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Abstract

We examine the Sprague-Grundy values of F-Wythoff, a restriction of Wythoff’s
game introduced by Ho, where the integer ratio of the pile sizes must be preserved if
the same number of tokens is removed from both piles. We answer two conjectures
raised by Ho. First, we show that each column of Sprague-Grundy values is ulti-
mately additively periodic. Second, we prove that every diagonal of Sprague-Grundy
values contains all the nonnegative integers. We also investigate the asymptotic be-
havior of the sequence of positions attaining a given Sprague-Grundy value.

Keywords: Wythoff’s game; P-positions; Sprague-Grundy function; combinatorial
games

1 Introduction

Wythoff’s game is played on two piles of tokens with two players alternating moves. A
player may remove any nonzero number of tokens from one pile or may remove the same
nonzero number of tokens from both piles. The last player to move wins. F -Wythoff [3]
is a restriction of Wythoff’s game in which a player may remove any nonzero number of

tokens from one pile or may remove 1 6 j 6 a− 1 tokens from both piles if
⌊
b−j
a−j

⌋
=
⌊
b
a

⌋
,

where b > a are the sizes of the piles. We say a position (c, d) is a follower of (a, b) if
(a, b)→ (c, d) is a move. Let F (a, b) be the set of followers of (a, b). We call positions of
the form (a− i, b− i) ∈ F (a, b) slant followers of (a, b).
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The Sprague-Grundy value G(p) of a position p is defined recursively by G(p) =
mex{G(q) : q ∈ F (p)}, where mex(A) = min(N0 \ A) denotes the minimal excludant
of the set A. We call a position p a g-position if G(p) = g. A P-position is one from
which the previous player has a winning strategy. An N -position is one from which the
next player has a winning strategy. It is a standard game theory result that a position is
a P-position if and only if it is a 0-position.

Suppose the Sprague-Grundy values of Wythoff are written in a chart with G(i, j) in
entry (i, j) (see Table 1). Define row b to be the sequence {G(i, b)}i>0, column a to be the
sequence {G(a, j)}j>0, and diagonal d to be the sequence {G(a, a + d)}d>0. We say that
a sequence {gn}n>0 is ultimately additively periodic if there exist N and j > 0 such that
gn+j = gn + j for all n > N , that is, if and only if {gn − n}n>0 is ultimately periodic.

Table 1: Table of Sprague-Grundy Values
12 12 13 14 11 10 9 8 15 1 4 17 7 16
11 11 10 9 12 8 15 13 0 2 3 16 14 7
10 10 11 8 9 7 14 15 3 13 5 6 16 17
9 9 8 11 10 12 13 1 2 6 7 5 3 4
8 8 9 10 7 11 0 12 4 5 6 13 2 1
7 7 6 5 8 9 1 10 11 4 2 3 0 15
6 6 7 4 5 0 2 3 10 12 1 15 13 8
5 5 4 7 6 3 8 2 1 0 13 14 15 9
4 4 5 6 1 2 3 0 9 11 12 7 8 10
3 3 2 0 4 1 6 5 8 7 10 9 12 11
2 2 3 1 0 6 7 4 5 10 11 8 9 14
1 1 0 3 2 5 4 7 6 9 8 11 10 13
0 0 1 2 3 4 5 6 7 8 9 10 11 12
j/i 0 1 2 3 4 5 6 7 8 9 10 11 12

In Wythoff’s game, it is known that the set of P-positions is {(bφnc , bφ2nc) : n > 0},
where φ is the golden ratio, up to reordering of the coordinates [6]. Moreover, the Sprague-
Grundy values of standard Wythoff have been studied extensively in [1], [4], and [5]. It is
known that every column of Sprague-Grundy values is ultimately additively periodic [4].
Additionally, every row, column, and diagonal of Sprague-Grundy values contains each
nonnegative integer exactly once [5, 1]. In [5], it is shown that for a fixed g, the positive
difference between the nth g-position and the nth 0-position is bounded by a constant
depending solely on g, where the sequences are in order of increasing first coordinates
with the smaller pile size in the first coordinate.

