# On $\left(K_{q}, k\right)$ stable graphs with small $k$ 

Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe<br>L.I.F.O., Faculté des Sciences, B.P. 6759 Université d'Orléans, 45067 Orléans Cedex 2, France<br>fouquet@univ-lemans.fr, henri.thuillier@univ-orleans.fr, jmvanh@univ-lemans.fr<br>Adam Paweł Wojda *<br>Wydział Matematyki Stosowanej Zakład Matematyki Dyskretnej A.G.H., Al. Mickiewicza 30, 30-059 Kraków, Poland<br>wojda@agh.edu.pl

Submitted: Feb 7, 2011; Accepted: Jun 14, 2012; Published: Jun 28, 2012
Mathematics Subject Classification: 05C35, 05C75, 05C99


#### Abstract

A graph $G$ is $\left(K_{q}, k\right)$ stable if it contains a copy of $K_{q}$ after deleting any subset of $k$ vertices. In a previous paper we have characterized the $\left(K_{q}, k\right)$ stable graphs with minimum size for $3 \leqslant q \leqslant 5$ and we have proved that the only ( $K_{q}, k$ ) stable graph with minimum size is $K_{q+k}$ for $q \geqslant 5$ and $k \leqslant 3$. We show that for $q \geqslant 6$ and $k \leqslant \frac{q}{2}+1$ the only $\left(K_{q}, k\right)$ stable graph with minimum size is isomorphic to $K_{q+k}$.


## 1 Introduction

For terms not defined here we refer to [1]. As usually, the order of a graph $G$ is the number of its vertices (it is denoted by $|G|$ ) and the size of $G$ is the number of its edges (it is denoted by $e(G)$ ). The degree of a vertex $v$ in a graph $G$ is denoted by $d_{G}(v)$, or simply by $d(v)$ if no confusion is possible. For any set $S$ of vertices, we denote by $G-S$ the subgraph induced by $V(G)-S$. If $S=\{v\}$ we write $G-v$ for $G-\{v\}$. When $e$ is an edge of $G$ we denote by $G-e$ the spanning subgraph $(V(G), E-\{e\})$. The disjoint union of two graphs $G_{1}$ and $G_{2}$ is denoted by $G_{1}+G_{2}$. The union of $p$ mutually disjoint copies of a graph $G$ is denoted by $p G$. A complete subgraph of order $q$ of $G$ is called a $q$-clique of $G$. The complete graph of order $q$ is denoted by $K_{q}$. When a graph $G$ contains a $q$-clique as subgraph, we say " $G$ contains a $K_{q}$ ".

[^0]In [5] Horvárth and Katona consider the notion of $(H, k)$ stable graph: given a simple graph $H$, an integer $k$ and a graph $G$ containing $H$ as subgraph, $G$ is a a $(H, k)$ stable graph whenever the deletion of any set of $k$ edges does not lead to a $H$-free graph. These authors consider $\left(P_{n}, k\right)$ stable graphs and prove a conjecture stated in [4] on the minimum size of a $\left(P_{4}, k\right)$ stable graph. In [2], Dudek, Szymański and Zwonek are interested in a vertex version of this notion and introduce the ( $H, k$ ) vertex stable graphs.

Definition 1.1 Let $H$ be a graph and $k$ be a natural number. A graph $G$ of order at least $k$ is said to be a $(H, k)$ vertex stable graph if for any set $S$ of $k$ vertices the subgraph $G-S$ contains a graph isomorphic to $H$.

In this paper, since no confusion will be possible, a $(H, k)$ vertex stable shall be simply called a $(H, k)$ stable graph. By $Q(H, k)$ we denote the size of a minimum $(H, k)$ stable graph. It is clear that if $G$ is a $(H, k)$ stable graph with minimum size then the graph obtained from $G$ by addition or deletion of some isolated vertices is also minimum $(H, k)$ stable. Hence we shall assume that all the graphs considered in the paper have no isolated vertices. A $(H, k)$ stable graph with minimum size shall be called a minimum $(H, k)$ stable graph.

Lemma 1.2 [2] Let $q$ and $k$ be integers, $q \geqslant 2, k \geqslant 1$. If $G$ is $(H, k)$ stable then, for every vertex $v$ of $G$, the graph $G-v$ is $(H, k-1)$ stable.

Proposition 1.3 [2] If $G$ is a $(H, k)$ stable graph with minimum size then every vertex as well as every edge is contained in a subgraph isomorphic to $H$.

Proof: Let $e$ be an edge of $G$ which is not contained in any subgraph of $G$ isomorphic to $H$, then $G-e$ would be a $(H, k)$ stable graph with less edges than $G$, a contradiction. Let $x$ be a vertex of $G$ and $e$ be an edge of $G$ incident with $x$, since $e$ is an edge of some subgraph isomorphic to $H$, say $H_{0}$, the vertex $x$ is a vertex of $H_{0}$.

