $N=q n+1$ is reduced to the question of the existence of such codes of length n. Consequently, for $q=p^{r}$, where p is prime, $r \geq 1$ there exist Hamiltonian nonlinear q-ary 1-perfect codes of length $n=\left(q^{m}-1\right) /(q-1), m \geq 2$. If $q=2,3,4$, then $m \neq 2$. If $q=2$, then $m \neq 3$.

It remains an open question of the existence of a Hamiltonian cycle in the graph formed by the two middle levels of n-dimensional binary hypercube, where n is odd. Also, is not proved Lovász conjecture, which states that the every finite connected vertex-transitive graph contains a Hamiltonian path.

Let \mathcal{H}_{q}^{n} be a q-ary Hamming code of length n. The parity-check matrix of Hamming code \mathcal{H}_{q}^{n} of length $n=\left(q^{m}-1\right) /(q-1)$ consists of n pairwise linearly independent column vectors \mathbf{h}_{i}, where $\mathbf{h}_{i}^{T} \in \mathbf{F}_{q}^{m}, i \in\{1, \ldots, n\}$. The set $\mathbf{F}_{q}^{m} \backslash\{\mathbf{0}\}$ generates a projective space $P G_{m-1}(q)$ of dimension ($m-1$) over the Galois field \mathbf{F}_{q}. In this space, points correspond to the column vectors of the parity-check matrix of the Hamming code \mathcal{H}_{q}^{n} and the three points i, j, k lie on the same line if the corresponding column vectors $\mathbf{h}_{\mathbf{i}}, \mathbf{h}_{\mathbf{j}}, \mathbf{h}_{\mathbf{k}}$ are linearly
dependent.
Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{F}_{q}^{n}$. Then, the support of vector \mathbf{x} is the set $\operatorname{supp}(\mathbf{x})=$ $\left\{i: x_{i} \neq 0\right\}$. Consider the vector $\mathbf{x} \in \mathbf{F}_{q}^{n}$ such that its $\operatorname{supp}(\mathbf{x})$ is $m-2$ dimensional hyperplane. Denote by $\mathcal{H}_{q}^{n}(\mathbf{x})$ the set of all vectors $\mathbf{v} \in \mathcal{H}_{q}^{n}$ such that $\operatorname{supp}(\mathbf{v}) \subseteq \operatorname{supp}(\mathbf{x})$. The set $\mathcal{H}_{q}^{n}(\mathbf{x})$ forms in \mathcal{H}_{q}^{n} subcode previous dimension.

Let $N=q n+1=\left(q^{m+1}-1\right) /(q-1)$. In the projective space $P G_{m}(q)$ of dimension m, we consider the pencil of lines through a point i, where $i \in\{1,2, \ldots, N\}$. It is known that the pencil of lines contains n lines which will be denoted by $l_{1}, l_{2}, \ldots, l_{n}$. Denote by $\mathcal{H}_{q}^{N}\left(l_{p}\right)$ the subcode of the code \mathcal{H}_{q}^{N} defined by the line $l_{p}, p \in\{1,2, \ldots, n\}$. Let

$$
R_{i}^{N}=\mathcal{H}_{q}^{N}\left(l_{1}\right)+\mathcal{H}_{q}^{N}\left(l_{2}\right)+\cdots+\mathcal{H}_{q}^{N}\left(l_{n}\right) .
$$

All cosets $R_{i}^{N}+\mathbf{v}$ (where $\mathbf{v} \in \mathcal{H}_{q}^{N}$) form the set of i-components of the Hamming code \mathcal{H}_{q}^{N}. Since the dimension of $\mathcal{H}_{q}^{N}\left(l_{p}\right)$ is $q-1$, it follows that the dimension of R_{i}^{N} is $(q-1) n=q^{m}-1$. See $[3,5]$.