In [3], Ho introduces the game F -Wythoff and shows that the P-positions of F -
Wythoff, with the exception of (0,0), are translations of the P-positions of standard
Wythoff by 1 in each entry. Moreover, the 1-positions and 2-positions in F -Wythoff,
with finitely many exceptions, are each translations of Wythoff’s P-positions by 2 and
4, respectively [3]. Similar to Wythoff, every row and column of Sprague-Grundy values
contains each nonnegative integer exactly once in F -Wythoff [3]. For F -Wythoff, Ho

the electronic journal of combinatorics 20(1) (2013), #P14 2



conjectures that {G(a, n)}n>0 is ultimately additively periodic. He also conjectures that
each nonnegative integer appears exactly once along every diagonal of Sprague-Grundy
values.

In the following sections, we will prove Ho’s first conjecture and a slight variant of
Ho’s second conjecture, where we allow a Sprague-Grundy value to appear multiple times
along each diagonal. We have a counterexample to Ho’s original conjecture which posits
that every Sprague-Grundy value appears exactly once along each diagonal. In Section 2,
we will show the ultimate additive periodicity of each column of Sprague-Grundy values.
Next, we give an algorithm to compute the sequence of g-positions and use the algorithm
to prove that all the nonnegative integers appear in each diagonal of Sprague-Grundy
values. In the subsequent section, we provide bounds on each coordinate of the nth g-
position for a given g. In the last section, we conjecture that for each g, the ratio of the
larger pile size to the smaller pile size of the nth g-position approaches the golden ratio
as n tends to ∞. We also conjecture that the set of g-positions of F -Wythoff are not
eventually translations of the P-positions of Wythoff for g > 2.

2 Additive Periodicity of the Sprague-Grundy Values

In this section, we will show that every column of Sprague-Grundy values is ultimately
additively periodic. We start by bounding G(a, b).

Lemma 1. b− 2a 6 G(a, b) 6 a+ b.

Proof. This claim is proved in [4] for Wythoff’s game and the proof generalizes naturally
to F -Wythoff. We reproduce the proof here for the convenience of the reader. We first
prove the lower bound. Let g = G(a, b). Then g 6= G(a, k) for 0 6 k 6 b − 1, i.e. g
does not appear as G(a, k) for exactly b values of k. If g 6= G(a, k), either G(a, k) < g
or G(a, k) > g. The former case occurs for at most g values of k with 0 6 k 6 b − 1
since 0 6 G(a, k) 6 g − 1. In the latter case, either there is some 0 6 jk 6 a − 1 such
that G(jk, k) = g, or there is some 1 6 ik 6 min {a, k} such that G(a − ik, k − ik) = g,
where taking ik away from each of k and a preserves the integer ratio. Note there is
no 0 6 lk 6 k − 1 such that G(a, lk) = g since G(a, k) 6= g for all 0 6 k 6 b − 1.
Since each column can have only one occurrence of g and 1 6 ik 6 a, we know that
G(a − ik, k − ik) = g occurs for at most a values of k with 0 6 k 6 b − 1. For the same
reason G(jk, k) = g occurs for at most a values of k with 0 6 k 6 b− 1. Then the number
of k’s such that G(a, k) 6= g with 0 6 k 6 b − 1 is at most g + 2a. So b 6 g + 2a or
b− 2a 6 g.

For the upper bound, we induct on a + b. The statement holds for a + b = 0 since
G(0, 0) = 0. Assume that for i, j such that i + j 6 a + b − 1, we have G(i, j) 6 i + j.
Then G(a, b) = mex{G(c, d) : (c, d) ∈ F (a, b)} 6 a + b since (c, d) ∈ F (a, b) implies
G(c, d) 6 c+ d < a+ b, i.e. a+ b /∈ {G(c, d) : (c, d) ∈ F (a, b)}.

Next, we show that (a, b) has no slant followers if b > a2.
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Lemma 2. If (a− i, b− i) ∈ F (a, b), then b 6 a2.

Proof. Let (a−i, b−i) ∈ F (a, b). If b 6 a, then b 6 a2. Assume b > a. Since
⌊
b
a

⌋
=
⌊
b−i
a−i

⌋
,

we have ∣∣∣∣ ba − b− i
a− i

∣∣∣∣ < 1

⇒ b− i
a− i

− b

a
< 1

⇒(b− i)a− b(a− i) < (a− i)a
⇒i(b− a) < a(a− i).

Since b− a 6 i(b− a) < a(a− i) 6 a(a− 1), we have b < a2.

Remark 3. In fact, b 6 (a− 1)a for (b− i, a− i) ∈ F (a, b) (by a different argument). But
this sharper bound is unnecessary for our purposes.

Using the two lemmas above and a method of Landman [4], we will prove the ultimate
additive periodicity conjecture of Ho.