## 2 Preliminary results

We are interested in minimum $\left(K_{q}, k\right)$ stable graphs (where $q$ and $k$ are integers such that $q \geqslant 2$ and $k \geqslant 0$ ). As a corollary to Proposition 1.3 , every edge and every vertex of a minimum $\left(K_{q}, k\right)$ stable graph is contained in a $K_{q}$ (thus the minimum degree is at least $q-1$ ). Note that, for $q \geqslant 2$ and $k \geqslant 0$, the graph $K_{q+k}$ is ( $K_{q}, k$ ) stable, hence $Q\left(K_{q}, k\right) \leqslant\binom{ q+k}{2}$.

Definition 2.1 Let $H$ be a non complete graph on $q+t$ vertices $(t \geqslant 1)$. We shall say that $H$ is a near complete graph when it has a vertex $v$ such that

- $H-v$ is complete.
- $d_{H}(v)=q+r$ with $-1 \leqslant r \leqslant t-2$.

The previous definition generalizes Definition 1.5 in [3] initially given for $r \in\{-1,0,1\}$ and the following lemma generalizes Proposition 2.1 in [3].

Lemma 2.2 Every minimum $\left(K_{q}, k\right)$ stable graph $G$, where $q \geqslant 3$ and $k \geqslant 1$, has no component $H$ isomorphic to a near complete graph.

Proof: Suppose, contrary to our claim, that $G$ has such a component $H$ and let $v$ be the vertex of $H$ such that $H-v$ is a clique of $G$. Then $|H|=q+t$, with $t \geqslant 1$, and $q-1 \leqslant d(v)=q+r \leqslant q+t-2$. Since $G$ is minimum $\left(K_{q}, k\right)$ stable, $G-v$ is $\left(K_{q}, k-1\right)$ stable and is not $\left(K_{q}, k\right)$ stable. Then $G-v$ contains a set $S$ with at most $k$ vertices intersecting every subgraph of $G-v$ isomorphic to a $K_{q}$. The graph $G-S$ contains some $K_{q}$ (at least one) and clearly every subgraph of $G-S$ isomorphic to a $K_{q}$ contains $v$. Since $N(v)$ is a $K_{q+r}$ and $N(v)-S$ contains no $K_{q},|N(v)-S| \leqslant q-1$. Since there exists a $K_{q}$ containing $v$ in $H-S,|N(v)-S|=q-1$ (and hence $|S \cap N(v)|=r+1$ ). Since $H-v-S$ contains no $K_{q}, H-v-S=N(v)-S$. Let $a$ be a vertex of $H-v$ not adjacent to $v$ and let $b$ be a vertex in $N(v)-S$, and consider $S^{\prime}=S-\{a\}+\{b\}$. We have $\left|S^{\prime}\right| \leqslant k$ and $G-S^{\prime}$ contains no $K_{q}$, a contradiction.

It is clear that $Q\left(K_{q}, 0\right)=\binom{q}{2}$ and the only minimum $\left(K_{q}, 0\right)$ stable graph is $K_{q}$. It is an easy exercise to see that $Q\left(K_{2}, k\right)=k+1$ and that the matching $(k+1) K_{2}$ is the unique minimum $\left(K_{2}, k\right)$ stable graph.

Theorem 2.3 [3] Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph, with $k \geqslant 0$ and $3 \leqslant q \leqslant 5$. Then $G$ is isomorphic to $s K_{2 q-2}+t K_{2 q-3}$, for any choice of $s$ and $t$ such that $s(q-1)+$ $t(q-2)=k+1$.

In [3] it was proved that if $q \geqslant 4$ and $k \in\{1,2\}$ then $Q\left(K_{q}, k\right)=\binom{q+k}{2}$ and the only minimum ( $K_{q}, k$ ) stable graph is $K_{q+k}$. We have proved also that if $q \geqslant 5$ then $Q\left(K_{q}, 3\right)=\binom{q+3}{2}$ and the only minimum $\left(K_{q}, 3\right)$ stable graph is $K_{q+3}$. Dudek, Szymański and Zwonek proved the following result.

Theorem 2.4 [2] For every $q \geqslant 4$, there exists an integer $k(q)$ such that $Q\left(K_{q}, k\right) \leqslant$ $(2 q-3)(k+1)$ for $k \geqslant k(q)$.

As a consequence of this last result, they have deduced that for every $k \geqslant k(q) K_{q+k}$ is not minimum $\left(K_{q}, k\right)$ stable.

Remark 2.5 From now on, throughout this section we assume that $q$ and $k$ are integers such that $q \geqslant 4, k \geqslant 1$ and for every $r$ such that $0 \leqslant r<k$ we have $Q\left(K_{q}, r\right)=\binom{q+r}{2}$ and the only minimum $\left(K_{q}, r\right)$ stable graph is $K_{q+r}$.

