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Abstract

A digraph is k-traceable if its order is at least k and each of its subdigraphs of
order k is traceable. The Traceability Conjecture (TC) states that for k > 2 every
k-traceable oriented graph of order at least 2k − 1 is traceable. It has been shown
that for 2 6 k 6 6, every k-traceable oriented graph is traceable. We develop an
iterative procedure to extend previous results regarding the TC. In particular, we
prove that every 7-traceable oriented graph of order at least 9 is traceable and every
8-traceable graph of order at least 14 is traceable.

Keywords: Traceability Conjecture, Path Partition Conjecture, oriented graph,
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1 Introduction and Background

A digraph is hamiltonian if it contains a cycle that visits every vertex, traceable if it
contains a path that visits every vertex, and strong (or strongly connected) if it contains
a closed walk that visits every vertex. A digraph is k-traceable if its order is at least k
and each of its subdigraphs of order k is traceable.

This paper contributes to a body of work to establish the validity of the following
traceability conjecture, called the TC (see [2, 3, 4]).

Conjecture 1. (TC) For k > 2, every k-traceable oriented graph of order at least 2k−1
is traceable.

It is obvious that an oriented graph is 2-traceable if and only if it is a nontrivial tour-
nament. Thus we can think of a k-traceable oriented graph as a generalized tournament.
It is well-known that every nontrivial strong tournament is hamiltonian and every tour-
nament is traceable. The following theorem shows that these properties are retained by
k-traceable oriented graphs for small values of k.

Theorem 2. [2, 4]

1. For k = 2, 3, 4, every strong k-traceable oriented graph of order at least k + 1 is
hamiltonian.

2. For k = 2, 3, 4, 5, 6, every k-traceable oriented graph is traceable.

However, for k = 7 and for every k > 9 there exist k-traceable oriented graphs of order
k + 1 that are nontraceable, as shown in [6]. There also exist nontraceable k-traceable
oriented graphs of order k + 2 for infinitely many k, as shown in [5], but the following
theorem shows that the order of nontraceable k-traceable oriented graphs is bounded
above by a function of k.

Theorem 3. [2, 4] Let k > 7 and suppose D is a k-traceable oriented graph of order n
and independence number α.

1. If n > 6k − 20, then α 6 2.

2. If α 6 2 and n > 2k2 − 20k + 59, then D is traceable.

It is therefore natural to ask: what is the smallest integer t(k) such that t(k) > k and
every k-traceable oriented graph of order at least t(k) is traceable? The TC asserts that
t(k) 6 2k − 1 for all k > 2. It seems likely that t(k) is considerably less than 2k − 1 for
all k > 2, but proving the TC would suffice for proving the Path Partition Conjecture for
1-deficient oriented graphs, as shown in [4]. The latter conjecture is an important special
case of the Path Partition Conjecture for Digraphs, which is discussed in [1, 7, 8].

In this paper we present results that suggest an iterative method for proving the TC.
The method enables us to prove the special cases k = 7, 8 and to substantially improve
Theorem 3 (2) in the cases k = 9, 10.
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We shall use the following notation and terminology.
The set of vertices and the set of arcs of a digraph D are denoted by V (D) and A(D),

respectively, and the order of D is denoted by n(D). If X ⊂ V (D), then 〈X〉 denotes the
subdigraph induced by X in D. If v ∈ V (D), we denote the sets of out-neighbours and
in-neighbours of v in D by N+(v) and N−(v) and the cardinalities of these sets by d+(v)
and d−(v), respectively. The degree d(v) of v is defined as d(v) = d+(v) + d−(v) and the
minimum degree of D is denoted by δ(D). The independence number of D, denoted by
α(D), is the cardinality of a largest set X ⊂ V (D) such that 〈X〉 has no arcs.

Let P = u1 . . . up be a p-path and Q = v1 . . . vq a q-path in a digraph D. If up = v1,
then the (p+ q − 1)-path u1 . . . up−1v1 . . . vq is called the concatenation of P and Q.

A maximal strong subdigraph of a digraph D is called a strong component of D. We
say that a strong component is trivial if it has only one vertex. If D is a digraph with h
strong components, then its strong components have an acyclic ordering D1, D2, . . . , Dh

such that if there is an arc from Di to Dj, then i 6 j. If D is k-traceable for some
k > 2, this acyclic ordering is unique since there is at least one arc from Di to Di+1 for
i = 1, 2, . . . , h−1. Throughout this paper we label the strong components of a k-traceable
digraph in accordance with this acyclic ordering and if 1 6 r 6 s 6 h, we denote by Ds

r

the subdigraph of D induced by the vertex set
⋃s

i=r V (Di).

2 Auxiliary results

The lemmas in this section extend results proven in [2, 4, 11]. For easy reference, we
repeat some of the proofs from these papers.

The following result will be used frequently. It follows immediately from the fact that
every strong tournament is hamiltonian.

Lemma 4. Let D be a tournament with strong components D1, . . . , Dh. Then every
vertex in D1 is the initial vertex of some Hamilton path of D and every vertex in Dh is
the terminal vertex of some Hamilton path of D.

