Distance Powers and Distance Matrices of Integral Cayley Graphs over Abelian Groups

Walter Klotz

Institut für Mathematik Technische Universität Clausthal, Germany klotz@math.tu-clausthal.de

Torsten Sander

Fakultät für Informatik Ostfalia Hochschule für angewandte Wissenschaften, Germany t.sander@ostfalia.de

Submitted: May 21, 2012; Accepted: Nov 1, 2012; Published: Nov 8, 2012 Mathematics Subject Classification: 05C25, 05C50

Abstract

It is shown that distance powers of an integral Cayley graph over an abelian group Γ are again integral Cayley graphs over Γ . Moreover, it is proved that distance matrices of integral Cayley graphs over abelian groups have integral spectrum.

1 Introduction

Eigenvalues of an undirected graph G are the eigenvalues of an arbitrary adjacency matrix of G. General facts about graph spectra can e.g. be found in [7] or [8]. Harary and Schwenk [10] defined G to be *integral* if all of its eigenvalues are integers. For a survey of integral graphs see [4]. In [2] the number of integral graphs on n vertices is estimated. Known characterizations of integral graphs are restricted to certain graph classes, see e.g. [1], [13], or [15]. Here we concentrate on integral Cayley graphs over abelian groups and their distance powers.

Let Γ be a finite, additive group, $S \subseteq \Gamma$, $-S = \{-s : s \in S\} = S$. The undirected Cayley graph over Γ with shift set (or symbol) S, Cay(Γ , S), has vertex set Γ . Vertices $a, b \in \Gamma$ are adjacent if and only if $a - b \in S$. For general properties of Cayley graphs we refer to Godsil and Royle [9] or Biggs [5]. Note that $0 \in S$ generates a loop at every vertex of Cay(Γ , S). Many definitions of Cayley graphs exclude this case, but its inclusion saves us from sacrificing clarity of presentation later on.

In our paper [12] we proved for an abelian group Γ that $\operatorname{Cay}(\Gamma, S)$ is integral if S belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of Γ . Our conjecture

that the converse is true for all integral Cayley graphs over abelian groups has recently been proved by Alperin and Peterson [3].

Proposition 1. Let Γ be a finite abelian group, $S \subseteq \Gamma$, -S = S. Then $G = \text{Cay}(\Gamma, S)$ is integral if and only if $S \in B(\Gamma)$.

Let G = (V, E) be an undirected graph with vertex set V and edge set E, D a finite set of nonnegative integers. The distance power G^D of G is an undirected graph with vertex set V. Vertices x and y are adjacent in G^D , if their distance d(x, y) in G belongs to D. We prove that if G is an integral Cayley graph over the abelian group Γ , then every distance power G^D is also an integral Cayley graph over Γ . Moreover, we show that in a very general sense distance matrices of integral Cayley graphs over abelian groups have integral spectrum. This extends an analogous result of Ilić [11] for integral circulant graphs, which are the integral Cayley graphs over cyclic groups. Finally, we show that the class of gcd-graphs, another subclass of integral Cayley graphs over abelian groups (see [13]), is also closed under distance power operations.

2 The Boolean Algebra $B(\Gamma)$

Let Γ be an arbitrary finite, additive group. We collect facts about the Boolean algebra $B(\Gamma)$ generated by the subgroups of Γ .

2.1 Atoms of $B(\Gamma)$

Let us determine the minimal elements of $B(\Gamma)$. To this end, we consider elements of Γ to be equivalent, if they generate the same cyclic subgroup. The equivalence classes of this relation partition Γ into nonempty disjoint subsets. We shall call these sets *atoms*. The atom represented by $a \in \Gamma$, Atom(a), consists of the generating elements of the cyclic group $\langle a \rangle$.

Atom(a) = {
$$b \in \Gamma$$
 : $\langle a \rangle = \langle b \rangle$ }
= { $ka : k \in \mathbb{Z}, 1 \leq k \leq \operatorname{ord}_{\Gamma}(a), \operatorname{gcd}(k, \operatorname{ord}_{\Gamma}(a)) = 1$ }.