In view of Theorem 2.4, $k$ is bounded from above and we are interested in obtaining the greatest possible value of $k$.

Lemma 2.6 Let $G$ be a $\left(K_{q}, k\right)$ stable graph such that $e(G) \leqslant\binom{ q+k}{2}$. Then either for every vertex $v$ we have $d(v) \leqslant q+k-2$ or $G$ is isomorphic to $K_{q+k}$.

Proof: Suppose that some vertex $v$ has degree at least $q+k-1$. By Lemma 1.2 the graph $G-v$ is $\left(K_{q}, k-1\right)$ stable, hence $Q\left(K_{q}, k-1\right) \leqslant e(G-v)=e(G)-d(v)$. Since $Q\left(K_{q}, k-1\right)=\binom{q+k-1}{2}$, we have
$\binom{q+k-1}{2} \leqslant e(G)-d(v) \leqslant\binom{ q+k}{2}-(q+k-1)=\binom{q+k-1}{2}$.
It follows that $e(G-v)=\binom{q+k-1}{2}, G-v$ is isomorphic to $K_{q+k-1}$ and $d(v)=q+k-1$. Hence, $G$ is isomorphic to $K_{q+k}$.

Lemma 2.7 Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph. Then one of the following statements is true

- $G$ has no component isomorphic to $K_{q}$,
- $Q\left(K_{q}, k-1\right)+\binom{q}{2} \leqslant Q\left(K_{q}, k\right)$.

Proof: Suppose that some component $H$ of $G$ is isomorphic to a $K_{q}$. If $G-H$ is not $\left(K_{q}, k-1\right)$ stable, then there is a set $S$ with at most $k-1$ vertices intersecting each $K_{q}$ of $G-H$. Then, for any vertex $a$ of $H, S+a$ intersects each $K_{q}$ of $G$ while $S$ has at most $k-1$ vertices, a contradiction. Hence $G-H$ is $\left(K_{q}, k-1\right)$ stable and we have $Q\left(K_{q}, k-1\right) \leqslant e(G-H)=Q\left(K_{q}, k\right)-\binom{q}{2}$.

Lemma 2.8 [3] Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph and let $u$ be a vertex of degree $q-1$. Then one of the following statements is true

- $\forall v \in N(u) \quad d(v) \geqslant q+1$,
- $Q\left(K_{q}, k-1\right)+3(q-2) \leqslant Q\left(K_{q}, k\right)$.

Proof: By Proposition 1.3, since $d(u)=q-1,\{u\} \cup N(u)$ induces a complete graph on $q$ vertices. Assume that some vertex $w \in N(u)$ has degree $q+r$ where $r=-1$ or $r=0$, and let $v$ be a neighbour of $u$ distinct from $w$. Since the degree of $u$ in $G-v$ is $q-2$, no edge incident with $u$ can be contained in a $K_{q}$ of $G-v$. Since $G-v$ is $\left(K_{q}, k-1\right)$ stable, we can delete the $q-2$ edges incident with $u$ in $G-v$ and the resulting graph $G^{\prime}$ is still $\left(K_{q}, k-1\right)$ stable. By deleting $v$, we have $e(G-v) \leqslant e(G)-(q-1)$ and hence

$$
e\left(G^{\prime}\right) \leqslant e(G)-(q-1)-(q-2)
$$

In $G^{\prime}$, the degree of $w$ is now $q+r-2$. Hence, no edge incident with $w$ in $G^{\prime}$ can be contained in a $K_{q}$. Deleting these $q+r-2$ edges from $G^{\prime}$ leads to a graph $G^{\prime \prime}$ which remains to be $\left(K_{q}, k-1\right)$ stable. We get thus

$$
Q\left(K_{q}, k-1\right) \leqslant e\left(G^{\prime \prime}\right) \leqslant e(G)-(q-1)-(q-2)-(q+r-2) .
$$

Since $e(G) \leqslant Q\left(K_{q}, k\right)$, the result follows.

Lemma 2.9 Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph, where $1 \leqslant k \leqslant 2 q-6$, and let $v$ be a vertex of degree $q-1$. Then for every vertex $w \in N(v)$ we have $d(w) \geqslant q+1$.

Proof: Suppose, contrary to the assertion of the lemma, that $d(w) \leqslant q$ for some vertex $w \in N(v)$. By Lemma 2.8, we have $Q\left(K_{q}, k-1\right)+3(q-2) \leqslant Q\left(K_{q}, k\right)$. Since $Q\left(K_{q}, k-1\right)=\binom{q+k-1}{2}$ and $Q\left(K_{q}, k\right) \leqslant\binom{ q+k}{2}$ we have $\binom{q+k-1}{2}+3 q-6 \leqslant\binom{ q+k}{2}$. Then we obtain $k \geqslant 2 q-5$, a contradiction.

