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Abstract

Let k[V ] be the space of functions from a finite vector space into the algebraically
closure of its field of scalars. This paper describes the lattice of subspaces of k[V ]
which are invariant under the affine group AGL(V ). The description provides a
simple method for finding the submodule generated by any set of functions given as
polynomials in the standard coordinates.

1 Introduction

This paper concerns the vector space k[V ] of functions from a finite vector space to an
algebraically closed field of the same characteristic and its kAGL(V )-submodules, the
subspaces which are invariant under the natural action of the affine group AGL(V ). Pre-
viously, this problem has been investigated as a topic in coding theory. The subspaces
in question are precisely the codes of length |V | which are AGL(V )-invariant. In the
case n = 1, all such codes were determined in [10]. Later, in [3], [5] the results of [10]
were reformulated, giving a combinatorial description of the lattice of AGL(V )-invariant
subcodes of k[V ]. The general case was treated in the important paper [6], yielding a
characterization of the AGL(V )-invariant subcodes of k[V ]. The purpose of this paper is
to give an explicit description of the kAGL(V )-submodules of k[V ] (Theorem 9), using
the standard coordinates on V , as well as a combinatorial description of the lattice of sub-
modules (Theorem 7). In [1], a similar study was carried out for the kGL(V )-submodules
of k[V ] and some results from that work will be used here.
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Much of the motivation for this work has been provided by two related topics outside
coding theory.

First, there is quite a large body of research in representation theory, dating back
to the origins of the subject, with the basic theme of studying invariant subspaces of
polynomial rings under the action of classical groups and algebras. As a small sample
we mention [8], [11], [12] and [13]; more can be found in the references of these papers.
The present paper follows in this tradition, particularly from a technical standpoint. For
example, the facts about simple modules in Section 3 below are standard in this theory.

A second connection is to doubly transitive permutation groups. The paper [15] raised
the problem of describing the submodule structure of the doubly transitive permutation
modules over all fields. The present paper supplies the answer for the permutation module
in the natural characteristic for AGL(V ) acting on V .

2 Notation and background

Let q = pt be a prime power and let V = Fn
q be the n-dimensional affine space over Fq. Our

principal object of study is the space k[V ] of functions from V to an algebraically closed
field k of characteristic p. The group GL(V ) of linear automorphisms of V and the group
AGL(V ) = V o GL(V ) of invertible affine transformations act on the basis V of k[V ], so
the latter is a permutation module for these groups. If we choose coordinates for V , then
k[V ] may be viewed as the quotient k[x1, . . . , xn]/(xq

i −xi)
n
i=1 of the polynomial ring, with

the groups GL(V ) and AGL(V ) acting through homogeneous and inhomogeneous linear
substitutions respectively.

2.1 Twisted degrees and types of monomials

The images in k[V ] of the monomials
∏n

i=1 xai
i with 0 6 ai 6 q − 1 form a basis of k[V ].

We will refer to these elements of k[V ] as basic monomials. It is clear what is meant by the
degree of a basic monomial, namely the number a1 + . . .+an. Now the Galois group of Fq,
a cyclic group of order t, acts on k[V ] and in fact permutes the set of basic monomials; a
generator σ raises each basic monomial to its p-th power, with the understanding that xq

i

is replaced by xi. Given a basic monomial m =
∏n

i=1 xai
i , we express each ai p-adically as

ai =
∑t−1

j=0 bijp
j and rewrite m as

∏t−1
j=0[

∏n
i=1 x

bij

i ]p
j
. Let λj =

∑n
i=1 bij. Then the degree

of m is
∑

j λjp
j, and the degree of its image under σ−e is

∑
j λjp

(j−e), where the exponent
(j − e) is the representative of the mod t congruence class of j − e in the range from 0 to
t− 1.

Based on these observations we will now asociate with each basic monomial two t-
tuples of non-negative integers which will be called its type and its twisted degree tuple.
These data will play a fundamental role throughout the rest of this paper.
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Definition 1. Given a basic monomial

m =
t−1∏
j=0

[
n∏

i=1

x
bij

i ]p
j

(1)

with 0 6 bij 6 p − 1, let λj =
∑n

i=1 bij. We define the type of m to be the t-tuple
(λ0, . . . , λt−1).

