An Iterative Approach to the Traceability Conjecture for Oriented Graphs

Susan A. van Aardt
Department of Mathematical Sciences
University of South Africa
Gauteng, South Africa
vaardsa@unisa.ac.za
Jean E. Dunbar
Department of Mathematics
Converse College
South Carolina, USA
jean.dunbar@converse.edu
John M. Harris
Department of Mathematics
Furman University
South Carolina, USA
john.harris@furman.edu

Alewyn P. Burger
Department of Logistics
University of Stellenbosch
Western Cape, South Africa
apburger@sun.ac.za
Marietjie Frick *
Department of Mathematical Sciences University of South Africa
Gauteng, South Africa
marietjie.frick@gmail.com
Joy E. Singleton
Department of Mathematical Sciences
University of South Africa
Gauteng, South Africa
singlje@unisa.ac.za

Submitted: Jun 10, 2011; Accepted: Mar 4, 2013; Published: Mar 24, 2013
Mathematics Subject Classifications: 05C20, 05C38

Abstract

A digraph is k-traceable if its order is at least k and each of its subdigraphs of order k is traceable. The Traceability Conjecture (TC) states that for $k \geqslant 2$ every k-traceable oriented graph of order at least $2 k-1$ is traceable. It has been shown that for $2 \leqslant k \leqslant 6$, every k-traceable oriented graph is traceable. We develop an iterative procedure to extend previous results regarding the TC. In particular, we prove that every 7 -traceable oriented graph of order at least 9 is traceable and every 8 -traceable graph of order at least 14 is traceable.

Keywords: Traceability Conjecture, Path Partition Conjecture, oriented graph, generalized tournament, traceable, k-traceable, longest path.

[^0]
1 Introduction and Background

A digraph is hamiltonian if it contains a cycle that visits every vertex, traceable if it contains a path that visits every vertex, and strong (or strongly connected) if it contains a closed walk that visits every vertex. A digraph is k-traceable if its order is at least k and each of its subdigraphs of order k is traceable.

This paper contributes to a body of work to establish the validity of the following traceability conjecture, called the TC (see [2, 3, 4]).

Conjecture 1. (TC) For $k \geqslant 2$, every k-traceable oriented graph of order at least $2 k-1$ is traceable.

It is obvious that an oriented graph is 2-traceable if and only if it is a nontrivial tournament. Thus we can think of a k-traceable oriented graph as a generalized tournament. It is well-known that every nontrivial strong tournament is hamiltonian and every tournament is traceable. The following theorem shows that these properties are retained by k-traceable oriented graphs for small values of k.

Theorem 2. [2, 4]

1. For $k=2,3,4$, every strong k-traceable oriented graph of order at least $k+1$ is hamiltonian.
2. For $k=2,3,4,5,6$, every k-traceable oriented graph is traceable.

However, for $k=7$ and for every $k \geqslant 9$ there exist k-traceable oriented graphs of order $k+1$ that are nontraceable, as shown in [6]. There also exist nontraceable k-traceable oriented graphs of order $k+2$ for infinitely many k, as shown in [5], but the following theorem shows that the order of nontraceable k-traceable oriented graphs is bounded above by a function of k.

Theorem 3. $[2,4]$ Let $k \geqslant 7$ and suppose D is a k-traceable oriented graph of order n and independence number α.

1. If $n \geqslant 6 k-20$, then $\alpha \leqslant 2$.
2. If $\alpha \leqslant 2$ and $n \geqslant 2 k^{2}-20 k+59$, then D is traceable.

It is therefore natural to ask: what is the smallest integer $t(k)$ such that $t(k) \geqslant k$ and every k-traceable oriented graph of order at least $t(k)$ is traceable? The TC asserts that $t(k) \leqslant 2 k-1$ for all $k \geqslant 2$. It seems likely that $t(k)$ is considerably less than $2 k-1$ for all $k \geqslant 2$, but proving the TC would suffice for proving the Path Partition Conjecture for 1-deficient oriented graphs, as shown in [4]. The latter conjecture is an important special case of the Path Partition Conjecture for Digraphs, which is discussed in [1, 7, 8].

In this paper we present results that suggest an iterative method for proving the TC. The method enables us to prove the special cases $k=7,8$ and to substantially improve Theorem 3 (2) in the cases $k=9,10$.

We shall use the following notation and terminology.
The set of vertices and the set of arcs of a digraph D are denoted by $V(D)$ and $A(D)$, respectively, and the order of D is denoted by $n(D)$. If $X \subset V(D)$, then $\langle X\rangle$ denotes the subdigraph induced by X in D. If $v \in V(D)$, we denote the sets of out-neighbours and in-neighbours of v in D by $N^{+}(v)$ and $N^{-}(v)$ and the cardinalities of these sets by $d^{+}(v)$ and $d^{-}(v)$, respectively. The degree $d(v)$ of v is defined as $d(v)=d^{+}(v)+d^{-}(v)$ and the minimum degree of D is denoted by $\delta(D)$. The independence number of D, denoted by $\alpha(D)$, is the cardinality of a largest set $X \subset V(D)$ such that $\langle X\rangle$ has no arcs.

Let $P=u_{1} \ldots u_{p}$ be a p-path and $Q=v_{1} \ldots v_{q}$ a q-path in a digraph D. If $u_{p}=v_{1}$, then the $(p+q-1)$-path $u_{1} \ldots u_{p-1} v_{1} \ldots v_{q}$ is called the concatenation of P and Q.

A maximal strong subdigraph of a digraph D is called a strong component of D. We say that a strong component is trivial if it has only one vertex. If D is a digraph with h strong components, then its strong components have an acyclic ordering $D_{1}, D_{2}, \ldots, D_{h}$ such that if there is an arc from D_{i} to D_{j}, then $i \leqslant j$. If D is k-traceable for some $k \geqslant 2$, this acyclic ordering is unique since there is at least one arc from D_{i} to D_{i+1} for $i=1,2, \ldots, h-1$. Throughout this paper we label the strong components of a k-traceable digraph in accordance with this acyclic ordering and if $1 \leqslant r \leqslant s \leqslant h$, we denote by D_{r}^{s} the subdigraph of D induced by the vertex set $\bigcup_{i=r}^{s} V\left(D_{i}\right)$.

2 Auxiliary results

The lemmas in this section extend results proven in [2, 4, 11]. For easy reference, we repeat some of the proofs from these papers.

The following result will be used frequently. It follows immediately from the fact that every strong tournament is hamiltonian.

Lemma 4. Let D be a tournament with strong components D_{1}, \ldots, D_{h}. Then every vertex in D_{1} is the initial vertex of some Hamilton path of D and every vertex in D_{h} is the terminal vertex of some Hamilton path of D.

Lemma 5. Let $k \geqslant 2$ and suppose D is a k-traceable oriented graph of order n. Then the following hold.

