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Abstract

For sufficiently large subsets A,B, C,D of Fq, Gyarmati and Sárközy (2008)
showed the solvability of the equations a+b = cd and ab+1 = cd with a ∈ A, b ∈ B,
c ∈ C, d ∈ D. They asked whether one can extend these results to every k ∈ N in the
following way: for large subsets A,B, C,D of Fq, there are a1, . . . , ak, a

′
1, . . . , a

′
k ∈ A,

b1, . . . , bk, b
′
1, . . . , b

′
k ∈ B with ai + bj , a

′
ib
′
j + 1 ∈ CD (for 1 6 i, j 6 k). The author

(2010) gave an affirmative answer to this question using Fourier analytic methods.
In this paper, we will extend this result to the setting of finite cyclic rings using
tools from spectral graph theory.

1 Introduction

In [6] and [7], Sárközy proved that if A, B, C, D are “large” subsets of Zp, more precisely,
|A||B||C||D| � p3, then the equation

ab+ 1 = cd, (1.1)

resp.
a+ b = cd, (1.2)

can be solved with a ∈ A, b ∈ B, c ∈ C and d ∈ D. Here, and throughout, X � Y
means that there exists C > 0 such that X > CY . Gyarmati and Sárközy [4] generalized
the results on the solvability of equation (1.2) to arbitrarily finite fields Fq, where q be
a large odd prime power. Hegyvári [5] and Shparlinski [8] also studied these problems
in the imbalanced cases. Furthermore, Garaev [2, 3] considered the equations (1.2) and
(1.1) over some special sets A,B, C,D to obtain new results on the sum-product problem
in finite fields. The author reproved these results using graph theory methods in [10].
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At the end of [4], Gyarmati and Sárközy proposed some open problems related to the
above equations. They asked whether one can extend the solvability of the equations (1.2)
and (1.1) in the following way: for every k ∈ N, there are c = c(k) > 0 and q0 = q0(k) such
that if q > q0, A,B, C,D ⊆ Fq, |A||B||C||D| > q4−c then there are a1, . . . , ak, a

′
1, . . . , a

′
k ∈

A, b1, . . . , bk, b
′
1, . . . , b

′
k ∈ B with ai + bj, a

′
ib
′
j + 1 ∈ CD for 1 6 i, j 6 k. In [11], the

author gave an affirmative answer to this question. More precisely, the author proved the
following results.

Theorem 1.1 ([11]) For every k ∈ N. If A,B, C,D ⊆ Fq with |A||B||C||D| � q4−
1

2(k+1) ,
then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B with ai + bj ∈ CD for 1 6 i, j 6 k.

Theorem 1.2 ([11]) For every k ∈ N. If A,B, C,D ⊆ Fq with |A||B||C||D| � q4−
1

2(k+1) ,
then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B with aibj + 1 ∈ CD for 1 6 i, j 6 k.

Let p be a large prime and r > 2. Let Zpr be the ring of residues mod pr. We identify
Zpr with {0, 1, . . . , pr − 1}. Define the set of units and the set of nonunits in Zpr by Z×pr
and Z0

pr respectively. It is natural to extend these results to the setting of finite cyclic
rings. Our main results of this paper are the following theorems.

Theorem 1.3 For every k ∈ N. If A,B, C,D ⊆ Zpr with |A||B||C||D| � p4r−
1

2(k+1) , then
there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B with ai + bj ∈ CD for 1 6 i, j 6 k.

Theorem 1.4 For every k ∈ N. If A,B, C,D ⊆ Zpr with |A||B||C||D| � p4r−
1

2(k+1) , then
there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B with aibj + 1 ∈ CD for 1 6 i, j 6 k.

The rest of this paper is organized as follows. In Section 2 we study spectrums of
product graphs and sum-product graphs over finite rings. Proofs of Theorem 1.3 and
Theorem 1.4 are given in Section 3 and Section 4, respectively.