A triple belongs to the line if the support of this triple belongs to the line. Consider the subspace R_{i}^{n} of the Hamming code \mathcal{H}_{q}^{n} of length n. In the projective space $P G_{m-1}(q)$, each line contains $q+1$ points. Therefore, each line contains $q-1$ linearly independent triples with nonzero i th coordinate which form the basis of the subspace $\mathcal{H}_{q}^{n}\left(l_{p}\right)$, where $p \in\{1, l, 2, \ldots,(n-1) / q\}$. Thus the subspace R_{i}^{n} is generated by all triples with nonzero i th coordinate. The dimension of R_{i}^{n} is $q^{m-1}-1$. Let \mathbf{e}_{i} denote the vector of length n in which i th component is 1 and other components are equal to 0 . Let $\lambda \in \mathbf{F}_{q}$. It is known [3], the set

$$
\mathcal{C}_{q}^{n}=\left(\mathcal{H}_{q}^{n} \backslash\left(R_{i}^{n}+\mathbf{u}\right)\right) \cup\left(R_{i}^{n}+\mathbf{u}+\lambda \cdot \mathbf{e}_{i}\right)
$$

is a 1-perfect code of length n. It is said that the code \mathcal{C}_{q}^{n} is obtained from the code \mathcal{H}_{q}^{n} by switching or translation of the i-component $\left(R_{i}^{n}+\mathbf{u}\right)$ of the code \mathcal{H}_{q}^{n}.

2 Main results

Consider the vector $\mathbf{x} \in \mathbf{F}_{q}^{n}$ such that its $\operatorname{supp}(\mathbf{x})$ is $m-2$ dimensional hyperplane. Denote by $\mathbf{F}_{q}^{n}(\mathbf{x})$ the set of all vectors $\mathbf{v} \in \mathbf{F}_{q}^{n}$ such that $\operatorname{supp}(\mathbf{v}) \subseteq \operatorname{supp}(\mathbf{x})$.

Lemma 1. Let $i \notin \operatorname{supp}(\mathbf{x})$ and $\mathbf{u} \in \mathbf{F}_{q}^{n}(\mathbf{x})$. Then, the intersection

$$
\left(R_{i}^{n}+\mathbf{u}\right) \cap \mathbf{F}_{q}^{n}(\mathbf{x})
$$

contains only one vector.
Proof. Let l_{p} be an arbitrary line through the point i. Since $i \notin \operatorname{supp}(\mathbf{x})$, it follows that any line passing through the point i intersects with the hyperplane $\operatorname{supp}(\mathbf{x})$ only at one point. Hence the intersection of $\mathcal{H}_{q}^{n}\left(l_{p}\right) \cap \mathbf{F}_{q}^{n}(\mathbf{x})$ can contain only vectors of weight 0 or 1. It is obvious that $\mathbf{0} \in \mathcal{H}_{q}^{n}\left(l_{p}\right) \cap \mathbf{F}_{q}^{n}(\mathbf{x})$. Since the minimum weight of the nonzero vectors in $\mathcal{H}_{q}^{n}\left(l_{p}\right)$ is equal to 3 , it follows that $\mathcal{H}_{q}^{n}\left(l_{p}\right) \cap \mathcal{R}_{q}^{n}(\mathbf{x})=\{\mathbf{0}\}$. Since the line l_{p} was chosen arbitrarily and set R_{i}^{n} is a subspace, we have $R_{i}^{n} \cap \mathcal{R}_{q}^{n}(\mathbf{x})=\{\mathbf{0}\}$. The lemma is proved.

Obvious that the minimum distance between two distinct vectors in R_{i}^{n} is equal to 3 . Denote by $G\left(R_{i}^{n}\right)$ the minimum distance graph of the set R_{i}^{n}.

Lemma 2. Let $m \geq 3, n=\left(q^{m}-1\right) /(q-1)$. Then, graph $G\left(R_{i}^{n}\right)$ contains a Hamiltonian cycle.
Proof. Consider a cyclic q-ary Gray code of dimension $q^{m-1}-1$. The Gray code defines a linear combinations of the basis vectors of the subspace R_{i}^{n}. Since the subspace R_{i}^{n} is generated by all triples with non-zero i th coordinate, it follows that all basis vectors of the subspace R_{i}^{n} have weight equal to the 3 . Hamming distance between two consecutive vectors in the Gray code is one. Therefore, the distance between two consecutive vectors (the consecutive vectors in the subspace R_{i}^{n} defined by the consecutive vectors of the Gray code) in the subspace R_{i}^{n} is 3 . Thus a cyclic q-ary Gray code of dimension $q^{m-1}-1$ determines a Hamiltonian cycle in the graph $G\left(R_{i}^{n}\right)$. The lemma is proved.