1. $d(x) \geqslant n-k+1$ for every $x \in V(D)$.
2. $\left|N^{+}(x) \cup N^{+}(y)\right| \geqslant n-k+1$ and $\left|N^{-}(x) \cup N^{-}(y)\right| \geqslant n-k+1$ for every pair of distinct nonadjacent vertices $x, y \in V(D)$.

Proof.

1. If D has a vertex x with $d(x) \leqslant n-k$, then we can choose an induced subdigraph H of order k in D such that $x \in V(H) \subseteq V(D)-N(x)$. But then x is an isolated vertex in H, so H is nontraceable, contradicting the k-traceability of D.
2. Suppose $\left|N^{+}(x) \cup N^{+}(y)\right| \leqslant n-k$. Let H be an induced subdigraph of order k in D such that $\{x, y\} \subseteq V(H) \subseteq V(D)-\left(N^{+}(x) \cup N^{+}(y)\right)$. Then H is nontraceable, since neither x nor y has an out-neighbour in H. This contradiction proves that $\left|N^{+}(x) \cup N^{+}(y)\right| \geqslant n-k+1$. A symmetric argument shows that $\left|N^{-}(x) \cup N^{-}(y)\right| \geqslant$ $n-k+1$.

Lemma 6. Let $k \geqslant 2$ and let x and y be distinct nonadjacent vertices in a k-traceable oriented graph D of order n. Let

$$
S \in\left\{N^{+}(x), N^{-}(x), N^{+}(x) \cup N^{+}(y), N^{-}(x) \cup N^{-}(y)\right\} .
$$

Now suppose $|S|=n-k+1$ and $\langle S\rangle$ is traceable. Then D is traceable.
Proof. Let $v_{1} \ldots v_{n-k+1}$ be a Hamilton path of $\langle S\rangle$. First, let $S=N^{+}(x) \cup N^{+}(y)$. Let $H=D-\left\{v_{1}, \ldots, v_{n-k}\right\}$. Then $n(H)=k$, so H has a k-path P. We consider two cases.
Case 1. $\left\{v_{1}, v_{n-k+1}\right\} \subseteq N^{+}(x)$.
Since v_{n-k+1} is the only out-neighbour of x in H, it follows that either x is the terminal vertex of P, or P contains the arc $x v_{n-k+1}$. If the former, then $P v_{1} \cdots v_{n-k}$ is a Hamilton path of D. If the latter, then the path obtained from P by replacing the arc $x v_{n-k+1}$ with the path $x v_{1} \ldots v_{n-k+1}$ is a Hamilton path of D.
Case 2. $v_{1} \in N^{+}(x)-N^{+}(y)$ and $v_{n-k+1} \in N^{+}(y)-N^{+}(x)$.
In this case x has no out-neighbour in H, so x is the terminal vertex of P and hence $P v_{1} \ldots v_{n-k}$ is a Hamilton path of D.

The argument in Case 1 above also proves the case when $S=N^{+}(x)$ and the remaining cases follow by symmetric arguments.

Our next result is an immediate consequence of the fact that the strong components of an oriented graph have an acyclic ordering.

Lemma 7. If P is a path in an oriented graph D, then the intersection of P with any strong component of D is either empty or a path.

The following two lemmas are consequences of Lemma 7.
Lemma 8. Let D be a k-traceable oriented graph with strong components D_{1}, \ldots, D_{h}. Let $1<t<h$ and let $p=n\left(D_{1}^{t-1}\right), q=n\left(D_{t}\right)$ and $r=n\left(D_{t+1}^{h}\right)$. Then the following hold.

1. If $0 \leqslant i \leqslant r$ and $1 \leqslant k-i \leqslant p+q$, then D_{1}^{t} is $(k-i)$-traceable.
2. If $0 \leqslant i \leqslant p$ and $1 \leqslant k-i \leqslant q+r$, then D_{t}^{h} is $(k-i)$-traceable.
3. If $0 \leqslant i \leqslant p+r$ and $1 \leqslant k-i \leqslant q$, then D_{t} is $(k-i)$-traceable.

Lemma 9. Let $k \geqslant 2$ and let D be a k-traceable oriented graph of order $n \geqslant 2 k-5$ with strong components D_{1}, \ldots, D_{h}. Then for every positive integer $i \leqslant h-1$ at least one of D_{1}^{i} and D_{i+1}^{h} is a tournament.

Proof. Suppose, to the contrary, that for some $i \leqslant h-1$ neither D_{1}^{i} nor D_{i+1}^{h} is a tournament. Since $n \geqslant 2 k-5$, one of D_{1}^{i} and D_{i+1}^{h}, say D_{1}^{i}, has at least $k-2$ vertices. Let H be an induced subdigraph of D such that H contains $k-2$ vertices of D_{1}^{i} together with any two nonadjacent vertices of D_{i+1}^{h}. Then it follows from Lemma 7 that H is nontraceable, contrary to the hypothesis.

Lemma 10. Let $k \geqslant 7$ and suppose D is a nontraceable k-traceable oriented graph of order $n \geqslant 2 k-3$. Then D has a nonhamiltonian strong component D_{t} of order at least $n-k+5$ and D_{1}^{t-1} and D_{t+1}^{h} are tournaments, whenever they are defined.

Proof. Let t be the smallest integer such that D_{1}^{t} is not a tournament. If $t<h$, then D_{t+1}^{h} is a tournament by Lemma 9. Furthermore, if $t>1$, then D_{1}^{t-1} is a tournament by the minimality of t.

Now suppose D_{t} is hamiltonian. Then, since D is nontraceable, it follows from Lemma 4 that $1<t<h$. Let C be a Hamilton cycle of D_{t}. Then, for every in-neighbour of D_{t+1} on C, its successor is not an out-neighbour of D_{t-1}. Hence $V(C)-N_{C}^{+}\left(D_{t-1}\right) \neq \emptyset$. Now suppose $\left|N_{C}^{+}\left(D_{t-1}\right)\right| \leqslant n-k$. Then let H be a subdigraph of order k in $V(D)-N_{C}^{+}\left(D_{t-1}\right)$ such that H contains at least one vertex in $V(C)-N_{C}^{+}\left(D_{t-1}\right)$ and at least one vertex in D_{t-1}. Then H is nontraceable, contradicting that D is k-traceable. Hence $\left|N_{C}^{+}\left(D_{t-1}\right)\right| \geqslant$ $n-k+1 \geqslant(2 k-3)-k+1=k-2$, which implies that at least $k-2$ vertices in C are not in $N_{C}^{-}\left(D_{t+1}\right)$. Let H be a subdigraph of order k that has $k-2$ vertices in $V(C)-N_{C}^{-}\left(D_{t+1}\right)$, together with one vertex from D_{t-1} and one from D_{t+1}. Then H has order k but is nontraceable. This contradiction shows that D_{t} is not hamiltonian.