2 Product graphs and sum-product graphs

For a graph G, let λ1 > λ2 > . . . > λn be the eigenvalues of its adjacency matrix. The
quantity λ(G) = max{λ2, |λn|} is called the second eigenvalue of G. A graph G = (V,E)
is called an (n, d, λ)-graph if it is d-regular, has n vertices, and the second eigenvalue of G
is at most λ. It is well known (see [1, Chapter 9] for more details) that if λ is much smaller
than the degree d, then G has certain random-like properties. For two (not necessarily)
disjoint subsets of vertices U,W ⊂ V , let e(U,W ) be the number of ordered pairs (u,w)
such that u ∈ U , w ∈ W , and (u,w) is an edge of G. For a vertex v of G, let N(v)
denote the set of vertices of G adjacent to v and let d(v) denote its degree. Similarly, for
a subset U of the vertex set, let NU(v) = N(v) ∩ U and dU(v) = |NU(v)|. We first recall
the following two well-known facts (see, for example, [1]).
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Theorem 2.1 ([1, Theorem 9.2.4]) Let G = (V,E) be an (n, d, λ)-graph. For any subset
U of V , we have ∑

v∈V

(dU(v)− d|U |/n)2 < λ2|U |.

The following result is an easy corollary of Theorem 2.1.

Corollary 2.2 ([1, Corollary 9.2.5]) Let G = (V,E) be an (n, d, λ)-graph. For any two
sets B,C ⊂ V , we have ∣∣∣∣e(B,C)− d|B||C|

n

∣∣∣∣ 6 λ
√
|B||C|.

2.1 Sum-product graphs over rings

Suppose that q = pr for some odd prime p and r > 2. The sum-product graph SPq is
defined as follows. The vertex set of the sum-product graph SPq is the set V (SPq) =
Zq × Zq. Two vertices (a, b) and (c, d) ∈ V (SPq) are connected by an edge in E(SPq), if
and only if a+ c = bd. Our construction is similar to that of Solymosi in [9] in the finite
field setting.

Theorem 2.3 The sum-product graph SPq is a(
p2r, pr,

√
2rp2r−1

)
− graph.

Proof It is easy to see that SPq is a regular graph of order p2r and valency pr. We now
compute the eigenvalues of this multigraph. For any a, c ∈ Zpr , b, d ∈ Zpr and b 6= d, we
count the number of solutions of the following system

a+ u = bv, c+ u = dv, u, v ∈ Zpr . (2.1)

For each solution v of
(b− d)v = a− c, (2.2)

there exists a unique u satisfying the system (2.1). Therefore, we only need to count the
number of solutions of (2.2).

Let 1 6 α 6 r − 1 be the largest power such that b − d is divisible by pα. Suppose
that pα|(a − c). Let γ = (a − c)/pα and β = (b − d)/pα. Since β ∈ Z×pr−α , there exists
an unique solution v ∈ Zpr−α of βv = γ. Putting back in to (2.2) gives us pα solutions.
Hence, (2.1) has pα solutions if pα|(a− c), and no solution otherwise.

Therefore, for any two vertices (a, b) and (c, d) ∈ V (SPq), let pα = gcd(b − d, pr),
then (a, b) and (c, d) have pα common neighbors if pα | c − a and no common neighbors
otherwise. Let A be the adjacency matrix of SPq. It follows that

A2 = J + (pr − 1)I −
r−1∑
α=0

Eα +
r−1∑
α=1

(pα − 1)Fα, (2.3)
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where J is the all-one matrix, I is the identity matrix, Eα is the adjacency matrix of the
graph BE,α, where the vertex set of BE,α is Zq × Zq and for any two vertices U = (a, b)
and V = (c, d) ∈ V (BE,α), (U, V ) is an edge of BE,α if and only if pα = gcd(b − d, pr) >
gcd(a− c, pr); and Fα is the adjacency matrix of the graph BF,α, where the vertex set of
BF,α is Zq×Zq and for any two vertices U = (a, b) and V = (c, d) ∈ V (BF,α), (U, V ) is an
edge of BF,α if and only if pα = gcd(b− d, pr) 6 gcd(a− c, pr). For any α > 0 then BE,α

is a regular graph of order less than p2r−α and BF,α is a regular graph of order less than
p2(r−α). Hence, all eigenvalues of Eα are at most p2r−α, and all eigenvalues of Fα are at
most p2(r−α). Note that E0 is a zero matrix.