Theorem 4 (Conjecture 13 of [3]). For a > 0, there exist M and j > 0 such that
G(a, b+ j) = G(a, b) + j for all b >M .

Proof. Define H(a, b) = G(a, b)− b+ 2a. By Lemma 1, we know that 0 6 H(a, b) 6 3a for
all b. By definition, {H(a, b)}b>0 is ultimately periodic if and only if {G(a, b)}b>0 is ulti-
mately additively periodic. We will show that we can compute the sequence {H(a, b)}b>0

by a finite-state machine. For a given position, we will store the data regarding its follow-
ers in a finite amount of space independent of b. This enables us to calculate {H(a, b)}b>0

with only a finite number of states, which will prove our result.
Let L(a, b) = {G(a − k, b) : 1 6 k 6 a} and D(a, b) = {G(a, b − k) : 1 6 k 6 b}. To

get bounds independent of b, let L′(a, b) = {b− 2a, . . . , a + b} \ L(a, b). Similarly, define
D′(a, b) = {b− 2a, . . . , a + b} \D(a, b). Then |L′(a, b)| and |D′(a, b)| are at most 3a + 1.
Represent L′(a, b) and D′(a, b) by a string of 3a+1 bits, with 1 in position j if b−2a+j is
in the set and 0 otherwise. Since we only need to show {H(a, b)}b>0 is eventually periodic,
we may assume that the finite-state machine starts with b > a2. By Lemma 2, (a, b) has
no slant followers for b > a2. So we do not need to compute

⌊
b
a

⌋
to test for slant followers,

i.e., it is not necessary to store b at any stage. Then G(a, b) = min(L′(a, b)∩D′(a, b)) since
b − 2a 6 G(a, b) 6 a + b by Lemma 1. For each stage in the finite-state machine, store
the data of L′(0, b), . . . , L′(a, b), D′(0, b), . . . , D′(a, b), and H(a, b − 1). There are 2a + 3
strings each having at most 3a + 1 bits, which takes up O(a2) bits. Thus, it remains to
show that we can compute L′(0, b+ 1), . . . , L′(a, b+ 1), D′(0, b+ 1), . . . , D′(a, b+ 1), and
H(a, b) from L′(0, b), . . . , L′(a, b), D′(0, b), . . . , D′(a, b), and H(a, b− 1).

First, we compute and storeH(a, b) from L′(a, b) andD′(a, b). Second, we will compute
and store D′(i, b + 1) for each i ∈ {0, . . . , a}. For i ∈ {0, . . . , a}, compute H(i, b) from
L′(i, b) and D′(i, b), and then use H(i, b) and D′(i, b) to get D′(i, b + 1). Lastly, we
compute and store L′(i, b + 1) for i ∈ {0, . . . , a} in order, starting with i = 0. We know
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that L′(0, b+ 1) = {b+ 1}. Then H(0, b+ 1) can be computed from our stored D′(0, b+ 1)
and the known L′(0, b+1). Next, L′(1, b+1) can be found from L′(0, b+1) and H(0, b+1).
Now, we can compute H(1, b+ 1) from the stored D′(1, b+ 1) and L′(1, b+ 1). Continue
in this manner to obtain L′(i, b + 1) for each i ∈ {0, . . . , a}. To make sure not to exceed
column a, store the column number while building up the L′(i, b+1)s from i = 0 to i = a.
This requires no more than (a+ 1) log(a) bits.

Calculating each H(a, b) for b > a2 takes O(a2) bits. So there are 2O(a2) possible
states with each state dependent only on the previous one. Since a is constant and the
sequence {H(a, b)}b>0 is infinite, the procedure revisits some state after 2O(a2) steps. Hence
for a fixed a, {H(a, b)}b>0 is ultimately periodic, which means {G(a, b)}b>0 is ultimately
additively periodic.

Remark 5. In [2], Ho introduces another restriction of Wythoff’s game called R-Wythoff,
in which a player may either remove any number of tokens from the larger pile or remove
an equal number of tokens from both piles. Ho conjectures that inR-Wythoff, {G(a, b)}b>0

is ultimately additively periodic. This can be proved using a similar technique as above
by letting H(a, b) = G(a, b)− b + 2a− 1. Define D(a, b) = {G(a, b− k) : 1 6 k 6 b} and
D′(a, b) = {b−2a+ 1, . . . , a+ b−1}\D(a, b). Similarly, define S(a, b) = {G(a−k, b−k) :
1 6 k 6 a} and S ′(a, b) = {b− 2a+ 1, . . . , a+ b− 1} \ S(a, b). By Theorem 2.12 and 2.13
of [2], 0 6 H(a, b) 6 3n− 2 for b > a > 4. At each stage, store the bit arrays representing
D′(0, b),. . .,D′(a, b), S ′(0, b),. . .,S ′(a, b), and H(a, b − 1). The cases that a ∈ {0, 1, 2, 3}
can be checked by induction.

