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Abstract

The parity type of a Latin square is defined in terms of the numbers of even and
odd rows and columns. It is related to an Alon-Tarsi-like conjecture that applies
to Latin squares of odd order. Parity types are used to derive upper bounds for
the size of autotopy groups. A new algorithm for finding the autotopy group of a
Latin square, based on the cycle decomposition of its rows, is presented, and upper
bounds for the size of autotopy groups are derived from it.
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1 Introduction

For a given positive integer n let [n] denote the set {1, . . . , n}. A Latin square of order n
is an n×n array of numbers in [n] so that each number appears exactly once in each row
and column. Let LS(n) be the set of Latin squares of order n and let Sn be the symmetric
group of permutations of [n]. The group S3

n = Sn × Sn × Sn acts on LS(n) by isotopism.
An isotopism is a triple (α, β, γ) ∈ S3

n that acts on LS(n), so that α permutes the rows,
β permutes the columns and γ permutes the symbols of a given Latin square. Two Latin
squares are called isotopic if there is an isotopism that transforms one to the other. Being
isotopic is an equivalence relation and the set of Latin squares that are isotopic to each
other is an isotopy class. Let In = S3

n be the group of isotopisms on LS(n), In(L)
the isotopy class of L, and A(L) = {Θ ∈ In|Θ(L) = L} the autotopy group of L (also
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denoted in the literature by Is(L) [12], Atp(L) [2, 15], and Atop(L) [13]), whose members
are called autotopisms of L. We have that |In| = (n!)3 and |In(L)| = (n!)3/ |A(L)|.
The rows and columns of a Latin square can be viewed as permutations of the ordered
set (1, 2, . . . , n). A reduced (also called normalized) Latin square is a Latin square whose
first row and first column are the identity permutation. Let RLS(n) be the set of reduced
Latin squares of order n. For L ∈ RLS(n) let I ′

n,L = {Θ ∈ In|Θ(L) ∈ RLS(n)} and
let I ′

n(L) = In(L) ∩ RLS(n). Any Latin square can be transformed by isotopism to a
reduced Latin square by permuting the rows to form the identity permutation in the first
column and then permuting the columns 2, . . . , n to form the identity permutation in the
first row. Thus, each reduced Latin square is isotopic to n!(n− 1)! distinct Latin squares
in this way. It follows that |In(L)| / |I ′

n(L)| = n!(n− 1)! and hence
∣∣I ′

n,L

∣∣ = n · n! and

|I ′
n(L)| = n · n!/ |A(L)| (1.1)

For these and other facts about isotopisms and autotopisms the reader is referred to Dénes
and A. D. Keedwell’s book [4] and to the works of Janssen [10], McKay and Wanless [12]
and McKay, Meynert and Myrvold [11] among many others.
The sign (or parity) function sgn : Sn → {−1, 1} is defined so that sgn(σ) = 1 if and
only if σ is an even permutation. The parity of a Latin square L, denoted par(L), is the
product of the signs of all its rows and columns. A Latin square is even (resp. odd) if its
parity is 1 (resp. -1). Let ELS(n) (resp. OLS(n)) be the set of even (resp. odd) Latin
squares of order n. Let RELS(n) and ROLS(n) be the corresponding sets of reduced
Latin squares. If n is odd |ELS(n)| = |OLS(n)|. If n is even, a known conjecture of
Alon and Tarsi [1] states that |ELS(n)| 6= |OLS(n)|. It was also conjectured in [15]
that |RELS(n)| 6= |ROLS(n)| for all n (for even n this is equivalent to the Alon-Tarsi
conjecture). For further results regarding even and odd Latin squares, the reader is
referred to the works of Janssen [10], Drisko [5, 6], Zappa [17], Glynn [8] and Stones and
Wanless [15].
This work is mainly concerned with the relation between parities of Latin squares and of
their rows and columns and autotopy groups. In Section 2 an expression for the members
of I ′

n,L is derived and the notions of parity type and parity class are introduced. These
lead to expressions for the numbers of even and odd reduced Latin squares of odd order
in an isotopy class. These expressions, although stated and proved differently coincide
with results of Stones and Wanless [15]. In Section 3 an extension of the Alon-Tarsi
Latin square conjecture is discussed and a related conjecture on parity types is presented.
In Sections 4 and 5 bounds are obtained for the order of the autotopy group A(L). In
Section 4 the bounds are obtained using parities of the rows and columns of L and in
Section 5 the bounds are derived from the cycle structure of the rows of L.
Convention: Throughout the manuscript, when viewing rows and columns of a Latin
square as permutations in Sn, the following convention will hold: the number i appearing
in the jth place of the row (column) σ of L signifies that σ(i) = j. By this convention, in
order to transform a column (or row) σ to the identity permutation, we have to apply the
permutation σ−1 to the rows (resp. columns) of L (see Lemma 1(i)). It is also assumed
that permutations are applied from right to left.

the electronic journal of combinatorics 19(3) (2012), #P10 2



2 Parity types and parity classes

A permutation acting on a Latin square acts on another permutation (a row or a column)
in two different ways, as described by the following lemma. Recall the convention of this
paper that when i appears in the jth place of a row (or column) π it means that π(i) = j.