Lemma 5. Let k > 2 and suppose D is a k-traceable oriented graph of order n. Then the
following hold.

1. d(x) > n− k + 1 for every x ∈ V (D).

2. |N+(x) ∪ N+(y)| > n − k + 1 and |N−(x) ∪ N−(y)| > n − k + 1 for every pair of
distinct nonadjacent vertices x, y ∈ V (D).

Proof.

1. If D has a vertex x with d(x) 6 n− k, then we can choose an induced subdigraph
H of order k in D such that x ∈ V (H) ⊆ V (D)−N(x). But then x is an isolated
vertex in H, so H is nontraceable, contradicting the k-traceability of D.
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2. Suppose |N+(x) ∪N+(y)| 6 n− k. Let H be an induced subdigraph of order k in
D such that {x, y} ⊆ V (H) ⊆ V (D) − (N+(x) ∪N+(y)). Then H is nontraceable,
since neither x nor y has an out-neighbour in H. This contradiction proves that
|N+(x)∪N+(y)| > n−k+1. A symmetric argument shows that |N−(x)∪N−(y)| >
n− k + 1.

Lemma 6. Let k > 2 and let x and y be distinct nonadjacent vertices in a k-traceable
oriented graph D of order n. Let

S ∈ {N+(x), N−(x), N+(x) ∪N+(y), N−(x) ∪N−(y)}.

Now suppose |S| = n− k + 1 and 〈S〉 is traceable. Then D is traceable.

Proof. Let v1 . . . vn−k+1 be a Hamilton path of 〈S〉. First, let S = N+(x) ∪ N+(y). Let
H = D − {v1, . . . , vn−k}. Then n(H) = k, so H has a k-path P . We consider two cases.
Case 1. {v1, vn−k+1} ⊆ N+(x).

Since vn−k+1 is the only out-neighbour of x in H, it follows that either x is the terminal
vertex of P , or P contains the arc xvn−k+1. If the former, then Pv1 · · · vn−k is a Hamilton
path of D. If the latter, then the path obtained from P by replacing the arc xvn−k+1 with
the path xv1 . . . vn−k+1 is a Hamilton path of D.
Case 2. v1 ∈ N+(x)−N+(y) and vn−k+1 ∈ N+(y)−N+(x).

In this case x has no out-neighbour in H, so x is the terminal vertex of P and hence
Pv1 . . . vn−k is a Hamilton path of D.

The argument in Case 1 above also proves the case when S = N+(x) and the remaining
cases follow by symmetric arguments.

Our next result is an immediate consequence of the fact that the strong components
of an oriented graph have an acyclic ordering.

Lemma 7. If P is a path in an oriented graph D, then the intersection of P with any
strong component of D is either empty or a path.

The following two lemmas are consequences of Lemma 7.

Lemma 8. Let D be a k-traceable oriented graph with strong components D1, . . . , Dh. Let
1 < t < h and let p = n(Dt−1

1 ), q = n(Dt) and r = n(Dh
t+1). Then the following hold.

1. If 0 6 i 6 r and 1 6 k − i 6 p+ q, then Dt
1 is (k − i)-traceable.

2. If 0 6 i 6 p and 1 6 k − i 6 q + r, then Dh
t is (k − i)-traceable.

3. If 0 6 i 6 p+ r and 1 6 k − i 6 q, then Dt is (k − i)-traceable.

Lemma 9. Let k > 2 and let D be a k-traceable oriented graph of order n > 2k − 5 with
strong components D1, . . . , Dh. Then for every positive integer i 6 h − 1 at least one of
Di

1 and Dh
i+1 is a tournament.
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Proof. Suppose, to the contrary, that for some i 6 h− 1 neither Di
1 nor Dh

i+1 is a tourna-
ment. Since n > 2k−5, one of Di

1 and Dh
i+1, say Di

1, has at least k−2 vertices. Let H be
an induced subdigraph of D such that H contains k− 2 vertices of Di

1 together with any
two nonadjacent vertices of Dh

i+1. Then it follows from Lemma 7 that H is nontraceable,
contrary to the hypothesis.

Lemma 10. Let k > 7 and suppose D is a nontraceable k-traceable oriented graph of
order n > 2k − 3. Then D has a nonhamiltonian strong component Dt of order at least
n− k + 5 and Dt−1

1 and Dh
t+1 are tournaments, whenever they are defined.

Proof. Let t be the smallest integer such that Dt
1 is not a tournament. If t < h, then Dh

t+1

is a tournament by Lemma 9. Furthermore, if t > 1, then Dt−1
1 is a tournament by the

minimality of t.
Now suppose Dt is hamiltonian. Then, since D is nontraceable, it follows from Lemma

4 that 1 < t < h. Let C be a Hamilton cycle of Dt. Then, for every in-neighbour of Dt+1

on C, its successor is not an out-neighbour of Dt−1. Hence V (C)−N+
C (Dt−1) 6= ∅. Now

suppose |N+
C (Dt−1)| 6 n−k. Then let H be a subdigraph of order k in V (D)−N+

C (Dt−1)
such that H contains at least one vertex in V (C)−N+

C (Dt−1) and at least one vertex in
Dt−1. Then H is nontraceable, contradicting that D is k-traceable. Hence |N+

C (Dt−1)| >
n − k + 1 > (2k − 3) − k + 1 = k − 2, which implies that at least k − 2 vertices in
C are not in N−C (Dt+1). Let H be a subdigraph of order k that has k − 2 vertices in
V (C)−N−C (Dt+1), together with one vertex from Dt−1 and one from Dt+1. Then H has
order k but is nontraceable. This contradiction shows that Dt is not hamiltonian.

