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Abstract

For integers k and l, each greater than 1, suppose that p is a prime with
p ≡ 1 (mod k) and that the kth-power classes mod p induce a coloring of the in-
teger segment [0, p− 1] that admits no monochromatic occurrence of l consecutive
members of an arithmetic progression. Such a coloring can lead to a coloring of
[0, (l − 1)p] that is similarly free of monochromatic l-progressions, and, hence, can
give directly a lower bound for the van der Waerden number W (k, l). P. R. Herwig,
M. J. H. Heule, P. M. van Lambalgen, and H. van Maaren have devised a technique
for splitting and “zipping” such a coloring of [0, p−1] to yield a coloring of [0, 2p−1]
which, for even values of k, is sometimes extendable to a coloring of [0, 2(l − 1)p]
where both new colorings still admit no monochromatic l-progressions. Here we
derive a fast procedure for checking whether such a zipped coloring remains free
of monochromatic l-progressions, effectively reducing a quadratic-time check to a
linear-time check. Using this procedure we find some new lower bounds for van der
Waerden numbers.

Introduction

For given positive integers k and l, the van der Waerden number W (k, l) is the smallest of
the integers N(k, l) such that any k-coloring of the integer segment [1, N(k, l)] is sure to
yield a monochromatic set of l consecutive members of some arithmetic progression. That
these numbers N(k, l) exist was demonstrated constructively by B. L. van der Waerden
[17] in 1927, but his construction, using double induction, was so loose as to be unhelpful
in any attempt to determine either the size or the growth rate of W (k, l).

Efforts to locate the numbers W (k, l) have yielded few general results and a number
of computational results for particular values of k and l. Shelah [15] and Gowers [6] have
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shown general primitive recursive upper bounds for W (k, l), while general results for lower
bounds are attributable to Berlekamp [3] and Moser [13]. Because these upper and lower
bounds still do not put very tight constraints on the values of W (k, l), computational
approaches have been used either to determine some W (k, l) exactly by exhaustive search
(see [4, 16, 2, 11]) or to improve on a lower bound for some W (k, l) by finding ever-
larger values of n for which the integer segment [1, n] can be k-colored so that there is no
monochromatic instance of l consecutive members of an arithmetic progression (see, for
example, [14, 5, 10, 7]).

For convenience we use the term l-progression to mean a sequence of l consecutive
members of an arithmetic progression, and we use l-string to mean l consecutive integers.
For given k, l, and n, we follow Herwig et al. [10] in referring to a k-coloring of [1, n] that
is devoid of monochromatic l-progressions as a van der Waerden certificate and use the
notation W (k, l, n) to represent such a certificate. Of course, the existence of a certificate
W (k, l, n) implies W (k, l) > n.

Several recent works have encoded the construction of a van der Waerden certificate
as a constraint satisfiability problem and have used fast satisfiability-checking algorithms
to find improved lower bounds for van der Waerden numbers. This approach is well
explained in a number of papers (see, for example, [5, 12, 1, 9]). Herwig et al. [10]
used both satisfiability checking and coloring by kth-power classes modulo a prime p (the
latter being a technique introduced in [14]) to devise a clever method for extending some
certificates, W (k, l, n), to certificates W (k, l, 2n), thus doubling a lower bound for W (k, l).
Referring to this method as zipping, they were able to substantially improve lower bounds
for seven van der Waerden numbers.

In this paper we follow Herwig et al. by starting with certificates generated, as in [14],
via kth-power-class coloring modulo a prime p and then investigating what arithmetic
properties might be preserved through the zipping technique. These arithmetic properties
lead to a certificate-checking technique that is both very fast and quite reminiscent of
checking techniques used in finding power-class-based certificates. Using this approach
we are able to provide some new lower bounds for van der Waerden numbers.

Zipping viewed arithmetically

Herwig et al. [10] define a cyclic certificate as a van der Waerden certificate W (k, l, n)
that preserves its certificate property under cyclic translation of its k-coloring mod n.
Given a cyclic certificate W (k, l, n) they attempt to extend it to a certificate W (k, l, 2n)
by applying their zipping procedure. Because every application of this procedure in [10]
begins with a cyclic certificate W (k, l, p) derived from the kth-power classes of a prime, p,
where p = km + 1 for some integer m > 0, we shall focus our discussion on the zipping
of such certificates noting particular arithmetic properties of zipped colorings that yield
a fast mechanism for checking whether the zipping of a certificate W (k, l, p) does or does
not yield a certificate W (k, l, 2p). As indicated in both [14] and [10], once such a cyclic
certificate is in hand, one can join l − 1 copies of it to generate an even longer van der
Waerden certificate and a better lower bound for W (k, l).
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Let Zp represent the ring of integers modulo p. That the non-zero elements of Zp form
a cyclic group under multiplicaton allows us to use the powers of any fixed generator of
this group to generate the kth-power classes mod p. We use Z∗

p to represent this cyclic
group, and we use g to represent a generator of that group (that is, g is a primitive
root mod p). Because p is of the form km + 1, the set C0 =