The e-th twisted degree of m is defined to be the degree of σ−e(m), namely
∑

j λjp
(j−e)

and the twisted degree tuple of m to be the t-tuple (d0, . . . , dt−1), where de is the e-th
twisted degree.

For example, consider the basic monomial xpj

i . Its type is the j-th standard basis
vector ej (0 6 j 6 t− 1) of Zt and its twisted degree tuple is

vj = (pj, . . . , p, 1, . . . , p(j+1)). (2)

The t-tuples ej and vj are related by the formula

pvj−1 − vj = (q − 1)ej, (j = 0, . . . , t− 1). (3)

As another example, if we set
1 = (1, 1, . . . , 1) (4)

then the basic monomial
∏n

i=1 xq−1
i has type n(p−1)1 and twisted degree tuple n(q−1)1.

The galois action induced on these tuples is easy to describe; the type and twisted
degree tuple of σ(m) are obtained from those for m by shifting the entries cyclically one
place to the right.

It is clear that the twisted degree tuple of a basic monomial depends only on its type.
Let T be the set of all types of basic monomials and D the set of all their twisted degree
tuples. Then

T = {λ = (λ0, . . . , λt) ∈ Nt | 0 6 λi 6 n(p− 1)}. (5)

Let Φ : T → D be the map assigning to a type λ its tuple of twisted degrees. It is additive
in the sense that if a type is the sum of two types, then its twisted degree tuple is the
sum of the those of its summands.

Since every type can be written as a nonnegative integral combination of the ej, with
coefficients between 0 and n(p− 1), we have

D = {
t−1∑
j=0

cjvj | 0 6 cj 6 n(p− 1)} (6)

The formula (3) shows that the map Φ is injective and that its image D lies in the
sublattice

M = {(z0, . . . , zt−1) ∈ Zt | pzj − zj+1 ∈ (q − 1)Zt, j = 0, . . . , t− 1} (7)

of Zt. Moreover, it follows from (3) that M is equal to the sublattice of Zt generated by
D.
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Definition 2. We give D the structure of a poset by taking the partial order 6 to be
the one induced by the standard partial order on Zt, i.e. z 6 z′ if and only if zj 6 z′j for
j = 0, . . . , t− 1.

3 Filtrations, and composition factors

3.1 Multiplicity-free modules

We recall that a module having a Jordan-Hölder series is called multiplicity-free if no two
composition factors are isomorphic.

Lemma 3. (a) k[V ] has a unique maximal kAGL(V ) submodule J and k[V ]/J ∼= k is
a trivial module. J has as basis the set of all basic monomials of type 6= n(p− 1)1.

(b) The space of constant functions on V is the unique minimal submodule of k[V ].

(c) J is multiplicity-free as a kAGL(V )-module (or as a kGL(V )-module).

Proof. AGL(V ) acts transitively on the basis V of k[V ] and the stablizer of the origin is
GL(V ). If S is a simple kAGL(V )-module, then it is also simple for GL(V ) (since the
normal p-subgroup V must act trivially) and by Frobenius reciprocity, we have

HomkAGL(V )(k[V ], S) ∼= HomkGL(V )(k, S). (8)

The first part of (a) is immediate from this. The unique basic monomial of type n(p−1)1
is

∏n
i=1 xq−1

i . Since all of the other basic monomials have lower degree, it follows that the
subspace they span is a kAGL(V )-submodule and that the quotient is a one-dimensional
trivial module. Therefore, by the uniqueness just proved, this maximal submodule is J .
The fact that k[V ] has a unique minimal submodule follows from (a) by the self-duality
of the permutation module k[V ]; and it is clear that the constant functions form a one-
dimensional submodule, so (b) holds. Part (c) is a very well known and follows from
the fact that GL(V ) has a cyclic subgroup of order qn − 1 which acts regularly (simply
transitively) on V \ {0}. (In coding theory terms, this expresses the cyclicity of the
GL(V )-invariant subcodes of k[V \ {0}].)