Lemma 1. Let L be a Latin square of order n.

(i) The result of permuting the rows (resp. columns) of L, by α ∈ Sn, on any column
(resp. row) π is απ.

(ii) The result of permuting the symbols of L, by α ∈ Sn, on any row or column π is
πα−1.

Proof. (i) Let π be a row or a column. Suppose π(i) = j and α(j) = k then i appears in
the jth place of π, and after applying α, the number in the jth place of π (i in this case)
moves to the kth place. Thus the resulting permutation takes i to k, so it is απ.
(ii) Denote by α(π) the permutation obtained by applying α to the each symbol In the
row (or column) π. Suppose π(i) = j and α(i) = k. Since i is in the jth place of π, k is
in the th place of α(π). Thus α(π)(k) = j. It follows that α(π) = πα−1.

The following proposition appears in a different form as part of the proof of Theorem
2.1 in [15]. It describes the n · n! elements in the set I ′

n,L.

Proposition 1. Let L be a reduced Latin square. For j = 1, . . . , n let σj (resp. πj) be
the jth row (resp. column) of L. For any permutation α ∈ Sn and any j = 1, . . . , n,
(α, απjσ

−1
α−1(1), απj) ∈ I ′

n,L and any element of I ′
n,L is of this form.

Proof. Let Θ = (α, β, γ) be such that Θ(L) ∈ RLS(n). Since γ is applied to all the
symbols, the first row and first column of (α, β, 1)(L) must be identical. Hence, after
permuting the rows of L by α, β needs to permute the columns of (α, 1, 1)(L) to yield a
first row that is identical to one of the columns of (α, 1, 1)(L). Note that the first row
of (α, 1, 1)(L) is σα−1(1) and the jth column of (α, 1, 1)(L) is απj (Lemma 1(i)). Thus,
after permuting the columns of (α, 1, 1)(L) by β = απjσ

−1
α−1(1) the first row of the resulting

square is απj and, since απj is also one of the columns (it is was the jth column before
the columns were permuted), it must be the first column of (α, β, 1)(L). Now, γ needs to
permute the symbols of απj to obtain the identity permutation (a reduced Latin square).
By Lemma 1(ii) απjγ

−1 = 1 and thus γ = απj.

When n is even, applying an isotopism preserves the parity of a Latin square ([5],
Lemma 1), and thus the parity of all the Latin squares in an isotopy class is the same.
When n is odd an isotopy class contains an equal number of even and odd Latin squares.
This is not the case when only reduced Latin squares are concerned. In order to determine
the number of even and odd reduced Latin squares in an isotopy class the following
definition will be useful:
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Definition 1. The parity type of a Latin square L of order n is defined to be (k,m), for
0 6 k,m 6 n/2, if k (respectively m) of its rows (resp. columns) have one sign and the
remaining n − k rows (resp. n − m columns) have the opposite sign. The parity class
(k,m) consists of all Latin squares of parity type (k,m).

Proposition 2. A parity class is the union of isotopy classes.

Proof. Since an isotopy either changes the signs of all the rows (columns) or leaves them
all unchanged, the parity type of two isotopic Latin squares is equal.

Thus, it is valid to refer to the parity type of an isotopy class, as parity type of any of
its members.

Lemma 2. Suppose n is odd. Let L ∈ RLS(n) and let Θ = (α, απjσ
−1
α−1(1), απj) ∈ I ′

n,L,
as in Proposition 1, then

par(Θ(L)) = sgn(σα−1(1))sgn(πj)par(L).

Proof. By Proposition 3.1 in [10], par(Θ(L)) = (sgn(α))n(sgn(απjσ
−1
α−1(1)))

npar(L). Since

n is odd, sgn(σ−1α−1(1)) = sgn(σα−1(1)) and sgn(α) appears an even number of times, the
result follows.

The following theorem appears in a different form in [15] (Theorem 2.1). The proof
here is different and was obtained independently.

Theorem 1. Suppose n is odd and the parity type of L ∈ RLS(n) is (k,m), then

|I ′
n(L) ∩RELS(n)| =

{ km+(n−k)(n−m)
n2 |I ′

n(L)| if k ≡ m (mod 2)

k(n−m)+m(n−k)
n2 |I ′

n(L)| if k 6≡ m (mod 2).
(2.1)

Proof. Suppose k and m are either both even or both odd (first row in (2.1). Since n is
odd, n− k and n−m are either both odd or both even respectively. Let I = {i1, . . . , ik}
be the set of indices of the k rows of L having the same sign and let J = {j1, . . . , jm} be
the set of indices of the m columns of L having the same sign. Suppose L is even. Since
k and m have the same parity, the rows indexed by I and the columns indexed by J must
have the same sign and the rest of the rows and columns all have the opposite sign. Now,
let Θ = (α, απjσ