Now we turn to a proof of the main theorem.
Theorem 1. Assume that there exists a nonlinear q-ary 1-perfect code \mathcal{C}_{q}^{n} of length $n=\left(q^{m-1}-1\right) /(q-1), m \geq 3$ such that the minimum distance graph of the code \mathcal{C}_{q}^{n} contains a Hamiltonian cycle. Then, there exists a nonlinear q-ary 1-perfect code \mathcal{D}_{q}^{N} of length $N=q n+1$ such that the minimum distance graph of the code \mathcal{D}_{q}^{N} also contains a Hamiltonian cycle.

Proof. Consider the construction of nonlinear q-ary 1-perfect codes proposed in $[2,6]$. This construction is a generalization of the construction from [7]. We assume that the columns of parity-check matrix of the Hamming code \mathcal{H}_{q}^{N} are ordered lexicographically. The vectors of the space \mathbf{F}_{q}^{N} will also be considered as words of length N over an alphabet $\{0,1, \ldots, q-1\}$. Let

$$
\begin{equation*}
\mathcal{D}_{q}^{N}=\bigcup_{\mathbf{c} \in \mathcal{C}_{q}^{n}}\left(R_{i}^{N}+(\mathbf{c} \mid \mathbf{0})\right), \tag{1}
\end{equation*}
$$

where the vector $\mathbf{0} \in \mathbf{F}_{q}^{(q n-n+1)}, i \geq n+1$ and the vertical bar (\mid) denotes concatenation. Formula (1) is a certain modification of the construction from [2, 6]. Lemma 1 implies that the set \mathcal{D}_{q}^{N} is a q-ary 1-perfect code of length $N=q n+1$. The nonlinearity of the code \mathcal{D}_{q}^{N} follows from (1) and the nonlinearity of the code \mathcal{C}_{q}^{n}. It is known that the graph that is a Cartesian product of two Hamiltonian cycles always contains a Hamiltonian cycle. Consequently, hamiltonicity of code \mathcal{D}_{q}^{N} follows from Lemma 2, formula (1) and hamiltonicity of the code \mathcal{C}_{q}^{n}. The theorem is proved.

Statement 1. Let $i \notin \operatorname{supp}(\mathbf{x})$ and $\mathbf{u} \in \mathcal{H}_{q}^{n}$. Then, the intersection

$$
\left(R_{i}^{n}+\mathbf{u}\right) \cap \mathcal{H}_{q}^{n}(\mathbf{x})
$$

contains only one vector.
Proof. Let l_{p} be an arbitrary line through the point i. Since $i \notin \operatorname{supp}(\mathbf{x})$, it follows that any line passing through the point i intersects with the hyperplane $\operatorname{supp}(\mathbf{x})$ only at one
point. Hence, the intersection of $R_{i}^{n} \cap \mathcal{H}_{q}^{n}(\mathbf{x})$ can contain only vectors of weight 0 or 1 . It is obvious that $\mathbf{0} \in \mathcal{H}_{q}^{n}\left(l_{p}\right) \cap \mathcal{H}_{q}^{n}(\mathbf{x})$. Since the minimum weight of nonzero vectors that belong to the subcode $\mathcal{H}_{q}^{n}\left(l_{p}\right)$ is 3, it follows that $\mathcal{H}_{q}^{n}\left(l_{p}\right) \cap \mathcal{H}_{q}^{n}(\mathbf{x})=\{\mathbf{0}\}$. Since the line l_{p} was chosen arbitrarily and set R_{i}^{n} is a subspace, we have $R_{i}^{n} \cap \mathcal{H}_{q}^{n}(\mathbf{x})=\{\mathbf{0}\}$. Next, we show that the number of cosets formed subspace R_{i}^{n} equals the number code vectors belonging to the subcode $\mathcal{H}_{q}^{n}(\mathbf{x})$. The dimension of the code \mathcal{H}_{q}^{n} is equal to $n-m$, and the dimension of R_{i}^{n} is $q^{m-1}-1$. Hence, the number of cosets formed subspace R_{i}^{n} is equal to $q^{\frac{n-1}{q}-m+1}$. Number of codewords in the subcode $\mathcal{H}_{q}^{n}(\mathbf{x})$ is equal to $q^{\frac{n-1}{q}-m+1}$. Thus we have the equality $\left|\left(R_{i}^{n}+\mathbf{u}\right) \cap \mathcal{H}_{q}^{n}(\mathbf{x})\right|=1$. The statement is proved.