Because of Lemma 3, the submodule lattice of k[V ] will be known once we know
that of J . Further, since J is multiplicity-free, we know by general representation theory
that its submodule lattice is isomorphic to the lattice of ideals in the poset in which the
elements are the isomorphism classes of composition factors, partially ordered by the rule
that one composition factor lies above another if and only if every submodule having the
first composition factor also has the second.
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3.2 The simple modules S(λ)

Next we shall define a set of simple kGL(V )-modules parametrized by the set T of types
of basic monomials. These will turn out to be the composition factors of k[V ]. For λ =
(λ0, . . . λt−1) ∈ T , the corresponding simple module, denoted S(λ), can be constructed
in the following way. Let Vk = k ⊗Fq V . Then the algebraic group GL(Vk) acts (by
homogeneous linear substitutions) on k[x1, . . . , xn] and hence also on k[x1, . . . , xn]/(xp

i )
n
i=1.

For 0 6 λ 6 n(p − 1), let S
λ

= S
λ
(Vk) denote the degree λ component of the graded

algebra k[x1, . . . , xn]/(xp
i )

n
i=1. Then we may form the twisted tensor product

S(λ) = S
λ0 ⊗ (S

λ1
)(p) ⊗ · · · ⊗ (S

λt−1
)(pt−1), (9)

where the powers of p in the superscripts indicate Frobenius twists [9, I.9.10].
It is well known that the GL(Vk)-modules obtained in this way are simple and remain

simple when restricted to the finite group GL(V ). Details and references can be found
in [1, §2.3]. The dimensions and characters of the modules S(λ) are also well known ([1,
§2.4]).

3.3 Twisted Filtrations and the modules Yd

We now consider some natural filtrations of k[V ] which will allow us to show that the
composition factors of J are the modules S(λ) for λ ∈ T \ {n(p− 1)1}

For each natural number r the basic monomials of degree 6 r span an AGL(V )
submodule Fr of k[V ]. Thus we have the degree filtration 0 6 F0 6 F1 6 · · ·Fn(q−1) =
k[V ]. If we let σ also denote the Frobenius map on AGL(V ), then for g ∈ AGL(V ) we
have

gσ−e(m) = σ−e(σe(g)m), (10)

which shows that the e-th twisted degree of each basic monomial occuring in gm is no
greater than the e-th twisted degree of the basic monomial m. Thus we obtain a total of
t filtrations by twisted degrees of AGL(V )-modules 0 6 F

(j)
0 6 F

(j)
1 6 · · ·F (j)

n(q−1) = k[V ],

where F
(j)
r = σ−jFr.

For each d = (d0, . . . , dt−1) ∈ D define the submodule

Yd = Fd0 ∩ F
(1)
d1

∩ . . . ∩ F
(t−1)
dt−1

. (11)

Let Y<d be the subspace of Yd spanned by all basic monomials with twisted degree
tuples < d. This is a kAGL(V )-submodule.

Lemma 4. Let λ = Φ−1(d). Then Yd/Y<d
∼= S(λ).

Proof. It is clear from the definitons that Yd/Y<d has as basis the images of all basic
monomials of type λ. The action of GL(V ) on this module is by homogeneous linear
substitution of the monomials, followed by deletion of all monomials of type different
from λ.
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Consider the k-vector space isomorphism from the tensor product (9) to Yd/Y<d given
by

⊗t−1
j=0(

∏
i

x
bij

i )(pj) 7→
∏

i

x
P

j bijpj

i . (12)

(Here we have kept the same notation for the images of basic monomials in Yd/Y<d.)
The action of GL(V ) on each tensor factor in (9) is by homogeneous linear substitution

of the variables followed by deletion of terms involving a p-th power or higher in any
variable. Since we have an explicit description of the GL(V )-action on both spaces, it is
now elementary to verify that (12) defines a kGL(V )-isomorphism. In checking this, two
things to keep in mind are the definitions of scalar multiplication in the twisted tensor
factors and the fact that in characteristic p, the p-th power of a sum is the sum of the
p-th powers.