−1
α−1(1), απj) ∈ I ′

n,L (see Proposition 1) be such that Θ(L) is even. By

Lemma 2, σα−1(1) and πj must have the same sign. So, either α−1(1) ∈ I and j ∈ J or
α−1(1) ∈ [n]\ I and j ∈ [n]\J . Since the number of permutations α such that α−1(1) ∈ I
(resp. α−1(1) 6∈ I) is (k/n)n! = k(n− 1)! (resp. (n− k)(n− 1)!), the number of isotopies
Θ such that Θ(L) is even is (km+(n−k)(n−m))(n−1)! and thus the number of distinct
reduced even Latin squares that are isotopic to L is [km+(n−k)(n−m)](n−1)!/ |A(L)|.
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Hence,

|I ′
n(L) ∩RELS(n)| = [km+ (n− k)(n−m)](n− 1)!

|A(L)|

=
[km+ (n− k)(n−m)](n− 1)!

n · n!

n · n!

|A(L)|

=
[km+ (n− k)(n−m)]

n2
|I ′

n(L)| ,

by (1.1). The other case is proved in an analogous manner and is left to the reader.

Remark 2. For |I ′
n(L) ∩ROLS(n)| the cases in (2.1) are reversed since km+ (n−k)(n−

m) + k(n−m) +m(n− k) = n2.

Remark 3. Note that if k = m = 0 all the squares in I ′
n(L) are even.

3 On even and odd Latin squares of odd order

The following extension to all n of the Alon-Tarsi Latin square conjecture [1] appears in
[15]:

Conjecture 1. For all n, RELS(n)−ROLS(n) 6= 0.

When n is even Conjecture 1 is equivalent to the Alon-Tarsi conjecture. When n is odd
it is not known whether Conjecture 1 is equivalent to another extension of the Alon-Tarsi
conjecture by Zappa [17].
Let Nn(k,m) be the number of reduced Latin squares of order n in the parity class (k,m).
We have the following corollary of Theorem 1:

Corollary 1. Suppose n is odd. The parity class (k,m) contains km+(n−k)(n−m)
n2 Nn(k,m)

even reduced Latin squares if k ≡ m (mod 2) and k(n−m)+m(n−k)
n2 Nn(k,m) even reduced

Latin squares if k 6≡ m (mod 2)

Proof. Since a parity class is the union of isotopy classes (Proposition 2), the result
follows from Theorem 1 by summing over all the isotopy classes contained in a given
parity class.

Corollary 1 yields an equivalent version of Conjecture 1 for odd n:

Proposition 3. If n is odd Conjecture 1 is equivalent to∑
k,m<n/2

(−1)k+m(n− 2k)(n− 2m)Nn(k,m) 6= 0. (3.1)
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Proof. By Corollary 1, if k ≡ m (mod 2) the difference between the number of even
reduced Latin squares and the number of odd reduced Latin squares in the parity class
(k,m) is(
km+ (n− k)(n−m)

n2
− k(n−m) +m(n− k)

n2

)
Nn(k,m) =

(n− 2k)(n− 2m)

n2
Nn(k,m)

and when k 6≡ m (mod 2), this difference is − (n−2k)(n−2m)
n2 Nn(k,m). Summing over all

parity classes,

RELS(n)−ROLS(n) =
1

n2

∑
k,m<n/2

(−1)k+m(n− 2k)(n− 2m)Nn(k,m) (3.2)

Assuming Conjecture 1 statement (3.1) follows.

This calls for a study of the values Nn(k,m). When n = 5 only the parity classes
(0, 0) and (1, 1) are nonempty. When n = 6 the only empty classes are (0, 2) and (2, 0).
When n = 7 all parity classes are nonempty, as is the case for n = 8, 9, 10 and 11 (Tables
1-5). Thus, it seems reasonable to conjecture that for all n > 7 and all k,m 6 n/2
the parity class (k,m) is nonempty. Furthermore, an estimate for the values Nn(k,m)
is desired. It is conjectured in [3] that the distribution of the permutation that maps
between two randomly chosen rows of a randomly chosen Latin square of order n, among
all derangements, approaches uniformity as n → ∞ (a derangement is a permutation
without fixed points). Based on this, it seems reasonable to conjecture that for large
enough n the distribution of the parities of the rows and columns of a random Latin square
will be close to the random distribution. This should also hold when restricting to reduced
Latin squares, namely, if the parities of the rows and columns were chosen randomly, the
proportion of reduced Latin squares of parity class (k,m) among all reduced Latin squares
would be rs

(
n
k

)(
n
m

)
/22n, where r = 2 (resp. s = 2) if k < n/2 (resp. m < n/2) and 1

otherwise. (since k,m 6 n/2). Thus, rs is always 4 if n is odd.