Lemma 2.10 Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph, where $q \geqslant 5$ and $1 \leqslant k \leqslant q-1$. Then the minimum degree of $G$ is at least $q$.

Proof: Suppose that there is a vertex $v$ of degree $q-1$ and let $w$ be a neighbour of $v$. Since $q-1 \leqslant 2 q-6$, by Lemma 2.9, $w$ has degree at least $q+1$. By Lemma 1.2 the graph $G-w$ is $\left(K_{q}, k-1\right)$ stable. In that graph $v$ is not contained in any $K_{q}$ since its degree is $q-2$. Hence $G-\{w, v\}$ is still $\left(K_{q}, k-1\right)$ stable. We have $e(G-\{w, v\})=e(G)-(d(v)+d(w)-1) \leqslant e(G)-2 q+1$. Since $Q\left(K_{q}, k-1\right)=\binom{q+k-1}{2}$ and $Q\left(K_{q}, k\right) \leqslant\binom{ q+k}{2}$ we have $\binom{q+k-1}{2} \leqslant e(G)-2 q+1 \leqslant\binom{ q+k}{2}-2 q+1$. It follows that $k \geqslant q$, a contradiction.

Lemma 2.11 Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph, where $q \geqslant 5$ and $1 \leqslant k \leqslant q-1$, and let $v$ be a vertex of degree $q$. Then the subgraph induced by $N(v)$ is complete.

Proof: Suppose not, and assume that $N(v)$ contains two nonadjacent vertices $a$ and $b$. Let $w \in N(v)$ distinct from $a$ and $b$ ( $w$ must exist since $q>3$ ). By Lemma 1.2 the graph $G-w$ is $\left(K_{q}, k-1\right)$ stable. In that graph $v$ is not contained in a $K_{q}$ since its two neighbours $a$ and $b$ are not adjacent. Hence $G-\{w, v\}$ is still $\left(K_{q}, k-1\right)$ stable. By Lemma 2.10, $d(w) \geqslant q$ and hence $e(G-\{w, v\})=e(G)-(d(v)+d(w)-1) \leqslant e(G)-2 q+1$. We have, as in the proof of Lemma 2.10, $\binom{q+k-1}{2} \leqslant e(G)-2 q+1 \leqslant\binom{ q+k}{2}-2 q+1$, and we obtain $k \geqslant q$, a contradiction.

Lemma 2.12 Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph, where $q \geqslant 5$ and $2 \leqslant k \leqslant \frac{q}{2}+1$, and let $v$ be a vertex of degree at least $q+1$. Then either $N(v)$ induces a complete graph or there exists an ordering $v_{1}, \ldots, v_{d(v)}$ of the vertices of $N(v)$ such that $\left\{v_{1}, \ldots, v_{q-1}\right\}$ induces a complete graph and $v_{d(v)-1} v_{d(v)}$ is not in $E(G)$. Moreover, there exists a vertex $w$ in $\left\{v_{1}, \ldots, v_{q-1}\right\}$ adjacent to $v_{d(v)-1}$ and $v_{d(v)}$.

Proof: Suppose that the subgraph induced by $N(v)$ is not complete and let $a$ and $b$ be two nonadjacent neighbours of $v$.

Claim 2.12.1 $N(v)-\{a, b\}$ contains a $K_{q-1}$.

Proof of Claim: Let us suppose first that $d(a)=q($ or $d(b)=q)$. Hence, by Lemma 2.11, $N(a)$ induces a $K_{q+1}$. Since $v \in N(a)$ and $b \notin N(a), N(v)-\{a, b\}$ contains a $K_{q-1}$ as claimed. Hence we can assume now that $d(a) \geqslant q+1$ and $d(b) \geqslant q+1$. Suppose for contradiction that every $K_{q-1}$ in $N(v)$ intersects $\{a, b\}$, that is, there is no $K_{q}$ containing $v$ in $G-\{a, b\}$. Since the graph $G-\{a, b\}$ is $\left(K_{q}, k-2\right)$ stable, the graph $G-\{a, b, v\}$ is still $\left(K_{q}, k-2\right)$ stable. Then $e(G-\{a, b, v\})=e(G)-(d(v)+d(a)+d(b)-2) \leqslant e(G)-3 q-1$ and hence $Q\left(K_{q}, k-2\right) \leqslant e(G-\{a, b, v\}) \leqslant e(G)-3 q-1=Q\left(K_{q}, k\right)-3 q-1$. Since $Q\left(K_{q}, k-2\right)=\binom{q+k-2}{2}$ and $Q\left(K_{q}, k\right) \leqslant\binom{ q+k}{2}$, we have $\binom{q+k-2}{2} \leqslant\binom{ q+k}{2}-3 q-1$ and hence $\frac{q}{2}+2 \leqslant k$, a contradiction to $k \leqslant \frac{q}{2}+1$.