Since D_{1}^{t-1} and D_{t+1}^{h} are tournaments but D is nontraceable, it follows from Lemma 4 that $n\left(D_{t}\right) \neq 1$. Thus D_{t} is a nonhamiltonian, strong oriented graph of order at least 4. Now suppose $n\left(D_{t}\right) \leqslant n-k+4$. Then $n\left(D-V\left(D_{t}\right)\right) \geqslant k-4$ and hence Lemma 8(3) implies that D is 4 -traceable. If $n\left(D_{t}\right) \geqslant 5$, this contradicts Theorem 2. If $n\left(D_{t}\right)=4$, then $n\left(D-D_{t}\right) \geqslant 2 k-7>k-3$ and then Lemma 8 implies that D_{t} is 3 -traceable, which again contradicts Theorem 2 .

Chen and Manalastas [10] proved that every strong digraph with independence number two is traceable. Havet [12] strengthened their result as follows.

Theorem 11. [12] If D is a strong digraph with $\alpha(D)=2$, then D has two nonadjacent vertices that are terminal vertices of Hamilton paths in D and two nonadjacent vertices that are initial vertices of Hamilton paths in D.

The following corollary of Havet's result appears in [2].
Corollary 12. If D is a connected digraph with $\alpha(D)=2$ and at most two strong components, then D is traceable.

Proof. By the Chen-Manalastas Theorem we may assume that D has exactly two strong components, D_{1} and D_{2}, and both are traceable. Since every strong tournament is hamiltonian, we may assume that at least one of the two strong components, say D_{1}, is not a tournament. By Theorem 11, D_{1} has two nonadjacent vertices y and z, each of which
is a terminal vertex of a Hamilton path of D_{1}. Let a be the initial vertex of a Hamilton path of D_{2}. Then at least one of y and z is adjacent to a and hence D has a Hamilton path.

Thus every nontraceable oriented graph D with $\alpha(D)=2$ has at least three strong components. The following lemma provides useful information on the strong component structure of nontraceable k-traceable oriented graphs of order at least $2 k-3$. Item 5 provides additional information in the case when the independence number equals 2 .

Lemma 13. Let $k \geqslant 7$ and suppose D is a nontraceable k-traceable oriented graph of order $n \geqslant 2 k-3$, with strong components D_{1}, \ldots, D_{h}. Let D_{t} be the nonhamiltonian strong component of D of order at least $n-k+5$. Then the following hold.

1. If $t>1$, then $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right| \geqslant n-k+1$ and if $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right|=n-k+1$, then $\left\langle N_{D_{t}}^{+}\left(D_{t-1}\right)\right\rangle$ is nontraceable.
2. If $t<h$, then $\left|N_{D_{t}}^{-}\left(D_{t+1}\right)\right| \geqslant n-k+1$ and if $\left|N_{D_{t}}^{-}\left(D_{t+1}\right)\right|=n-k+1$, then $\left\langle N_{D_{t}}^{-}\left(D_{t+1}\right)\right\rangle$ is nontraceable.
3. If $t>1$ and $v \in V\left(D_{t}\right)-N_{D_{t}}^{+}\left(D_{t-1}\right)$, then $\left|N_{D_{t}}^{-}(v)\right| \geqslant n-k+1$ and if $\left|N_{D_{t}}^{-}(v)\right|=$ $n-k+1$, then $\left\langle N_{D_{t}}^{-}(v)\right\rangle$ is nontraceable.
4. If $t<h$ and $v \in V\left(D_{t}\right)-N_{D_{t}}^{-}\left(D_{t+1}\right)$, then $\left|N_{D_{t}}^{+}(v)\right| \geqslant n-k+1$ and if $\left|N_{D_{t}}^{+}(v)\right|=$ $n-k+1$, then $\left\langle N_{D_{t}}^{+}(v)\right\rangle$ is nontraceable.
5. If $\alpha(D)=2$, then $1<t<h$ and D_{t}^{h} has a Hamilton path such that the successor of the last in-neighbour of its initial vertex has an in-neighbour in D_{t-1}.

Proof. We shall prove (1), (3) and (5). The proofs of (2) and (4) are similar to those of (1) and (3), respectively. First we note from Lemma 10 that D_{1}^{t-1} and D_{t+1}^{h} are tournaments.

1. Suppose $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right| \leqslant n-k$. Let S consist of k vertices from the set $V(D)-$ $N_{D_{t}}^{+}\left(D_{t-1}\right)$ such that S contains at least one vertex in D_{t-1} and at least one in D_{t}. Then, since there are no arcs from $S \cap V\left(D_{t-1}\right)$ to $S \cap V\left(D_{t}\right)$, the induced subdigraph $\langle S\rangle$ is nontraceable.
Next suppose $N_{D_{t}}^{+}\left(D_{t-1}\right)=n-k+1$ and $\left\langle N_{D_{t}}^{+}\left(D_{t-1}\right)\right\rangle$ contains an $(n-k+1)$-path $u_{1} \ldots u_{n-k+1}$. Let H be the subdigraph of D induced by the vertex set $V(D)-$ $\left\{u_{1}, \ldots, u_{n-k}\right\}$. Then $n(H)=k$, so H has a k-path P. Since u_{n-k+1} is the only out-neighbour of D_{t-1} in H, the intersection of the path P with D_{t}^{h} is a path R that has u_{n-k+1} as its initial vertex. Let x be a vertex in D_{t-1} such that $u_{1} \in N^{+}(x)$. Since D_{1}^{t-1} is a tournament, D_{1}^{t-1} has a Hamilton path Q ending in x. Thus the path $Q u_{1} \ldots u_{n-k} R$ is an n-path of D.
2. Let $v \in V\left(D_{t}\right)-N_{D_{t}}^{+}\left(D_{t-1}\right)$ and suppose $\left|N_{D_{t}}^{-}(v)\right| \leqslant n-k$. Then let S consist of k vertices in $V(D)-N_{D_{t}}^{-}(v)$ such that S contains v and at least one vertex y in D_{t-1}. Since v has no in-neighbours in $S \cap D_{t-1}^{t}$, no path in $\langle S\rangle$ contains both v and y, so $\langle S\rangle$ is nontraceable.

