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Abstract

A 1-perfect code Cnq is called Hamiltonian if its minimum distance graph G(Cnq )
contains a Hamiltonian cycle. In this paper, for all admissible lengths n ≥ 13,
we construct Hamiltonian nonlinear ternary 1-perfect codes, and for all admissible
lengths n ≥ 21, we construct Hamiltonian nonlinear quaternary 1-perfect codes.
The existence of Hamiltonian nonlinear q-ary 1-perfect codes of length N = qn + 1
is reduced to the question of the existence of such codes of length n. Consequently,
for q = pr, where p is prime, r ≥ 1 there exist Hamiltonian nonlinear q-ary 1-perfect
codes of length n = (qm − 1)/(q − 1), m ≥ 2. If q = 2, 3, 4, then m 6= 2. If q = 2,
then m 6= 3.

1 Introduction

Let Fn
q be a vector space of dimension n over the Galois field Fq. The Hamming distance

between two vectors x, y ∈ Fn
q is the number of coordinates in which they differ and it

is denote by d(x,y). An arbitrary subset Cnq of Fn
q is called q-ary 1-perfect code of length

n, if for every vector x ∈ Fn
q there exists a unique vector c ∈ Cnq such that d(x, c) ≤ 1. It

is known that q-ary 1-perfect codes of length n exist only if n = (qm − 1)/(q − 1), where
m is a natural number not less than two. We shall assume that the all-zero vector 0 is in
code. A code is called linear if it is a linear space over Fq. The linear 1-perfect codes are
called Hamming codes.

The sum of the vectors x,y ∈ Fn
q is denoted by x + y. Two codes Cnq ,Dn

q ⊆ Fn
q are

said to be isomorphic if there exists a permutation π such that Dn
q = {π(c) : c ∈ Cnq }.

They are said to be equivalent if there exist a vector u ∈ Fn
q and a permutation π such
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that Dn
q = {π(c) + u : c ∈ Cnq }. There exist at least qq

cn
pairwise nonequivalent q-ary

1-perfect codes of length n where a constant c = 1
q
− ε. See [1, 2, 6, 7].

The minimum distance of a code Cnq ⊆ Fn
q is defined by d(Cnq ) = min{d(x,y) : x,y ∈

Cnq ,x 6= y}. Let Cnq be a 1-perfect code of length n. Then, d(Cnq ) = 3 and the minimum
distance graph of the code Cnq is a graph G(Cnq ) whose vertex set is Cnq and vertices
x,y ∈ Cnq are adjacent if and only if d(x,y) = 3. A path in a graph is a sequence of
vertices such that two consecutive vertices in this path are connected by at least one
edge. A finite path always has a first vertex, called its start vertex, and a last vertex,
called its end vertex. A cycle is a path such that the start vertex and end vertex are the
same. A cycle that contains each vertex of the graph exactly once is called Hamiltonian
cycle. A 1-perfect code Cnq is called Hamiltonian if its minimum distance graph G(Cnq )
contains a Hamiltonian cycle.

The weight of a vector x ∈ Fn
q is the number of its nonzero coordinates. A vector of

weight 3 of the Hamming code Hn
q is called triple. It is known that the set of all triples of

the code Hn
q generates the code. Therefore, the Hamming codes are Hamiltonian, except

q = 2, m = 2.
A mapping φ : Cnq → Fn

q is called an isometry from the code Cnq to the code φ(Cnq ) if
d(x,y) = d(φ(x), φ(y)) for all x,y ∈ Cnq . Obviously, two codes Cnq and Dn

q are isometric if
there are n permutations τ1, τ2, . . . , τn of q elements in Galois field Fq and permutation σ of
the n coordinates such that Dn

q = {σ(τ1(c1), τ2(c2), . . . , τn(cn)) : c = (c1, c2, . . . , cn) ∈ Cnq }.
For q ≥ 5 there are nonlinear q-ary 1-perfect codes that are isometric to the Hamming

codes. Therefore, for q ≥ 5 and for all admissible lengths there are nonlinear q-ary
1-perfect codes whose minimum distance graphs contain a Hamiltonian cycle.

The question of the existence of Hamiltonian nonlinear binary 1-perfect codes remained
an open for a long time. The existence of Hamiltonian nonlinear binary codes for all
admissible lengths n ≥ 15 was constructively proved in [4].

In this paper, for all admissible lengths n ≥ 13, we construct Hamiltonian nonlinear
ternary 1-perfect codes, and for all admissible lengths n ≥ 21, we construct Hamiltonian
nonlinear quaternary 1-perfect codes. The existence of Hamiltonian nonlinear q-ary 1-
perfect codes of length N = qn+1 is reduced to the question of the existence of such codes
of length n. Consequently, for q = pr, where p is prime, r ≥ 1 there exist Hamiltonian
nonlinear q-ary 1-perfect codes of length n = (qm − 1)/(q− 1), m ≥ 2. If q = 2, 3, 4, then
m 6= 2. If q = 2, then m 6= 3.