Since SPq is a pr-regular graph, pr is an eigenvalue of A with the all-one eigenvector 1.
The graph SPq is connected; therefore, the eigenvalue pr has multiplicity one. Since the
graph SPq contains (many) triangles, it is not bipartite. Hence, for any other eigenvalue
θ then |θ| < pr. Let vθ denote the corresponding eigenvector of θ. Note that vθ ∈ 1⊥, so
Jvθ = 0. It follows from (2.3) that

(θ2 − pr + 1)vθ =

(
−

r−1∑
α=1

Eα +
r−1∑
α=1

(pα − 1)Fα

)
vθ.

Hence, vθ is also an eigenvalue of

r−1∑
α=1

(pα − 1)Fα −
r−1∑
α=1

Eα.

Since eigenvalues of the sum of matrices are bounded by sum of the largest eigenvalues of
summands. We have

θ2 6 pr − 1 +
r−1∑
α=1

p2r−α +
r−1∑
α=1

(pα − 1)p2(r−α)

< 2rp2r−1.

The lemma follows. �

2.2 Product graphs over rings

Suppose that q = pr for some odd prime p and r > 2. We identify Zq with {0, 1, . . . , q−1},
then pZpr−1 is the set of nonunits in Zq. The product graph PGq is defined as follows.
The vertex set of the product graph PGq is the set V (PGq) = Z2

pr\(pZpr−1)2. Two vertices
a = (a1, a2), b = (b1, b2) ∈ V (PGq) are connected by an edge (a, b) ∈ E(PGq), if and only
if a · b = a1b1 + a2b2 = 1.

Theorem 2.4 The product graph PGq is an

(p2r − p2(r−1), pr,
√

2rp2r−1)− graph.
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Proof It follows from the definition of the product graph that PGq is a graph of order
p2r − p2(r−1). The valency of the graph is also easy to compute. Given a vertex x =
(x1, x2) ∈ V (PGq), there exists an index xi ∈ Z×q . We can assume that x1 ∈ Z×q . Then we
can choose y2 ∈ Zq arbitrarily, and y1 is determined uniquely such that x1y1 + x2y2 = 1.
Hence, PGq is a regular graph of valency pr. It remains to estimate the eigenvalues of this
multigraph (i.e. graph with loops). For any a, b ∈ Z2

pr\(pZpr−1)2 and a 6= b, we count
the number of solutions of the following system

a · x = b · x = 1, x ∈ Z2
pr\(pZpr−1)2. (2.4)

There exist uniquely 0 6 α 6 r−1 and b1 ∈ (Zpr−α)2\(pZpr−α−1)2 such that b = a+pαb1.
The system (2.4) above becomes

a · x = 1, pαb1 · x = 0, x ∈ Z2
pr\(pZpr−1)2. (2.5)

Let aα ∈ Z2
pr−α\(pZpr−α−1)2 ≡ a mod pr−α, xα ∈ Z2

pr−α\(pZpr−α−1)2 ≡ x mod pr−α. To
solve (2.5), we first solve the following system

aα · xα = 1, b1 · xα = 0, xα ∈ Z2
pr−α\(pZpr−α−1)2. (2.6)

The system (2.6) has an unique solution when aα 6≡ tb1 mod p for some t ∈ Z×p and no
solution otherwise. For each solution xα of (2.6), putting back into the system

a · x = λ, x ≡ xα mod pr−α, (2.7)

gives us pα solutions of the system (2.5). Hence, the system (2.5) has pα solutions when
aα 6≡ tb1 mod p, and no solution otherwise. Let A be the adjacency matrix of PGq, it
follows that