Conjecture 2. If n is odd, then for all k,m < n/2

Nn(k,m) ∼
(
n
k

)(
n
m

)
22(n−1) |RLS(n)|, (3.3)

and if k is even, then for all k,m 6 n/2

Nn(k,m) ∼
rs
(
n
k

)(
n
m

)
22n

|RLS(n)| (3.4)

where r = 1 (resp. s = 1) if k = n/2 (resp. m = n/2) and 2 otherwise.

Conjecture 2 is supported by the data in the following tables. Table 1 lists the real
values of N7(k,m), along with the expected values given by (3.3). The fourth column
shows the ratios between the corresponding real and expected values. Tables 2-5 list the
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(k,m) N7(k,m) Expected N7(k,m) N7(k,m)
Expected N7(k,m)

(0, 0) 3270 4136 0.79
(1, 0) + (0, 1) 47040 57904 0.81
(2, 0) + (0, 2) 246960 173720 1.42
(3, 0) + (0, 3) 208740 289536 0.72

(1, 1) 345450 202676 1.70
(2, 1) + (1, 2) 979020 1216056 0.81
(3, 1) + (1, 3) 2493120 2026760 1.23

(2, 2) 1803690 1824084 0.99
(3, 2) + (2, 3) 5538960 6080280 0.91

(3, 3) 5275830 5066904 1.04

Table 1: Real and expected values of N7(k,m).

counts of Nn(k,m), as calculated for 100,000 randomly selected reduced Latin squares
(using the Jacobson-Matthews method [9]), for each of n = 8, 9, 10 and 11, along with the
expected values calculated using (3.3) and (3.4) for this sample size (similar simulations
were performed for n = 12, . . . , 20 and close values were observed as well for estimated
and observed counts). The counts for the classes (k,m) and (m, k), when k 6= m, were
added, since the corresponding classes have equal size. Note that 0 as an estimated value
does not mean that the class is expected to be empty, but that for the given sample size
no member of the class is expected to be observed.

Lemma 2.4 in [15] states that almost all Latin squares belong to parity classes (k,m)
such that k,m > n/63, and thus it can be viewed as a partial result for Conjecture 2.

Proposition 4. Assuming Conjecture 2 holds then

lim
n odd
n→∞

|RELS(n)| − |ROLS(n)|
|RLS(n)|

= 0 (3.5)

Proof. Combining (3.2) and Conjecture 2 we have that for large odd n

|RELS(n)| − |ROLS(n)|
|RLS(n)|

≈ 1

n222(n−1)

bn/2c∑
k,m=0

(−1)k+m(n− 2k)(n− 2m)

(
n

k

)(
n

m

)

the electronic journal of combinatorics 19(3) (2012), #P10 7



(k,m) N8(k,m) Expected N8(k,m) N8(k,m)
Expected N8(k,m)

(0, 0) 11 8 1.38
(0, 1) + (1, 0) 94 96 0.98
(0, 2) + (2, 0) 344 344 1.00
(0, 4) + (4, 0) 421 428 0.98
(0, 3) + (3, 0) 705 680 1.04

(1, 1) 394 392 1.01
(1, 2) + (2, 1) 2604 2736 0.95
(1, 4) + (4, 1) 3430 3416 1.00
(1, 3) + (3, 1) 5258 5472 0.96

(2, 2) 5085 4784 1.06
(2, 4) + (4, 2) 12123 11964 1.01

(4, 4) 7819 7477 1.05
(2, 3) + (3, 2) 19000 19144 0.99
(3, 4) + (4, 3) 23697 23924 0.99

(3, 3) 17015 19140 0.99

Table 2: Observed and expected values of N8(k,m) for a sample of 100,000 randomly
chosen reduced Latin squares.

(k,m) N9(k,m) Expected N9(k,m) N9(k,m)
Expected N9(k,m)

(0, 0) 2 0 -
(0, 1) + (1, 0) 20 24 0.83
(0, 2) + (2, 0) 124 112 1.11

(1, 1) 125 124 1.01
(0, 3) + (3, 0) 264 256 1.03
(0, 4) + (4, 0) 340 384 0.89
(1, 2) + (2, 1) 1031 992 1.04
(1, 3) + (3, 1) 2312 2304 1.00
(1, 4) + (4, 1) 3479 3464 1.00

(2, 2) 1997 1976 1.01
(2, 3) + (3, 2) 9182 9232 0.99
(2, 4) + (4, 2) 13704 13840 0.99

(3, 3) 10799 10768 1.00
(3, 4) + (4, 3) 32468 32296 1.01

(4, 4) 24153 24224 1.00

Table 3: Observed and expected values of N9(k,m) for a sample of 100,000 randomly
chosen reduced Latin squares.
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(k,m) N10(k,m) Expected N10(k,m) N10(k,m)
Expected N10(k,m)

(0, 0) 2 0 -
(0, 1) + (1, 0) 8 8 1.00
(0, 2) + (2, 0) 32 32 1.00

(1, 1) 40 40 1.00
(0, 3) + (3, 0) 86 88 0.98
(0, 5) + (5, 0) 107 96 1.11
(0, 4) + (4, 0) 165 160 1.03
(1, 2) + (2, 1) 335 344 0.97
(1, 3) + (3, 1) 881 912 0.97
(1, 5) + (5, 1) 939 960 0.98