{
gjk mod p : j = 1, 2, ...,m

}
forms a subgroup of Z∗

p known as the kth-power residues mod p. The k − 1 cosets of C0

are Ci =
{
gjk+imod p : j = 1, 2, ...,m

}
with i = 1, 2, ..., k − 1. Together this collection

{Ci : i = 0, 1, ..., k − 1} gives the kth-power classes mod p. Indeed, we can view these
classes as inducing a k-coloring on [1, p − 1] by considering any element h ∈ [1, p − 1]
to have color i if h ∈ Ci with i ∈ [0, k − 1]. We extend this k-coloring to [0, p − 1] by
coloring 0 with any of the given k colors. In the context of devising a cyclic certificate
W (k, l, p), the only constraint on coloring 0 is that it must be done so as to avoid forming
a monochromatic l-progression, even in a cyclic sense.

Given an even integer k, a prime p ≡ 1 mod k, and a certificate W (k, l, p) derived
from a coloring of [0, p− 1] via the kth-power classes mod p as determined by some fixed
generator g0 of Z∗

p, the following describes the steps of the zipping procedure as given
in [10] as they apply to the zipping of W(k,l,p). With each step we give our arithmetic
interpretation of that step’s action:

1. Spreading: Use the given k-coloring of the segment [1, p] to color the odd num-
bers in [1, 2p] so that the color of 2j − 1 in [1, 2p] is the same as the color of j in
the original coloring of [1, p] for j = 1, 2, . . . , p. Call this partial coloring 1 of [1, 2p].

Comment : Here we note some minor awkwardness. Although we have been viewing
colorings of integer segments [1, n] that begin at 1, it is arithmetically convenient
to translate such a coloring down by one to the segment [0, n− 1]. We transit be-
tween these two views as we describe the steps of zipping and then interpret them
arithmetically.

Arithmetic equivalent : Use the given k-coloring of the segment [0, p−1] to color the
even numbers in [0, 2p − 1] by multiplying the elements of Z∗

p by 2 and assigning
each number, 2m mod 2p, to class C(i+t)mod k, where Ci is the class to which m was
assigned in the given certificate and Ct is the class to which 2 was assigned in the
given certificate. (This is, of course, the class to which 2m belongs as a member
of Z∗

p.) Once again we choose to color 0 arbitrarily. Call this partial arithmetic
coloring 1 of [0, 2p− 1].

Apart from shifting the underlying segment of p numbers from [1, p] to [0, p − 1]
and the consequent interchange of the terms “odd” and “even” as the coloring is
extended to the doubled segment, this multiplicative step is equivalent to spreading.
Note, though, that the addition of t, the index of the kth-power class to which 2
belongs, relabels the colors without altering the coloring pattern. This is not part
of the original spreading step.
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2. Turning: Because power-class-based certificates W (k, l, p) display certain symme-
tries ([10] discusses both point symmetry and reflection symmetry), Herwig et al.
highlight these by way of a grid representation of the certificate wherein rows repre-
sent colors, columns represent the numbers in the segment [1, n] or [1, 2n], and rows
have been arranged so as to clearly demonstrate the symmetry of the coloring. With
this arrangement of rows and the resulting subscript relabeling of colors (away from
power-class labeling), the authors suggest that partial coloring 1 now be “turned
upside down”. That is, under the symmetry-imposed labeling of the k colors of our
certificate as c1, c2, . . . , ck, alter partial coloring 1 by substituting color ck+1−i for
each occurrence of color ci for i = 1, 2, . . . , k. Call this partial coloring 2 of [1, 2p].