Now suppose $\left|N_{D_{t}}^{-}(v)\right|=n-k+1$ and $\left\langle N_{D_{t}}^{-}(v)\right\rangle$ contains an $(n-k+1)$-path $u_{1} \ldots u_{n-k+1}$. Let H be the subdigraph of D induced by the vertex set $V(D)-$ $\left\{u_{2}, \ldots, u_{n-k+1}\right\}$. Then $n(H)=k$, so H has a k-path P. Since $t>1, v$ is not the initial vertex of P, and since u_{1} is the only in-neighbour of v in $H \cap D_{t-1}^{t}$, the arc $u_{1} v$ is in P. But then the path obtained from P by replacing the arc $u_{1} v$ with the path $u_{1} \ldots u_{n-k+1} v$ is an n-path of D.
5. By Corollary $12, h \geqslant 3$. First suppose $t=1$. Then D_{2}^{h} is a tournament and hence by Lemma 4 every vertex in the strong component D_{2} is an initial vertex of a Hamilton path of D_{2}^{h}. But, by Theorem 11, there exist two nonadjacent vertices u and v in $V\left(D_{1}\right)$ such that both are end vertices of Hamilton paths in D_{1}. Since we are assuming D is nontraceable, this implies that both u and v are nonadjacent with every vertex in D_{2}, contradicting that $\alpha(D)=2$. Hence $t \neq 1$ and we can prove similarly that $t \neq h$.
Let $n\left(D_{t}\right)=q$. Then $q \leqslant n-2$. Since $\alpha(D)=2$ and D_{t+1}^{h} is a tournament it follows from Lemma 4 and Theorem 11 that D_{t}^{h} is traceable. Among all the Hamilton paths in D_{t}^{h}, choose one such that the subpath from its initial vertex to the last inneighbour of that initial vertex on the Hamilton path has maximum order. Let the intersection of this Hamilton path of D_{t}^{h} with D_{t} be $Q=v_{1} \ldots v_{q}$ and its intersection with D_{t+1}^{h} be R. Let v_{ℓ} be the last in-neighbour of v_{1} on Q and let $S=v_{\ell+1} \ldots v_{q} R$. Suppose $v_{\ell+1}$ has no in-neighbour in D_{t-1}. Then v_{1} and $v_{\ell+1}$ are adjacent since $\alpha(D)=2$ and so $v_{l+1} \in N^{+}\left(v_{1}\right)$ by the choice of l. But now $Q^{\prime}=v_{2} v_{3} \ldots v_{\ell} v_{1} S$ is a Hamilton path of D_{t}^{h} and therefore $v_{2} \notin N^{+}\left(D_{t-1}\right)$. But by the maximality of ℓ, v_{1} is the last in-neighbour of v_{2} on Q^{\prime}, so $v_{l+1} \notin N^{-}\left(v_{2}\right)$. Since $\alpha(D)=2$, this implies that $v_{l+1} \in N^{+}\left(v_{2}\right)$. But then $v_{3} v_{4} \ldots v_{\ell} v_{1} v_{2} S$ is a Hamilton path in D_{t}^{h}. Repeating this process we can show that $v_{i} \notin N^{+}\left(D_{t-1}\right)$ for $i=1, \ldots, \ell$. Since $N_{D_{t}}^{-}\left(v_{1}\right) \subseteq\left\{v_{3}, \ldots, v_{\ell}\right\}$, it follows by Lemma 13(3) that $\ell \geqslant n-k+4$ and hence $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right| \leqslant q-(\ell+1) \leqslant n-2-(n-k+4)-1=k-7$. But by Lemma 13(1), $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right| \geqslant n-k+1 \geqslant 2 k-3-k+1=k-2$, a contradiction.

3 Main Results

Lemma 14. Let D be an oriented graph of order n and suppose there exist integers n_{1}, n_{2} such that D is n_{1}-traceable as well as n_{2}-traceable and $n=n_{1}+n_{2}-j ; j=1$ or 2 . Suppose D has a vertex v such that

$$
d^{-}(v) \leqslant n_{1} \text { and } d^{+}(v) \leqslant n_{2} \text { if } j=1
$$

and

$$
d^{-}(v)<n_{1} \text { and } d^{+}(v)<n_{2} \text { if } j=2 \text {. }
$$

Then D is traceable.

Proof.
Case 1. $j=1$.
Suppose $d^{-}(v)=n_{1}$. Then $\left|N^{-}(v)\right|=n_{1}=n-n_{2}+1$. Since D is n_{1}-traceable, $\left\langle N^{-}(v)\right\rangle$ is traceable and hence, since D is also n_{2}-traceable, it follows from Lemma 6 that D is traceable. Similarly, if $d^{+}(v)=n_{2}$, then D is traceable.

We therefore assume that $d^{-}(v) \leqslant n_{1}-1$ and $d^{+}(v) \leqslant n_{2}-1$. Then we can partition $V(D)-\{v\}$ into two sets U and W such that $|U|=n_{1}-1,|W|=n_{2}-1$ and $N^{-}(v) \subseteq U$, $N^{+}(v) \subseteq W$. By the n_{1}-traceability of D and the fact that v has no out-neighbours in U, the subdigraph $\langle U \cup\{v\}\rangle$ has an n_{1}-path P with v as terminal vertex. Similarly, by the n_{2}-traceability of D and the fact that v has no in-neighbours in W, the subdigraph $\langle\{v\} \cup W\rangle$ has an n_{2}-path Q with v as initial vertex. The concatenation of P and Q is an n-path of D.
Case 2. $j=2$.
Since $d^{-}(v)+d^{+}(v) \leqslant n-1=n_{1}+n_{2}-3$, we cannot have both $d^{-}(v)=n_{1}-1$ and $d^{+}(v)=n_{2}-1$. By symmetry, we may assume $d^{+}(v) \leqslant n_{2}-2$. Then we can partition $V(D)-\{v\}$ into two sets U, W such that $|U|=n_{1}-1,|W|=n_{2}-2$ and $N^{-}(v) \subseteq U$, $N^{+}(v) \subseteq W$. Then $\langle U \cup\{v\}\rangle$ has an n_{1}-path $u_{1} u_{2} \ldots u_{n_{1}-1} v$ and $\left\langle W \cup\left\{u_{1}, v\right\}\right\rangle$ has an n_{2}-path Q. If $u_{1} v \in A(Q)$, then the path obtained from Q by replacing the arc $u_{1} v$ with the path $u_{1} \ldots u_{n_{1}-1} v$ is an n-path of D. If $u_{1} v \notin A(Q)$, then v is the initial vertex of Q and then $u_{2} \ldots u_{n_{1}-1} Q$ is an n-path of D.

In order to be able to apply Lemma 14, we need a vertex with sufficiently small inand out-degree. For k-traceable oriented graphs with independence number greater than 2 we have the following result.

Lemma 15. Let $k \geqslant 5$ and suppose D is a k-traceable oriented graph of order n and $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an independent set of vertices in D. Then the following hold.

1. $\min \left\{d^{-}\left(v_{i}\right), d^{+}\left(v_{i}\right)\right\} \leqslant(n-3) / 2$ for each $i \in\{1,2,3\}$.
2. $\max \left\{d^{-}\left(v_{i}\right), d^{+}\left(v_{i}\right)\right\} \leqslant(n+k-7) / 2$ for at least one $i \in\{1,2,3\}$.

Proof.

1. For each $i \in\{1,2,3\}$, the three vertices v_{1}, v_{2}, v_{3} are not in $N\left(v_{i}\right)$, so $d^{-}\left(v_{i}\right)+$ $d^{+}\left(v_{i}\right) \leqslant n-3$.
2. Suppose $\max \left\{d^{-}\left(v_{i}\right), d^{+}\left(v_{i}\right)\right\} \geqslant(n+k-6) / 2$ for each $i \in\{1,2,3\}$. Then we may assume without loss of generality that $d^{+}\left(v_{i}\right) \geqslant(n+k-6) / 2$ for $i=1,2$. Then $d^{-}\left(v_{i}\right) \leqslant n-3-(n+k-6) / 2=(n-k) / 2$ for $i=1,2$. But then $d^{-}\left(v_{1}\right)+d^{-}\left(v_{2}\right) \leqslant n-k$, contradicting Lemma 5(2).