It is immediate from Lemma 4 that each S(λ) with λ ∈ T is a composition factor of
k[V ]. They are in fact all of the composition factors since S(λ) has as basis (the images
of) all basic monomials of type λ, while k[V ] is spanned by monomials of all types. More
generally, the same argument proves the following corollary.

Corollary 5. For d ∈ D composition factors of Yd are the simple modules S(λ′) such
that Φ(λ′) 6 d.

Since J = Y<n(p−1)1, its composition factors are the S(λ) for λ 6= n(p−1)1. Lemma 3,
(c) therefore implies that these simple modules are mutually non-isomorphic, while parts
(a) and (b) of the same lemma show that S(n(p− 1)1) ∼= k ∼= S(01).

3.4 The poset (T ,�)

Since the set of composition factors of J is in bijection with T \ {n(p− 1)1}, the partial
ordering on the composition factors of J induces a partial order on this set.

Definition 6. The partial order � on T is the extension of the above partial order on
T \ {n(p− 1)1}, in which n(p− 1)1 is declared to be the unique maximal element.

By virtue of Lemma 3, the lattice of ideals in (T ,�) is isomorphic to the lattice of
kAGL(V )-submodules of k[V ], ordered by inclusion.

The bijection Φ : T → D allows us to compare the ordered sets (T ,�) and (D, 6).
Since the space YΦ(λ) is a kAGL(V )-submodule of k[V ] having as composition factors all
S(λ′) with Φ(λ′) 6 Φ(λ), it follows that Φ is order-preserving.

4 The kAGL(V )-submodule lattice of k[V ]

We are now ready to state our main theorems.
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Theorem 7. The map Φ is an isomorphism of partially ordered sets.

Remark 8. Theorem 7 should be viewed as a reformulation of the characterization of
affine-invariant codes in [6]. The results of [6] are not used in its proof.

Theorem 9. (a) The submodule of k[V ] generated by a basic monomial m of type λ is
equal to YΦ(λ).

(b) The submodule Y<Φ(λ) is the unique maximal submodule of YΦ(λ) and YΦ(λ)/Y<Φ(λ)
∼=

S(λ). The composition factors of YΦ(λ), each occurring with multiplicity one, are
the simple modules S(λ′), for all λ′ such that Φ(λ′) 6 Φ(λ).

(c) For λ 6= n(p− 1)1 any submodule which has S(λ) as a composition factor contains
YΦ(λ).

(d) The submodule of k[V ] generated by an element
∑

αmm, expressed as a linear com-
bination of basic monomials, is the sum of the submodules YΦ(λ) as λ runs over the
types of the basic monomials with non-zero coefficients.

Remark 10. The case t = 1 of Theorem 9 which is a fundamental result in the theory of
generalized Reed-Muller codes, was worked out in detail in [6].

The theorems will be proved in 4.2 below, with the aid of the lemmas in the next
subsection.

4.1

Lemma 11. Let d, d′ ∈ D with d′ 6 d and d− d′ ∈ (q − 1)Zt. Then Φ−1(d′) � Φ−1(d)
in T .

Proof. In view of Lemma 3, (a) and (b), we can assume d, d′ 6= (0, . . . 0), (n(q −
1), . . . , n(q − 1)). The hypothesis on d − d′ implies that S(Φ−1(d)) and S(Φ−1(d′))
are composition factors in the same direct summand of the kGL(V )-module k[V ]. The
submodule structure of these summands is given in [1, Theorems A and C]. (We note that
there are slight notational differences; for example the tuples H in [1, Theorems A] should
be multiplied by q − 1 to give the corresponding twisted degree tuples.) It follows from
these results that any kGL(V )-submodule of k[V ] having S(Φ−1(d)) as a composition
factor also has S(Φ−1(d′)). Hence, the same holds for kAGL(V )-submodules. See also
[6].