A2 = J + (pr − 1)I −
r−1∑
α=0

Eα +
r−1∑
α=1

(pα − 1)Fα, (2.8)

where J is the all-one matrix; I is the identity matrix; Eα is the adjacency matrix of the
graph BE,α, where the vertex set of BE,α is Z2

pr\(pZpr−1)2, and for any two vertices a, b ∈
V (BE,α), (a, b) is an edge of BE,α if and only if b = a + pαb1, b1 ∈ (Zpr−α)2\(pZpr−α−1)2

and aα ≡ tb1 mod p; and Fα is the adjacency matrix of the graph BF,α, where where
the vertex set of BF,α is Z2

pr\(pZpr−1)2, for any two vertices a, b ∈ V (BF,α), (a, b) is an
edge of BF,α if and only if b = a + pαb1, b1 ∈ (Zpr−α)2\(pZpr−α−1)2 and aα 6≡ tb1 mod p.
Therefore, BE,α is a regular graph of valency (p − 1)p2(r−α−1) and all eigenvalues of Eα
are at most (p− 1)p2(r−α−1). It also implies that all eigenvalues of Fα are at most p2(r−α).

Since PGq is a pr-regular graph, pr is an eigenvalue of A with the all-one eigenvector 1.
The graph PGq is connected; therefore, the eigenvalue pr has multiplicity one. Since the
graph PGq contains (many) triangles, it is not bipartite. Hence, for any other eigenvalue
θ, |θ| < pr. Let vθ denote the corresponding eigenvector of θ. Note that vθ ∈ 1⊥, so Jvθ
= 0. It follows from (2.8) that

(θ2 − pr + 1)vθ =

(
r−1∑
α=0

Eα −
r−1∑
α=1

(pα − 1)Fα

)
vθ.
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Hence, vθ is also an eigenvalue of
∑r−1

α=0Eα −
∑r−1

α=1(p
α − 1)Fα. Since eigenvalue of sum

of matrices is bounded by the sum of largest eigenvalues of summands. We have

θ2 6 pr − 1 +
r−1∑
α=0

(p− 1)p2(r−α−1) +
r−1∑
α=1

(pα − 1)p2(r−α)

< pr + rp2(r−1)+1 + (r − 1)p2(r−1)+1

< 2rp2r−1.

The lemma follows. �

3 Pseudo-randomness of sum-product graphs - Proof

of Theorem 1.3

Suppose that A,B, C,D ⊆ Zpr with |A||B||C||D| � p4r−c for some 0 < c < 1
2(k+1)

.

It follows that |A|, |B|, |C|, |D| � pr−c, and we can assume A,B, C,D ⊂ Z×pr . Denote
NC,D(A,B) be the set of pairs (a, b) ∈ A × B such that a + b ∈ CD. We first show that
for any two large subsets A,B of Fq, there are many pairs (a, b) ∈ A×B with a+ b ∈ CD.
More precisely, we have the following lemma.

Lemma 3.1 Suppose that A,B, C,D ⊂ Z×pr . We have

NC,D(A,B) >
|D|
pr
|A||B| −

√
2rp2r−1|D|
|C|

√
|A||B|.

Proof For any a ∈ A, c ∈ C, denote N c,D(a) be the set of all b ∈ Zpr such that a+b ∈ cD,
and let N c,D(a,B) = N c,D(a)∩B. Applying Theorem 2.1 and Theorem 2.3 for the product
graph PGq and the set B ×D, we have

∑
(a,c)∈Z2

pr

(∣∣N c,D(a,B)
∣∣− |B||D|

pr

)2

< 2rp2r−1|B||D|.

This estimate says that the cardinalities of N c,D(a,B)’s are close to |B||D|
pr

when |B|, |D|
are large.

By the pigeon-hole principle, there exists c0 ∈ C such that

∑
a∈A

(∣∣N c0,D(a,B)
∣∣− |B||D|

pr

)2

6
1

|C|
∑

a∈A,c∈C

(∣∣N c,D(a,B)
∣∣− |B||D|

pr

)2

<
2rp2r−1|D||B|

|C|
.
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By the Cauchy-Schwartz inequality,∣∣∣∣N c0,D(A,B)− |D|
pr
|A||B|

∣∣∣∣ 6 ∑
a∈A

∣∣∣∣∣∣N c0,D(a,B)
∣∣− |B||D|

pr

∣∣∣∣
6

√
|A|

√√√√∑
a∈A

(
|N c0,D(a,B)| − |B||D|

pr

)2

6

√
2rp2r−1|D
|C|

√
|A||B|.

The lemma now follows from the fact that NC,D(A,B) > N c0,D(A,B). �

We also need the following key lemma.