Arithmetic equivalent : Noting that k is even and that p is a prime of the form
km + 1, we observe that the kth-power class to which p − 1 belongs determines
whether our k-coloring is point symmetric or reflection symmetric. Given that
p− 1 ∈ Ch, we have that p− 1 ≡ gki+h

0 mod p, for some i and our chosen generator,
g0, of Z∗

p, so that for any number n ∈ [1, p− 1] if n ∈ Cj, then n ≡ gks+j
0 mod p for

some s and p− n ≡ (p− 1)n ≡ g
k(i+s)+h+j
0 mod p. That is, if p− 1 ∈ Ch and n ∈ Cj,

then p − n ∈ C(h+j)modk. Observing that p − 1 ≡ −1 ≡ g
p−1
2

0 ≡ g
km
2

0 (mod p), we
have that if m is even, then h = 0, and we get reflection symmetry. If m is odd,
then h = k

2
, and we get point symmetry. The “turn upside down” action, then,

amounts to interchanging color classes according to the underlying symmetry. Here
it amounts to shifting class indices by h mod k. That is, if in partial arithmetic
coloring 1 a number is colored with color j, change the color of that number to
color (j + h)mod k, where h is either 0 or k

2
according as m is even or odd in the

expression of p as km + 1. Call the resulting coloring partial arithmetic coloring 2.

3. Shifting: Use partial coloring 2 to produce a coloring of the even numbers of [1, 2p]
by applying the color of 2j−1 in partial coloring 2 to the number 2j−1−p (mod 2p)
for j = 1, 2, . . . , p. Call this partial coloring 3 of [1, 2p]. (Note that this step de-
pends on p being odd and that any attempt to do a second zipping–a zipping of a
coloring of [1, 2p]–will shift by p in this step, not by 2p.)

Arithmetic equivalent : Noting that the odd numbers of [0, 2p − 1] − {p}, a re-
duced residue system mod 2p, form a cyclic group under multiplication mod 2p (we
denote this group Z∗

2p) and that if g is a generator of Z∗
p, then either g or g + p,

whichever is odd, is a generator of Z∗
2p, we use g0 (or, if g0 is not odd, use g0 + p)

to determine the kth-power classes of Z∗
2p and use those class assignments and an

arbitrary coloring of p to induce a k-coloring of the odd numbers in [0, 2p− 1]. Call
this partial arithmetic coloring 3 of [0, 2p− 1].

A reduced residue system mod 2p can be obtained through a doubling of each
element of [1, p − 1], a reduced residue system mod p. If the doubled result, when
reduced mod p to an integer r in [1, p − 1], is even, view it as the integer r + p
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in the reduced residue system mod 2p. If r is odd, view it directly as a member
of a reduced residue system mod 2p. This doubling action maps the integers of
[1, p−1

2
] consecutively to the odd integers of [p+ 2, 2p− 1] and maps the integers of

[p+1
2
, p − 1] consecutively to the odd integers of [1, p − 2]. Given that we use the

same generator g0 (or g0 + p), this is nothing more than a cyclic shifting by p units
within [0, 2p− 1] of the k-coloring imposed by doubling action taken in step 1, the
spreading step, under our arithmetic view.

4. Merging: Do a full k-coloring of [1, 2p] by coloring the odd numbers of [1, 2p] as
in partial coloring 1 and coloring the even numbers of [1, 2p] as in partial coloring
3.

Arithmetic equivalent : Do a full k-coloring of [0, 2p− 1] by coloring the even num-
bers of [0, 2p−1] as in partial coloring 2 and coloring the odd numbers of [0, 2p−1]
as in partial coloring 3. The careful reader will note that we merge colorings 2 and
3 here while the original zipping procedure merged colorings 1 and 3. If we had
shifted partial coloring 2 to get partial coloring 3, we would have done the original
merge. Rather we prefer to use the turning step on the even numbers because it will
allow us to see directly the arithmetic structure of the power classes in the coloring
of the odd numbers and because it yields the same color labeling as that shown in
[10] rather than a simple translation of color labels mod k.

Validation of a zipped cyclic certificate

Given a cyclic certificate W (k, l, p) whose coloring of [0, p− 1] (equivalently, [1, p]) arises
from the distribution of kth-power classes modulo the prime p, the zipping procedure will
yield a k-coloring of [0, 2p−1], but that coloring may or may not be free of monochromatic
l-progressions; that is, it may or may not be a certificate W (k, l, 2p). Certifying that a

zipped coloring is still l-progression free requires checking each of approximately (2p−1)2

2(l−1)

l-progressions in [0, 2p− 1]. Using arithmetic properties of the zipped coloring, however,
allows us to cut this to little more than a check of at most 2p− l−1 l-strings, essentially a
reduction from a quadratic-time process to a linear-time process, since we shall be dealing
with large values of p and small values of l.