Here, \mathbb{Z} stands for the set of all integers. For a positive integer k and $a \in \Gamma$ we denote as usual by ka the k-fold sum of terms a, (-k)a = -(ka), 0a = 0. By $\operatorname{ord}_{\Gamma}(a)$ we mean the order of a in Γ .

Each set Atom(a) can be obtained by removing from $\langle a \rangle$ all elements of its proper subgroups. We bear in mind that every set $S \in B(\Gamma)$ can be derived from the cyclic subgroups of Γ by means of repeated union, intersection and complement (with respect to Γ). Thus we easily arrive at the following proposition [3].

Proposition 2. For an arbitrary finite group Γ the following statements are true:

1. Atom $(a) \in B(\Gamma)$ for every $a \in \Gamma$.

- 2. For no $a \in \Gamma$ there exists a nonempty proper subset of Atom(a) that belongs to $B(\Gamma)$.
- 3. Every nonempty set $S \in B(\Gamma)$ is the union of some sets $Atom(a), a \in \Gamma$.

2.2 Sums of Sets in $B(\Gamma)$

In this subsection Γ denotes a finite, additive, abelian group. We define the sum of nonempty subsets S, T of Γ :

$$S + T = \{s + t : s \in S, t \in T\}.$$

We are going to show that the sum of sets in $B(\Gamma)$ is again a set in $B(\Gamma)$.

Lemma 1. If Γ is a finite abelian group and $a, b \in \Gamma$ then

$$\operatorname{Atom}(a) + \operatorname{Atom}(b) \in B(\Gamma).$$

Proof. We know that Γ can be represented (see Cohn [6]) as a direct sum of cyclic groups of prime power order. This can be grouped as

$$\Gamma = \Gamma_1 \oplus \Gamma_2 \oplus \cdots \oplus \Gamma_r,$$

where Γ_i is a direct sum of cyclic groups, the order of which is a power of a prime p_i , $|\Gamma_i| = p_i^{\alpha_i}, \alpha_i \ge 1$ for $i = 1, \ldots, r$ and $p_i \ne p_j$ for $i \ne j$. Hence we can write each element $x \in \Gamma$ as an *r*-tuple (x_i) with $x_i \in \Gamma_i$ for $i = 1, \ldots, r$.

The order of $x_i \in \Gamma_i$, $\operatorname{ord}_{\Gamma_i}(x_i)$, is a divisor of $p_i^{\alpha_i}$. Therefore, integer factors in the *i*-th coordinate of x may be reduced modulo $p_i^{\alpha_i}$. The order of $x \in \Gamma$, $\operatorname{ord}_{\Gamma}(x)$, is the least common multiple of the orders of its coordinates:

$$\operatorname{ord}_{\Gamma}(x) = \operatorname{lcm}(\operatorname{ord}_{\Gamma_1}(x_1), \dots, \operatorname{ord}_{\Gamma_r}(x_r)).$$
 (1)

This implies that all prime divisors of $\operatorname{ord}_{\Gamma}(x)$ belong to $\{p_1, \ldots, p_r\}$.

Let $a = (a_i)$, $b = (b_i)$ be elements of Γ . The statement of the lemma becomes trivial for a = 0 or b = 0. So we may assume $a \neq 0$ and $b \neq 0$. An arbitrary element $w \in \operatorname{Atom}(a) + \operatorname{Atom}(b)$ has the following form:

$$w = \lambda a + \mu b,$$

$$1 \leq \lambda \leq \operatorname{ord}_{\Gamma}(a), \quad \gcd(\lambda, \operatorname{ord}_{\Gamma}(a)) = 1,$$

$$1 \leq \mu \leq \operatorname{ord}_{\Gamma}(b), \quad \gcd(\mu, \operatorname{ord}_{\Gamma}(b)) = 1.$$
(2)

We have to show $\operatorname{Atom}(w) \subseteq \operatorname{Atom}(a) + \operatorname{Atom}(b)$. To this end, we choose the integer ν with $1 \leq \nu \leq \operatorname{ord}_{\Gamma}(w)$, $\operatorname{gcd}(\nu, \operatorname{ord}_{\Gamma}(w)) = 1$, and show $\nu w \in \operatorname{Atom}(a) + \operatorname{Atom}(b)$.