By combining Lemmas 14 and 15 we obtain the following iteration theorem for k traceable oriented graphs with independence number greater than 2.

Theorem 16. Let $k \geqslant 5$ and suppose n_{1} and n_{2} are integers such that $k \leqslant n_{1} \leqslant n_{2}$ and every k-traceable oriented graph of order n_{i} is traceable for $i=1,2$. If $n=n_{1}+n_{2}-j$; $j=1$ or 2 , and

$$
\begin{aligned}
& k-9 \leqslant n_{2}-n_{1} \leqslant 5 \text { if } j=1, \\
& k-9<n_{2}-n_{1}<5 \text { if } j=2,
\end{aligned}
$$

then every k-traceable oriented graph of order n with independence number at least 3 is traceable.

Proof. Let D be a k-traceable oriented graph with independence number at least 3 and order $n=n_{1}+n_{2}-j ; j=1$ or 2 . Then our assumption implies that D is n_{1}-traceable as well as n_{2}-traceable. Hence, by Lemma $15, D$ has a vertex v such that

$$
\min \left\{d^{-}(v), d^{+}(v)\right\} \leqslant\lfloor(n-3) / 2\rfloor \text { and } \max \left\{d^{-}(v), d^{+}(v)\right\} \leqslant\lfloor(n+k-7) / 2\rfloor .
$$

Now let $n=n_{1}+n_{2}-1$. Then, since $n_{2} \leqslant n_{1}+5$,

$$
\lfloor(n-3) / 2\rfloor=\left\lfloor\left(n_{1}+n_{2}-4\right) / 2\right\rfloor \leqslant\left\lfloor\left(2 n_{1}+1\right) / 2\right\rfloor=n_{1},
$$

and, since $n_{1} \leqslant n_{2}-k+9$,

$$
\lfloor(n+k-7) / 2\rfloor=\left\lfloor\left(n_{1}+n_{2}+k-8\right) / 2\right\rfloor \leqslant\left\lfloor\left(2 n_{2}+1\right) / 2\right\rfloor=n_{2} .
$$

Thus $d^{-}(v) \leqslant n_{1}$ and $d^{+}(v) \leqslant n_{2}$, or $d^{+}(v) \leqslant n_{1}$ and $d^{-}(v) \leqslant n_{2}$. In either case, it follows from Lemma 14 that D is traceable. (In the second case we interchange the labels of n_{1} and n_{2} before applying Lemma 14.)

If $n=n_{1}+n_{2}-2$, then, since $n_{2} \leqslant n_{1}+4$ and $n_{1} \leqslant n_{2}-k+8$, it follows that

$$
(n-3) / 2 \leqslant\left(2 n_{1}-1\right) / 2<n_{1} \text { and }(n+k-7) / 2 \leqslant\left(2 n_{2}-1\right) / 2<n_{2}
$$

so in this case it also follows from Lemma 14 that D is traceable.
By Corollary 12, a nontraceable digraph with independence number 2 has at least three strong components. For such digraphs it is convenient to consider the in- and outdegrees of a vertex in its own component only (in stead of in the whole digraph). The following lemma is useful in this respect.

Lemma 17. Let D be an oriented graph of order n with strong components D_{1}, \ldots, D_{h}; $h \geqslant 3$. Suppose n_{1}, n_{2} are integers such that D is n_{1}-traceable as well as n_{2}-traceable and $n=n_{1}+n_{2}-j ; j=1$, 2 or 3 . If for some $t \in\{2, \ldots, h-1\}$ there is a vertex $v \in V\left(D_{t}\right)$ such that

$$
d_{D_{t}}^{-}(v) \leqslant n_{1}-p \text { and } d_{D_{t}}^{+}(v) \leqslant n_{2}-r \text { if } j=1 \text { or } 2,
$$

and

$$
d_{D_{t}}^{-}(v)<n_{1}-p \text { and } d_{D_{t}}^{+}(v)<n_{2}-r \text { if } j=3
$$

where $p=n\left(D_{1}^{t-1}\right)$ and $r=n\left(D_{t+1}^{h}\right)$, then D is traceable.

Proof. Let

$$
X=V\left(D_{1}^{t-1}\right), Z=V\left(D_{t+1}^{h}\right)
$$

Case 1. $j=1$.
We note that $d^{-}(v) \leqslant d_{D_{t}}^{-}(v)+p \leqslant n_{1}$ and $d^{+}(v) \leqslant d_{D_{t}}^{+}(v)+r \leqslant n_{2}$ and hence Lemma 14 implies that D is traceable.
Case 2. $j=2$.
If $d_{D_{t}}^{-}(v)<n_{1}-p$ and $d_{D_{t}}^{+}(v)<n_{2}-r$, it follows from Lemma 14 that D is traceable.
If $d_{D_{t}}^{-}(v)=n_{1}-p$, let $U=X \cup N_{D_{t}}^{-}(v)$. Then $|U|=n_{1}$ and $|V(D)-U|=n_{2}-2$. Hence $\langle U\rangle$ has an n_{1}-path $P=u_{1} \ldots u_{n_{1}}$. Let u_{l} be the last vertex of P in D_{t-1}. Then $\left\langle V(D-U) \cup\left\{u_{l}, u_{l+1}\right\}\right\rangle$ has order n_{2} and hence has an n_{2}-path Q with u_{l} as initial vertex. If the arc $u_{l+1} v$ is in Q, let Q^{*} be the path obtained from Q by replacing the arc $u_{l+1} v$ with the path $u_{l+1} \ldots u_{n_{1}} v$. Then the concatenation of the paths $u_{1} \ldots u_{l}$ and Q^{*} is a Hamilton path of D. If $u_{l+1} v$ is not in Q, then $u_{l} v$ is the first arc of Q. Then the path $Q^{\prime}=Q-u_{l}$ is an $\left(n_{2}-1\right)$-path of $\left\langle V(D-U) \cup\left\{u_{l+1}\right\}\right\rangle$, with v as initial vertex. But $\left\langle\left(U-\left\{u_{l+1}\right\}\right) \cup\{v\}\right\rangle$ has order n_{1} and hence has an n_{1}-path R with v as terminal vertex. The concatenation of R and Q^{\prime} is an $\left(n_{1}+n_{2}-2\right)$-path of D.