A similar speed-up was used in [14] to find certificates W (k, l, p) based on kth-power
classes modulo a prime p. This speed-up depended heavily on the following simple obser-
vations (using kth-power-class notation introduced in the preceding section):

1. For any a, b in Z∗
p, if a ∈ Ci for some i and b ∈ Cj for some j, then ab ∈ C(i+j)modk.

That is, because indices of kth-power classes mod p are based on exponents of a
fixed generator of Z∗

p, a product of elements of two classes resides in the class whose
index is the sum of the indices of the original two classes.

2. If the members of the l-progression a, a+ d, . . . , a+ (l− 1)d are all in the same kth-
power class mod p, then so are the members of the l-string ad−1, ad−1+1, . . . , ad−1+
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(l − 1), where d−1 represents the inverse of d in Z∗
p. This is just an invocation of

observation 1.

A zipped k-coloring of Z2p has a property similar to, but weaker than, that mentioned in
observation 1 above, but even in this weaker form it allows application of essentially the
same simple criterion for checking whether the coloring is l-progression-free. Noting that
the two observations above apply equally well in the cyclic group Z∗

2p, we establish the
following claims.

Claim 1. Given that kth-power classes mod p and mod 2p are formed relative to the same
primitive root g, if a is in class Ci mod 2p, then a is also in class Ci mod p.

Proof. a ∈ Ci mod 2p⇒ a ≡ gjk+i mod 2p⇒ a ≡ gjk+i mod p⇒ a ∈ Ci mod p.

Claim 2. Given that kth-power classes mod p and mod 2p are formed relative to the same
primitive root g, if a ∈ Ci mod p, then also a ∈ Ci mod 2p if a is odd, and a+p ∈ Ci mod 2p
if a is even.

Proof. If a is even and a ∈ Cimod p, then a = gjk+i + np with n odd. (Here, since g must
be odd to be a primitive root mod 2p, if g mod p is even, we take g + p, an odd number,
as the generator of Z∗

2p.) Thus, a + p = gjk+i + (n + 1)p ≡ gjk+i mod 2p (since n + 1 is
even), and a+ p ∈ Ci mod 2p. And if a is odd and a ∈ Ci mod p, then a = gjk+i + np with
n even (since g is odd), and we get immediately a ≡ gjk+i mod 2p and a ∈ Ci mod 2p.

Claim 3. For any a, b ∈ [0, 2p− 1] with neither a nor b divisible by p, if a and b are in
the same class, say Cj, under the zipped k-coloring of [0, 2p − 1] as defined above, then
ca and cb mod 2p are in the same class if c is any odd integer not divisible by p.

Proof. We consider 3 cases: a and b both odd, a and b both even, and a odd with b
even. The first case follows directly from observation 1 above, since a, b, and c are all in
Z∗

2p, whose kth-power classes color the odd numbers in [0, 2p− 1]. In the second case, let
a = 2m and b = 2n. Here we note that m and n, taken mod p, are both in Z∗

p, and, by the
manner in which even numbers are placed in classes in the zipped k-coloring of [0, 2p−1],
m and n are in the same kth-power class mod p. So, by observation 1 above, ca andcb
are in the same kth-power class mod p, and, as a consequence, ca andcb are placed in the
same class in the zipped k-coloring of [0, 2p− 1].

It remains only to show that the claim holds for a odd and b even. In this case, suppose
c ∈ Ci mod 2p. Then from observation 1 above (applied toZ∗

2p) ca ∈ C(i+j)mod k mod 2p,
and, so, in C(i+j)mod k in the zipped coloring as well. Suppose, b = 2m with m ∈ Z∗

p.
Because b ∈ Cj in the zipped coloring, m must be in C(j−t− k

2
)mod k among the kth-power

classes mod p. And since c ∈ Ci mod 2p implies c ∈ Ci mod p (see Claim 2 ), observation
1 indicates that cm ∈ C(i+j−t− k

2
)mod k) mod p so that cb = 2cm ∈ C(i+j)mod k in the zipped

coloring. Hence, in this zipped coloring ca and cb are in the same class, as claimed.