(2, 2) 769 772 1.00
(1, 4) + (4, 1) 1652 1600 1.03
(2, 3) + (3, 2) 4060 4120 0.99
(2, 5) + (5, 2) 4181 4324 0.97
(2, 4) + (4, 2) 7326 7208 1.02

(3, 3) 5400 5492 0.98
(3, 5) + (5, 3) 11461 11536 0.99

(5, 5) 6083 6056 1.00
(3, 4) + (4, 3) 19208 19224 1.00
(4, 5) + (5, 4) 20286 20188 1.00

(4, 4) 16979 16824 1.01

Table 4: Observed and expected values of N10(k,m) for a sample of 100,000 randomly
chosen reduced Latin squares.

Now,

bn/2c∑
k,m=0

(−1)k+m(n− 2k)(n− 2m)

(
n

k

)(
n

m

)

=

bn/2c∑
k=0

(−1)k(n− 2k)

(
n

k

)2

=

n bn/2c∑
k=0

(−1)k
(
n

k

)
− 2

bn/2c∑
k=0

(−1)kk

(
n

k

)2

.

(3.6)

It can be shown by induction on n that for odd n > 3

bn/2c∑
k=0

(−1)kk

(
n

k

)
= (−1)

n−1
2 n

(
n− 2
n−1
2

)
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(k,m) N11(k,m) Expected N11(k,m) N11(k,m)
Expected N11(k,m)

(0, 0) 0 0 -
(0, 1) + (1, 0) 3 0 -
(0, 2) + (2, 0) 13 8 1.63
(0, 3) + (3, 0) 40 32 1.25

(1, 1) 11 12 0.92
(0, 4) + (4, 0) 59 64 0.92
(0, 5) + (5, 0) 90 88 1.02
(1, 2) + (2, 1) 120 112 1.07
(1, 3) + (3, 1) 331 344 0.96

(2, 2) 293 288 1.02
(1, 4) + (4, 1) 691 696 0.99
(1, 5) + (5, 1) 985 968 1.02
(2, 3) + (3, 2) 1699 1728 0.98
(2, 4) + (4, 2) 3312 3464 0.96
(2, 5) + (5, 2) 4881 4848 1.01

(3, 3) 2555 2596 0.98
(3, 4) + (4, 3) 10209 10385 0.98
(3, 5) + (5, 3) 14446 14536 0.99

(4, 4) 10472 10384 1.01
(4, 5) + (5, 4) 29244 29080 1.01

(5, 5) 20546 20356 1.01

Table 5: Observed and expected values of N11(k,m) for a sample of 100,000 randomly
chosen reduced Latin squares.

and
bn/2c∑
k=0

(−1)k
(
n

k

)
= 2(−1)

n−1
2

(
n− 2
n−1
2

)
.

Thus, the sum in (3.6) is 0 and the result follows.

The conjecture presented in Proposition 4 is supported by Theorem 3.2 in [15] which
states that |RELS(n)| and |ROLS(n)| share a large divisor which grows exponentially as
n→∞.

4 On the order of A(L)

Suppose L and L′ are isotopic Latin squares. Note that if L′ = Θ(L), then for any Γ ∈ In,
Γ ∈ A(L) if and only if ΘΓΘ−1 ∈ A(L′). Hence |A(L)| = |A(L′)|. Since every Latin square
is isotopic to some reduced Latin square, it is enough to study the orders of the autotopy
groups of reduced Latin squares.
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The parity type of a square provides some information about its autotopy group. Brown-
ing, Stones and Wanless ([2], Lemma 4.1) showed that for a prime order p there is exactly
one isotopism class that contains Latin squares L for which p2 divides |A(L)|, namely, the
isotopism class containing the Cayley table of Zp. The following corollary of Theorem 1
extends that result:

Corollary 2. Let L be a Latin square of prime order p > 2 and of parity type (k,m).

(i) If k 6= 0 or m 6= 0 then p2 6 | |A(L)|.

(ii) If k and m are both nonzero then p 6 | |A(L)|.

(iii) If the parity of L is (0,0) but L is not isotopic to the Cayley table of Zp, then
p2 6 | |A(L)|

Proof. Statements (i) and (iii) follow from the above mentioned result in [2] and the fact
that the parity type of a Cayley table of odd order is (0, 0). Without loss of generality we
may assume that L is reduced (otherwise we take a reduced Latin square in the isotopy
class of L and use the fact that isotopy preserves the parity type). Setting n = p we
look at one of the expressions for

∣∣I ′
p(L) ∩RELS(p)

∣∣ in (2.1). If just one of k and m is

nonzero, then p divides the numerator but p2 does not. Thus, p must divide
∣∣I ′

p(L)
∣∣ and

by (1.1) the highest power of p that may divide |A(L)| is 1. This proves (ii).