3 Diagonal Sprague-Grundy Values

In this section, we modify an algorithm of Blass and Fraenkel’s [1], which computes the
positions that attain a given Sprague-Grundy value in standard Wythoff. Our algorithm
will compute the corresponding positions in F -Wythoff. With the aid of this algorithm,
we adapt Blass and Fraenkel’s technique [1] to prove the second conjecture of Ho, that
each diagonal of Sprague-Grundy values contains all the nonnegative integers.

We consider only positions (a, b) with a 6 b unless otherwise specified. We will
use Algorithm FWSG defined below to compute a sequence of positions called Tj =
{(ajn, bjn)}n>0. Later, we will show that Tj is the sequence of j-positions in increasing
order of the first coordinate.

To compute entry k in Tj, use the following algorithm to compute T0, . . . , Tj−1 in
order, up to some large number of entries, and then compute entries 0 through k of Tj in
order.
Algorithm FWSG

1. p← mex{ajn, bjn : 0 6 n < k}.

2. q ← m, smallest m > 0 such that

(a) for each n ∈ {0, . . . , k − 1} such that m = bjn − ajn, we have
⌊
bjn
ajn

⌋
6=
⌊

p+m
p

⌋
,
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(b) (p, p+m) /∈ Ti for all 0 6 i < j,

(c) p+m 6= bjn for all n ∈ {0, . . . , k − 1}.

3. (ajk, b
j
k)← (p, p+ q).

Let Aj = {ajn}n>0, Bj = {bjn}n>0, and Dj = {bjn − ajn}n>0.
We start by showing some properties of the sequences Aj and Tj to help us prove the
validity of the algorithm.

Proposition 6. The sequence {ajn}n>0 is strictly increasing in n.

Proof. Consider the sequence Aj = {ajn}n>0. We induct on n. Assume that {ajk}k>0 is
strictly increasing for k < n. The set {ajk, b

j
k : 0 6 k 6 n − 2} contains all the integers

from 0 to ajn−1 − 1 since ajn−1 = mex{ajk, b
j
k : 0 6 k < n − 1}. So ajn = mex{ajk, b

j
k : 0 6

k < n} = mex{0, . . . , ajn−1} > ajn−1 + 1, completing the induction.

Proposition 7. If (a, b) ∈ Tj, then (p, a) /∈ Tj for p 6= a.

Proof. Let (a, b) ∈ Tj. Suppose for contradiction that there is some p 6= a such that
(p, a) ∈ Tj. Then p < a since a is the second coordinate. Because Aj is strictly in-
creasing, (p, a) must appear before (a, b) in Tj. Then a = mex{p, a, . . .} 6= a, which is a
contradiction.

Now we are ready to give a characterization of the sequence Tj. The following lemma is
a slight variation of a result of Blass and Fraenkel [1].

Lemma 8. Every Tj consists exactly of the positions having Sprague-Grundy j if and
only if every Tj satisfies

1. Ti ∩ Tj = ∅ for i 6= j.

2. If (a, b) ∈ Tj, then (a, b) has no follower in Tj.

3. If (s, t) /∈ T0 ∪ · · · ∪ Tj, then (s, t) has a follower in Tj.

Proof. The “only if” direction follows by definition of the Sprague-Grundy function. We
will show that the three conditions are sufficient to conclude that Tj = {(a, b) : G(a, b) =
j}. Assume the three conditions hold for every j. We induct on j. So assume Ti consists
exactly of positions with Sprague-Grundy i for i < j.