(That Claim 3 does not hold when c is even is evidenced by using p=113, noting that
in the zipped coloring of Z226 we have a=9 in C0, b = 10 in C0 and multiplying by c = 10
we find ca = 90 in C0 and cb=100 in C1.)

the electronic journal of combinatorics 19(2) (2012), #P35 6



Claim 4. If a and a+d are in the same class Ci under the zipped k-coloring of [0, 2p−1]
with d odd and not divisible by p, then ad−1 and ad−1 + 1 are in the same class of the
extended partition of Z2p, where d−1 is the multiplicative inverse of d in Z∗

2p.

Proof. This follows immediately from Claim 3 by multiplying both a and a+d by d−1.

It follows from Claim 4 that if under the zipped coloring of Z2p there is a single-
class arithmetic progrression of l terms beginning at a and having odd common difference
d, multiplying each member of the progression by d−1 mod 2p yields a set that forms a
single-class l-string beginning at ad−1. The contrapositive of this—and the aid in checking
whether k-colorings of long sequences are free of monochromatic l-progressions—is that
if there is no single-class l-string found in the extended partition of Z2p, then there is no
single-class l-progression with odd common difference.

Claim 5. If a and a+d are in the same class Ci under the zipped k-coloring of [0, 2p−1]
with d even and not divisible by p, then ad−1 and ad−1 + 1 are in the same kth-power
classes mod p, where d−1 is the multiplicative inverse of d in Z∗

p.

Proof. This follows directly from observation 1 at the beginning of this section. For, an
l-progression of even common difference will consist either entirely of odd numbers or
entirely of even numbers. In the first case note that in the zipped k-coloring odd numbers
are placed in their kth-power classes mod 2p, but taking these placements mod p we still see
a single-class l-progression and can quickly deduce the existence of a single-class l-string
in Z∗

p. Likewise, if in the zipped k-coloring all members of a single-class l-progression
are even, we need only note that the classes assigned to the even numbers in the zipped
coloring are just relabelings (i.e., shifted labelings) of the kth-power classes mod p so that
any l-progression can quickly be associated with a single-class l-string in Z∗

p.

As a consequence of Claim 5, the existence of single-class l-progressions of even com-
mon difference within the zipped k-coloring of Z2p will be signaled by the existence of
single-class l-strings within Z∗

p.

Criteria for validating that a zipped k-coloring is l-progression free. For k
even, p a prime of the form km+1, and l > 2, let W(k,l,p) be a van der Waerden certificate
whose coloring of [0, p− 1] (equivalently, [1, p]) arises from the distribution of kth-power
classes modulo p and a properly chosen color for 0. The zipping procedure applied to
W(k,l,p) produces a van der Waerden certificate W(k,l,2p) if the zipped k -coloring of
[0, 2p− 1] meets the following criteria:

• the kth-power coloring of Z∗
p is free of monochromatic l -strings (if W (k, l, p) is a

certificate, we already know this);

• the zipped k-coloring of [0, 2p− 1] is likewise free of monochromatic l-strings; and

• 0 and p are colored without introducing a monochromatic l-string, even in the cyclic
sense.
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Given that the zipping of a coloring based on kth-power classes mod p yields a certificate
W (k, l, 2p), we may be able to join l − 1 of these certificate colorings together to get
a certificate W (k, l, 2(l − 1)p + 1). The following indicates when this joining effort will
succeed.

Criteria for validating an extension of a zipped, cyclic, power-class-based
certificate, W(k,l,2p) to a certificate W(k,l,2(l-1)p+1). Given a zipped, kth-
power-class-based certificate, W(k,l,2p), a coloring of [0, 2(l − 1)p] done so that

• any a not divisible by p is placed in class Cj where Cj is the class in which b ≡
amod 2p has been placed under W (k, l, 2p) and

• the 2(l− 1) + 1 multiples of p in [0, 2(l− 1)p] are placed in any of the k color classes
so that no monochromatic l-progression occurs among these multiples

results in a coloring that is free of monochromatic l-progressions providing that:

• if p− 1 is in kth-power class C0 mod p, then the integers 1, 2, . . . , [(l− 1)/2] are not
all in the same class under the coloring of W (k, l, 2p);

• if p− 1 is not in kth-power class C0 mod p, then the integers 1, 2, . . . , (l− 1) are not
all in the same class under the coloring of W (k, l, 2p); and

• there are no single-class l-progressions having common difference divisible by p.