For the proof of the next theorem the following definition will be useful:

Definition 2. Let I, J ⊂ [n] with |I|, |J | 6 n/2. We say that a Latin square L of order
n has parity set (I, J) if the rows (resp. columns) indexed by I (resp. J) are all of the
same parity and the rows indexed by [n] \ I (resp. [n] \ J) are all of the opposite parity.

Remark 4. Permuting the columns of a Latin square preserves the first component of its
parity set and permuting the rows of a Latin square preserves the second component of
its parity set. Permuting the entries of a Latin square preserves its parity set.

Theorem 5. Let L be a Latin square of order n with parity type (k,m), then

|A(L)| 6 n · n!

max
((
n
k

)
,
(
n
m

)) . (4.1)

If no column of L is the product of two other columns, then

|A(L)| 6 n!(
n
k

) . (4.2)

(Similarly, if no row of L is the product of two other rows, then |A(L)| 6 n!/
(
n
m

)
.)
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Proof. We can assume that L is a reduced Latin square. By Remark 4, choosing all
different α ∈ Sn in (α, απjσ

−1
α−1(1), απj) ∈ I ′

n,L (see Proposition 1) will yield all
(
n
k

)
distinct I ⊂ [n] of order k as the first component of the parity set of the reduced Latin
squares that are isotopic to L. Thus |I ′

n(L)| >
(
n
k

)
. By (1.1) |A(L)| 6 n·n!

(n
k)

. Since

the same argument applies by looking at the second component of the parity set, the
inequality (4.1) follows. Let Σ = {α1, . . . , α(n

k)
} be a set of permutations that, when

taken as the first component of corresponding
(
n
k

)
isotopies on L, will yield

(
n
k

)
distinct

reduced Latin squares with distinct first parity set component. Now, let α ∈ Σ and
suppose that Θ1 = (α, απjσ

−1
α−1(1), απj) ∈ I ′

n,L and Θ2 = (α, απlσ
−1
α−1(1), απl) ∈ I ′

n,L

satisfy Θ1(L) = Θ2(L). Let Φ = Θ−12 Θ1 Thus Φ ∈ A(L). That is,

Φ = (1, σα−1(1)π
−1
l πjσ

−1
α−1(1), π

−1
l πj) ∈ A(L). (4.3)

For simplicity, denote σ = σα−1(1). Let β = σπ−1l πjσ and γ = π−1l πj = σ−1βσ. We have
that Φ = (1, β, σ−1βσ) ∈ A(L). While applying Φ to L, after permuting the columns by
β, the first row is β (by Lemma 1(i), since it was originally the identity permutation) and
we have to apply again β on the symbols in order to transform the first row back into
the identity permutation (Lemma 1(ii)). Thus γ = β and we have Φ = (1, β, β). Suppose
β(1) = r. After permuting the columns by β, the original first column (the identity
permutation) moves to the rth position. Then when applying β on the symbols The rth
column becomes β−1 (Lemma 1(ii)), and since we assumed that (1, β, β) ∈ A(L) we must
have that β−1 = πr. But β−1 = γ−1 = π−1j πl. Thus πl = πjπr. If we assume that no
column of L is the product of two other columns, we must have that Θ1(L) 6= Θ2(L). We
conclude that for any α ∈ Σ the different n isotopies obtained by taking the n columns
of L yield n distinct squares that are isotopic to L. Since for different elements of Σ the
squares obtained have parity sets with distinct first component, |I ′

n(L)| > n ·
(
n
k

)
. By

(1.1) |A(L)| 6 n·n!
n·(n

k)
= n!

(n
k)

Example 1. The parity type of the following Latin square of order 6 is (3, 3) and thus,
by (4.1), |A(L)| 6 (6 · 6!)/

(
6
3

)
= 216. Indeed, the autotopy group of this square has size

216, so it is possible to reach the bound in (4.1).

1 2 3 4 5 6
2 1 4 3 6 5
3 5 1 6 2 4
4 6 2 5 1 3
5 3 6 1 4 2
6 4 5 2 3 1

5 Computing A(L) by cycle structures

Every permutation α ∈ Sn can be decomposed into a unique (up to order) product of
disjoint cycles. Cycle structures of permutations were considered in the context of Latin

the electronic journal of combinatorics 19(3) (2012), #P10 12



squares in different aspects. Cavenagh, Greenhill and Wanless [3] considered the cycle
structure of the permutation that transforms one row of a Latin square to another row.
Other works [7, 14] considered the cycle structure of the permutations α, β and γ in an
isotopism Θ = (α, β, γ), in order to derive information on Latin squares for which Θ is
an autotopism. Here the cycle structure of the rows of a Latin square L are considered
in order to derive information on A(L).

Lemma 3. Let L be a reduced Latin square of order n with rows {σi}ni=1. Let Θ =
(α, β, γ) ∈ A(L). Then for each i = 1, . . . , n, σ−1α−1(1)σα−1(i) has the same cycle structure
as σi.