Thus, we can order the vertices of $N(v)$ in such a way that the $q-1$ first ones $v_{1}, \ldots, v_{q-1}$ induce a complete graph and the two last vertices $v_{d(v)-1}$ and $v_{d(v)}$ are not adjacent, as claimed.
Set $d(v)=q+r$ with $r \geqslant 1$. By Proposition 1.3, the edges $v v_{q+r-1}$ and $v v_{q+r}$ are contained in two distinct $q$-cliques, say $Q_{1}$ and $Q_{2}$. Since $v_{q+r-1}$ and $v_{q+r}$ are not adjacent, each $Q_{i}$ contains at most $r$ vertices in $N(v)-\left\{v_{1}, \ldots, v_{q-1}\right\}$ and at least $q-r+1$ vertices in $\left\{v_{1}, \ldots, v_{q-1}\right\}$. Since $N(v)$ is not complete and $e(G) \leqslant\binom{ q+k}{2}$, by Lemma 2.6 we have $d(v) \leqslant q+k-2$, and hence $r \leqslant k-2$. Since $k \leqslant \frac{q}{2}+1, Q_{1}$ (as well as $Q_{2}$ ) has at least $q-r+1 \geqslant q-k+3>\frac{q}{2}$ vertices in $\left\{v_{1}, \ldots, v_{q-1}\right\}$. Hence $Q_{1}$ and $Q_{2}$ have at least one common vertex $w$ in $\left\{v_{1}, \ldots, v_{q-1}\right\}$, and the Lemma follows.

Lemma 2.13 Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph, where $q \geqslant 5$ and $2 \leqslant k \leqslant \frac{q}{2}+1$, and let $H$ be a component of $G$. Then either $H$ is complete or for every vertex $v$ of maximum degree in $H$ the subgraph induced by $N(v)$ contains no complete subgraph on $d(v)-1$ vertices.

Proof: Assume that $H$ is not complete.
Claim 2.13.1 The maximum degree in $H$ is at least $q+1$.
Proof of Claim: If the minimum degree in $H$ is at least $q+1$, we are done. If there exists a vertex $u$ of degree $q-1$ in $H$ then, by Lemma 2.9, the degree of any vertex of $N(u)$ is at least $q+1$. If there exists a vertex $u$ of degree $q$ then, by Lemma 2.11, $N(u) \cup\{u\}$ induces a $K_{q+1}$. Since $H$ is connected, there exists a vertex in $H-(N(u) \cup\{u\})$ having at least one neighbour $w$ in $N(u)$, and clearly $d(w) \geqslant q+1$.

Let $v$ be a vertex of maximum degree in $H$ and set $d(v)=q+r$, with $k \geqslant 1$. Since $H$ is not complete, the subgraph induced on $N(v)$ is not complete. By Lemma 2.12, there exists an ordering $\left\{v_{1} \ldots v_{q+r}\right\}$ of the vertices of $N(v)$ such that $\left\{v_{1}, \ldots, v_{q-1}\right\}$ induces a complete graph and $v_{q+r-1} v_{q+r}$ is not an edge of $G$. Suppose that the subgraph induced by $N(v)$ contains a complete subgraph on $q+r-1$ vertices. Then, without loss of generality we may suppose that $\left\{v_{1}, \ldots, v_{q+r-2}, v_{q+r-1}\right\}$ induces a complete graph. Let us denote by $A$ the set of neighbours of $v_{q+r}$ in $N(v)$.

Claim 2.13.2 $|A| \geqslant q-2$, every vertex in $A$ has degree $q+r$ and has no neighbour outside $N(v) \cup\{v\}$.

Proof of Claim: Since $G$ is a minimum $\left(K_{q}, k\right)$ stable graph, by Proposition 1.3, the edge $v v_{q+r}$ must be contained in a $K_{q}$. Hence $v_{q+r}$ has at least $q-2$ neighbours in $\left\{v_{1}, \ldots, v_{q+r-2}\right\}$. Since the subgraph induced by $\left(N(v)-\left\{v_{q+r}\right\}\right)$ is complete, every vertex $a$ in $A$ is adjacent to every vertex in $(N(v)-\{a\}) \cup\{v\}$. Then $d(a)=q+r$, i.e. $a$ has maximum degree in $H$. Hence, no vertex in $A$ has a neighbour outside $N(v) \cup\{v\}$, and the Claim follows.

