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Abstract

In this work, we investigate various arithmetic properties of the function ppo(n),
the number of overpartition pairs of n into odd parts. We obtain a number of
Ramanujan type congruences modulo small powers of 2 for ppo(n). For a fixed
positive integer k, we further show that ppo(n) is divisible by 2k for almost all n.
We also find several infinite families of congruences for ppo(n) modulo 3 and two
formulae for ppo(6n + 3) and ppo(12n) modulo 3.
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1 Introduction and statement of results

An overpartition of the positive integer n is a nonincreasing sequence of natural numbers
whose sum is n in which the first occurrence of a number may be overlined. Let p(n)
denote the number of overpartitions of n. For convenience, we assume that there is only
one overpartition of zero denoted by ∅. Properties of p(n) have been the subject of many
recent studies [5, 6, 8, 9, 11, 13,14].

Recently, Hirschhorn and Sellers [10] studied the arithmetic properties of overpartitions
using only odd parts. More recently, arithmetic properties of overpartition pairs have been
considered by Bringmann and Lovejoy [3], Chen and the author [4], and Kim [12]. In this
paper, we are concerned with the arithmetic properties of the number of overpartition
pairs of n into odd parts. An overpartition pair into odd parts is a pair of overpartitions
(λ, µ) such that the parts of both overpartitions λ and µ are restricted to be odd integers.
For example, there are 8 overpartition pairs of 2 into odd parts:

(1 + 1, ∅), (1 + 1, ∅), (1, 1), (1, 1), (1, 1), (1, 1), (∅, 1 + 1), (∅, 1 + 1).
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Let ppo(n) denote the number of overpartition pairs of n into odd parts. Then the gener-
ating function for ppo(n) is

PP o(q) =
∞∑
n=0

ppo(n)qn =
(−q; q2)2∞
(q; q2)2∞

=
(q2; q2)6∞

(q; q)4∞(q4; q4)2∞
. (1.1)

Throughout this paper, we assume that q is a complex number with |q| < 1 and we adopt
the following customary q-series notation:

(a; q)∞ =
∞∏
n=1

(1− aqn−1).

In Section 2, we investigate arithmetic behavior of ppo(n) modulo powers of 2. In
particular, we show the following two results.

Theorem 1.1. For any n > 1,

ppo(n) ≡
{

4 (mod 8), if n is an odd square number;
0 (mod 8), otherwise.

Theorem 1.2. Assume the prime factorization of n is given by

n = 2α
∏

puii
∏

q
vj
j

where pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4). Then ppo(n) ≡ 0 (mod 16) if and only if one
of the following holds:

• α > 2,

• α = 1 and at least one number among ui’s and vj’s is odd,

• α = 0 and at least one vj is odd,

• α = 0 and at least one ui is congruent to 3 modulo 4,

• α = 0 and at least two ui are congruent to 1 modulo 4;

At the end of Section 2, we prove the following theorem.

Theorem 1.3. Let k be a positive integer. Then ppo(n) is almost always divisible by 2k,
namely,

lim
X→∞

]{n 6 X : ppo(n) ≡ 0 (mod 2k)}
X

= 1.

In Section 3, we aim to show divisibilities satisfied by ppo(n) with modulus 3.

Theorem 1.4. For α > 0 and all n > 0,

ppo(9
α(9n+ 6)) ≡ 0 (mod 3), (1.2)

ppo(9
α(27n+ 18)) ≡ 0 (mod 3). (1.3)
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Theorem 1.5. For all n > 0,

ppo(6n+ 3) ≡ (−1)nσ(2n+ 1) (mod 3), (1.4)

ppo(12n) ≡ (−1)n+1(σ(n)− σ(n/4)) (mod 3). (1.5)

Here σ(n) denotes the sum of positive divisors of n and σ(x) = 0 if x 6∈ N.

2 Congruences for ppo(n) modulo powers of 2

In this section, we want to establish congruences for ppo(n) modulo small powers of 2.
We will require a number of properties of Ramanujan’s functions ϕ(q) and ψ(q), namely,

ϕ(q) =
∞∑

n=−∞

qn
2

,

ψ(q) =
∞∑
n=0

qn(n+1)/2 =
∞∑

n=−∞

q2n
2−n.

The necessary properties of ϕ(q) and ψ(q) are given in the following lemmas.

Lemma 2.1.