Lemma 12. Let λ = (λ0, λ1, . . . , λt−1) and λ′ = (λ′
0, λ

′
1, . . . , λ

′
t−1). Suppose that for some

j, we have λ′
j = λj + 1 and λ′

k = λk for k 6= j. Then λ � λ′.
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Proof. By Lemma 3, we can assume λ, λ′ 6= (0, . . . , 0), n(p − 1)1. We may also as-
sume without loss of generality that j = 0. Let Φ(λ) = d and Φ(λ′) = d′. Set
E = Yd′/(

∑
d′′ Yd′′), where the sum is over all d′′ 6 d′ except for d′ and d. Now

there is no element of D betweeen d and d′, so E has a simple submodule U ∼= S(λ)
with quotient E/U ∼= S(λ′). To prove the lemma, we must show that U is the unique
simple submodule of E. If q = 2 we are in the case of the classical Reed-Muller codes.
This is much simpler than the general case and it is well known and straightforward to
show that k[V ] is uniserial, from which the lemma follows easily. We will not repeat this
case here and assume from now on that q > 2. (An independent proof of the uniseri-
ality of k[V ] in the more general case q = p is given in Theorem 16 below.) Now the
k-span of basic monomial m is invariant under the subgroup of scalar matrices F×

q I and

the character afforded is αI 7→ αdeg(m). Since the degrees of λ and λ′ differ by 1 so
are incongruent modulo q − 1, monomials of these two types afford distinct characters.
Linear independence of characters then shows that any kF×

q I-submodule of E contains
both the λ-component and λ′-component of each of its elements. By hypothesis λ′

0 6= 0,
so there existis a basic monomial m = xa1

1 g of type λ′, in which the degree of x1 has
p-adic expression a1 = b10 + b11p + · · · + b1(t−1)p

t−1, with b10 6= 0. Let m ∈ E/U be
its image. Suppose that a kAGL(V )-submodule of E is not contained in U . Then since
E/U ∼= S(λ′), it follows that the submodule contains an element mapping to m and so
by linear independence of characters the submodule contains the image in E of m. We
are therefore reduced to proving that the kAGL(V )-submodule of E generated by the
image of m contains an element with a nonzero λ-component. We apply the substitution
τ : x1 7→ x1 + 1, with all other variables left fixed. Then τ(m) = m + b10x

a−1
1 g, of which

the last term is of type λ, so the proof is complete.

Remark 13. Let 6 denote the ordering on T induced by the standard ordering of Zt. By
Lemma 12 λ 6 λ′ implies λ � λ′, while Lemma 11 shows for example, in the case t = 2
that (0, 1) � (p, 0).

Recall the definition (7) of the lattice M . As noted in Remark 13 the ordering on T
is a refinement of the standard ordering. Theorem 7 predicts that this should be reflected
in D by the presence of positive elements of M which are not non-negative combinations
of the vj. Equation (3) provides some examples of these positive elements. The following
lemma can be interpreted as saying that (3) accounts for the existence of all such positive
elements.

Lemma 14. Each element y of M ∩ Z+ can be written in the form

y =
t−1∑
j=0

aj(q − 1)ej + bjvj, (13)

with aj > 0 and 0 6 bj 6 p− 1.
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Proof. It follows from (3) that (q−1)Zt 6 M and that M/(q−1)Zt is cyclic of order q−1,
generated by the image of any vi. Therefore, the element y is congruent mod (q − 1)Zt

to bv0, with 0 6 b 6 q − 2. Let b =
∑t−1

j=0 bjp
j with 0 6 bj 6 p − 1. From (3) we obtain

that pjv0 = vj mod (q − 1)Zt. Thus, we may write

y =
t−1∑
j=0

aj(q − 1)ej + bjvj. (14)

Then since y ∈ Zt
+, by considering the entries in each coordinate of y in (14) we see that

aj > 0 for all j.

Lemma 15. Let Φ(λ) = d and Φ(λ′) = d′. If d 6 d′ then λ � λ′.

Proof. By Lemmas 14 and 11 and proceeding inductively, we are reduced to the case d′ =
d + vj. This means that if λ = (λ0, . . . , λj, . . . , λt−1) then λ′ = (λ0, . . . , λj + 1, . . . , λt−1).
So Lemma 12 applies.

