A note on forbidding clique immersions

Matt $DeVos^*$

Department of Mathematics Simon Fraser University Burnaby, B.C., Canada

mdevos@sfu.ca

Bojan Mohar[‡]

Department of Mathematics Simon Fraser University Burnaby, B.C., Canada

mohar@sfu.ca

Jessica McDonald[†]

Department of Mathematics and Statistics Auburn University Auburn, AL, U.S.A.

mcdonald@auburn.edu

Diego Scheide

Department of Mathematics Simon Fraser University Burnaby, B.C., Canada

dscheide@sfu.ca

Submitted: July 10, 2012; Accepted: Sep 23, 2013; Published: Oct 7, 2013 Mathematics Subject Classifications: 05C75

Abstract

Robertson and Seymour proved that the relation of graph immersion is wellquasi-ordered for finite graphs. Their proof uses the results of graph minors theory. Surprisingly, there is a very short proof of a corresponding rough structure theorem for graphs without K_t -immersions; it is based on the Gomory-Hu theorem. The same proof also works to establish a rough structure theorem for Eulerian digraphs without \vec{K}_t -immersions, where \vec{K}_t denotes the complete digraph of order t.

In this paper all graphs and digraphs are finite and may have loops and multiple edges, unless explicitly stated otherwise.

A pair of distinct adjacent edges uv and vw in a graph are *split off* from their common vertex v by deleting the edges uv and vw, and adding the edge uw (possibly in parallel to an existing edge, and possibly forming a loop if u = w). A graph H is said to be *immersed* in a graph G if a graph isomorphic to H can be obtained from a subgraph of

^{*}Supported in part by an NSERC Discovery Grant (Canada) and a Sloan Fellowship.

[†]Previously supported by an NSERC Postdoctoral Fellowship (Canada).

[‡]Supported in part by an NSERC Discovery Grant (Canada), by the Canada Research Chair program, and by the Research Grant J1–4106 of ARRS (Slovenia). On leave from: IMFM & FMF, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia.

G by splitting off pairs of edges (and removing isolated vertices). If *H* is immersed in a graph *G*, then we also say that *G* has an *H*-immersion. An alternative definition is that *H* is immersed in *G* if there is a 1-1 function $\phi : V(H) \to V(G)$ such that for each edge $uv \in E(H)$, if $u \neq v$ there is a path P_{uv} in *G* joining vertices $\phi(u)$ and $\phi(v)$, if u = v there is a cycle C_{uv} in *G* containing $\phi(u) = \phi(v)$, and the paths P_{uv} and cycles C_{uv} are pairwise edge-disjoint for all $uv \in E(H)$.

Robertson and Seymour [6] proved that the relation of graph immersion is a wellquasi-ordering, that is, for every infinite set of graphs, one of them can be immersed in another one. Their proof is based on a significant part of the graph minors project. It is perhaps surprising then that there is a very short proof of a corresponding rough structure theorem for graphs without K_t -immersions. Moreover, the same proof technique also works to prove a rough structure theorem for Eulerian digraphs without \vec{K}_t -immersions. Here, by \vec{K}_t we mean the *complete digraph* of order t, having t vertices and a *digon* (pair of oppositely oriented edges) between each pair of vertices. By immersion in digraphs we mean the natural directed analogue of immersion in undirected graphs. That is, we say that a digraph F is *immersed* in a digraph D if there is a 1-1 function $\phi: V(F) \to V(D)$ such that for each edge $uv \in E(F)$, if $u \neq v$ there is a directed path P_{uv} in D from $\phi(u)$ to $\phi(v)$, if u = v there is a directed cycle C_{uv} in D containing $\phi(u) = \phi(v)$, and the paths P_{uv} and cycles C_{uv} are pairwise edge-disjoint for all $uv \in E(F)$. Given a directed walk uvw of length two in a digraph , the pair of edges uv, vw are *split off* from v by deleting the edges uv and vw, and adding the edge uw.