Lemma 3.2 Suppose that A,B, C,D ⊂ Z×pr with

|A|, |B| �

√
2rp2r−1|D|
|C|

(
pr

|D|

)k
.

Then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B such that ai + bj ∈ CD for all 1 6 i, j 6 k.

Proof The proof proceeds by induction on k. The base case k = 1 follows immediately
from Lemma 3.1. Suppose that the theorem hold for all l < k. From Lemma 3.1, we have

NC,D(A,B) >
|D|
pr
|A||B| −

√
2rp2r−1|D|
|C|

√
|A||B| = (1 + o(1))

|D|
pr
|A||B|.

By the pigeon-hole principle, there exists a1 ∈ A such that

NC,D(a1,B) > (1 + o(1))
|D|
pr
|B| �

√
2rp2r−1|D|
|C|

(
pr

|D|

)k−1
. (3.1)

Let B1 be the set of all b ∈ B such that a1 + b ∈ CD. From Lemma 3.1 again, we have

NC,D(A,B1) >
|D|
pr
|A||B1| −

√
2rp2r−1|D|
|C|

√
|A||B1| = (1 + o(1))

|D|
pr
|A||B1|.

By the pigeon-hole principle, there exists b1 ∈ B1 such that

NC,D(A, b1) > (1 + o(1))
|D|
pr
|A| �

√
2rp2r−1|D|
|C|

(
pr

|D|

)k−1
. (3.2)

Let A1 be the set of all a ∈ A such that a+b1 ∈ CD. Set A∗ = A\{a1} and B∗ = B1\{b1},
it follows from (3.1) and (3.2) that

|A∗|, |B∗| �

√
2rp2r−1|D|
|C|

(
pr

|D|

)k−1
.
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Thus, by the induction hypothesis, there are a2, . . . , ak ∈ A∗, b2, . . . , bk ∈ B∗ such that
ai + bj ∈ CD for all 2 6 i, j 6 k. We also have a1 + bi, aj + b1 ∈ CD for all i, j = 1, . . . , k.
This completes the proof of the lemma. �

Let c = c(k) < 1
2(k+1)

and q � 1, then |A|, |B|, |C|, |D| � q1−c. It follows that√
2rp2r−1|D|
|C|

(
pr

|D|

)k
� pr−

1
2
+ck � pr−c � |A|, |B|. (3.3)

Theorem 1.3 now follows immediately from Lemma 3.2.

4 Pseudo-randomness of product graphs - Proof of

Theorem 1.4

Suppose that A,B, C,D ⊆ Zpr with |A||B||C||D| � p4r−c for some 0 < c < 1
2(k+1)

.

It follows that |A|, |B|, |C|, |D| � pr−c, and we can assume A,B, C,D ⊂ Z×pr . Denote
T C,D(A,B) be the set of pairs (a, b) ∈ A × B such that ab + 1 ∈ CD. Similar to the
previous section, we can show that for any two large subsets A,B of Z×pr , there are many
pairs (a, b) ∈ A× B with ab+ 1 ∈ CD. More precisely, we have the following lemma.

Lemma 4.1 For every subsets A,B, C,D ⊂ Z×pr , then

T C,D(A,B) >
(1 + o(1))|D|

pr
|A||B| −

√
2rp2r−1|D|
|C|

√
|A||B|.

Similar to the proof of Lemma 3.2, using Lemma 4.1 instead of Lemma 3.1, we have
the following result.

Lemma 4.2 Suppose that A, B, C, D ⊂ Z×pr with

|A|, |B| �

√
2rp2r−1|D|
|C|

(
pr

|D|

)k
.

Then there are a1, . . . , ak ∈ A, b1, . . . , bk ∈ B such that aibj + 1 ∈ CD for all 1 6 i, j 6 k.

Let c < 1
2(k+1)

and q � 1, then |A|, |B|, |C|, |D| � q1−c. It follows that√
2rp2r−1|D|
|C|

(
pr

|D|

)k
� pr−

1
2
+ck � pr−c � |A|, |B|. (4.1)

Theorem 1.4 now follows from Lemma 4.2.
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