First, we will show that if G(a, b) = j, then (a, b) ∈ Tj. Suppose for contradiction that
there is some (a, b) /∈ Tj with G(a, b) = j. Then (a, b) /∈ Ti for i 6 j by the induction
hypothesis. So (a, b) has a follower (a′, b′) ∈ Tj by condition 3. Then G(a′, b′) > j − 1 by
condition 1. Moreover, G(a′, b′) 6= j since (a′, b′) ∈ F (a, b). Then (a′, b′) has a follower
(a′′, b′′) such that G(a′′, b′′) = j (by definition of G). Moreover, (a′′, b′′) /∈ Tj by condition 2
since (a′′, b′′) ∈ F (a′, b′). Continuing similarly gives an infinite sequence of moves (a, b)→
(a′, b′) → (a′′, b′′) → (a′′′, b′′′) · · · such that G(a, b) = j, G(a′, b′) > j, G(a′′, b′′) = j,
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G(a′′′, b′′′) > j, . . .. This contradicts the fact that a game of F -Wythoff must terminate
in a finite number of moves. Hence G(a, b) = j implies (a, b) ∈ Tj.

Second, we will show that if (u, v) ∈ Tj, then G(u, v) = j. If (u, v) ∈ Tj and G(u, v) 6= j,
then G(u, v) > j by the induction hypothesis and condition 1. Thus (u, v) has a follower
(u′, v′) such that G(u′, v′) = j (by definition of G), i.e. (u′, v′) ∈ Tj by the above paragraph.
This contradicts condition 2 since both (u, v) and (u′, v′) are in Tj. Hence (u, v) ∈ Tj
implies G(u, v) = j.

Using the two propositions and the lemma above, we show that the algorithm produces
the sequence of j-positions in increasing order of the smaller coordinate.

Theorem 9. The sequence Tj determined by Algorithm FWSG consists of exactly all the
positions having Sprague-Grundy j in increasing order of the first coordinate.

Proof. We will show that Tj satisfies the three conditions of Lemma 8.

1. Ti ∩ Tj = ∅ for i 6= j by step 2b of the algorithm.

2. Let (a, b) ∈ Tj. We will show that none of the followers of (a, b) are in Tj. For
1 6 k 6 a, (a − k, b) /∈ Tj since Bj consists of distinct terms by step 2c. Let
1 6 k 6 b. If b − k > a, then (a, b − k) /∈ Tj since Aj has only distinct terms. If
b − k < a, then (b − k, a) /∈ Tj by Proposition 7. Let 1 6 k 6 a − 1 be such that⌊
b−k
a−k

⌋
=
⌊
b
a

⌋
. Suppose for contradiction that (a − k, b − k) ∈ Tj. When b − a is

considered as a candidate for q with p = a, the difference b − a is rejected at step
2 since it violates condition 2a. So q > b− a, contradicting that (a, b) ∈ Tj. Hence
(a, b) has no follower in Tj.

3. Assume (s, t) /∈ Ti for 0 6 i 6 j, with s 6 t. We will show that (s, t) has a follower
in Tj. Since Aj ∪ Bj = N0 by step 1 of the algorithm, s = bjn or s = ajn for some
n. First, assume that s = bjn. Then t − ajn > t − bjn = t − s > 0. If t = ajn, then
(s, t) ∈ Tj, contradicting the assumption. If t > ajn, then (s, t)→ (ajn, b

j
n) is a move

by taking t− ajn away from t. Hence we may assume s 6= bjn.

Second, assume that s = ajn. If t > bjn, then (s, t) → (ajn, b
j
n) is a move by taking

t − bjn away from t. The case that t = bjn cannot happen since (s, t) /∈ Tj. Hence,
we may assume that t < bjn. If (s, t) has a slant follower in Tj, then we are done.
If (s, t) does not have a slant follower in Tj, then either (a) t − s does not appear
before bjn − ajn in Dj or (b) all positions (s− k, t− k) with 1 6 k 6 s− 1 appearing
before (ajn, b

j
n) in Dj satisfy

⌊
t−k
t−s

⌋
6=
⌊
t
s

⌋
.

(a) Suppose that t−s does not appear before bjn−ajn in Dj, i.e., either t−s /∈ Dj or
else for all (ajh, b

j
h) with bjh− a

j
h = t− s, we have ajh > ajn = s. Since (s, t) /∈ Tj,

the difference t − s was considered as a candidate for q with p = ajn, and was
rejected. So t − s violates at least one condition of step 2 of the algorithm.
Since t − s either appears after bjn − ajn or never appears in Dj, t − s passes
condition 2a. Moreover, we assumed that (s, t) /∈ Ti for all 0 6 i 6 j, so the
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difference t − s passes condition 2b. Then t − s must have violated condition
2c, i.e., t ∈ Bj appeared before bjn. Say t = bjk. Since bjk occurred before bjn and
Aj is increasing, ajk < ajn. Then (s, t)→ (ajk, b

j
k) ∈ Tj is a move.