By Lemma 2.2, the $(q+r)$-clique $\left(N(v)-\left\{v_{q+r}\right\}\right) \cup\{v\}$ is a proper subgraph of $H-\left\{v_{q+r}\right\}$. Since $H$ is connected, there exists a vertex $w$ outside $N(v) \cup\{v\}$ adjacent to a vertex $u$ in $N(v)$. Let us denote by $B$ the set of neighbours of $w$ in $N(v)$. Since the edge $u w$ is contained in a $K_{q}$ by Proposition 1.3, $w$ must have at least $q-2$ common neighbours with $u$ in $N(v)$, and hence $|B| \geqslant q-1$. Since by Claim 2.13.2 $A$ has no neighbour outside $N(v) \cup\{v\}, A$ and $B$ are disjoint. Then we have $2 q-3 \leqslant|A \cup B| \leqslant|N(v)|=q+r$, and hence $q \leqslant r+3$. Since $r \leqslant k-2$ by Lemma 2.6, we obtain $q \leqslant k+1 \leqslant \frac{q}{2}+2$, that is $q \leqslant 4$, a contradiction. Hence, the subgraph induced by the vertices $\left\{v_{1}, \ldots, v_{q+r-2}, v_{q+r-1}\right\}$ is not complete, and the Lemma follows.

Proposition 2.14 Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph, where $q \geqslant 5$ and $2 \leqslant k \leqslant$ $\frac{q}{2}+1$. Then every component of $G$ is a complete graph.

Proof: Let $H$ be a component of $G$ and $v$ be a vertex of maximum degree in $H$. If the subgraph induced on $N(v)$ is complete then $H$ is obviously complete. We can thus assume that $N(v)$ is not a clique. By Lemmas 2.10 and 2.11, the minimum degree is at least $q+1$, and hence $d(v)=q+r$ with $r \geqslant 1$.

Claim 2.14.1 The graph $G-(N(v) \cup\{v\})$ is $\left(K_{q}, k-r\right)$ stable.
Proof of Claim 2.14.1: By Lemma 2.12, we can consider an ordering $v_{1}, \ldots, v_{q+r}$ of $N(v)$ such that the set $\left\{v_{1}, \ldots, v_{q-1}\right\}$ induces a $K_{q-1}, v_{q+r-1} v_{q+r} \notin E(G)$ and there is a vertex $w \in\left\{v_{1}, \ldots, v_{q-1}\right\}$ adjacent to $v_{q+r-1}$ and $v_{q+r}$. By Lemma 2.13, we can find two nonadjacent vertices $a$ and $b$ in $N(v)-\left\{v_{q+r}\right\}$ and two nonadjacent vertices $c$ and $d$ in $N(v)-\left\{v_{q+r-1}\right\}$. Let us note that since the set $\left\{v_{1}, \ldots, v_{q-1}\right\}$ induces a complete graph, it contains at most one vertex of the set $\{a, b\}$ and at most one vertex of $\{c, d\}$. Then, $\left|\left\{v_{1}, \ldots, v_{q-1}\right\} \cap\{w, a, b, c, d\}\right| \leqslant 3$.
Since $H$ is not complete, the graph $G$ is not complete and by Lemma 2.6 we have $r \leqslant k-2$. Since $k \leqslant \frac{q}{2}+1$ and $q \geqslant 6$, there exists a subset $A \subseteq\left\{v_{1} \ldots v_{q-1}\right\}$ such that

- $|A|=r$,
- $w \notin A$,
- $A \cap\{a, b, c, d\}=\emptyset$.