4.2 Proofs of theorems

Theorem 7 is immediate from Lemma 15 and the order-preserving property of the bijection
Φ. We turn to Theorem 9. Let m be a basic monomial of type λ. Then m ∈ YΦ(λ) and has
non-zero image in YΦ(λ)/Y<Φ(λ). Therefore the submodule generated by m has S(λ) as a
composition factor. Therefore it also has as a composition factor all S(λ′) with λ′ � λ,
which by Theorem 7 are all of the composition factors of YΦ(λ). This proves (a). Part
(b) follows from Theorem 7 and Corollary 5. We prove (c) by contradiction. Suppose a
submodule N of k[V ] has S(λ) as a composition factor, but N ∩ YΦ(λ) � YΦ(λ). Then by
(b), S(λ) is not a composition factor of N ∩ YΦ(λ) and must therefore be a composition
factor of both summands of (N/N ∩ YΦ(λ))⊕ (YΦ(λ)/N ∩ YΦ(λ)) ∼= (N + YΦ(λ))/N ∩ YΦ(λ),
contrary to the fact that J is multiplicity-free.

To prove (d), let

y =
∑

αmm αm 6= 0 (15)

be a linear combination of basic monomials. Let Ty ⊂ T be the set of types in the
expression (15) and let T ∗

y be the maximal members of this set with respect to �. Next
consider the kAGL(V )-submodule Y generated by y. We have

Y 6
∑
µ∈Ty

YΦ(µ) =
∑

µ∈T ∗
y

YΦ(µ). (16)

Let µ ∈ T ∗
y . Then maximality of µ implies that there is a nonzero homomorphism from∑

µ∈T ∗
y

YΦ(µ) to S(µ) such that every basic monomial of different type from µ mapped to

the electronic journal of combinatorics 19(4) (2012), #P20 9



zero, while the images of basic monomials of type µ form a basis of S(µ). In particular,
the image of y is not zero. Therefore S(µ) is a composition factor of Y . Then (b) implies
that YΦ(µ) 6 Y . Since this holds for each µ ∈ T ∗

y , we have equality in (16).

5 Supplementary results

In this final section we include several observations which are closely related to our main
discussion but not central to it. They are based on very well known material and do not
require the main theorems.

5.1 The radical and socle series of k[V ]

The socle of a module M , denoted soc(M), is the sum of all simple submodules or, equiva-
lently, the maximal semisimple submodule. The radical, rad(M), is the intersection of all
maximal submodules or, equivalently, the smallest submodule by which the quotient mod-
ule is semisimple. The higher radicals and socles are defined recursively in the usual way:
soci(M) is the full preimage in M of soc(M/soci−1(M)) and radi(M) = rad(radi−1(M)).
The radical length `(M) is the smallest index i such that radi(M) = 0. Thus, the socle
series is an ascending chain of submodules with semisimple quotients and the radical series
is a descending chain with semisimple quotients. The radical series and socle series are
said to be equal if they are the same as sets of subspaces, namely rad`(M)−iM = sociM .

Theorem 16. The radical and socle series of k[V ] with respect to kAGL(V ) are equal.
The socle length is N = nt(p− 1) + 1 and the i-th socle layer is isomorphic to⊕

|λ|=i−1

S(λ), (17)

where |λ| = λ0 + · · ·+ λt−1.

Since Theorem 7 completely describes the submodule lattice of k[V ], the socle and
radical series of any submodule can be found directly from this result. Thus, Theorem 16
is just one example. However, Theorem 16 does not require the full strength of Theorem 7
and it may be instructive to see how it can be deduced from the classical prime field case
t = 1.

The restriction of k[V ] to the subgroup V is isomorphic to the regular module for V .
Let soci

V (k[V ]) denote its i-th socle and radi
V (k[V ]) its i-th radical.