Case 1. $(p_1 p_2 \cdots p_r) \mid \operatorname{ord}_{\Gamma}(w).$

By $gcd(\nu, ord_{\Gamma}(w)) = 1$ we know that ν has no prime divisor in $\{p_1, \ldots, p_r\}$. On the other hand all prime divisors of $ord_{\Gamma}(a)$ and of $ord_{\Gamma}(b)$ are in $\{p_1, \ldots, p_r\}$. This implies $gcd(\nu, ord_{\Gamma}(a)) = 1$ and $gcd(\nu, ord_{\Gamma}(b)) = 1$. Setting $\lambda' = \nu\lambda$ and $\mu' = \nu\mu$ we achieve

$$gcd(\lambda', ord_{\Gamma}(a)) = 1, \ \lambda' a \in Atom(a),$$

 $gcd(\mu', ord_{\Gamma}(b)) = 1, \ \mu' b \in Atom(b).$

Now we have by (2):

$$\nu w = \nu \lambda a + \nu \mu b = \lambda' a + \mu' b \in \operatorname{Atom}(a) + \operatorname{Atom}(b)$$

Case 2. $(p_1 p_2 \cdots p_r) \not| \operatorname{ord}_{\Gamma}(w).$

Trivially, for $w = 0 \in \text{Atom}(a) + \text{Atom}(b)$ we have $\nu w \in \text{Atom}(a) + \text{Atom}(b)$. Therefore, we may assume $w \neq 0$. Without loss of generality let

$$(p_1 \cdots p_k) \mid \operatorname{ord}_{\Gamma}(w), \ \operatorname{gcd}(\operatorname{ord}_{\Gamma}(w), p_{k+1} \cdots p_r) = 1, \ 1 \leqslant k < r.$$
(3)

Now (1) and (3) imply

$$w = \lambda a + \mu b = (\lambda a_1 + \mu b_1, \dots, \lambda a_k + \mu b_k, 0, \dots, 0),$$

$$\lambda a_i + \mu b_i \neq 0 \text{ for } i = 1, \dots, k.$$
(4)

By $gcd(\nu, ord_{\Gamma}(w)) = 1$ we know $gcd(\nu, p_1 \cdots p_k) = 1$. If even more $gcd(\nu, p_1 \cdots p_r) = 1$ then we deduce $\nu w \in Atom(a) + Atom(b)$ as in Case 1. So we may assume that ν has at least one prime divisor in $\{p_{k+1}, \ldots, p_r\}$. Without loss of generality let

$$gcd(\nu, p_1 \cdots p_l) = 1, \ (p_{l+1} \cdots p_r) \mid \nu, \ k \leq l < r.$$

We define

$$\nu' = \nu + p_1^{\alpha_1} \cdots p_l^{\alpha_l}. \tag{5}$$

If we observe that integer factors in the *i*-th coordinate of w can be reduced modulo $p_i^{\alpha_i}$, then we see by (4): $\nu'w = \nu w$. Moreover, (5) and the properties of ν imply $gcd(\nu', p_1 \cdots p_r) = 1$. As in Case 1 we now conclude $\nu w = \nu'w \in Atom(a) + Atom(b)$.

Corollary 1. If Γ is a finite abelian group with nonempty subsets $S, T \in B(\Gamma)$ then $S + T \in B(\Gamma)$.

Proof. According to Proposition 2 the sets S and T are unions of atoms of $B(\Gamma)$.

$$S = \bigcup_{i=1}^{k} \operatorname{Atom}(a_i), \ T = \bigcup_{j=1}^{l} \operatorname{Atom}(b_j).$$

Then we have

$$S + T = \bigcup_{1 \le i \le k, 1 \le j \le l} (\operatorname{Atom}(a_i) + \operatorname{Atom}(b_j)).$$
(6)

According to Lemma 1 the sum $\operatorname{Atom}(a_i) + \operatorname{Atom}(b_j)$ is an element of $B(\Gamma)$. Therefore, (6) implies $S + T \in B(\Gamma)$.