(b) Suppose that for all (ajh, b
j
h) ∈ Tj with ajh < ajn such that there is some 1 6

k 6 s− 1 with ajh = s− k and bjh = t− k, the integer ratio
⌊
bjh
ajh

⌋
6=
⌊

t
s

⌋
. In Tj,

for p = ajn, the difference t − s passes condition 2a as a candidate for q since
the corresponding integer ratio is never

⌊
t
s

⌋
for previous elements of Tj having

the same difference. Moreover, (s, t) /∈ Ti for 0 6 i < j from the assumption.
If t does not appear in the Bj constructed so far, then t − s passes all the
conditions of step 2, i.e. (s, t) ∈ Tj. But (s, t) /∈ Tj. So t must have appeared
before bjn in Tj, i.e. t = bj` for some ` < n. So (s, t)→ (aj`, b

j
`) ∈ Tj is a move.

Using our algorithm, we now bound the number of occurrences of a fixed Sprague-Grundy
value along each diagonal, which will help us to prove the second conjecture of Ho.

Lemma 10. For d, g ∈ N0, g can appear at most d+ 2 times along the diagonal {G(a, a+
d)}a>0.

Proof. Since
⌊
a+d
a

⌋
= 1 for all a > d + 1, there are at most d + 2 distinct integer ratios

in the sequence
{⌊

a+d
a

⌋}
a>0

. For a1, a2 > d + 1, the position (a1, a1 + d) must have a

different Sprague-Grundy value from (a2, a2 + d) because one is a follower of the other.
Hence a Sprague-Grundy value can occur at most d+ 2 times in {G(a, a+ d)}a>0.

Corollary 11. For j and c ∈ N0, there is some M such that bji − a
j
i > c for all i >M .

Proof. For each d ∈ {0, . . . , c}, the difference d can occur at most finitely many times in
Dj since there are at most finitely many values a such that G(a, a+ d) = j by Lemma 10.
Choose M past the last position where there is a d ∈ {0, . . . , c} that occurs in Dj. Then
bji − a

j
i > c for all i >M .

In [3], Ho conjectures that every diagonal of Sprague-Grundy values contains each non-
negative integer exactly once. However, the conjecture is not completely true because
one Sprague-Grundy value may appear multiple times along the same diagonal, e.g.
9 = G(1, 8) = G(3, 10) = G(5, 12). Therefore, we modify the conjecture so that the
condition that each number appears only once is not required.

Theorem 12 (Modified Conjecture 15 of [3]). For d, g ∈ N0, there is some a ∈ N0 (not
necessarily unique) such that G(a, a+ d) = g.

Proof. The idea is to show that if some g ∈ N0 is missing in some diagonal of Sprague-
Grundy values, then the difference between max06`6i{bj`} and aji is bounded, which con-
tradicts Corollary 11.
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First, we know that G(bφdc + 1, bφdc + 1 + d) = 0 for all d > 0 by Theorem 5 of Ho
[3]. Second, the case of g = 0 is proved in [3]. Now suppose there is some d > 0 and j > 0
such that G(a, a+ d) 6= j for all a ∈ N0. By Lemma 10, for i < j, the value i can appear
at most finitely many times in {G(a, a + d)}a>0. Choose some N1 such that for x > N1,
(x, x+ d) /∈ Ti for all i < j. Consider some x > N1. Since Aj ∪Bj = N0, we have x ∈ Aj

or x ∈ Bj. If x ∈ Aj, then d was considered as a candidate for q with p = x at step 1
of the algorithm, and therefore must have been rejected at step 2. Since d /∈ Dj (by the
assumption) and (x, x+ d) /∈ Ti for i < j, we have x+ d ∈ Bj. If x /∈ Aj, then x ∈ Bj. So
for x > N1, we have x+ d ∈ Bj or x ∈ Bj.

Since the claim is true for d = 0, we have |Aj ∩ Bj| > 1. By Proposition 7, if
a ∈ Aj ∩ Bj, then a must appear in the same position in Aj as in Bj. Since j > 0, we
must have |Aj ∩Bj| = 1.

Next, we will show that there is some N > N1 such that for x > N , at most one of x
and x + d occurs in Aj. Recall that at least one of x and x + d is in Bj. If both x and
x+d are in Bj, then Aj has at most one of them since |Aj ∩Bj| = 1. Say Aj ∩Bj = {p0}.
If Bj has only one of x and x + d, then choosing N > p0 will ensure that at most one of
x and x+ d is in Aj for x > N .