ϕ(q) = (−q; q2)2∞(q2; q2)∞, (2.1)

ψ(q) =
(q2; q2)2∞
(q; q)∞

. (2.2)

Proof. These two identities follow from Jacobi’s triple product identity [1, p.35].

Lemma 2.2.

ϕ(−q2)2 = ϕ(q)ϕ(−q), (2.3)

ϕ(q)2 = ϕ(q2)2 + 4qψ(q4)2. (2.4)

ψ(q)2 = ϕ(q)ψ(q2). (2.5)

Proof. The first identity follows from (2.1). The last two identities can be proved by using
series manipulations, see [1, pp. 40-41] for a proof.

To prove the congruences in this paper, we will frequently use the following congruence
relations without explicitly mentioning it.

Lemma 2.3. For positive prime p, we have

(q; q)p∞ ≡ (qp; qp)∞ (mod p),

ϕ(−q)p ≡ ϕ(−qp) (mod p).
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Proof. The first congruence identity follows from the following fact

(1− q)p ≡ 1− qp (mod p).

The second congruence identity follows from the first congruence identity and the product
representation for ϕ(−q).

By the product formula (2.1) for ϕ(q), we have

PP o(q) =
∞∑
n=0

ppo(n)qn =
ϕ(q)

ϕ(−q)
. (2.6)

We shall begin by proving the following Ramanujan type identities, which are essential
to congruences modulo small powers of two in this section.

Theorem 2.1.

∞∑
n=0

ppo(2n)qn =
ϕ(q)2

ϕ(−q)2
, (2.7)

∞∑
n=0

ppo(2n+ 1)qn = 4
ψ(q2)2

ϕ(−q)2
. (2.8)

Proof. By (2.3) and (2.6), we have

PP o(q) =
ϕ(q)2

ϕ(q)ϕ(−q)
=

ϕ(q)2

ϕ(−q2)2
.

Applying (2.4), we find that

PP o(q) =
ϕ(q2)2

ϕ(−q2)2
+ 4q

ψ(q4)2

ϕ(−q2)2
,

which is equivalent to identities (2.7) and (2.8).
Next, we wish to derive the generating function for ppo(4n+ 2) from (2.7).

Theorem 2.2.
∞∑
n=0

ppo(4n+ 2)qn = 8
(q2; q2)12∞
(q; q)12∞

. (2.9)

Proof. Applying (2.3) in (2.7), we obtain that

∞∑
n=0

ppo(2n)qn =
ϕ(q)4

ϕ(−q2)4
.

Choosing the terms for which the power of q is odd, we see that

∞∑
n=0

ppo(4n+ 2)q2n+1 =
ϕ(q)4 − ϕ(−q)4

2ϕ(−q2)4
.
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By (2.4), we have

ϕ(q)4 − ϕ(−q)4 = (ϕ(q)2 + ϕ(−q)2)(ϕ(q)2 − ϕ(−q)2) = 16qϕ(q2)2ψ(q4)2.

Combining these two identities together, we find that

∞∑
n=0

ppo(4n+ 2)q2n+1 = 8q
ϕ(q2)2ψ(q4)2

ϕ(−q2)4
.

Dividing both sides by q and replacing q2 by q, we get

∞∑
n=0

ppo(4n+ 2)qn = 8
ϕ(q)2ψ(q2)2

ϕ(−q)4
,

which implies the desired result.
As an immediate consequence of the above theorem, we obtain the following congru-

ences.

Corollary 2.1. For all n > 0,

ppo(12n+ 6) ≡ 0 (mod 24), (2.10)

ppo(12n+ 10) ≡ 0 (mod 24). (2.11)

We now want to prove the following theorem with the aid of Theorem 2.1.

Theorem 2.3. Let d(n) denote the number of positive divisors of n. Then for all n > 1,

ppo(2n) ≡ 8(d(n)− d(n/4)) (mod 16), (2.12)

ppo(2n− 1) ≡ 4(−1)n−1σ(2n− 1) (mod 32). (2.13)

Here d(x) = 0 if x 6∈ N.

Proof. Using (2.5) in (2.8), we find that

∞∑
n=0

ppo(2n+ 1)qn = 4
ψ(−q)4

ϕ(−q)4
.