Since Dt−1
1 and Dh

t+1 are tournaments but D is nontraceable, it follows from Lemma
4 that n(Dt) 6= 1. Thus Dt is a nonhamiltonian, strong oriented graph of order at least
4. Now suppose n(Dt) 6 n− k + 4. Then n(D − V (Dt)) > k − 4 and hence Lemma 8(3)
implies that D is 4-traceable. If n(Dt) > 5, this contradicts Theorem 2. If n(Dt) = 4,
then n(D−Dt) > 2k− 7 > k− 3 and then Lemma 8 implies that Dt is 3-traceable, which
again contradicts Theorem 2.

Chen and Manalastas [10] proved that every strong digraph with independence number
two is traceable. Havet [12] strengthened their result as follows.

Theorem 11. [12] If D is a strong digraph with α(D) = 2, then D has two nonadjacent
vertices that are terminal vertices of Hamilton paths in D and two nonadjacent vertices
that are initial vertices of Hamilton paths in D.

The following corollary of Havet’s result appears in [2].

Corollary 12. If D is a connected digraph with α(D) = 2 and at most two strong com-
ponents, then D is traceable.

Proof. By the Chen-Manalastas Theorem we may assume that D has exactly two strong
components, D1 and D2, and both are traceable. Since every strong tournament is hamil-
tonian, we may assume that at least one of the two strong components, say D1, is not
a tournament. By Theorem 11, D1 has two nonadjacent vertices y and z, each of which
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is a terminal vertex of a Hamilton path of D1. Let a be the initial vertex of a Hamilton
path of D2. Then at least one of y and z is adjacent to a and hence D has a Hamilton
path.

Thus every nontraceable oriented graph D with α(D) = 2 has at least three strong
components. The following lemma provides useful information on the strong component
structure of nontraceable k-traceable oriented graphs of order at least 2k − 3. Item 5
provides additional information in the case when the independence number equals 2.

Lemma 13. Let k > 7 and suppose D is a nontraceable k-traceable oriented graph of
order n > 2k − 3, with strong components D1, . . . , Dh. Let Dt be the nonhamiltonian
strong component of D of order at least n− k + 5. Then the following hold.

1. If t > 1, then |N+
Dt

(Dt−1)| > n − k + 1 and if |N+
Dt

(Dt−1)| = n − k + 1, then
〈N+

Dt
(Dt−1)〉 is nontraceable.

2. If t < h, then |N−Dt
(Dt+1)| > n − k + 1 and if |N−Dt

(Dt+1)| = n − k + 1, then
〈N−Dt

(Dt+1)〉 is nontraceable.

3. If t > 1 and v ∈ V (Dt) − N+
Dt

(Dt−1), then |N−Dt
(v)| > n − k + 1 and if |N−Dt

(v)| =
n− k + 1, then 〈N−Dt

(v)〉 is nontraceable.

4. If t < h and v ∈ V (Dt) −N−Dt
(Dt+1), then |N+

Dt
(v)| > n − k + 1 and if |N+

Dt
(v)| =

n− k + 1, then 〈N+
Dt

(v)〉 is nontraceable.

5. If α(D) = 2, then 1 < t < h and Dh
t has a Hamilton path such that the successor of

the last in-neighbour of its initial vertex has an in-neighbour in Dt−1.

Proof. We shall prove (1), (3) and (5). The proofs of (2) and (4) are similar to those of (1)
and (3), respectively. First we note from Lemma 10 that Dt−1

1 and Dh
t+1 are tournaments.

1. Suppose |N+
Dt

(Dt−1)| 6 n − k. Let S consist of k vertices from the set V (D) −
N+

Dt
(Dt−1) such that S contains at least one vertex in Dt−1 and at least one in Dt.

Then, since there are no arcs from S∩V (Dt−1) to S∩V (Dt), the induced subdigraph
〈S〉 is nontraceable.

Next suppose N+
Dt

(Dt−1) = n− k+ 1 and 〈N+
Dt

(Dt−1)〉 contains an (n− k+ 1)-path
u1 . . . un−k+1. Let H be the subdigraph of D induced by the vertex set V (D) −
{u1, . . . , un−k}. Then n(H) = k, so H has a k-path P . Since un−k+1 is the only
out-neighbour of Dt−1 in H, the intersection of the path P with Dh

t is a path R that
has un−k+1 as its initial vertex. Let x be a vertex in Dt−1 such that u1 ∈ N+(x).
Since Dt−1

1 is a tournament, Dt−1
1 has a Hamilton path Q ending in x. Thus the

path Qu1 . . . un−kR is an n-path of D.