Computations

The above criteria yield a mechanism for a fast search for van der Waerden certificates
W (k, l, 2(l − 1)p + 1). We begin by establishing k-coloring profiles of prime numbers up
to some reasonable computational limit. For each prime p and a small range of values for
k and l with k even our procedure is:

1. Find a generator g of Z∗
p

2. For each of the values of k, if p ≡ 1 mod k, record the k-coloring profile of p as
follows:

• use g to determine the kth-power classes (our basic k-coloring) of Z∗
p;

• record whether p− 1 is in class C0;

• record the minimum value of s ∈ [1, p− 1] such that the number s + 1 /∈ C0;

• record the length of the longest monochromatic string of integers in [1, p− 1].

3. With a table of k-coloring profiles of primes, it is a simple (and quick) matter to
search the table and apply the criteria given in [14] to find among the profiled primes
those that yield cyclic certificates W (k, l, p).
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4. Apply the zipping technique to certificates W (k, l, p) and subject the resulting color-
ings to inspection for monochromatic l-strings, monochromatic l-progressions with
common difference p, and end conditions given by the criteria listed at the end
of the previous section. If no such monochromatic l-strings or l-progressions are
found and if the end conditions are met, then the coloring of [0, 2(l− 1)p] is free of
monochromatic l-progressions—it gives a certificate W (k, l, 2(l − 1)p + 1).

We applied this procedure to all primes less than 10,000,000, getting k-coloring profiles for
k = 2, 3, 4, 5, 6, and then searching these profiles for fits to l-progression-free colorings
with l = 3, 4, 5, . . . , 12. Table 1 shows the known exact values of van der Waerden
numbers and gives the best known lower bounds as well as new lower bounds that our
procedure has revealed. With each of these new values we show in parentheses the prime
number p whose kth-power classes formed the basis for the cyclic certificate W (k, l, p) from
which can arise a certificate W (k, l, (l − 1)p + 1). We denote with “Z” in an entry where
a single zip procedure was applied to extend successfully to a cyclic certificate W (k, l, 2p)
from which arises a certificate W (k, l, 2(l − 1)p + 1). In one table entry we use “ZZ” to
denote that double zipping was used to gain a certificate W (k, l, 4(l − 1)p + 1).

Table 1: Van der Waerden numbers W(k,l)–some exact and some lower bounds. New lower
bounds are shown as 2-line entries with the acting prime in parentheses, “Z” indicating a
single zipping was applied, and “ZZ” indicating a double zipping was applied.

l\k 2 3 4 5 6

3 9 27 76 >170 >223

4 35 >292 >1048 >2254 >9778

5 178 >2173 >17705 >98740 >98740

6 1132 >11191 >91331 >540025 >816981

7 >3703 >48811 >420217
>1381687
(230281)

7465909
(622159)Z

8 >11495 >238400
>2388317
(85297)ZZ

>10743258
(1534751)

>57445718
(8206531)

9 >41265
>932745
(116593)

>10898729
(1362341)Z

>79706009
(9963251)

>159986609
(9999163)Z

10
>103474
(11497)

>4173724
(463747)

>760492218
(8449913)

>89999920
(9999991)

>179998975
(9999943)Z

11
>193941*
(9697)Z

>18603731
(1860373)

>198841541
(9942077)Z

>99999711
(9999971)

>199998621
(9999931)Z

12
>638727
(29033)Z

>79134144
(7194013)

>219988319
(9999469)Z

>109999242
(9999931)

>219996107
(9999823)Z

Some of the entries in Table 1 deserve comments:

• Because our procedure went only through the primes less than 10,000,000, table
entries associated with primes in the vicinity of 10,000,000 are very likely improvable
by more extensive search.
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• That our bound for W (4, 12) exceeds that shown for W (5, 12) is essentially a product
of our limiting the search to primes less than 10,000,000. In our attempt to find
a bound for W (5, 12), for example, we searched only prime profiles for k = 5, not
considering those for k = 4. Had our search gone far enough beyond the 10,0000,000
limit, we conjecture that a larger prime would have yielded a bound for W (5, 12)
that is larger than the bound given here for W (4, 12). Rather than replicate the
bound for W (4, 12) as a bound also for W (5, 12), which it clearly is, we preferred
to show the prime and zipping results directly. The same comment applies to some
entries for l = 11 as well.

• The asterisk (*) on the entry for W (2, 11) highlights a new value that corrects an
error in [14] where a bound for W (2, 11)was misreported. This error was discovered
during our recent computations.

• There is only one double zipping reported in this table. That is not because no
other double zippings would work, but rather that computional power needed to
fully check double-zipped colorings is formidable. We have not found a shortcut for
verifying that a k-coloring resulting from a double zipping is l-progression free.
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