Now it is known that (see, e.g., Berndt [2, Chapter 3])

ϕ(q)4 = 1 + 8
∞∑
n=1

nqn

1 + (−q)n
, (2.14)

ψ(q)4 =
∞∑
n=0

σ(2n+ 1)qn. (2.15)
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This gives
∞∑
n=0

ppo(2n+ 1)qn ≡ 4
∞∑
n=0

σ(2n+ 1)(−q)n (mod 32).

Equating the coefficients qn, we obtain (2.13). By (2.3), we see that

∞∑
n=0

pp(2n)qn =
ϕ(−q)4ϕ(−q2)4

ϕ(−q)8
.

Applying (2.14) and the following congruence relation

ϕ(−q)8 ≡ 1 (mod 16),

we get

∞∑
n=0

pp(2n)qn ≡ 1 + 8
∞∑
n=1

n(−q)n

1− (−q)n
+ 8

∞∑
n=1

n(−q2)n

1− (−q2)n
(mod 16)

≡ 1 + 8
∞∑
n=0

q2n+1

1 + q2n+1
+ 8

∞∑
n=0

q4n+2

1 + q4n+2
(mod 16)

≡ 1 + 8
∑
4-n

qn

1− qn
(mod 16)

≡ 1 + 8
∞∑
n=1

(d(n)− d(n/4))qn (mod 16).

This implies (2.12) and thus the proof is complete.
From Theorem 2.3, we have the following Ramanujan type congruences.

Corollary 2.2. For all n > 0,

ppo(4n+ 3) ≡ 0 (mod 16), (2.16)

ppo(8n+ 7) ≡ 0 (mod 32). (2.17)

Proof. Using the elementary fact that σ(4n+ 3) is divisible by 4 and σ(8n+ 7) is divisible
by 8, we immediately have the desired congruences.

With Theorem 2.3 in hand, we are now in a position to give a proof of Theorem 1.1.
It is worth mentioning that Kim’s [12] combinatorial argument for the characterization of
the number of overpartition pairs of n modulo 8 can also work for Theorem 1.1.
Proof of Theorem 1.1. From (2.12) and (2.13), it follows that for any n > 1,

pp(2n) ≡ 0 (mod 8)

and
pp(2n− 1) ≡ 4σ(2n− 1) (mod 8).
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Since σ(2n−1) is odd if and only if 2n−1 is a perfect square, we conclude that pp(2n−1)
is divisible by 8 if 2n − 1 is not an odd perfect square and pp(2n − 1) is congruent to 4
modulo 8 if 2n− 1 is an odd perfect square. This completes the proof.

By Theorem 2.3 and elementary properties of functions d(n) and σ(n), it is not hard
to get Theorem 1.2, and we omit the details here. Theorem 1.2 produces infinite many
congruences modulo 16. We record two corollaries as follows.

Corollary 2.3. Let p be an odd prime and let r be an integer with 1 6 r < p. Then, for
all n > 0,

ppo(2p(pn+ r)) ≡ 0 (mod 16).

Corollary 2.4. Let p be a prime such that p ≡ 1 (mod 4) and let r be an integer with
1 6 r < p. Then, for all n > 0,

ppo(p
3(pn+ r)) ≡ 0 (mod 16).

To conclude this section, we shall show Theorem 1.3 by modular forms. It is worth
mentioning that for any fixed positive integer k, Gordon and Ono [7] have proven that
the number of partitions of n into distinct parts is divisible by 2k for almost all n, and
Bringmann and Lovejoy [3] showed that the number of overpatition pairs of n is also
divisible by 2k for almost all n.
Proof of Theorem 1.3. Recall that the Dedekind eta function η(z) is defind by

η(z) = q1/14
∞∏
n=1

(1− qn),

where q = e2πiz and z is in the upper plane of complex plane. Now we can rewrite
PP o(q

24) as the following eta quotient

F (z) =
η(48z)6

η(24z)4η(96z)2
.

Let

fk(z) =
η(24z)2

k

η(48z)2k−1 .

Observing that f1(z) ≡ 1 (mod 2), it is not hard to establish the following fact by induc-
tion

fk(z) ≡ 1 (mod 2k).

Define Gk(z) by

Gk(z) = F (z)fk(z) =
η(24z)2

k−4

η(48z)2k−1−6η(96z)2
.