By repeated applications of Lemma 1.2, the graph $G_{1}$ obtained from $G$ by deleting $A$ is $\left(K_{q}, k-r\right)$ stable. In $G_{1}$, the degree of $v$ is equal to $q$.
Without loss of generality, suppose that $a$ is distinct from $v_{q+r-1}$ and $c$ is distinct from $v_{q+r}$. If there exists a $q$-clique in $G_{1}$ containing the edge $v v_{q+r-1}$ then $\left\{v_{1}, \ldots, v_{q+r-2}\right\}-A$ is a $(q-2)$-clique containing $a$. Since $a b$ is not an edge, we must have $b=v_{q+r-1}$, a contradiction to the fact that $a v_{q+r-1}$ is an edge. Thus, there is no $q$-clique in $G_{1}$ containing $v v_{q+r-1}$. Analogously, we prove that there is no $q$-clique in $G_{1}$ containing $v v_{q+r}$.
Hence, the graph $G_{2}$ obtained from $G_{1}$ by deletion of the edges $v v_{q+r-1}$ and $v v_{q+r}$ is still $\left(K_{q}, k-r\right)$ stable. In $G_{2}, v$ has degree $q-2$, so it is not contained in any $K_{q}$. We can thus delete $v$ and we get a ( $K_{q}, k-r$ ) stable graph $G_{3}$.
Since the maximum degree in $G$ is $q+r$, the degree of $w$ in $G_{3}$ is at most $q-1$. Recall that $w$ is adjacent to the two nonadjacent vertices $v_{q+r-1}$ and $v_{q+r}$. Hence $w$ is not contained in any $K_{q}$ of $G_{3}$, which means that $G_{4}=G_{3}-w$ is still $\left(K_{q}, k-r\right)$ stable. Since the degree of each vertex in $\left\{v_{1}, \ldots, v_{q-1}\right\}-(A \cup\{w\})$ is at most $q-2$ in $G_{4}$, none of these vertices can be contained in any $K_{q}$ of $G_{4}$. Hence by deletion of these vertices we get again a $\left(K_{q}, k-r\right)$ stable graph $G_{5}$. We shall prove that none of the $r+1$ vertices $v_{q}, \ldots, v_{q+r}$ is contained in a $K_{q}$ of $G_{5}$.
Note that $G_{5}=G-\left\{v, v_{1}, \ldots, v_{q-1}\right\}$. For $q \leqslant j \leqslant q+r$, denote by $d_{j}$ the degree of the vertex $v_{j}$ in the subgraph induced by $\left\{v_{q}, \ldots, v_{q+r}\right\}$. Clearly we have $0 \leqslant d_{j} \leqslant r$. In $G$, by Proposition 1.3, the edge $v v_{j}$ is contained in a $K_{q}$. Hence $v_{j}$ is adjacent (in $G$ ) to at least $q-2-d_{j}$ vertices in $\left\{v_{1}, \ldots, v_{q-1}\right\}$. Since we have deleted the vertex $v$ and the vertices $v_{1}, \ldots, v_{q-1}$, we have thus $d_{G_{5}}\left(v_{j}\right) \leqslant q+r-\left(q-2-d_{j}\right)-1=r+1+d_{j}$. If $d_{j} \leqslant r-1$ then $d_{G_{5}}\left(v_{j}\right) \leqslant 2 r \leqslant 2(k-2) \leqslant q-2$ and there is no $K_{q}$ in $G_{5}$ containing $v_{j}$. The equality $d_{G_{5}}\left(v_{j}\right)=q-1$ can only be obtained when $d_{j}=r$, that is $v_{j}$ has $r$ neighbours in $v_{q} \ldots v_{q+r}$. Since $v_{q+r-1}$ and $v_{q+r}$ are not adjacent, $v_{j}$ is not contained in any $K_{q}$ of $G_{5}$.
Hence, the graph $G_{6}=G-(N(v) \cup\{v\})$ obtained from $G_{5}$ by deletion of all the vertices $v_{q}, v_{q+1} \ldots, v_{q+r}$ is still $\left(K_{q}, k-r\right)$ stable, and the Claim follows.

## Claim 2.14.2

$$
\begin{equation*}
\binom{q+k-r}{2}+q+r+\binom{q-1}{2}+\frac{1}{2}(r+1)(2 q-r-2)+1 \leqslant\binom{ q+k}{2} \tag{1}
\end{equation*}
$$

Proof of Claim: 2.14.2 To get back $G$ from $G-(N(v) \cup\{v\})$ we add, at least

- the $q+r$ edges incident with $v$,
- the $\binom{q-1}{2}$ edges of the $(q-1)$-clique induced by the set $\left\{v_{1}, \ldots, v_{q-1}\right\}$,
- the edges incident with $\left\{v_{q}, \ldots, v_{q+r}\right\}$ and not incident with $v$.

Let $l$ be the number of edges incident with $v_{q}, \ldots, v_{q+r}$, and not incident with $v$.

We have

$$
\begin{equation*}
e(G-(N(v) \cup\{v\}))+q+r+\binom{q-1}{2}+l \leqslant e(G) \tag{2}
\end{equation*}
$$

In order to find a lower bound of the number of edges incident with the vertices $v_{q}, \ldots, v_{q+r}$, for each $i \in\{q, \ldots, q+r\}$ let us denote by $d_{i}$ the degree of the vertex $v_{i}$ in the subgraph induced by the set $\left\{v_{q}, \ldots, v_{q+r}\right\}$. Then,

$$
l=\frac{1}{2} \Sigma_{i=q}^{q+r} d_{i}+\Sigma_{i=q}^{q+r}\left(d_{G}\left(v_{i}\right)-1-d_{i}\right)=\Sigma_{i=q}^{q+r} d_{G}\left(v_{i}\right)-(r+1)-\frac{1}{2} \Sigma_{i=q}^{q+r} d_{i} .
$$

Since by Lemma 2.10 the minimum degree in $G$ is at least $q$, we have

$$
l \geqslant q(r+1)-(r+1)-\frac{1}{2} \sum_{i=q}^{q+r} d_{i}
$$

Since for every $i$ in $\{q, \ldots, q+r-2\} \quad d_{i} \leqslant r, d_{q+r-1} \leqslant r-1$ and $d_{q+r} \leqslant r-1$, we obtain

$$
l \geqslant q(r+1)-(r+1)-\frac{1}{2} r(r-1)-(r-1),
$$

and hence

$$
l \geqslant \frac{1}{2}(r+1)(2 q-r-2)+1
$$

By the assumption made at the beginning of the section (see Remark 2.5), a minimum $\left(K_{q}, k-r\right)$ stable graph has $\binom{q+k-r}{2}$ edges. Since $e(G) \leqslant\binom{ q+k}{2}$, the inequality (1) follows from Claim 2.14.1 and the inequality (2). This proves the Claim.