3. Let v ∈ V (Dt)−N+
Dt

(Dt−1) and suppose |N−Dt
(v)| 6 n− k. Then let S consist of k

vertices in V (D)−N−Dt
(v) such that S contains v and at least one vertex y in Dt−1.

Since v has no in-neighbours in S ∩Dt
t−1, no path in 〈S〉 contains both v and y, so

〈S〉 is nontraceable.
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Now suppose |N−Dt
(v)| = n − k + 1 and 〈N−Dt

(v)〉 contains an (n − k + 1)-path
u1 . . . un−k+1. Let H be the subdigraph of D induced by the vertex set V (D) −
{u2, . . . , un−k+1}. Then n(H) = k, so H has a k-path P . Since t > 1, v is not the
initial vertex of P , and since u1 is the only in-neighbour of v in H ∩Dt

t−1, the arc
u1v is in P . But then the path obtained from P by replacing the arc u1v with the
path u1 . . . un−k+1v is an n-path of D.

5. By Corollary 12, h > 3. First suppose t = 1. Then Dh
2 is a tournament and hence by

Lemma 4 every vertex in the strong component D2 is an initial vertex of a Hamilton
path of Dh

2 . But, by Theorem 11, there exist two nonadjacent vertices u and v
in V (D1) such that both are end vertices of Hamilton paths in D1. Since we are
assuming D is nontraceable, this implies that both u and v are nonadjacent with
every vertex in D2, contradicting that α(D) = 2. Hence t 6= 1 and we can prove
similarly that t 6= h.

Let n(Dt) = q. Then q 6 n−2. Since α(D) = 2 and Dh
t+1 is a tournament it follows

from Lemma 4 and Theorem 11 that Dh
t is traceable. Among all the Hamilton

paths in Dh
t , choose one such that the subpath from its initial vertex to the last in-

neighbour of that initial vertex on the Hamilton path has maximum order. Let the
intersection of this Hamilton path of Dh

t with Dt be Q = v1 . . . vq and its intersection
with Dh

t+1 be R. Let v` be the last in-neighbour of v1 on Q and let S = v`+1 . . . vqR.

Suppose v`+1 has no in-neighbour in Dt−1. Then v1 and v`+1 are adjacent since
α(D) = 2 and so vl+1 ∈ N+(v1) by the choice of l. But now Q′ = v2v3 . . . v`v1S
is a Hamilton path of Dh

t and therefore v2 /∈ N+(Dt−1). But by the maximality
of `, v1 is the last in-neighbour of v2 on Q′, so vl+1 6∈ N−(v2). Since α(D) = 2,
this implies that vl+1 ∈ N+(v2). But then v3v4 . . . v`v1v2S is a Hamilton path in
Dh

t . Repeating this process we can show that vi /∈ N+(Dt−1) for i = 1, . . . , `. Since
N−Dt

(v1) ⊆ {v3, . . . , v`}, it follows by Lemma 13(3) that ` > n − k + 4 and hence
|N+

Dt
(Dt−1)| 6 q − (`+ 1) 6 n− 2− (n− k + 4)− 1 = k − 7. But by Lemma 13(1),

|N+
Dt

(Dt−1)| > n− k + 1 > 2k − 3− k + 1 = k − 2, a contradiction.

3 Main Results

Lemma 14. Let D be an oriented graph of order n and suppose there exist integers n1,
n2 such that D is n1-traceable as well as n2-traceable and n = n1 + n2 − j; j = 1 or 2.
Suppose D has a vertex v such that

d−(v) 6 n1 and d+(v) 6 n2 if j = 1

and
d−(v) < n1 and d+(v) < n2 if j = 2.

Then D is traceable.
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Proof.
Case 1. j = 1.

Suppose d−(v) = n1. Then |N−(v)| = n1 = n − n2 + 1. Since D is n1-traceable,
〈N−(v)〉 is traceable and hence, since D is also n2-traceable, it follows from Lemma 6
that D is traceable. Similarly, if d+(v) = n2, then D is traceable.

We therefore assume that d−(v) 6 n1 − 1 and d+(v) 6 n2 − 1. Then we can partition
V (D)−{v} into two sets U and W such that |U | = n1−1, |W | = n2−1 and N−(v) ⊆ U ,
N+(v) ⊆ W . By the n1-traceability of D and the fact that v has no out-neighbours in
U , the subdigraph 〈U ∪ {v}〉 has an n1-path P with v as terminal vertex. Similarly, by
the n2-traceability of D and the fact that v has no in-neighbours in W , the subdigraph
〈{v} ∪W 〉 has an n2-path Q with v as initial vertex. The concatenation of P and Q is
an n-path of D.
Case 2. j = 2.