Choose N such that N > p0 and N > N1. Let B′j = {b′jn}n>0 be the sequence of
elements of Bj in increasing order. Fix n > N . Since Aj and B′j are both increasing,

ajn > ajN > N and b′jn > b′jN > N for n > N . For k > 0, let Uk = {ajn +` : 0 6 ` 6 2kd−1}
and Vk = {b′jn + ` : 0 6 ` 6 2kd − 1}. To use the fact that at least one of x and x + d
appears in Bj and that at most one of them appears in Aj, we pair off elements that are d
away from each other in Uk and Vk. We may write Uk = ∪k−1t=0 {ajn+i+2td, ajn+i+2td+d :
0 6 i 6 d− 1} and Vk = ∪k−1t=0 {b′jn + i+ 2td, b′jn + i+ 2td+ d : 0 6 i 6 d− 1}. Since Aj has
at most one of x and x+ d for x > N , we know that Uk has at most kd elements from Aj.
Similarly, Vk has at least kd elements from Bj. If ajn+kd ∈ Uk, then ajn, . . . , a

j
n+kd ∈ Uk,

contradicting that |Uk ∩ Aj| 6 kd. So ajn+kd /∈ Uk, which means ajn+kd > ajn + 2kd. If

b′jn+kd−1 /∈ Vk, then b′j` /∈ Vk for ` > n + kd − 1, contradicting that |Vk ∩ Bj| > kd. So

b′jn+kd−1 6 b′jn + 2kd− 1.

Next, we will bound b′ji − a
j
i independent of i. Since at least one of b′jn+kd−1 + 1 and

b′jn+kd−1 + d + 1 is in B′j and b′jn+kd is the smallest element in B′j larger than b′jn+kd−1, we

know that b′jn+kd 6 b′jn+kd−1 + d+ 1. Then

b′jn+kd − a
j
n+kd 6 b′jn+kd−1 + d+ 1− (ajn + 2kd)

6 (b′jn + 2kd− 1) + d+ 1− (ajn + 2kd) = b′jn − ajn + d.

Substitute n = N + `, where 1 6 ` 6 d. Then b′jN+`+kd − a
j
N+`+kd 6 d+ max16i6d(b

′j
N+i −

ajN+i) for all k > 0. Let c = d+ max16i6d(b
′j
N+i − a

j
N+i). Then b′ji − a

j
i 6 c for i > N + d.

By Corollary 11, there is an M such that bji − a
j
i > c for i > M . Let M > N + d.

Then b′ji − aji 6 c for i > M . Hence b′ji − aji < bji − aji , so bji > b′ji for i > M . There
are exactly M + 1 elements b′ji bounded above by b′jM . On the other hand, there are at
most M values bji bounded above by b′jM since bji > b′ji > b′jM for i > M , i.e. at most
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bj0, . . . , b
j
M−1 are bounded above by b′jM , contradicting that B′j has the same elements as

Bj. So the supposition that j /∈ {G(a, a+ d)}a>0 is not possible. Hence every diagonal of
Sprague-Grundy values contains all nonnegative integers.

4 Bounds

In this section, we provide bounds on ajn, bjn, and djn. We wish eventually to show that
for a given j, the positive difference between the nth j-position and the nth 0-position is
bounded independent of n.
First we bound ajn.

Proposition 13. For all j, n ∈ N0, n 6 ajn 6 2n.

Proof. Since ajn+1 > ajn + 1 and aj0 = 0, we conclude that ajn > n. By step 1 of the

algorithm, ajn is the minimal excludant of the 2n integers aj0, . . . , a
j
n−1, b

j
0, . . . , b

j
n−1. So

ajn 6 2n.

Next, in seeking a lower bound for djn, we examine the last position that the difference d
occurs in the sequence Dj, and we denote this position by Lj

d. So Lj
d is the largest integer

n such that djn = d in Dj.

Proposition 14. For all j ∈ N0, L
j
0 6 j + 1.

Proof. In D0, the last occurrence of 0 is d01 since A0 ∩ B0 = {0, 1}, and (0,0) and (1,1)
happen in positions 0 and 1 of the sequence T0. So L0

0 = 1. To show that Lj
0 6 j + 1, we

suppose for contradiction that Lj
0 > j+1 for some j > 0. Recall that 0 can occur only once

in Dj because if there exist n < m with djn = 0 and djm = 0, then (ajn, b
j
n) ∈ F (ajm, b

j
m).