3 Distance Powers and Distance Matrices

We repeat the definition of the distance power G^D of an undirected graph G = (V, E)from the Introduction. Let D be a set of nonnegative integers. The distance power G^D has vertex set V. Vertices x, y are adjacent in G^D , if their distance in G is $d(x, y) \in D$. If G is not connected, it makes sense to allow $\infty \in D$. Clearly, G^{\emptyset} is the graph without edges on V. The edge set of $G^{\{0\}}$ consists of a single loop at every vertex of G. If G has no loops then $G^{\{1\}} = G$.

Theorem 1. If $G = \text{Cay}(\Gamma, S)$ is an integral Cayley graph over the finite abelian group Γ and if D is a set of nonnegative integers (possibly including ∞), then the distance power G^D is also an integral Cayley graph over Γ .

Proof. If $D = \emptyset$ then $G^D = \text{Cay}(\Gamma, \emptyset)$ is an integral Cayley graph over Γ . We now consider the case, where D has only one element,

$$D = \{d\}, d \in \{0, 1, \dots, \infty\}.$$

In several steps we define $S^{(d)} \in B(\Gamma)$ such that $G^{\{d\}} = \operatorname{Cay}(\Gamma, S^{(d)})$ is an integral Cayley graph over Γ . If d is a distance not attained in G, then the assertion is confirmed by $G^{\{d\}} = \operatorname{Cay}(\Gamma, S^{(d)})$ with $S^{(d)} = \emptyset$. If d = 0 then we achieve our goal by $S^{(0)} = \{0\}$. Suppose now that $d = \infty$ and G is disconnected. If $U = \langle S \rangle$ is the subgroup generated by S in Γ , then G consists of disjoint subgraphs on the cosets of U, all of them isomorphic to $\operatorname{Cay}(U, S)$. Vertices x, y in $G^{\{\infty\}}$ are adjacent if and only if they belong to different cosets of U, and this is true if and only if $x - y \notin U$. Therefore, we have

$$G^{\{\infty\}} = \operatorname{Cay}(\Gamma, S^{(\infty)}) \text{ with } S^{(\infty)} = \overline{U} = \Gamma \setminus U \in B(\Gamma).$$

Assume now that $d \ge 1$ is a finite distance attained between vertices x, y in G. The sequence of vertices in a shortest path P between x and y in $G = \text{Cay}(\Gamma, S)$ has the form

$$x, x + s_1, x + s_1 + s_2, \dots, x + s_1 + \dots + s_d = y, \ s_i \in S \text{ for } 1 \leq i \leq d.$$

This implies $y - x = s_1 + \ldots + s_d \in dS$, where dS denotes the *d*-fold sum of the set *S*. To guarantee that there is no shorter path from *x* to *y* than *P* we remove from dS all multiples kS for $0 \leq k < d$, $0S = \{0\}$. Setting

$$S^{(d)} = dS \setminus \bigcup_{0 \le k < d} kS \tag{7}$$

we achieve $G^{\{d\}} = \operatorname{Cay}(\Gamma, S^{(d)})$. If $G = \operatorname{Cay}(\Gamma, S)$ is integral, then we have $S \in B(\Gamma)$ by Proposition 1, $kS \in B(\Gamma)$ for every $k \ge 2$ by Corollary 1, and trivially $0S = \{0\} \in B(\Gamma)$. By (7) this implies $S^{(d)} \in B(\Gamma)$, so $G^{\{d\}}$ is an integral Cayley graph over Γ .

To complete our proof, let

$$D = \{d_1, \dots, d_r\} \subseteq \{0, 1, \dots, \infty\}$$
 and $S^{(D)} = \bigcup_{i=1}^r S^{(d_i)}$

Then we have $S^{(D)} \in B(\Gamma)$ and $G^D = \operatorname{Cay}(\Gamma, S^{(D)})$ is an integral Cayley graph over Γ by Proposition 1.