A symmetric argument proves that D is traceable if $d_{D_{t}}^{+}(v)=n_{2}-r$.
Case 3. $j=3$.
If $d_{D_{t}}^{-}(v)=n_{1}-p-1$, let $U=X \cup N^{-}(v)$. Then $|U|=n_{1}-1$ and $n(D-U)=n_{2}-2$. Hence $U \cup\{v\}$ has an n_{1}-path $P=u_{1} \ldots u_{n_{1}-1} v$. Let u_{l} be the last vertex of P in D_{t-1}. Then $\left\langle V(D-U) \cup\left\{u_{l}, u_{l+1}\right\}\right\rangle$ has order n_{2} and hence has an n_{2}-path Q, with u_{l} as initial vertex.

If the arc $u_{l+1} v$ is in Q, let Q^{*} be the path obtained from Q by replacing the arc $u_{l+1} v$ with the path $u_{l+1} \ldots u_{n_{1}-1} v$. Then the concatenation of the paths $u_{1} \ldots u_{l}$ and Q^{*} is a Hamilton path of D.

If $u_{l+1} v$ is not in Q, then $u_{l} v$ is the first arc of Q. Then the path $Q^{\prime}=Q-u_{l}$ is an $\left(n_{2}-1\right)$-path of $\left\langle V(D-U) \cup\left\{u_{l+1}\right\}\right\rangle$, with v as initial vertex. By Lemma 8, D_{1}^{t} is $\left(n_{1}-1\right)$ traceable, and hence $\left\langle\left(U-\left\{v_{l+1}\right\}\right) \cup\{v\}\right\rangle$ has an $\left(n_{1}-1\right)$-path R with v as terminal vertex. The concatenation of R and Q^{\prime} is an $\left(n_{1}+n_{2}-3\right)$-path in D. A symmetric argument shows that D is traceable if $d_{D_{t}}^{+}(v)=n_{2}-r-1$.

Thus we may assume $d_{D_{t}}^{-}(v) \leqslant n_{1}-p-2$ and $d_{D_{t}}^{+}(v) \leqslant n_{2}-r-2$. Then we can partition $D-v$ into two sets U, W such that $|U|=n_{1}-2,|W|=n_{2}-2$ and $X \cup N^{-}(v) \subseteq U$, $N^{+}(v) \cup Z \subseteq W$. Since D_{1}^{t} is $\left(n_{1}-1\right)$-traceable and D_{t}^{h} is $\left(n_{2}-1\right)$-traceable, $\langle U \cup\{v\}\rangle$ has an $\left(n_{1}-1\right)$-path P with v as terminal vertex, and $\langle\{v\} \cup W\rangle$ has an $\left(n_{2}-1\right)$-path with v as initial vertex. The concatenation of P and Q is an $\left(n_{1}+n_{2}-3\right)$-path in D.

By using Lemma 17 , together with results on the structure of k-traceable oriented graphs with independence number 2, we obtain the following iteration theorem in the case when $k \leqslant 10$.

Theorem 18. Let $7 \leqslant k \leqslant 10$ and suppose there exist integers n_{1}, n_{2}, such that $k \leqslant$ $n_{1} \leqslant n_{2}$ and every k-traceable oriented graph with independence number 2 and order n_{i} is traceable for $i=1,2$. Then every k-traceable oriented graph with independence number 2 and order $n_{1}+n_{2}-j$ is traceable, for $j=1,2,3$.

Proof. Suppose, to the contrary, that there exists a nontraceable k-traceable oriented graph D with $\alpha(D)=2$ and order $n_{1}+n_{2}-j ; j=1,2$ or 3 . Then, by our assumption, D is also n_{1}-traceable and n_{2}-traceable. Let D_{1}, \ldots, D_{h} be the strong components of D. Since $n(D) \geqslant n_{1}+n_{2}-3 \geqslant 2 k-3$, Lemma 10 implies that D has a nonhamiltonian strong component D_{t} of order at least $n-k+5$ and that D_{1}^{t-1} and D_{t+1}^{h} are tournaments. Let

$$
n\left(D_{1}^{t-1}\right)=p, n\left(D_{t}\right)=q, n\left(D_{t+1}^{h}\right)=r .
$$

Lemma 13(5) implies that $p \geqslant 1, r \geqslant 1$ and D_{t}^{h} has a Hamilton path $v_{1} \ldots v_{q+r}$ such that if v_{l} is the last in-neighbour of v_{1} on this path, then v_{l+1} has an in-neighbour x in D_{t-1}. Let

$$
L=v_{1} \ldots v_{l} \text { and } Q=v_{1} \ldots v_{q} .
$$

The structure of D is depicted in Figure 1.

Figure 1: Structure of D

The following three claims will be used repeatedly. They are all easy consequences of Lemma 4 and our assumption that D is nontraceable.
Claim (i) If $v_{i} \in N_{D_{t}}^{+}\left(D_{t-1}\right)$ for some $i \in\{2,3, \ldots, l\}$, then $v_{i-1} \notin N_{D_{t}}^{-}\left(v_{l+1}\right)$.
Claim (ii) If $v_{i} \in N^{+}\left(v_{j}\right)$ for some $i \in\{2,3, \ldots, l\}$ and $j \in\{l+1, \ldots, q-1\}$, then $v_{i-1} \notin N^{-}\left(v_{j+1}\right)$.
Claim (iii) If $v_{i} \in N^{+}\left(v_{q}\right)$ for some $i \in\{2,3, \ldots, l\}$, then $v_{i-1} \notin N_{D_{t}}^{-}\left(D_{t+1}\right)$.
Now we show that $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right| \geqslant n-n_{1}+2$.
If $n_{1}>k$, then it follows from Lemma 13(1) that $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right| \geqslant n-n_{1}+2$.
If $n_{1}=k$, then $n-k+1=n_{1}+n_{2}-j-n_{1}+1=n_{2}-j+1$. Since $p+r \geqslant 2$, and $q \geqslant n-k+5>n_{2}$, Lemma 8(3) implies that D_{t} is $\left(n_{2}-i\right)$-traceable for $i=0,1,2$. Since
we are assuming that $j=1,2$ or 3 , this implies that D_{t} is $\left(n_{2}-j+1\right)$-traceable, i.e., D_{t} is $(n-k+1)$-traceable. Hence, if $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right|=n-k+1$, then $\left\langle N_{D_{t}}^{+}\left(D_{t-1}\right)\right\rangle$ is traceable, contradicting the second part of Lemma 13(1). Thus $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right| \neq n-k+1$ and hence, by the first part of Lemma $13(1),\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right| \geqslant n-k+2$.