Thus,
Gk(z) ≡ F (z) (mod 2k).
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Without loss of generality, we may assume that k > 3. By [15, Thm 1.64 and Thm
1.65], it is not hard to check that Gk(z) is a holomorphic modular form of weight 2k−2 on
the congruence subgroup Γ0(1152). For the background on modular forms, see Ono [15].
From the deep theorem of Serre [15, p. 43], it follows that the Fourier coefficients of Gk(z)
is almost always divisible by 2k and so are the Fourier coefficients of F (z). Now

F (z) =
∞∑
n=0

ppo(n)q24n,

we see that almost all n have the property that ppo(n) is a multiple of 2k.

3 Congruences for ppo(n) modulo 3

In this section, we aim to show Theorems 1.4 and 1.5. Before proving Theorem 1.4, we
first give the following theorem.

Theorem 3.1. For all n > 0,

ppo(3n) ≡ ppo(27n) (mod 3), (3.1)

ppo(9n+ 6) ≡ 0 (mod 3), (3.2)

ppo(27n+ 18) ≡ 0 (mod 3). (3.3)

The following 3-dissections of ϕ(−q) and ψ(q) are useful for the proof of Theorem 3.1.

Lemma 3.1.

ψ(q) = A(q3) + qψ(q9), (3.4)

ϕ(−q) = ϕ(−q9)− 2qB(q3), (3.5)

where

A(q) =
(q2; q2)∞(q3; q3)2∞
(q; q)∞(q6; q6)∞

, B(q) =
(q; q)∞(q6; q6)2∞

(q2; q2)∞(q3; q3)∞
.

Proof. Proofs of these two identities can be found in [1, p. 49].
Proof of Theorem 3.1. In this proof, all congruences hold to the modulus 3. By Lemma
2.3, we see that

PP o(q) ≡
ϕ(−q)ϕ(−q2)2

ϕ(−q3)
.

Applying 3-dissection (3.5) of ϕ(−q), we have

∞∑
n=0

ppo(n)qn =
1

ϕ(−q3)
(ϕ(−q9)− 2qB(q3))(ϕ(−q18)− 2q2B(q6))2.
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Choosing the terms for which the power of q is a multiple of 3, replacing q3 by q, we
obtain

∞∑
n=0

ppo(3n)qn ≡ 1

ϕ(−q)
(ϕ(−q3)ϕ(−q6)2 − 4qB(q)B(q2)ϕ(−q6)).

By the the following identity due to Hirschhorn and Sellers [10, Lemma 3.4]

(q3; q3)3∞
(q; q)∞

− 4q
(q12; q12)3∞
(q4; q4)∞

=
(q; q)3∞(q6; q6)2∞

(q2; q2)2∞(q3; q3)∞
≡ (q2; q2)∞(q6; q6)∞,

we see that

ϕ(−q3)ϕ(−q6)− 4qB(q)B(q2) =
(q3; q3)2∞(q6; q6)∞

(q12; q12)∞
− 4q

(q; q)∞(q6; q6)∞(q12; q12)2∞
(q3; q3)∞(q4; q4)∞

=
(q; q)∞(q6; q6)∞

(q3; q3)∞(q12; q12)∞

(
(q3; q3)3∞
(q; q)∞

− 4q
(q12; q12)3∞
(q4; q4)∞

)
≡ (q; q)∞(q2; q2)∞(q6; q6)2∞

(q3; q3)∞(q12; q12)∞
.

Thus,

∞∑
n=0

ppo(3n)qn ≡ ϕ(−q6)
ϕ(−q)

· (q; q)∞(q2; q2)∞(q6; q6)2∞
(q3; q3)∞(q12; q12)∞

≡ (q6; q6)4∞
(q3; q3)∞(q12; q12)2∞

ψ(q) (3.6)

=
(q6; q6)4∞

(q3; q3)∞(q12; q12)2∞
(A(q3) + qψ(q9)), (3.7)

where the last equality is obtained by the 3-dissection (3.4) of ψ(q). From (3.7), we
immediately deduce that for n > 0,

ppo(9n+ 6) ≡ 0

and

∞∑
n=0

ppo(9n)qn ≡ (q2; q2)4∞
(q; q)∞(q4; q4)2∞

A(q)

≡ (q3; q3)∞(q6; q6)∞
(q12; q12)∞

(q; q2)∞(q4; q4)∞ (3.8)

=
(q3; q3)∞(q6; q6)∞

(q12; q12)∞

∞∑
n=−∞

(−1)nq2n
2+n. (3.9)
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Here the last equality is obtained by Jacobi’s triple product identity. Because there are
no integers n such that 2n2 + n congruent to 2 modulo 3, we conclude that

ppo(27n+ 18) ≡ 0.