Let Γ be a finite additive group. A character ψ of Γ is a homomorphism from Γ into the multiplicative group of complex numbers. An abelian group Γ with *n* elements has exactly *n* distinct characters, which represent an orthogonal basis of \mathbb{C}^n consisting of eigenvectors for every Cayley graph over Γ . More precisely, we have (see e. g. [12] or [14])

Proposition 3. Let ψ_1, \ldots, ψ_n be the distinct characters of the additive abelian group $\Gamma = \{v_1, \ldots, v_n\}, S \subseteq \Gamma, -S = S$. Assume that $A = (a_{i,j})$ is the adjacency matrix of $G = \operatorname{Cay}(\Gamma, S)$ with respect to the given ordering of the vertex set $V(G) = \Gamma$. Then the vectors $(\psi_i(v_j))_{j=1,\ldots,n}, 1 \leq i \leq n$, constitute an orthogonal basis of \mathbb{C}^n consisting of eigenvectors of A. To the eigenvector $(\psi_i(v_j))_{j=1,\ldots,n}$ belongs the eigenvalue $\psi_i(S) = \sum_{s \in S} \psi_i(s)$.

Now we define a generalized distance matrix DM(k, G) of a given undirected graph G with vertex set $\{v_1, \ldots, v_n\}$ as follows. Let $d_0 = 0 < d_1 < \ldots < d_r$ be the sequence of possible distances between vertices in G, possibly $d_r = \infty$. If $k = (k_0, \ldots, k_r)$ is a vector with integral entries, then we define the entries of $DM(k, G) = (d_{i,j}^{(k)})$ for $i, j \in \{1, \ldots, n\}$ by

$$d_{i,j}^{(k)} = k_t$$
, if $d(v_i, v_j) = d_t$.

The ordinary distance matrix DM(G) for a connected graph G is established for k = (0, 1, ..., r), where r is the diameter of G.

Let $\Gamma = \{v_1, \ldots, v_n\}$ be an abelian group and consider some integral Cayley graph $G = \operatorname{Cay}(\Gamma, S)$. Any generalized distance matrix $\operatorname{DM}(k, G)$ is an integer weighted sum of the adjacency matrices of the graphs $G^{\{d\}}$ with $d \in \{d_0, d_1, \ldots, d_r\}$, assuming v_1, \ldots, v_n as their common vertex order. To make it more precise, for $j = 0, \ldots, r$ we denote by $A^{(j)}$ the adjacency matrix of the distance power $G^{\{d_j\}}$, $A^{(0)} = I_n$ is the $n \times n$ unit matrix. Then we have

$$DM(k,G) = k_0 A^{(0)} + k_1 A^{(1)} + \ldots + k_r A^{(r)}.$$

By Theorem 1, all matrices $A^{(j)}$, $0 \leq j \leq r$, are adjacency matrices of integral Cayley graphs over Γ . According to Proposition 3, all Cayley graphs over Γ have a universal common basis of complex eigenvectors. As a result, integrality extends to DM(k, G). This proves the following theorem.

Theorem 2. Let $G = \operatorname{Cay}(\Gamma, S)$ be an integral Cayley graph over the abelian group Γ , $|\Gamma| = n$. Then every distance matrix $\operatorname{DM}(k, G)$ as defined above has integral spectrum. Moreover, the characters ψ_1, \ldots, ψ_n of Γ represent an orthogonal basis of \mathbb{C}^n consisting of eigenvectors of $\operatorname{DM}(k, G)$.

As we have seen in Theorem 1, the class of integral Cayley graphs over an abelian group is closed under distance power operations. We shall conclude this section by presenting a subclass which has the same closure property.

We introduce the class of *gcd-graphs* as in [13]. To this end, let the finite abelian group Γ be represented as the direct product of cyclic groups, $\Gamma = \mathbb{Z}_{m_1} \oplus \ldots \oplus \mathbb{Z}_{m_r}, m_i \ge 1$ for $i = 1, \ldots, r$. Hence the elements $x \in \Gamma$ take the form of *r*-tuples.

$$x = (x_i) = (x_1, \dots, x_r), \ x_i \in \mathbb{Z}_{m_i} = \{0, 1, \dots, m_i - 1\}, \ 1 \leq i \leq r.$$