Since d−(v) + d+(v) 6 n− 1 = n1 + n2 − 3, we cannot have both d−(v) = n1 − 1 and
d+(v) = n2 − 1. By symmetry, we may assume d+(v) 6 n2 − 2. Then we can partition
V (D) − {v} into two sets U,W such that |U | = n1 − 1, |W | = n2 − 2 and N−(v) ⊆ U ,
N+(v) ⊆ W . Then 〈U ∪ {v}〉 has an n1-path u1u2 . . . un1−1v and 〈W ∪ {u1, v}〉 has an
n2-path Q. If u1v ∈ A(Q), then the path obtained from Q by replacing the arc u1v with
the path u1 . . . un1−1v is an n-path of D. If u1v 6∈ A(Q), then v is the initial vertex of Q
and then u2 . . . un1−1Q is an n-path of D.

In order to be able to apply Lemma 14, we need a vertex with sufficiently small in-
and out-degree. For k-traceable oriented graphs with independence number greater than
2 we have the following result.

Lemma 15. Let k > 5 and suppose D is a k-traceable oriented graph of order n and
{v1, v2, v3} is an independent set of vertices in D. Then the following hold.

1. min{d−(vi), d
+(vi)} 6 (n− 3)/2 for each i ∈ {1, 2, 3}.

2. max{d−(vi), d
+(vi)} 6 (n+ k − 7)/2 for at least one i ∈ {1, 2, 3}.

Proof.

1. For each i ∈ {1, 2, 3}, the three vertices v1, v2, v3 are not in N(vi), so d−(vi) +
d+(vi) 6 n− 3.

2. Suppose max{d−(vi), d
+(vi)} > (n + k − 6)/2 for each i ∈ {1, 2, 3}. Then we may

assume without loss of generality that d+(vi) > (n + k − 6)/2 for i = 1, 2. Then
d−(vi) 6 n−3−(n+k−6)/2 = (n−k)/2 for i = 1, 2. But then d−(v1)+d

−(v2) 6 n−k,
contradicting Lemma 5(2).

By combining Lemmas 14 and 15 we obtain the following iteration theorem for k-
traceable oriented graphs with independence number greater than 2.
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Theorem 16. Let k > 5 and suppose n1 and n2 are integers such that k 6 n1 6 n2 and
every k-traceable oriented graph of order ni is traceable for i = 1, 2. If n = n1 + n2 − j;
j = 1 or 2, and

k − 9 6 n2 − n1 6 5 if j = 1,

k − 9 < n2 − n1 < 5 if j = 2,

then every k-traceable oriented graph of order n with independence number at least 3 is
traceable.

Proof. Let D be a k-traceable oriented graph with independence number at least 3 and
order n = n1 + n2− j; j = 1 or 2. Then our assumption implies that D is n1-traceable as
well as n2-traceable. Hence, by Lemma 15, D has a vertex v such that

min{d−(v), d+(v)} 6 b(n− 3)/2c and max{d−(v), d+(v)} 6 b(n+ k − 7)/2c.

Now let n = n1 + n2 − 1. Then, since n2 6 n1 + 5,

b(n− 3)/2c = b(n1 + n2 − 4)/2c 6 b(2n1 + 1)/2c = n1,

and, since n1 6 n2 − k + 9,

b(n+ k − 7)/2c = b(n1 + n2 + k − 8)/2c 6 b(2n2 + 1)/2c = n2.

Thus d−(v) 6 n1 and d+(v) 6 n2, or d+(v) 6 n1 and d−(v) 6 n2. In either case, it
follows from Lemma 14 that D is traceable. (In the second case we interchange the labels
of n1 and n2 before applying Lemma 14.)

If n = n1 + n2 − 2, then, since n2 6 n1 + 4 and n1 6 n2 − k + 8, it follows that

(n− 3)/2 6 (2n1 − 1)/2 < n1 and (n+ k − 7)/2 6 (2n2 − 1)/2 < n2

so in this case it also follows from Lemma 14 that D is traceable.

By Corollary 12, a nontraceable digraph with independence number 2 has at least
three strong components. For such digraphs it is convenient to consider the in- and out-
degrees of a vertex in its own component only (in stead of in the whole digraph). The
following lemma is useful in this respect.

Lemma 17. Let D be an oriented graph of order n with strong components D1, . . . , Dh;
h > 3. Suppose n1, n2 are integers such that D is n1-traceable as well as n2-traceable and
n = n1 + n2 − j; j = 1, 2 or 3. If for some t ∈ {2, . . . , h− 1} there is a vertex v ∈ V (Dt)
such that

d−Dt
(v) 6 n1 − p and d+Dt

(v) 6 n2 − r if j = 1 or 2,

and
d−Dt

(v) < n1 − p and d+Dt
(v) < n2 − r if j = 3,

where p = n(Dt−1
1 ) and r = n(Dh

t+1), then D is traceable.
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Proof. Let
X = V (Dt−1

1 ), Z = V (Dh
t+1).

Case 1. j = 1.
We note that d−(v) 6 d−Dt

(v) +p 6 n1 and d+(v) 6 d+Dt
(v) + r 6 n2 and hence Lemma

14 implies that D is traceable.
Case 2. j = 2.

If d−Dt
(v) < n1− p and d+Dt

(v) < n2− r, it follows from Lemma 14 that D is traceable.
If d−Dt

(v) = n1 − p, let U = X ∪ N−Dt
(v). Then |U | = n1 and |V (D) − U | = n2 − 2.