A simple calculation shows that the inequality

$$
q^{2}+q+2 \leqslant 2 k r
$$

can be obtained by starting from the inequality (1).
Since $r \leqslant k-2$ and $k \leqslant \frac{q}{2}+1$, we have $q^{2}+q+2 \leqslant 2 k(k-2) \leqslant(q+2)\left(\frac{q}{2}-1\right)$, hence $\frac{q^{2}}{2}+q+4 \leqslant 0$, a contradiction. Thus, $N(v)$ is a clique and the Proposition follows.

## 3 Result

In [3], it is shown that if $G$ is minimum $\left(K_{q}, k\right)$ stable and the numbers $k$ and $q$ satisfy one of the following conditions:

- $k=1$ and $q \geqslant 4$
- $k=2$ and $q \geqslant 4$
- $k=3$ and $q \geqslant 5$
then $G$ is isomorphic to $K_{q+k}$.

Theorem 3.1 Let $G$ be a minimum $\left(K_{q}, k\right)$ stable graph, where $q \geqslant 6$ and $k \leqslant \frac{q}{2}+1$. Then $G$ is isomorphic to $K_{q+k}$.

Proof: For $0 \leqslant k \leqslant 3$ the graph $G$ is isomorphic to $K_{q+k}$. Let $k$ be such that $4 \leqslant k \leqslant \frac{q}{2}+1$ and suppose that for every $r$ with $0 \leqslant r<k$ the only minimum ( $K_{q}, r$ ) stable graph is $K_{q+r}$. By Proposition 2.14, the graph $G$ is the disjoint union of $p$ complete graphs $H_{1} \equiv K_{q+k_{1}}, H_{2} \equiv K_{q+k_{2}}, \cdots, H_{p} \equiv K_{q+k_{p}}$. Suppose, without loss of generality, that $k_{1} \geqslant k_{2} \geqslant \cdots \geqslant k_{p} \geqslant 0$ and that there exist two components $H_{i}$ and $H_{j}$ with $i<j$ such that $k_{i}-k_{j} \geqslant 2$. By substituting $H_{i}^{\prime} \equiv K_{q+k_{i}-1}$ for $H_{i}$ and $H_{j}^{\prime} \equiv K_{q+k_{j}+1}$ for $H_{j}$, we obtain a new $\left(K_{q}, k\right)$ stable graph $G^{\prime}$ such that $e\left(G^{\prime}\right)=e(G)-\left(k_{i}-k_{j}-1\right)<e(G)$, which is a contradiction. Thus, for any $i$ and any $j, 0 \leqslant\left|k_{i}-k_{j}\right| \leqslant 1$ (cf [2] Proposition 7). To conclude that $G$ has a unique component, observe the following facts.

- The graphs $2 K_{q+l}$ and $K_{q+2 l+1}$ are both $\left(K_{q}, 2 l+1\right)$ stable, but if $2 l+1 \leqslant \frac{q}{2}+1$ then $\binom{q+2 l+1}{2}<2\binom{q+l}{2}$.
- The graphs $K_{q+l}+K_{q+l+1}$ and $K_{q+2 l+2}$ are both $\left(K_{q}, 2 l+2\right)$ stable but if $2 l+2 \leqslant \frac{q}{2}+1$ then $\binom{q+2 l+2}{2}<\binom{q+l+1}{2}+\binom{q+l}{2}$.


## References

[1] J.A. Bondy and U.S.R. Murty, Graph theory, vol. 244, Springer, Series Graduate texts in Mathematics, 2008.
[2] A. Dudek, A. Szymański, and M. Zwonek, ( $H, k$ ) stable graphs with minimum size, Discuss. Math. Graph Theory 28 (2008), 137-149.
[3] J.-L. Fouquet, H. Thuillier, J.-M. Vanherpe, and A.P. Wojda. On ( $K_{q}, k$ ) vertex stable graphs with minimum size, Discrete Math., 312 (2012), 2109-2118.
[4] P. Frankl and G.Y. Katona, Extremal $k$-edge hamiltonian hypergraphs, Discrete Math., 308 (2008), 1415-1424.
[5] I. Horváth and G.Y. Katona, Extremal $P_{4}$-stable graphs, Discrete Appl. Math. 159 (2011), 1786-1792.


[^0]:    *The research of APW was partially sponsored by polish Ministry of Science and Higher Education.