Assume now that we are in the prime field case. For 0 6 r 6 n(p− 1), the r-th order
p-ary Generalized Reed-Muller code is simply the subspace Fr in the degree filtration. We
set F−1 = 0. It is a well known fact, first proved in [2], that this family of subcodes of
k[V ] is equal to the socle and radical series with respect to V . (See [4] for the history,
a proof and generalizations, [16, 7.2] for further discussion and references.) We present
here a self-contained proof of this fact.
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Lemma 17. For 0 6 i 6 n(p− 1) + 1 we have

soci
V (k[V ]) = Fi−1 = rad

n(p−1)+1−i
V (k[V ]). (18)

Proof. The action of V on k[V ] is by translation of functions. In coordinates, let f =
f [x1, . . . , xn] be written in terms of the monomial basis, let d be its degree and let u =
−(a1, . . . , an). Then we have a “Taylor expansion”

(uf)(x1, . . . , xn) = f(x1 + a1, . . . , xn + an)

= f(x1, . . . , xn) +
∑

i

ai
∂f

∂xi

+ terms of degree 6 d− 2 ,
(19)

It is immediate from (19) that for 0 6 r 6 n(p− 1), the subspace Fr is a kV -submodule
of k[V ] and that V acts trivially on each quotient Fr/Fr−1. In order to prove the first
equality of the lemma, it suffices to show that the module Fr/Fr−1 is the whole socle, that
is the set of all fixed points, of the module k[V ]/Fr−1. In other words, we must prove that
if f ∈ k[V ] has degree d > r + 1 then there exists u ∈ V such that uf − f 6= 0 mod Fr−1.
It will be enough if uf − f 6= 0 mod Fd−2. Without loss of generality, we can assume
the variable x1 occurs in f . The desired conclusion is then read off from (19) by setting
u = (1, 0, . . . , 0) and recalling that the partial degree of f in x1 is 6 p− 1.

The argument to prove the second equality is dual in some sense. It suffices to prove
that the elements uf − f for f ∈ Fr and u ∈ V generate Fr−1. This will follow if we show
that each basis monomial of degree 6 r− 1 is of the form uf − f for some element f ∈ Fr

and some u ∈ V . Since r − 1 < n(p − 1), at least one variable in such a monomial has
exponent < p− 1 and so by (19) we obtain f by partial integration.

Proof of Theorem 16

AGL(V ) acts on the kV -socle series and from Lemma 17 we see that the subquotient

soci
V (k[V ])/soci−1

V (k[V ]) is isomorphic to the simple kAGL(V )-module S
i−1

(V ⊗Fp k).
Since V acts trivially on any semisimple kAGL(V )-module, it follows that the kV -socle
series is also equal (as sets of subspaces) to the kAGL(V )-socle series and radical series
(and incidentally that k[V ] is a uniserial kAGL(V )-module). Thus, Theorem 16 holds in
the case t = 1.

Returning now to the general case, we can place ourselves in the prime case if we
forget the Fq-structure of V and regard it as an nt-dimensional Fp-vector space, which we
denote by VFp when necessary. Then we apply the prime field case to the nt-dimensional
affine group AGL(VFp). Thus, we have a kAGL(VFp)-isomorphism

soci
V (k[V ])/soci−1

V (k[V ]) ∼= S
i−1

(V ⊗Fp k), (1 6 i 6 nt(p− 1) + 1). (20)
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We next compute the restriction of this module to AGL(V ). As kAGL(V )-modules, we
have

V ⊗Fp k ∼=
t−1⊕
j=0

V
(pj)
k . (21)

At this point, we shall need some general facts about truncated polynomial rings.
For any vector space W over k let S(W ∗) denote the quotient of the symmetric algebra
S(W ∗) of W ∗ by the ideal generated by all elements fp for f ∈ W ∗. This is simply a
coordinate-free description of the truncated polynomial algebra k[y1, . . . , yr]/(y

p
1, . . . , y

p
r ),

where the yi are coordinate functions on W . We claim that for two vector spaces V1 and
V2, we have a canonical isomorphism of graded algebras

S(V ∗
1 )⊗ S(V ∗

2 ) ∼= S(V ∗
1 ⊕ V ∗

2 ).