Addition is coordinatewise modulo m_i . For $x = (x_1, \ldots, x_r) \in \Gamma$ and $m = (m_1, \ldots, m_r)$ we define

$$gcd(x,m) = (gcd(x_1,m_1),\ldots,gcd(x_r,m_r)).$$

Here we agree upon $gcd(0, m_i) = m_i$. For a divisor tuple $d = (d_1, \ldots, d_r)$ of $m, d \mid m$, we require $d_i \ge 1$ and $d_i \mid m_i$ for every $i = 1, \ldots, r$. Every divisor tuple d of m defines an elementary gcd-set given by

$$S_{\Gamma}(d) = \{ x \in \Gamma : \operatorname{gcd}(x, m) = d \}.$$

Clearly, the sets $S_{\Gamma}(d)$ with $d \mid m$ form a partition of the elements of Γ . We denote by $E_{\Gamma}(x)$ the unique elementary gcd-set that contains x, i.e. $E_{\Gamma}(x) = S_{\Gamma}(d)$ with $d = \gcd(x, m)$. A gcd-set is a union of elementary gcd-sets. By construction, the elementary gcd-sets are the atoms of the Boolean algebra $B_{\text{gcd}}(\Gamma)$ consisting of all gcd-sets of Γ . According to Theorem 1 in [13], $B_{\text{gcd}}(\Gamma)$ is a Boolean sub-algebra of $B(\Gamma)$. Hence by Proposition 1, all gcd-graphs $Cay(\Gamma, S), S \in B_{gcd}(\Gamma)$, are integral.

Lemma 2. If $\Gamma = \mathbb{Z}_{m_1} \oplus \ldots \oplus \mathbb{Z}_{m_r}$ and $x = (x_1, \ldots, x_r) \in \Gamma$ then

$$E_{\Gamma}(x) = E_{\mathbb{Z}_{m_1}}(x_1) \times \ldots \times E_{\mathbb{Z}_{m_r}}(x_r).$$

Proof. Let $m = (m_1, \ldots, m_r)$ and $d = (d_1, \ldots, d_r) = \gcd(x, m)$. Then we have $y = (y_1, \ldots, y_r) \in E_{\Gamma}(x)$ if and only if $\gcd(y_i, m_i) = d_i$ for $i = 1, \ldots, r$. This is equivalent to $y \in S_{\mathbb{Z}_{m_1}}(d_1) \times \ldots \times S_{\mathbb{Z}_{m_r}}(d_r)$, which is the same as $y \in E_{\mathbb{Z}_{m_1}}(x_1) \times \ldots \times E_{\mathbb{Z}_{m_r}}(x_r)$. \Box

Lemma 3. For every finite abelian group Γ , any sum of its gcd-sets is again a gcd-set.

Proof. As in the proof of Corollary 1 it suffices to show that any sum of elementary gcdsets is a gcd-set. If Γ is cyclic, then $B_{gcd}(\Gamma) = B(\Gamma)$ (see Theorem 3 in [13]) and the result follows from Lemma 1.

Now let $\Gamma = \mathbb{Z}_{m_1} \oplus \ldots \oplus \mathbb{Z}_{m_r}$, $m = (m_1, \ldots, m_r)$, $r \ge 2$. Further let $x = (x_1, \ldots, x_r) \in \Gamma$, $gcd(x, m) = d = (d_1, \ldots, d_r)$ and let $y = (y_1, \ldots, y_r) \in \Gamma$, $gcd(y, m) = \delta = (\delta_1, \ldots, \delta_r)$. By Lemma 2 we have

$$E_{\Gamma}(x) + E_{\Gamma}(y) = (E_{\mathbb{Z}_{m_1}}(x_1) + E_{\mathbb{Z}_{m_1}}(y_1)) \times \ldots \times (E_{\mathbb{Z}_{m_r}}(x_r) + E_{\mathbb{Z}_{m_r}}(y_r)).$$