To state the two rough structure theorems explicitly, we first need the definition of a laminar family of edge-cuts. Given a graph or digraph G and a vertex-set $X \subseteq V(G)$, we denote by $\delta(X)$ the edge-cut of G consisting of all edges between X and $V(G) \setminus X$ (in both directions). Two edge-cuts $\delta(X)$ and $\delta(Y)$ in a connected graph or digraph are *uncrossed* if either X or $V(G) \setminus X$ is contained in either Y or $V(G) \setminus Y$. Two edge-cuts in a general graph or digraph are *uncrossed* if this holds in each component. A family of pairwise uncrossed edge-cuts is called *laminar*. A laminar family of edge-cuts in a graph or digraph induces a partition of the entire vertex set; we call the parts of such a partition blocks.

Theorem 1. For every graph which does not contain an immersion of the complete graph K_t , there exists a laminar family of edge-cuts, each with size $< (t-1)^2$, so that every block of the resulting vertex partition has size less than t.

Theorem 2. For every Eulerian digraph which does not contain an immersion of K_t , there exists a laminar family of edge-cuts, each with size $< 2(t-1)^2$, so that every block of the resulting partition has size less than t.

We will show that the Gomory-Hu Theorem (stated shortly) yields very easy proofs of Theorems 1 and 2. We originally had somewhat weaker bounds for both of these results. In fact, Theorem 1 as stated above is due to Wollan [7], whose work we learned of later. We were helped by the following observation of Wollan [7], and its directed analog.

Observation 3. Let H_t be the graph obtained from $K_{1,t-1}$ by replacing each edge with t-1 parallel edges. Then H_t has a K_t -immersion.

Proof. Let v_1 be the vertex of degree $(t-1)^2$ and let $v_2, \ldots v_t$ be the vertices of degree t-1. Label the t-1 edges between v_1 and v_j by $\{e_{j,1}, e_{j,2}, \ldots e_{j,t}\} \setminus e_{j,j}$ for $2 \leq j \leq t$. Then we have an immersion of K_t on the vertices v_1, \ldots, v_t , where the requisite paths between v_1 and $v_2, \ldots v_t$ are given by $e_{2,1}, \ldots e_{t,1}$, and for every pair of vertices v_i, v_j with $1 < i < j \leq t$, the path between v_i and v_j is given by $e_{i,j}e_{j,i}$.

Observation 4. Let \vec{H}_t be the digraph obtained from $K_{1,t-1}$ by replacing each edge with t-1 digons. Then \vec{H}_t has a \vec{K}_t -immersion.

Proof. Modify the proof of Observation 3 by labelling digons as opposed to labelling edges. \Box

The bounds of Theorems 1 and 2 provide rough structure to the same extent. Namely, while the laminar family of Theorem 1 does not prohibit a K_t -immersion, it does indeed prohibit a K_{t^2} -immersion. Analogously, the laminar family of Theorem 2 also prohibits a \vec{K}_{t^2} -immersion.

That we restrict ourselves to Eulerian digraphs in Theorem 2 should not be surprising. First of all, let us observe that digraph immersion is not a well-quasi-order in general. Furthermore, the present authors have exhibited in [2] that there exist simple non-Eulerian digraphs with all vertices of arbitrarily high in- and outdegree which do not contain even a \vec{K}_3 -immersion. (Here, by simple digraph we mean a digraph D with no loops and at most one edge from x to y for any $x, y \in V(D)$, but where digons are allowed). On the positive side, it has been shown by Chudnovsky and Seymour [1] that digraph immersion is a well-quasi-order for tournaments. That Eulerian digraphs of maximum outdegree 2 are well-quasi-ordered by immersion was proved (although not written down) by Thor Johnson as part of his PhD thesis [5].

In [3], the present authors along with Fox and Dvořák, proved that (undirected) simple graphs with minimum degree at least 200t contain a K_t -immersion. In another paper [2], the following positive result is obtained for digraphs when the Eulerian condition is added.

Theorem 5. [2] Every simple Eulerian digraph with minimum outdegree at least t(t-1) contains an immersion of \vec{K}_t .

Theorem 5 is directly implied by Theorem 2, providing an alternate proof of Theorem 5 to that given in [2]. In fact, we obtain a slightly stronger version, as follows.

Theorem 6. Every simple Eulerian digraph with minimum outdegree at least $(t-1)^2$ contains an immersion of $\vec{K_t}$.