So the first occurrence of 0 is also the last occurrence of 0 in Dj, i.e. each of dj0, . . . , d
j
j+1

is not 0. Consider the candidate 0 for dji with i ∈ {0, . . . , j + 1}. Then 0 passes condition
2a of the algorithm. Since aji = mex{ajn, bjn : 0 6 n < i} 6= bjk for all k ∈ {0, . . . , i − 1},
the candidate 0 passes condition 2c of the algorithm. So for each dji , the candidate 0
must violate condition 2b, i.e., for each i ∈ {0, . . . , j + 1}, we have (aji , a

j
i ) ∈ Tki for some

ki ∈ {0, . . . , j − 1}. From the proof of Theorem 12, we have |Ak ∩ Bk| = 1 for k 6= 0 and
|A0∩B0| = 2. There are j+2 such positions (ai, ai) that must fit into the j+1 total spots
in T0, . . . , Tj−1, which is impossible by the pigeonhole principle. Thus Lj

0 6 j + 1.

Remark 15. From computer experiments, we suspect that Lj
d 6 j + 1 + d. If this is true,

then it will give a lower bound of djn > n− (j + 1).

We now give an upper bound for djn.

Proposition 16. For all j, n ∈ N0, djn 6 (n+ 1)j + n.

Proof. Let d′j0 < · · · < d′jn−1 be the differences dj0, . . . , d
j
n−1 arranged in order. Let d > d′jn−1

be a candidate being considered as q for p = ajn in the algorithm. Then d passes condition
2a. If d fails condition 2c, then ajn+d = dji +aji for some 0 6 i < n, so ajn+d 6 d′jn−1+aji <
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d′jn−1 + ajn, i.e. d < d′jn−1, which contradicts our choice of d > d′jn−1. So d passes condition
2c. If d fails condition 2b, then (ajn, a

j
n + d) ∈ Ti for some 0 6 i < j. There are at most

j distinct numbers that can fail condition 2b since ajn only appears once in each Ai. As
the candidates d′jn−1 + 1, . . . , d′jn−1 + j are considered in order, the worst case is that all of

them fail condition 2b. So there must be some number in {0, . . . , d′jn−1 +j+1} that passes

all three conditions for q in the algorithm. Therefore djn 6 d′jn−1 + j + 1. Since dj0 = j,
induction yields djn 6 (n+ 1)j + n.

As a result of the bounds for ajn and djn, we get the following bound for bjn.

Corollary 17. For all j, n ∈ N0, n 6 bjn 6 3n+ (n+ 1)j.

5 Conjectures

In standard Wythoff, for each j ∈ N0, we know that limn→∞
bjn
ajn

= φ = 1+
√
5

2
by Theorem

2.3 of [5]. Based on computer experiments, we conjecture that this asymptotic behavior
holds in F -Wythoff.

Conjecture 18. For j ∈ N0,
bjn
ajn
→ φ as n→∞.

The following theorem of Nivasch [5] reduces the above conjecture to the statement that
the positive difference between djn and n is bounded by some constant cj independent of
n.

Theorem 19 (Nivasch [5]). Let A := {an : n > 0} ⊂ N0 be a strictly increasing sequence
and B := {bn : n > 0} ⊂ N0 be a sequence of distinct elements. Suppose A and B satisfy:

1. |A ∩B| <∞,

2. A ∪B = N0, and

3. there exists c such that |(bn − an)− n| 6 c for all n.

Then there exists M1 and M2 such that |φn− an| 6M1 and |φ2n− bn| 6M2 for all n.

We know that for all j, the sequences Aj and Bj satisfy 1 and 2 in the above theorem.
Hence, if there is some cj such that |djn − n| 6 cj for all n, then Conjecture 18 holds.
The next conjecture proposes an answer to Question 9 of Ho in [3], which asks whether
there is a j > 2 such that, with finitely many exceptions, the sequence Tj in F -Wythoff
is a translation of the P-positions in standard Wythoff. Based on computer experiments,
we suspect that Bj is not ultimately increasing for all j > 2, which leads to the following
conjecture.

Conjecture 20. For j > 2, there is no pair (s, t) and finite set S such that Tj =
S ∪

(
{(bφnc, bφ2nc) : n ∈ N0}+ (s, t)

)
.
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