Since the cyclic case is already solved, it follows that $E_{\mathbb{Z}m_i}(x_i) + E_{\mathbb{Z}m_i}(y_i)$ is a gcd-set of \mathbb{Z}_{m_i} for $i = 1, \ldots, r$. Hence $E_{\mathbb{Z}m_i}(x_i) + E_{\mathbb{Z}m_i}(y_i)$ is a disjoint union of elementary gcd-sets $E_{\mathbb{Z}m_i}(z_1^{(i)}), \ldots, E_{\mathbb{Z}m_i}(z_{\varrho_i}^{(i)})$, with $z_j^{(i)} \in \mathbb{Z}_{m_i}$ for $j = 1, \ldots, \varrho_i$. It follows that

$$E_{\Gamma}(x) + E_{\Gamma}(y) = \bigcup_{1 \leq j_k \leq \varrho_k, \ k=1,\dots,r} \left(E_{\mathbb{Z}_{m_1}}(z_{j_1}^{(1)}) \times \dots \times E_{\mathbb{Z}_{m_r}}(z_{j_r}^{(r)}) \right).$$

Writing $z^{(j_1,...,j_r)} = (z_{j_1}^{(1)}, ..., z_{j_r}^{(r)})$, we get by Lemma 2

$$E_{\Gamma}(x) + E_{\Gamma}(y) = \bigcup_{1 \leq j_k \leq \varrho_k, \ k=1,\dots,r} E_{\Gamma}(z^{(j_1,\dots,j_r)}) \in B_{gcd}(\Gamma).$$

The electronic journal of combinatorics 19(4) (2012), #P25

7

The following theorem is readily deduced from Lemma 3 applying the same reasoning as in the proof of Theorem 1.

Theorem 3. If $G = \text{Cay}(\Gamma, S)$ is a gcd-graph over $\Gamma = \mathbb{Z}_{m_1} \oplus \ldots \oplus \mathbb{Z}_{m_r}$ and if D is a set of nonnegative integers (possibly including ∞), then the distance power G^D is also a gcd-graph over Γ .

References

- [1] ABDOLLAHI, A., AND VATANDOOST, E. Which Cayley graphs are integral? *Electron. J. Comb.* 16(1) (2009), R122, 1–17.
- [2] AHMADI, O., ALON, N., BLAKE, L. F., AND SHPARLINSKI, I. E. Graphs with integral spectrum. *Linear Alg. Appl.* 430 (2009), 547–552.
- [3] ALPERIN, R. C., AND PETERSON, B. L. Integral Sets and Cayley Graphs of Finite Groups. *Electron. J. Comb.* 19 (2012), #P44, 1–12.
- [4] BALINSKA, K., CVETKOVIĆ, D., RODOSAVLJEVIĆ, Z., SIMIĆ, S., AND STE-VANOVIĆ, D. A survey on integral graphs. Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat 13 (2003), 42–65.
- BIGGS, N. Algebraic graph theory. Second Edition. Cambridge Mathematical Library. Cambridge University Press, 1993.
- [6] COHN, P. M. Basic Algebra. Springer, London, 2003.
- [7] CVETKOVIĆ, D., ROWLINSON, P., AND SIMIĆ. S. Eigenspaces of graphs. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1997, new edition 2008.
- [8] VAN DAM, E. R., AND HAEMERS, W. Which graphs are determined by their spectrum? *Linear Algebra Appl. 373* (2003), 241–272.
- [9] GODSIL, C., AND ROYLE, G. Algebraic graph theory. Graduate Texts in Mathematics. Vol 207. Springer, 2001.
- [10] HARARY, F., AND SCHWENK, A. J. Which graphs have integral spectra? Lect. Notes Math. 406, Springer Verlag (1974), 45–50.
- [11] ILIĆ, A. Distance Spectra and Distance Energy of Integral Circulant Graphs. Linear Algebra Appl. 433 (2010), 1005–1014.
- [12] KLOTZ, W., AND SANDER, T. Integral Cayley graphs over abelian groups. *Electron. J. Comb.* 17 (2010), R81, 1–13.
- [13] KLOTZ, W., AND SANDER, T. Integral Cayley graphs defined by greatest common divisors. *Electron. J. Comb.* 18 (2011), P94, 1–15.
- [14] LOVÁSZ, L. Spectra of graphs with transitive groups. Periodica Mathematica Hungarica 6 (1975), 191–195.
- [15] So, W. Integral circulant graphs. Discrete Math. 306 (2005), 153–158.