Hence 〈U〉 has an n1-path P = u1 . . . un1 . Let ul be the last vertex of P in Dt−1. Then
〈V (D−U)∪{ul, ul+1}〉 has order n2 and hence has an n2-path Q with ul as initial vertex.
If the arc ul+1v is in Q, let Q∗ be the path obtained from Q by replacing the arc ul+1v
with the path ul+1 . . . un1v. Then the concatenation of the paths u1 . . . ul and Q∗ is a
Hamilton path of D. If ul+1v is not in Q, then ulv is the first arc of Q. Then the path
Q′ = Q − ul is an (n2 − 1)-path of 〈V (D − U) ∪ {ul+1}〉, with v as initial vertex. But
〈(U −{ul+1})∪ {v}〉 has order n1 and hence has an n1-path R with v as terminal vertex.
The concatenation of R and Q′ is an (n1 + n2 − 2)-path of D.

A symmetric argument proves that D is traceable if d+Dt
(v) = n2 − r.

Case 3. j = 3.
If d−Dt

(v) = n1− p− 1, let U = X ∪N−(v). Then |U | = n1− 1 and n(D−U) = n2− 2.
Hence U ∪ {v} has an n1-path P = u1 . . . un1−1v. Let ul be the last vertex of P in Dt−1.
Then 〈V (D−U)∪{ul, ul+1}〉 has order n2 and hence has an n2-path Q, with ul as initial
vertex.

If the arc ul+1v is in Q, let Q∗ be the path obtained from Q by replacing the arc ul+1v
with the path ul+1 . . . un1−1v. Then the concatenation of the paths u1 . . . ul and Q∗ is a
Hamilton path of D.

If ul+1v is not in Q, then ulv is the first arc of Q. Then the path Q′ = Q − ul is an
(n2−1)-path of 〈V (D−U)∪{ul+1}〉, with v as initial vertex. By Lemma 8, Dt

1 is (n1−1)-
traceable, and hence 〈(U−{vl+1})∪{v}〉 has an (n1−1)-path R with v as terminal vertex.
The concatenation of R and Q′ is an (n1 + n2 − 3)-path in D. A symmetric argument
shows that D is traceable if d+Dt

(v) = n2 − r − 1.
Thus we may assume d−Dt

(v) 6 n1−p−2 and d+Dt
(v) 6 n2−r−2. Then we can partition

D − v into two sets U,W such that |U | = n1 − 2, |W | = n2 − 2 and X ∪ N−(v) ⊆ U ,
N+(v) ∪ Z ⊆ W . Since Dt

1 is (n1 − 1)-traceable and Dh
t is (n2 − 1)-traceable, 〈U ∪ {v}〉

has an (n1 − 1)-path P with v as terminal vertex, and 〈{v} ∪W 〉 has an (n2 − 1)-path
with v as initial vertex. The concatenation of P and Q is an (n1 +n2− 3)-path in D.

By using Lemma 17, together with results on the structure of k-traceable oriented
graphs with independence number 2, we obtain the following iteration theorem in the
case when k 6 10.

Theorem 18. Let 7 6 k 6 10 and suppose there exist integers n1, n2, such that k 6
n1 6 n2 and every k-traceable oriented graph with independence number 2 and order ni is
traceable for i = 1, 2. Then every k-traceable oriented graph with independence number 2
and order n1 + n2 − j is traceable, for j = 1, 2, 3.
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Proof. Suppose, to the contrary, that there exists a nontraceable k-traceable oriented
graph D with α(D) = 2 and order n1 + n2 − j; j = 1, 2 or 3. Then, by our assumption,
D is also n1-traceable and n2-traceable. Let D1, . . . , Dh be the strong components of D.
Since n(D) > n1 + n2 − 3 > 2k − 3, Lemma 10 implies that D has a nonhamiltonian
strong component Dt of order at least n−k+5 and that Dt−1

1 and Dh
t+1 are tournaments.

Let
n(Dt−1

1 ) = p, n(Dt) = q, n(Dh
t+1) = r.

Lemma 13(5) implies that p > 1, r > 1 and Dh
t has a Hamilton path v1 . . . vq+r such that

if vl is the last in-neighbour of v1 on this path, then vl+1 has an in-neighbour x in Dt−1.
Let

L = v1 . . . vl and Q = v1 . . . vq.

The structure of D is depicted in Figure 1.

p

r

z

v v v v

D

D

D

t

h

x

l1 l+1 q

t+1

t-1
1

Figure 1: Structure of D

The following three claims will be used repeatedly. They are all easy consequences of
Lemma 4 and our assumption that D is nontraceable.
Claim (i) If vi ∈ N+

Dt
(Dt−1) for some i ∈ {2, 3, . . . , l}, then vi−1 6∈ N−Dt

(vl+1).
Claim (ii) If vi ∈ N+(vj) for some i ∈ {2, 3, . . . , l} and j ∈ {l + 1, . . . , q − 1}, then
vi−1 /∈ N−(vj+1).
Claim (iii) If vi ∈ N+(vq) for some i ∈ {2, 3, . . . , l}, then vi−1 6∈ N−Dt

(Dt+1).
Now we show that |N+

Dt
(Dt−1)| > n− n1 + 2.