Proof. Suppose, for a contradiction, that D is a simple Eulerian digraph with minimum outdegree at least $(t-1)^2$ that does not contain an immersion of \vec{K}_t . It must be the case that $t \ge 3$, so in particular D contains at least t vertices, and Theorem 2 implies that D contains a set $S \subseteq V(D)$ of |S| = s < t vertices with $|\delta(S)| < 2(t-1)^2$. Note that by the minimum degree condition, we know that s > 1. Then

$$s(t-1)^2 \leq |E[S]| + \frac{1}{2}|\delta(S)| < s(s-1) + (t-1)^2$$

which implies that

$$s > (t-1)^2$$
.

Since $t \ge 3$, this contradicts the fact that s < t.

An edge-cut $\delta(X)$ in a graph G is said to *separate* a pair of vertices $x, y \in V(G)$ if $x \in X$ and $y \in V(G) \setminus X$ (or vice versa). Given a tree F and an edge $e \in E(F)$, there exists $X \subseteq V(F)$ such that $\delta(X) = e$; $\delta(X)$ is called a *fundamental cut* in F and is associated with the vertex partition $\{X, V(F) \setminus X\}$ of V(F).

Theorem 7 (Gomory-Hu [4]). For every graph G, there exists a tree F with vertex set V(G) and a function $\mu : E(F) \to \mathbb{Z}$ so that the following hold.

- For every edge $e \in E(F)$ we have that $\mu(e)$ equals the size of the edge-cut of G given by the vertex partition associated with the fundamental cut of e in the tree F.
- For every $u, v \in V(G)$ the size of the smallest edge-cut of G separating u and v is the minimum of $\mu(e)$ over all edges e on the path in F from u to v.

Proof of Theorem 1 (and Theorem 2): Let G be an arbitrary graph (or let D be an arbitrary Eulerian digraph and let G be underlying graph of D). Apply the Gomory-Hu Theorem to G to choose a tree F on V(G) and an associated function μ . Let C be the family of edge-cuts of G that are associated with edges $e \in E(F)$ for which $\mu(e) < (t-1)^2$ $(\mu(e) < 2(t-1)^2)$. We show that if any block of the resulting vertex partition has size $\geq t$, than G contains a K_t -immersion (D contains a \vec{K}_t -immersion). To this end, suppose we have such a block with distinct vertices v_1, v_2, \ldots, v_t . Then every edge-cut separating these t vertices has size $\geq (t-1)^2 \ (\geq 2(t-1)^2)$. We claim that there exist $(t-1)^2$ edge disjoint (directed) paths starting at v_1 so that exactly t-1 of them end at each v_i for $2 \leq j \leq t$. To see this, consider adding an auxiliary vertex w to the graph with t-1 parallel edges (t-1 digons) between w and each of v_2, \ldots, v_t . Then apply Menger's Theorem to v_1 and w, noting that every cut separating v and w contains at least $(t-1)^2$ edges (in each direction). (Moreover, since G is Eulerian, if we delete these directed paths we can apply Menger's Theorem again to get $(t-1)^2$ edge disjoint directed paths ending at v_1 so that exactly t-1 of them start at each v_j for $2 \leq j \leq t$). Hence G immerses the graph H_t (D immerses the digraph \vec{H}_t) as in Observation 3 (Observation 4).

Acknowledgements

The authors are very grateful to Paul Wollan for helpful discussions, and to an anonymous referee, whose comments simultaneously improved the bound of Theorem 2 and simplified its proof.

References

- M. Chudnovsky and P. D. Seymour. A well-quasi-order for tournaments. J. Combin. Theory, Ser. B, 101: 47–53, 2011.
- [2] M. DeVos, J. McDonald, B. Mohar and D. Scheide. Immersing complete digraphs. *Europ. J. Combin.*, 33(6): 1294–1302, 2012.
- [3] M. DeVos, Z. Dvořák, J. Fox, J. McDonald, B. Mohar and D. Scheide. A minimum degree condition forcing complete graph immersion. arXiv:1101.2630, 2011. To appear in *Combinatorica*.
- [4] R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. Soc. Indust. Appl. Math., 9(4): 551–570, 1961.
- [5] T. Johnson. Eulerian Digraph Immersion. Ph. D. thesis, Princeton University, 2002.
- [6] N. Robertson and P. D. Seymour. Graph Minors XXIII, Nash-Williams' immersion conjecture. J. Combin. Theory, Ser. B, 100: 181–205, 2010.
- [7] P. Wollan. The structure of graphs not admitting a fixed immersion. arXiv:1302.3867, 2013.