Proof. By Proposition 1, Θ has the form Θ = (α, απjσ
−1
α−1(1), απj) ∈ A(L) for some column

πj of L. We follow the ith row of L as Θ is applied. Originally it is σi. After permuting
the rows the ith row is σα−1(i) (following the convention that i in the jth place of a
permutation α signifies that α(i) = j). After permuting the columns by απjσ

−1
α−1(1) the

ith row becomes απjσ
−1
α−1(1)σα−1(i) (Lemma 1(i)) and after permuting the symbols, the

resulting ith row is απjσ
−1
α−1(1)σα−1(i)(απj)

−1 (Lemma 1(ii)). Since Θ is an autotopism of
L we have

σi = απjσ
−1
α−1(1)σα−1(i)(απj)

−1 (5.1)

Thus σi and σ−1α−1(1)σα−1(i) are conjugates and hence have the same cycle structure.

Theorem 6. The following is an algorithm for finding A(L) for a given reduced Latin
square L of order n.

(1) Compute the cycle structures of the rows of L, viewed as permutations in Sn. Let
C1, . . . , Cs be the distinct cycle structures of the rows, sorted in some well-defined
way (see [7]) and let λ = (λ1, λ2, . . . , λs) be a partition of n where each λi is the
number of rows with cycle structure Ci.

(2) For each row σk, compute the cycle structures of the set of permutations {σ−1k σi}ni=1.
Let Ck

1 , . . . , C
k
t be the cycle structures of these permutations, sorted as in (1), and

let λk be the partition of n corresponding to these cycle structures.

(3) If the ordered sets {C1, . . . , Cs} and {Ck
1 , . . . , C

k
t } coincide and λ = λk construct the

set Ik of permutations α ∈ Sn satisfying:
(*) For each i, σα(i) and σ−1k σi have the same cycle structure.

(4) For each α ∈ ∪kIk and each column πj, j = 1, . . . , n, let Θα,j = (α, απjσ
−1
α−1(1), απj).

Check whether Θα,j(L) = L. If equality holds then Θα,j ∈ A(L).

Proof. The condition (*) follows directly from Lemma 3. Since α is a bijection the con-
dition in step (3) must hold.

Remark 7. Condition (*) implies that α(k) = 1 since the identity permutation has its
own unique cycle structure.
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Example 2. Consider the following reduced Latin square L of order 7:

1 2 3 4 5 6 7
2 1 4 3 6 7 5
3 4 2 5 7 1 6
4 6 7 1 2 5 3
5 7 6 2 1 3 4
6 3 5 7 4 2 1
7 5 1 6 3 4 2

The cycle representations of the rows of L, grouped by cycle structure, are:

Row Cycle representation
1 (1)(2)(3)(4)(5)(6)(7)
2 (1, 2)(3, 4)(5, 7, 6)
4 (1, 4)(3, 7)(2, 5, 6)
5 (1, 5)(3, 6)(2, 4, 7)
7 (4, 6)(1, 3, 5, 2, 7)
3 (1, 6, 7, 5, 4, 2, 3)
6 (1, 7, 4, 5, 3, 2, 6)

(5.2)

One set of possible α consists of permutations that satisfy α(1) = 1, α(7) = 7 and permute
the sets {2, 4, 5} and {3, 6}. This set of permutations contains 3! · 2! = 12 permutations.
(This corresponds to k = 1 in Step (2) of the algorithm in Theorem 6.)
If we take the product of each row by σ−14 (the inverse of the 4th row, k = 4 in Step (2)
of the algorithm in Theorem 6) we obtain the same set of cycle structures:

i Cycle rep. of σ−14 σi
4 (1)(2)(3)(4)(5)(6)(7)
1 (1, 4)(3, 7)(2, 6, 5)
3 (1, 5)(2, 7)(3, 4, 6)
5 (1, 2)(6, 7)(3, 5, 4)
7 (2, 3)(1, 7, 4, 5, 6)
2 (1, 6, 2, 4, 7, 5, 3)
6 (1, 3, 6, 4, 2, 5, 7)

(5.3)

So, another set of possible α’s consists of permutations that satisfy α(4) = 1, α(7) = 7 and
map the set {1, 3, 5} onto the set {2, 4, 5} and the set {2, 6} onto the set {3, 6}. Again,
there are 3! · 2! = 12 such permutations. Taking the product of each row by σ−15 also
produces the same set of cycle structures as the original one, while taking the products
of the rows with each of σ−1k , for k = 2, 3, 6, 7, produces sets of cycle structures that do
not coincide with the original one. Thus, |∪kIk| = 3 · 12 = 36 and there are 36 · 7 = 252
isotopisms to check in step 4, of which only three are autotopisms. Hence |A(L)| = 3.

Remark 8. The algorithm, as described in Theorem 6, was tested on 100,000 randomly
selected Latin squares (Jacobson-Matthews method [9]) of each of the orders 8,9,10, and
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11. It performed faster than the algorithm by McKay, Meynert and Myrvold [11], based
on “nauty”, but slower than an improved version of “nauty” using vertex invariants (such
as the “train” [16]).