Statement 2. Let $N=q n+1=\left(q^{m+1}-1\right) /(q-1)$. Then, the graph $G\left(\mathcal{H}_{q}^{N}\right)$ contains a spanning subgraph which is a Cartesian product of a Hamiltonian cycle of the graph $G\left(\mathcal{H}_{q}^{n}\right)$ and a Hamiltonian cycle of the graph $G\left(R_{i}^{N}\right)$.
Proof. Let $i \notin\{1,2, \ldots, n\}$. Then, by Statement 1 for the Hamming code \mathcal{H}_{q}^{N} we have

$$
\mathcal{H}_{q}^{N}=\bigcup_{\mathbf{c} \in \mathcal{H}_{q}^{n}}\left(R_{i}^{N}+(\mathbf{c} \mid \mathbf{0})\right) .
$$

Hence, the graph $G\left(\mathcal{H}_{q}^{N}\right)$ contains a spanning subgraph which is a Cartesian product of a Hamiltonian cycle of the graph $G\left(\mathcal{H}_{q}^{n}\right)$ and a Hamiltonian cycle of the graph $G\left(R_{i}^{N}\right)$. The statement is proved.

Next, let $q=3$. For $m=2$ all ternary 1-perfect codes of length $n=4$ are equivalent to the ternary Hamming code \mathcal{H}_{3}^{4}. A minimum distance graph of the ternary Hamming code \mathcal{H}_{3}^{4} is a complete graph on nine vertices.

Theorem 2. For $q=3$ and $q=4, m \geq 3$ there exist nonlinear q-ary 1-perfect codes of length $n=\left(q^{m-1}-1\right) /(q-1)$ whose minimum distance graphs contain a Hamiltonian cycle.
Proof. We can construct the nonlinear ternary 1-perfect codes of length $n=13$ by switching of i-components of the ternary Hamming code \mathcal{H}_{3}^{13} and inspect by computer that the minimum distance graphs of these codes contain a Hamiltonian cycle. If we use Statement 2, then the construction of Hamiltonian nonlinear ternary 1-perfect codes of length $n=13$ will be simple. Similarly we can construct the Hamiltonian nonlinear quaternary 1-perfect codes of length $n=21$. The theorem is proved.

References

[1] T. Etzion Nonequivalent q-ary Perfect Codes. SIAM J. Disc. Math. 9 (1996) 413-423.
[2] B. Lindström On group and nongroup perfect codes in q symbols. Math. Scand. 25 (1969) 149-158.
[3] K. T. Phelps, M. Villanueva Ranks of q-ary 1-perfect codes. Des. Codes Cryptogr. 27 (2002) 139-144.
[4] A. M. Romanov On combinatorial Gray codes with distance 3. Disc. Math. Appl. 19 (2009) 383-388.
[5] A. M. Romanov On partitions of q-ary Hamming codes into disjoint components. Diskretn. Anal. Issled. Oper. Ser. 1, 11, (2004) 80-87.
[6] J. Schönheim On linear and nonlinear single-error-correcting q-nary perfect codes. Inform. and Control 12 (1968) 23-26.
[7] Yu. L. Vasil'ev On nongroup close-packed codes. Probl. Kybern. 8 (1962) 337-339.

[^0]: *The work is supported by RFFI (grant 11-01-00997)