Thus, in either case $\left|N_{D_{t}}^{+}\left(D_{t-1}\right)\right| \geqslant n-n_{1}+2$. Hence

$$
\begin{equation*}
\left|N_{L}^{+}\left(D_{t-1}\right)\right| \geqslant n-n_{1}+2-(q-l) \tag{I}
\end{equation*}
$$

Since D_{t} is nonhamiltonian, $l<q$ and since $N_{D_{t}}^{-}\left(v_{1}\right) \subseteq\left\{v_{3}, \ldots, v_{q-1}\right\}$, it follows from Lemma 13(3) that $l \geqslant n-k+4$. But $q \leqslant n-2$, so

$$
\begin{equation*}
1 \leqslant q-l \leqslant k-6 \tag{II}
\end{equation*}
$$

We consider two cases, depending on the difference between q and l.
Case 1. $q-l=1$.
In this case (I) becomes

$$
\left|N_{L}^{+}\left(D_{t-1}\right)\right| \geqslant n-n_{1}+1
$$

Hence, by Claim (i), at least $n-n_{1}+1$ vertices in L are not in $N^{-}\left(v_{q}\right)$. Since v_{q} is also not in $N^{-}\left(v_{q}\right)$, it follows that

$$
d_{D_{t}}^{-}\left(v_{q}\right) \leqslant q-\left(n-n_{1}+2\right)<n_{1}-p
$$

since $n=p+q+r$. Now, suppose $d_{D_{t}}^{+}\left(v_{q}\right) \geqslant n_{2}-r$. Then, by Claim (iii),

$$
\left|N_{D_{t}}^{-}\left(D_{t+1}\right)\right| \leqslant q-\left(n_{2}-r\right)=q+r-n_{2}=n-p-n_{2}<n-k
$$

contradicting Lemma $13(2)$. Hence $d_{D_{t}}^{+}\left(v_{q}\right)<n_{2}-r$. Thus we have shown that $d^{-}\left(v_{q}\right)<$ $n_{1}-p$ and $d^{+}\left(v_{q}\right)<n_{2}-r$, contradicting Lemma 17.
Case 2. $q-l \geqslant 2$.
It follows from (I) and (II) that

$$
\left|N_{L}^{+}\left(D_{t-1}\right)\right| \geqslant\left(n-n_{1}+2\right)-(k-6)=n-n_{1}-k+8
$$

Hence, by Claim (i) and the fact that v_{l+1} as well as v_{l+2} are not in $N_{D_{t}}^{-}\left(v_{l+1}\right)$,

$$
d_{D_{t}}^{-}\left(v_{l+1}\right) \leqslant q-n+n_{1}+k-10 .
$$

Since $q=n-p-r, r \geqslant 1$, and $k \leqslant 10$, it follows that

$$
\begin{equation*}
d_{D_{t}}^{-}\left(v_{l+1}\right)<n_{1}-p \tag{III}
\end{equation*}
$$

Now we consider two subcases.
Case 2.1. $n=n_{1}+n_{2}-1$ or $n_{1}+n_{2}-2$.
Since we are assuming that D is nontraceable, it follows from (III) and Lemma 17 that

$$
d_{D_{t}}^{+}\left(v_{l+1}\right) \geqslant n_{2}-r+1 .
$$

We now show, by means of induction, that

$$
d_{D_{t}}^{+}\left(v_{i}\right) \geqslant n_{2}-r+1 \text { for } i=l+1, \ldots, q .
$$

Suppose $d_{D_{t}}^{+}\left(v_{i}\right) \geqslant n_{2}-r+1$ for some $i \in\{l+1, \ldots, q-1\}$. Then

$$
d_{L}^{+}\left(v_{i}\right) \geqslant n_{2}-r+1-(q-l-1) \geqslant n_{2}-r-k+8
$$

since $q-l \leqslant k-6$. Hence, by Claim (ii),

$$
d_{D_{t}}^{-}\left(v_{i+1}\right) \leqslant q-\left(n_{2}-r-k+8\right)-1 \leqslant n_{1}-p,
$$

since $q+r=n-p \leqslant n_{1}+n_{2}-1-p$ and $k \leqslant 10$. Hence, by Lemma $17, d_{D_{t}}^{+}\left(v_{i+1}\right) \geqslant n_{2}-r+1$.
This completes the induction and proves that $d_{D_{t}}^{+}\left(v_{q}\right) \geqslant n_{2}-r+1$.
Since $q \geqslant l+2$, and $v_{q-1}, v_{q} \notin N^{+}\left(v_{q}\right)$, at most $q-l-2$ out-neighbours of v_{q} are in $D_{t}-L$. Hence

$$
d_{L}^{+}\left(v_{q}\right) \geqslant n_{2}-r+1-(q-l-2) \geqslant n_{2}-r-k+9 .
$$

Hence, by Claim (iii),

$$
\left|N_{D_{t}}^{-}\left(D_{t+1}\right)\right| \leqslant q-\left(n_{2}-r-k+9\right) \leqslant n-p-n_{2}+k-9 \leqslant n-n_{2} \leqslant n-k,
$$

contradicting Lemma 13(2).
Case 2.2. $n=n_{1}+n_{2}-3$.
In this case it follows from (III) and Lemma 17 that $d_{D_{t}}^{+}\left(v_{l+1}\right) \geqslant n_{2}-r$. Now suppose we have shown that $d_{D_{t}}^{+}\left(v_{i}\right) \geqslant n_{2}-r$ for some $i \in\{l+1, \ldots, q-1\}$. Then

$$
d_{L}^{+}\left(v_{i}\right) \geqslant n_{2}-r-(q-l-1) \geqslant n_{2}-r-k+7 .
$$

Hence, by Claim (ii),

$$
d_{D_{t}}^{-}\left(v_{i+1}\right) \leqslant q-\left(n_{2}-r-k+7\right)-1<n_{1}-p,
$$

since $q+r=n-p=n_{1}+n_{2}-3-p$ and $k \leqslant 10$. Hence, by Lemma $17, d_{D_{t}}^{+}\left(v_{i+1}\right) \geqslant n_{2}-r$. Thus we have shown by induction that $d_{D_{t}}^{+}\left(v_{q}\right) \geqslant n_{2}-r$. Hence

$$
d_{L}^{+}\left(v_{q}\right) \geqslant n_{2}-r-(q-l-2) \geqslant n_{2}-r-k+8
$$

Hence, by Claim (iii),

$$
\left|N_{D_{t}}^{-}\left(D_{t+1}\right)\right| \leqslant q-\left(n_{2}-r-k+8\right) \leqslant n-n_{2}+1 .
$$

If $n_{2}>k$, this contradicts Lemma 13(2). If $n_{2}=k$, then $n-k+1=n-n_{2}+1=n_{1}-2$. Since D_{t} is $\left(n_{1}-2\right)$-traceable, this also contradicts Lemma 13(2).

In order to apply our two iteration theorems effectively, we need some initial values for n_{1} and n_{2}. For $k=7,8,9$, these are provided by the following theorem, which Burger [9] derived by means of computer search.

Theorem 19. [9]

1. Every 7 -traceable oriented graph of order 9,10 or 11 is traceable.
2. Every 8-traceable oriented graph of order 9, 10 or 11 is traceable.
3. Every 9-traceable oriented graph of order 11 is traceable.