The algorithm of Theorem 6 can be massively sped up by constructing the permuta-
tions α in Step (4), in parts, corresponding to the cycle structures Ck

i in Step (3). After
constructing each part we can perform Step (4) on the rows of L that are permuted by
the part of α already constructed. This may rule out most of the candidates, or produce
candidates α while saving the time needed to consider all the parts corresponding to the
cycle structures Ck

i . This idea is illustrated in the following example.

Example 3. Consider the Latin square in Example 2. We saw that if we take the product
of each row with σ−14 the same set of cycle structures as the original one is obtained (see
(5.2) and (5.3)). This implies that one set of possible α may satisfy α(7) = 7. By (5.1) it
follows that

σ7 = απjσ
−1
4 σ7π

−1
j α−1 (5.4)

for one or more columns πj. Let τ = σ−14 σ7 = (2, 3)(1, 7, 4, 5, 6) (cycle decomposition).
Since π1 = 1 (the identity permutation) we have π1τπ

−1
1 = τ and by (5.4) we have

σ7 = (4, 6)(1, 3, 5, 2, 7) = (α(2)α(3))(α(1), α(7), α(4), α(5), α(6)). (5.5)

Since we know that α(4) = 1 and α(7) = 7, by looking at the second cycle in (5.5), it
follows that α(5) = 3 and α(6) = 5, both in contradiction to the constrains in Example 2
requiring that α must map 5 to one of {2, 4, 5} and 6 to one of {3, 6}. Thus all possible
α for k = 4 and j = 1 in Steps (2)-(4) of Theorem 6 are ruled out.

If we take j = 2 in Step (4) of Theorem 6 we obtain π2τπ
−1
2 = (1, 6)(2, 5, 3, 7, 4) and

thus, by (5.1), it follows that

σ7 = (4, 6)(1, 3, 5, 2, 7) = (α(1), α(6))(α(2), α(5), α(3), α(7), α(4)). (5.6)

Using the fact that α(4) = 1 and α(7) = 7 it follows that α = (1, 4)(2, 3) is the only
permutation that coincides with the constrains in Example 2. It remains to check whether
the isotopy Θα,2(L) = (α, απ2σ

−1
α−1(1), απ2) satisfies Θα,2(L) = L.

The reader can verify that taking the row π4 produces another candidate α =
(1, 5, 4)(2, 6, 3), while taking the rows π3, π5, π6 and π7 yield contradictions. Thus, for
the case k = 4 in Step (2), the list of possible autotopisms to check in Step (4) was
narrowed down to only 2 in n = 7 iterations instead of n

∏s
i=1 λi! = 7 · 2! · 3! = 84 in∏s

i=1 λi! = 2! · 3! = 12 iterations according to the original algorithm.

Corollary 3. Let L be a Latin square of order n. Let C1, . . . , Cs be the distinct cycle
structures of the rows and let λ = (λ1, λ2, . . . , λs) be a partition of n where each λi is the
number of rows with cycle structure Ci. Then

|A(L)| 6 n2

s∏
i=1

λi!. (5.7)
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If no column of L is the product of two other columns then

|A(L)| 6 n
s∏
i=1

λi!. (5.8)

Proof. Without loss of generality we may assume that L is reduced. For each k satisfying
the condition of step (3) in Theorem 6, there are

∏s
i=1 λi! permutations α satisfying (*).

Since there are n rows to check in step (2) and for each α there are n isotopies Θα,j

to check in step (4) of Theorem 6, Inequality 5.7 follows. It was shown in the proof of
Theorem 5 that if two distinct isotopisms, with the same first component α, map L to
the same reduced Latin square, then L must have a column that is the product of two
other columns. If no such column exists, then in step (4) of Theorem 6 at most one value
of j satisfies Θα,j(L) = L. Thus Inequality 5.8 follows.

Remark 9. The worst case in the algorithm in Theorem 6 is when n − 1 rows have the
same cycle structure (the first row, the identity permutation, has its own cycle structure).
This condition is achieved, for example, by atomic Latin squares [16] and by Cayley tables
of elementary abelian groups. In this case the bound in (5.7) is n · n!, which provides no
information, as |I ′

n,L| = n · n!.

Example 4. The rows of the Latin square

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3

have cycle structures
Row Cycle representation

1 (1)(2)(3)(4)(5)(6)
2 (1, 2)(3, 4)(5, 6)
3 (1, 5, 3)(2, 6, 4)
5 (1, 3, 5)(2, 4, 6)
4 (1, 6, 3, 2, 5, 4)
6 (1, 4, 5, 2, 3, 6)

The products of the rows with each σ−1k , k = 1, . . . , 6, produce a set of permutations with
the same cycle structures as above. Thus, the set ∪kIk has size 2! · 2! · 6 = 24, and the
bound in (5.7) is 24 · 6 = 144. The actual size of A(L) in this case is 72. This is the
closest example found, among Latin squares of order 6 and 7, to the bound in (5.7).
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