If n1 > k, then it follows from Lemma 13(1) that |N+
Dt

(Dt−1)| > n− n1 + 2.
If n1 = k, then n − k + 1 = n1 + n2 − j − n1 + 1 = n2 − j + 1. Since p + r > 2, and

q > n− k+ 5 > n2, Lemma 8(3) implies that Dt is (n2− i)-traceable for i = 0, 1, 2. Since
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we are assuming that j = 1, 2 or 3, this implies that Dt is (n2 − j + 1)-traceable, i.e., Dt

is (n− k+ 1)-traceable. Hence, if |N+
Dt

(Dt−1)| = n− k+ 1, then 〈N+
Dt

(Dt−1)〉 is traceable,
contradicting the second part of Lemma 13(1). Thus |N+

Dt
(Dt−1)| 6= n− k+ 1 and hence,

by the first part of Lemma 13(1), |N+
Dt

(Dt−1)| > n− k + 2.
Thus, in either case |N+

Dt
(Dt−1)| > n− n1 + 2. Hence

|N+
L (Dt−1)| > n− n1 + 2− (q − l). (I)

Since Dt is nonhamiltonian, l < q and since N−Dt
(v1) ⊆ {v3, . . . , vq−1}, it follows from

Lemma 13(3) that l > n− k + 4. But q 6 n− 2, so

1 6 q − l 6 k − 6. (II)

We consider two cases, depending on the difference between q and l.
Case 1. q − l = 1.

In this case (I) becomes

|N+
L (Dt−1)| > n− n1 + 1.

Hence, by Claim (i), at least n− n1 + 1 vertices in L are not in N−(vq). Since vq is also
not in N−(vq), it follows that

d−Dt
(vq) 6 q − (n− n1 + 2) < n1 − p

since n = p+ q + r. Now, suppose d+Dt
(vq) > n2 − r. Then, by Claim (iii),

|N−Dt
(Dt+1)| 6 q − (n2 − r) = q + r − n2 = n− p− n2 < n− k,

contradicting Lemma 13(2). Hence d+Dt
(vq) < n2 − r. Thus we have shown that d−(vq) <

n1 − p and d+(vq) < n2 − r, contradicting Lemma 17.
Case 2. q − l > 2.

It follows from (I) and (II) that

|N+
L (Dt−1)| > (n− n1 + 2)− (k − 6) = n− n1 − k + 8.

Hence, by Claim (i) and the fact that vl+1 as well as vl+2 are not in N−Dt
(vl+1),

d−Dt
(vl+1) 6 q − n+ n1 + k − 10.

Since q = n− p− r, r > 1, and k 6 10, it follows that

d−Dt
(vl+1) < n1 − p (III)

Now we consider two subcases.
Case 2.1. n = n1 + n2 − 1 or n1 + n2 − 2.

Since we are assuming that D is nontraceable, it follows from (III) and Lemma 17
that

d+Dt
(vl+1) > n2 − r + 1.
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We now show, by means of induction, that

d+Dt
(vi) > n2 − r + 1 for i = l + 1, . . . , q.

Suppose d+Dt
(vi) > n2 − r + 1 for some i ∈ {l + 1, . . . , q − 1}. Then

d+L(vi) > n2 − r + 1− (q − l − 1) > n2 − r − k + 8

since q − l 6 k − 6. Hence, by Claim (ii),

d−Dt
(vi+1) 6 q − (n2 − r − k + 8)− 1 6 n1 − p,

since q+r = n−p 6 n1+n2−1−p and k 6 10. Hence, by Lemma 17, d+Dt
(vi+1) > n2−r+1.

This completes the induction and proves that d+Dt
(vq) > n2 − r + 1.

Since q > l + 2, and vq−1, vq 6∈ N+(vq), at most q − l − 2 out-neighbours of vq are in
Dt − L. Hence

d+L(vq) > n2 − r + 1− (q − l − 2) > n2 − r − k + 9.

Hence, by Claim (iii),

|N−Dt
(Dt+1)| 6 q − (n2 − r − k + 9) 6 n− p− n2 + k − 9 6 n− n2 6 n− k,

contradicting Lemma 13(2).
Case 2.2. n = n1 + n2 − 3.

In this case it follows from (III) and Lemma 17 that d+Dt
(vl+1) > n2− r. Now suppose

we have shown that d+Dt
(vi) > n2 − r for some i ∈ {l + 1, . . . , q − 1}. Then

d+L(vi) > n2 − r − (q − l − 1) > n2 − r − k + 7.

Hence, by Claim (ii),

d−Dt
(vi+1) 6 q − (n2 − r − k + 7)− 1 < n1 − p,

since q+r = n−p = n1 +n2−3−p and k 6 10. Hence, by Lemma 17, d+Dt
(vi+1) > n2−r.

Thus we have shown by induction that d+Dt
(vq) > n2 − r. Hence

d+L(vq) > n2 − r − (q − l − 2) > n2 − r − k + 8.