Theorems 16, 18 and 19 now enables us to prove the following four theorems.
Theorem 20. Every 7 -traceable oriented graph of order at least 9 is traceable.
Proof. By Theorem 19, every 7-traceable oriented graph of order 9, 10 or 11 is traceable. Hence every 7 -traceable oriented graph of order at least 12 is also 9 -, 10- and 11-traceable. Let D be a 7 -traceable oriented graph of order n.
First, suppose $\alpha(D)=2$. If $n=12$ or 13 , we apply Theorem 18 with $n_{1}=n_{2}=7$ and $j=1,2$ to prove that D is traceable. For $n=14$, we take $n_{1}=7, n_{2}=9, j=2$. We conclude that every 7 -traceable oriented graph with independence number 2 and order 12,13 or 14 is traceable. Then we show that every 7 -traceable oriented graph with independence number 2 and order $n \geqslant 15$ is traceable, by applying Theorem 18 iteratively with $n_{1}=7, n_{2}=n-6$ and $j=1$.

Now suppose $\alpha(D) \geqslant 3$. Then $n<22$ by Theorem 3(1). If $n_{1}, n_{2} \in\{7,9,10,11\}$ and $n_{1} \leqslant n_{2}$, then $n_{2}-n_{1}<5$, so it follows from Theorem 16 that D is traceable if $12 \leqslant n \leqslant 21$.

Theorem 21.

1. Every 8-traceable oriented graph with independence number 2 and order at least 13 is traceable.
2. Every 8-traceable oriented graph of order at least 14 is traceable.

Proof. Let D be an 8 -traceable oriented graph of order $n \geqslant 13$. By Theorem $19, D$ is also $9-10-$ and 11- traceable.

1. If $\alpha(D)=2$, we use $n_{1}, n_{2} \in\{8,9,10\}$ in Theorem 18 to prove that D is traceable if $13 \leqslant n \leqslant 19$. Then we show that D is traceable if $n=20,21,22, \ldots$ by putting $n_{1}=8$ and $n_{2}=13,14,15, \ldots$ in successive applications of Theorem 18.
2. If $\alpha(D) \geqslant 3$, then $n<27$ by Theorem 3(1). If $14 \leqslant n \leqslant 21$, we use Theorem 16 with $n_{1}, n_{2} \in\{8,9,10,11\}$ to prove that D is traceable. Then we use $n_{1}, n_{2} \in$ $\{10,11,14,15\}$ to prove it for $21<n<27$.

We have not yet succeeded in settling the case $k=9$ of the TC, but our next result shows that if there exists a 9-traceable counterexample D to the TC, then $\alpha(D) \geqslant 3$ and $21<n(D)<33$.

Theorem 22.

1. Every 9-traceable oriented graph with independence number 2 and order $n \geqslant 15$ is traceable.
2. Every 9-traceable oriented graph of order n is traceable if $n \in\{11,17,18,19,21\}$ or $n \geqslant 33$.

Proof. Let D be a 9-traceable oriented graph of order $n \geqslant 15$. By Theorem 19(3), D is also 11-traceable.

1. Suppose $\alpha(D) \leqslant 2$. We use Theorem 18 with $n_{1}, n_{2} \in\{9,11\}$ to prove that D is traceable if $15 \leqslant n \leqslant 21$. Then we prove it for $n=22,23,24, \ldots$ by putting $n_{1}=9$ and $n_{2}=16,17,18, \ldots$ in successive applications of Theorem 18 .
2. Suppose $\alpha(D) \geqslant 3$. Then $n<34$ by Theorem 3(1). We use Theorem 16 with $n_{1}, n_{2} \in\{9,11\}$ to prove that D is traceable if $n \in\{17,18,19,21\}$. Then we use $n_{1}=n_{2}=17$ to prove it for $n=33$.

We do not have a result similar to Theorem 19 for 10-traceable oriented graphs. (Theorem 19 already required a lot of computer time.) However, in the case $\alpha=2$, we can apply Theorem 18 iteratively, starting with n_{1} and n_{2} both equal to 10 . This procedure, together with Theorem 3(1), yields the following result.

Theorem 23.

1. Every 10 -traceable oriented graph with independence number 2 and order n is traceable for every $n \in\{17,18,19,24,25,26,27,28\}$ and every $n \geqslant 31$.
2. Every 10-traceable oriented graph of order at least 40 is traceable.

Implications of Theorems 20-23 with regard to the TC are as follows.
Corollary 24. If D is a k-traceable oriented graph of order at least $2 k-1$, then D is traceable in each of the following cases.

1. $k \leqslant 8$.
2. $k=9$ and $\alpha(D)=2$.
3. $k=10, \alpha(D)=2, n \notin\{20,21,22,23,29,30\}$.

Acknowledgments

The authors wish to thank the University of South Africa and the National Research Foundation of South Africa for their sponsorship of "Detour Workshop 2010" (Salt Rock, 6-20 March, 2010) and "Detour Workshop 2011" (Salt Rock, 1-15 March, 2011) where joint research for this paper was conducted and the main ideas were generated.

References

[1] S.A. van Aardt, G. Dlamini, J.E. Dunbar, M. Frick, and O.R. Oellermann. The directed path partition conjecture. Discuss. Math. Graph Theory, 25:331-343, 2005.
[2] S.A. van Aardt, J.E. Dunbar, M. Frick, P. Katrenič, M.H. Nielsen, and O.R. Oellermann. Traceability of k-traceable oriented graphs. Discrete Math., 310:1325-1333, 2010.
[3] S.A. van Aardt, J.E. Dunbar, M. Frick, M.H. Nielsen. Cycles in k-traceable oriented graphs. Discrete Math., 311:2085-2094, 2011.
[4] S.A. van Aardt, J.E. Dunbar, M. Frick, M.H. Nielsen, and O.R. Oellermann. A traceability conjecture for oriented graphs. Electron. J. Combin., 15(1):R150, 2008.
[5] S. A. van Aardt, A. P. Burger, M. Frick, B. Llano and R. Zuazua. Infinite families of 2-hypohamiltonian/2-hypotraceable oriented graphs. To appear in Graphs and Combinatorics.
[6] S. A. van Aardt, M. Frick, P. Katrenic and M.H. Nielsen. The order of hypotraceable oriented graphs. Discrete Math., 11:1273-1280, 2011.
[7] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications Springer-Verlag, 2002.
[8] J. Bang-Jensen, M.H. Nielsen and A. Yeo. Longest path partitions in generalizations of tournaments. Discrete Math., 306:1830-1839, 2006.
[9] A.P. Burger. Computational results on the traceability of oriented gaphs of small order. Submitted.
[10] C.C. Chen and P. Manalastas Jr. Every finite strongly connected digraph of stability 2 has a Hamiltonian path. Discrete Math., 44:243-250, 1983.
[11] M. Frick and P. Katrenič. Progress on the traceability conjecture. Discrete Math. and Theor. Comp. Science, 10(3):105-114, 2008.
[12] F. Havet. Stable set meeting every longest path. Discrete Math., 289:169-173, 2004.

[^0]: *Supported by NRF grant 71308.