We start from the familiar case of symmetric algebras, where we have a canonical isomor-
phism of graded algebras

S(V ∗
1 )⊗ S(V ∗

2 ) ∼= S(V ∗
1 ⊕ V ∗

2 )

defined by multiplication. The inverse map is defined by applying the universal mapping
property of S(V ∗

1 ⊕V ∗
2 ) to the linear map V ∗

1 ⊕V ∗
2 → S(V ∗

1 )⊗S(V ∗
2 ) sending (f, g) to f ⊗

1+1⊗g. It is immediate that the ideal generated by p-th powers in S(V ∗
1 ⊕V ∗

2 ) corresponds
under these isomorphisms to the ideal of S(V ∗

1 )⊗S(V ∗
2 ) generated by the elements fp⊗1

and 1 ⊗ gp, for f ∈ V ∗
1 and g ∈ V ∗

2 . Thus, we have induced inverse isomorphisms of the
truncated algebras as claimed. The canonical nature of these isomorphisms ensures that
they are equivariant with respect to the induced group action if V1 and V2 are modules
for some group.

We now apply these observations to the decomposition (21). In degree i−1, we obtain
the isomorphism

S
i−1

(V ⊗Fp k) ∼=
⊕

06λj6n(p−1)
λ0+···+λt−1=i−1

S
λ0

(Vk)⊗ S
λ1

(V
(p)
k )⊗ · · ·Sλt−1

(V
(pt−1)
k ). (22)

In particular, this shows that soci
V (k[V ])/soci−1

V (k[V ]) is a semsisimple kAGL(V )-module,
which implies that the socle and radical series of k[V ] with respect to kAGL(V ) are the
same as the series with respect to kV . Since (22) also gives the composition factors of
the socle layers, the proof of Theorem 16 is complete.

Our proof of Theorem 16 contains the following additional information.

Corollary 18. The radical and socle series of the module k[V ] are equal to each other
and the same (as sets of k-subspaces) whether k[V ] is regarded as a kAGL(V )-module or
as the regular kV -module. In particular, the radical and socle series are independent of
the field over which V is taken to be a vector space.
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5.2 Change of scalars

For completeness, we will give the general formulation for the change of fields involved
in the preceding subsection. Let u be a divisor of t and set v = t/u. When necessary,
we will use the notation VFpu when we wish to consider V as an nv-dimensional vector
space over Fpu . The types of the composition factors of k[V ] with respect to AGL(VFpu )
(or, equivalently, GL(VFpu ) since V acts trivially) are u-tuples ρ = (ρ0, . . . , ρu−1) with
0 6 ρ` 6 nv(p − 1). We will modify the notation of section 3.2 slightly by calling
these Fpu-types and denoting the corresponding simple modules by SFpu (ρ). We keep the
previous notation for the case u = t.

Our aim is to describe the restriction of SFpu (ρ0, . . . , ρu−1) to GL(V ). Given a Fpu-
type ρ = (ρ0, . . . , ρt−1) we consider the set the set of all u× v matrices with entries λ`m,
(0 6 ` 6 u− 1, 0 6 m 6 v − 1), satisfying:

1. 0 6 λ`m 6 n(p− 1);

2. For each `, the sum of the entries in the `-th row equals ρ`.

We obtain an Fq-type from each such matrix by listing the t matrix entries starting from
the top left and moving down successive columns. Thus λ`m is the um + ` entry of the
Fq-type. Let T (ρ) be the set of types obtained in this way.

Theorem 19. As kGL(V )-modules, we have

SFpu (ρ0, . . . , ρu−1) ∼=
⊕

λ∈T (ρ)

S(λ). (23)

Proof. The result follows from the definitions and the additive properties of tensor prod-
ucts, together with the following straightforward generalization of (22). For 0 6 ρ 6
nv(p− 1), we have

S
ρ
(V ⊗Fpu k) ∼=

⊕
06λj6n(p−1)

λ0+···+λv−1=ρ

S
λ0

(Vk)⊗ S
λ1

(V
(pu)
k )⊗ · · ·Sλv−1

(V
(p(t−u))
k ). (24)
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Université VII, Paris, 1982.

the electronic journal of combinatorics 19(4) (2012), #P20 13



[3] P. Charpin. Codes cycliques étendus affines-invariants et antichaines d’un ensemble
partiellement ordonnée. C. R. Acad. Sci. Paris Ser. I Math., 302(5):171–174, 1986.
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