It remains an open question of the existence of a Hamiltonian cycle in the graph formed
by the two middle levels of n-dimensional binary hypercube, where n is odd. Also, is not
proved Lovász conjecture, which states that the every finite connected vertex-transitive
graph contains a Hamiltonian path.

Let Hn
q be a q-ary Hamming code of length n. The parity-check matrix of Hamming

code Hn
q of length n = (qm−1)/(q−1) consists of n pairwise linearly independent column

vectors hi, where hT
i ∈ Fm

q , i ∈ {1, . . . , n}. The set Fm
q \ {0} generates a projective space

PGm−1(q) of dimension (m− 1) over the Galois field Fq. In this space, points correspond
to the column vectors of the parity-check matrix of the Hamming code Hn

q and the three
points i, j, k lie on the same line if the corresponding column vectors hi,hj,hk are linearly
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dependent.
Let x = (x1, x2, . . . , xn) ∈ Fn

q . Then, the support of vector x is the set supp(x) =
{i : xi 6= 0}. Consider the vector x ∈ Fn

q such that its supp(x) is m − 2 dimensional
hyperplane. Denote by Hn

q (x) the set of all vectors v ∈ Hn
q such that supp(v) ⊆ supp(x).

The set Hn
q (x) forms in Hn

q subcode previous dimension.
Let N = qn + 1 = (qm+1 − 1)/(q − 1). In the projective space PGm(q) of dimension

m, we consider the pencil of lines through a point i, where i ∈ {1, 2, . . . , N}. It is known
that the pencil of lines contains n lines which will be denoted by l1, l2, . . . , ln. Denote by
HN

q (lp) the subcode of the code HN
q defined by the line lp, p ∈ {1, 2, . . . , n}. Let

RN
i = HN

q (l1) +HN
q (l2) + · · ·+HN

q (ln).

All cosets RN
i + v (where v ∈ HN

q ) form the set of i-components of the Hamming
code HN

q . Since the dimension of HN
q (lp) is q − 1, it follows that the dimension of RN

i is
(q − 1)n = qm − 1. See [3, 5].

A triple belongs to the line if the support of this triple belongs to the line. Consider
the subspace Rn

i of the Hamming code Hn
q of length n. In the projective space PGm−1(q),

each line contains q + 1 points. Therefore, each line contains q − 1 linearly independent
triples with nonzero ith coordinate which form the basis of the subspace Hn

q (lp), where
p ∈ {1, l, 2, . . . , (n−1)/q}. Thus the subspace Rn

i is generated by all triples with nonzero
ith coordinate. The dimension of Rn

i is qm−1 − 1. Let ei denote the vector of length n in
which ith component is 1 and other components are equal to 0. Let λ ∈ Fq. It is known
[3], the set

Cnq =
(
Hn

q \ (Rn
i + u)

)
∪ (Rn

i + u + λ · ei)
is a 1-perfect code of length n. It is said that the code Cnq is obtained from the code Hn

q

by switching or translation of the i-component (Rn
i + u) of the code Hn

q .

2 Main results

Consider the vector x ∈ Fn
q such that its supp(x) is m−2 dimensional hyperplane. Denote

by Fn
q (x) the set of all vectors v ∈ Fn

q such that supp(v) ⊆ supp(x).

Lemma 1. Let i /∈ supp(x) and u ∈ Fn
q (x). Then, the intersection

(Rn
i + u) ∩ Fn

q (x)

contains only one vector.

Proof. Let lp be an arbitrary line through the point i. Since i /∈ supp(x), it follows that
any line passing through the point i intersects with the hyperplane supp(x) only at one
point. Hence the intersection of Hn

q (lp)∩Fn
q (x) can contain only vectors of weight 0 or 1.

It is obvious that 0 ∈ Hn
q (lp) ∩ Fn

q (x). Since the minimum weight of the nonzero vectors
in Hn

q (lp) is equal to 3, it follows that Hn
q (lp)∩Rn

q (x) = {0}. Since the line lp was chosen
arbitrarily and set Rn

i is a subspace, we have Rn
i ∩Rn

q (x) = {0}. The lemma is proved.
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Obvious that the minimum distance between two distinct vectors in Rn
i is equal to 3.

Denote by G(Rn
i ) the minimum distance graph of the set Rn

i .

Lemma 2. Let m ≥ 3, n = (qm−1)/(q−1). Then, graph G(Rn
i ) contains a Hamiltonian

cycle.

Proof. Consider a cyclic q-ary Gray code of dimension qm−1 − 1. The Gray code defines
a linear combinations of the basis vectors of the subspace Rn

i . Since the subspace Rn
i is

generated by all triples with non-zero ith coordinate, it follows that all basis vectors of
the subspace Rn

i have weight equal to the 3. Hamming distance between two consecutive
vectors in the Gray code is one. Therefore, the distance between two consecutive vectors
(the consecutive vectors in the subspace Rn

i defined by the consecutive vectors of the
Gray code) in the subspace Rn

i is 3. Thus a cyclic q-ary Gray code of dimension qm−1− 1
determines a Hamiltonian cycle in the graph G(Rn

i ). The lemma is proved.
Now we turn to a proof of the main theorem.