Hence, by Claim (iii),

|N−Dt
(Dt+1)| 6 q − (n2 − r − k + 8) 6 n− n2 + 1.

If n2 > k, this contradicts Lemma 13(2). If n2 = k, then n− k+ 1 = n− n2 + 1 = n1− 2.
Since Dt is (n1 − 2)-traceable, this also contradicts Lemma 13(2).

In order to apply our two iteration theorems effectively, we need some initial values
for n1 and n2. For k = 7, 8, 9, these are provided by the following theorem, which Burger
[9] derived by means of computer search.
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Theorem 19. [9]

1. Every 7-traceable oriented graph of order 9, 10 or 11 is traceable.

2. Every 8-traceable oriented graph of order 9, 10 or 11 is traceable.

3. Every 9-traceable oriented graph of order 11 is traceable.

Theorems 16, 18 and 19 now enables us to prove the following four theorems.

Theorem 20. Every 7-traceable oriented graph of order at least 9 is traceable.

Proof. By Theorem 19, every 7-traceable oriented graph of order 9, 10 or 11 is traceable.
Hence every 7-traceable oriented graph of order at least 12 is also 9-, 10- and 11-traceable.

Let D be a 7-traceable oriented graph of order n.
First, suppose α(D) = 2. If n = 12 or 13, we apply Theorem 18 with n1 = n2 = 7

and j = 1, 2 to prove that D is traceable. For n = 14, we take n1 = 7, n2 = 9, j = 2.
We conclude that every 7-traceable oriented graph with independence number 2 and
order 12, 13 or 14 is traceable. Then we show that every 7-traceable oriented graph with
independence number 2 and order n > 15 is traceable, by applying Theorem 18 iteratively
with n1 = 7, n2 = n− 6 and j = 1.

Now suppose α(D) > 3. Then n < 22 by Theorem 3(1). If n1, n2 ∈ {7, 9, 10, 11}
and n1 6 n2, then n2 − n1 < 5, so it follows from Theorem 16 that D is traceable if
12 6 n 6 21.

Theorem 21.

1. Every 8-traceable oriented graph with independence number 2 and order at least 13
is traceable.

2. Every 8-traceable oriented graph of order at least 14 is traceable.

Proof. Let D be an 8-traceable oriented graph of order n > 13. By Theorem 19, D is also
9-, 10- and 11- traceable.

1. If α(D) = 2, we use n1, n2 ∈ {8, 9, 10} in Theorem 18 to prove that D is traceable
if 13 6 n 6 19. Then we show that D is traceable if n = 20, 21, 22, . . . by putting
n1 = 8 and n2 = 13, 14, 15, . . . in successive applications of Theorem 18.

2. If α(D) > 3, then n < 27 by Theorem 3(1). If 14 6 n 6 21, we use Theorem
16 with n1, n2 ∈ {8, 9, 10, 11} to prove that D is traceable. Then we use n1, n2 ∈
{10, 11, 14, 15} to prove it for 21 < n < 27.

We have not yet succeeded in settling the case k = 9 of the TC, but our next result
shows that if there exists a 9-traceable counterexample D to the TC, then α(D) > 3 and
21 < n(D) < 33.
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Theorem 22.

1. Every 9-traceable oriented graph with independence number 2 and order n > 15 is
traceable.

2. Every 9-traceable oriented graph of order n is traceable if n ∈ {11, 17, 18, 19, 21} or
n > 33.

Proof. Let D be a 9-traceable oriented graph of order n > 15. By Theorem 19(3), D is
also 11-traceable.

1. Suppose α(D) 6 2. We use Theorem 18 with n1, n2 ∈ {9, 11} to prove that D is
traceable if 15 6 n 6 21. Then we prove it for n = 22, 23, 24, . . . by putting n1 = 9
and n2 = 16, 17, 18, . . . in successive applications of Theorem 18.

2. Suppose α(D) > 3. Then n < 34 by Theorem 3(1). We use Theorem 16 with
n1, n2 ∈ {9, 11} to prove that D is traceable if n ∈ {17, 18, 19, 21}. Then we use
n1 = n2 = 17 to prove it for n = 33.

We do not have a result similar to Theorem 19 for 10-traceable oriented graphs. (The-
orem 19 already required a lot of computer time.) However, in the case α = 2, we can
apply Theorem 18 iteratively, starting with n1 and n2 both equal to 10. This procedure,
together with Theorem 3(1), yields the following result.

Theorem 23.

1. Every 10-traceable oriented graph with independence number 2 and order n is trace-
able for every n ∈ {17, 18, 19, 24, 25, 26, 27, 28} and every n > 31.

2. Every 10-traceable oriented graph of order at least 40 is traceable.

Implications of Theorems 20 - 23 with regard to the TC are as follows.

Corollary 24. If D is a k-traceable oriented graph of order at least 2k − 1, then D is
traceable in each of the following cases.

1. k 6 8.

2. k = 9 and α(D) = 2.

3. k = 10, α(D) = 2, n 6∈ {20, 21, 22, 23, 29, 30}.
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