Since 2n2 + n is divisible by 3 unless n is congruent to 2 modulo 3, we have

∞∑
n=−∞
3|2n2+n

q2n
2+n =

∞∑
n=−∞

q2(3n)
2+3n +

∞∑
n=−∞

q2(3n+1)2+3n+1

=
∞∑

n=−∞

(q3)n(3n+1)/2.

From (3.9), we get

∞∑
n=0

ppo(27n)q3n ≡ (q3; q3)∞(q6; q6)∞
(q12; q12)∞

∞∑
n=−∞
3|2n2+n

(−1)nq2n
2+n

=
(q3; q3)∞(q6; q6)∞

(q12; q12)∞

∞∑
n=−∞

(−q3)n(3n+1)/2.

Therefore,

∞∑
n=0

ppo(27n)qn ≡ (q; q)∞(q2; q2)∞
(q4; q4)∞

∞∑
n=−∞

(−q)n(3n+1)/2

=
(q; q)∞(q2; q2)∞

(q4; q4)∞
· (q;−q3)∞(−q2;−q3)∞(−q3;−q3)∞

=
(q6; q6)5∞

(q3; q3)2∞(q12; q12)2∞
· (q; q)2∞

(q2; q2)∞
.

It is easy to check that

(q6; q6)4∞
(q3; q3)∞(q12; q12)2∞

· (q2; q2)2∞
(q; q)∞

≡ (q6; q6)5∞
(q3; q3)2∞(q12; q12)2∞

· (q; q)2∞
(q2; q2)∞

(mod 3),

from which we have

∞∑
n=0

ppo(3n)qn ≡
∞∑
n=0

ppo(27n)qn (mod 3).

The desired result now follows by equating coefficients of qn, n > 0, on both sides above.
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With Theorem 3.1 in hand, Theorem 1.4 follows immediately by induction on α.
Finally, we turn to show Theorem 1.5.
Proof of Theorem 1.5. From (3.6), we see that

∞∑
n=0

ppo(3n)qn ≡ ϕ(q)2ϕ(−q2)2 (mod 3). (3.10)

By the 2-dissection (2.3) of ϕ(q)2, it is not hard to get that

ϕ(q)2ϕ(−q2)2 = ϕ(−q4)4 + 4qψ(−q2)4.

It immediately follows that

∞∑
n=0

pp0(6n+ 3)qn ≡ ψ(−q)4 (mod 3), (3.11)

∞∑
n=0

ppo(6n)qn ≡ ϕ(−q2)4 (mod 3). (3.12)

By (2.15) and the following identity (see, e.g., Berndt [2, p. 59])

ϕ(q)4 = 1 + 8
∞∑
n=1

(σ(n)− 4σ(n/4))qn,

we obtain the desired results.
As a consequence of Theorem 1.5, we have the following corollaries.

Corollary 3.1. Let p be prime with p ≡ 2 (mod 3) and let r be an integer with 1 6 r < p.
Then, for all s > 0, n > 0,

ppo(3p
2s+1(pn+ r)) ≡ 0 (mod 3).

Proof. Note that σ(p2s+1) = p2s+2−1
p−1 is divisible by 3 and σ(p2s+1(pn+r)) = σ(p2s+1)σ(pn+

r), so the result follows.

Corollary 3.2. Let p be prime with p ≡ 1 (mod 3) and let r be an integer with 1 6 r < p.
Then, for all s > 0, n > 0,

ppo(3p
3s+2(pn+ r)) ≡ 0 (mod 3).

Proof. Since σ(p3s+2) is divisible by 3, it is not hard to obtain the result by using the fact
that σ(p3s+2(pn+ r)) = σ(p3s+2)σ(pn+ r).

Corollary 3.3. For all n > 0,

(−1)nppo(24n+ 12) ≡ ppo(6n+ 3) (mod 3).
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Proof. From (1.5), we see that

ppo(24n+ 12) ≡ σ(2n+ 1)− σ
(

2n+ 1

4

)
≡ σ(2n+ 1) (mod 3),

and so
(−1)nppo(24n+ 12) ≡ (−1)nσ(2n+ 1) ≡ ppo(6n+ 3) (mod 3).

This completes the proof.
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