Theorem 1. Assume that there exists a nonlinear q-ary 1-perfect code Cnq of length
n = (qm−1 − 1)/(q − 1), m ≥ 3 such that the minimum distance graph of the code Cnq
contains a Hamiltonian cycle. Then, there exists a nonlinear q-ary 1-perfect code DN

q of
length N = qn+ 1 such that the minimum distance graph of the code DN

q also contains a
Hamiltonian cycle.

Proof. Consider the construction of nonlinear q-ary 1-perfect codes proposed in [2, 6].
This construction is a generalization of the construction from [7]. We assume that the
columns of parity-check matrix of the Hamming code HN

q are ordered lexicographically.
The vectors of the space FN

q will also be considered as words of length N over an alphabet
{0, 1, . . . , q − 1}. Let

DN
q =

⋃
c∈Cnq

(
RN

i + (c | 0)
)
, (1)

where the vector 0 ∈ F(qn−n+1)
q , i ≥ n+ 1 and the vertical bar ( | ) denotes concatenation.

Formula (1) is a certain modification of the construction from [2, 6]. Lemma 1 implies
that the set DN

q is a q-ary 1-perfect code of length N = qn + 1. The nonlinearity of the
code DN

q follows from (1) and the nonlinearity of the code Cnq . It is known that the graph
that is a Cartesian product of two Hamiltonian cycles always contains a Hamiltonian
cycle. Consequently, hamiltonicity of code DN

q follows from Lemma 2, formula (1) and
hamiltonicity of the code Cnq . The theorem is proved.

Statement 1. Let i /∈ supp(x) and u ∈ Hn
q . Then, the intersection

(Rn
i + u) ∩Hn

q (x)

contains only one vector.

Proof. Let lp be an arbitrary line through the point i. Since i /∈ supp(x), it follows that
any line passing through the point i intersects with the hyperplane supp(x) only at one
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point. Hence, the intersection of Rn
i ∩Hn

q (x) can contain only vectors of weight 0 or 1. It
is obvious that 0 ∈ Hn

q (lp) ∩ Hn
q (x). Since the minimum weight of nonzero vectors that

belong to the subcode Hn
q (lp) is 3, it follows that Hn

q (lp) ∩ Hn
q (x) = {0}. Since the line

lp was chosen arbitrarily and set Rn
i is a subspace, we have Rn

i ∩ Hn
q (x) = {0}. Next,

we show that the number of cosets formed subspace Rn
i equals the number code vectors

belonging to the subcode Hn
q (x). The dimension of the code Hn

q is equal to n −m, and
the dimension of Rn

i is qm−1−1. Hence, the number of cosets formed subspace Rn
i is equal

to q
n−1
q
−m+1. Number of codewords in the subcode Hn

q (x) is equal to q
n−1
q
−m+1. Thus we

have the equality | (Rn
i + u) ∩Hn

q (x) | = 1. The statement is proved.

Statement 2. Let N = qn + 1 = (qm+1 − 1)/(q − 1). Then, the graph G(HN
q ) contains

a spanning subgraph which is a Cartesian product of a Hamiltonian cycle of the graph
G(Hn

q ) and a Hamiltonian cycle of the graph G(RN
i ).

Proof. Let i /∈ {1, 2, . . . , n}. Then, by Statement 1 for the Hamming code HN
q we have

HN
q =

⋃
c∈Hn

q

(
RN

i + (c | 0)
)
.

Hence, the graph G(HN
q ) contains a spanning subgraph which is a Cartesian product of

a Hamiltonian cycle of the graph G(Hn
q ) and a Hamiltonian cycle of the graph G(RN

i ).
The statement is proved.

Next, let q = 3. For m = 2 all ternary 1-perfect codes of length n = 4 are equivalent
to the ternary Hamming code H4

3. A minimum distance graph of the ternary Hamming
code H4

3 is a complete graph on nine vertices.

Theorem 2. For q = 3 and q = 4, m ≥ 3 there exist nonlinear q-ary 1-perfect codes
of length n = (qm−1 − 1)/(q − 1) whose minimum distance graphs contain a Hamiltonian
cycle.

Proof. We can construct the nonlinear ternary 1-perfect codes of length n = 13 by
switching of i-components of the ternary Hamming code H13

3 and inspect by computer
that the minimum distance graphs of these codes contain a Hamiltonian cycle. If we
use Statement 2, then the construction of Hamiltonian nonlinear ternary 1-perfect codes
of length n = 13 will be simple. Similarly we can construct the Hamiltonian nonlinear
quaternary 1-perfect codes of length n = 21. The theorem is proved.
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