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Abstract

We formulate a reconstruction problem for functions of several arguments: Is a
function of several arguments uniquely determined, up to equivalence, by its identi-
fication minors? We establish some positive and negative results on this reconstruc-
tion problem. In particular, we show that totally symmetric functions (of sufficiently
large arity) are reconstructible.
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1 Introduction

Reconstruction problems have received great attention over the past decades. In very
abstract terms, a reconstruction problem asks whether a mathematical object can be
recovered from partial information. The reconstruction problems we discuss here fall
under the following general framework: given a class of mathematical objects and a way
of deriving subobjects of a given object, we consider the question whether an object is
uniquely determined, up to some kind of isomorphism, by its collection of subobjects.

Perhaps the most famous reconstruction problem is the following: Can every graph
with at least three vertices be reconstructed, up to isomorphism, from its collection of
one-vertex-deleted subgraphs? It was conjectured by Kelly [17] and Ulam [34] that the
answer is positive. The conjecture has been verified by computer for graphs with at most
11 vertices (McKay [25]), and it has been proved for several infinite classes of graphs, such

∗Current affiliation: Centro de Álgebra da Universidade de Lisboa, Lisbon, Portugal.

the electronic journal of combinatorics 21(2) (2014), #P2.6 1



as trees (Kelly [18]), regular graphs, disconnected graphs, and so on. We refer the reader
to survey articles, textbooks, and reference books [1, 3, 4, 5, 16, 23, 28] for further details
and references.

The reconstruction problem stated above can be varied in several ways. For example,
we might consider the collection of subgraphs formed by deleting edges instead of ver-
tices (see Harary [15] and Ellingham [13]), or we could consider directed graphs (infinite
nonreconstructible families have been constructed by Stockmeyer [32]) or hypergraphs
(infinite nonreconstructible families have been constructed by Kocay [19]). Analogous re-
construction problems have been formulated also for other kinds of mathematical objects,
such as relations (see Fräıssé [14]), posets (see the survey by Rampon [30]), matrices (see
Manvel and Stockmeyer [24]), matroids (see Brylawski [7, 8]), and integer partitions (see
Monks [26]).

In this paper we formulate a reconstruction problem for functions of several arguments.
We shall take as the derived objects of a function f : An → B its identification minors,
i.e., functions obtained from f by identifying a pair of its arguments. The notion of
isomorphism is based on the equivalence relation that relates two n-ary functions if and
only if each one can be obtained from the other by permutation of arguments. The
reconstruction problem can thus be stated as follows: Can a function f : An → B be
reconstructed, up to equivalence, from its identification minors?

The purpose of this paper is to take some first steps towards providing an answer
to this question. A necessary condition for a positive answer is that the arity of the
function must be sufficiently large. Indeed, as will be explained in Remark 3.2, if n 6 |A|,
then no function f : An → B is reconstructible; this also shows that functions defined
on infinite domains are not reconstructible. Furthermore, Example 3.13 shows that there
exist functions f : An → B with n = |A| + 1 that are not reconstructible. We will
obtain several other results, both positive and negative, about the reconstructibility of
functions. The main result is Theorem 5.1 which asserts that totally symmetric functions
(of sufficiently large arity) are reconstructible.

Identification minors and equivalence of functions are related in an essential way to
a quasiordering of functions, the so-called minor relation, which is defined as follows:
a function f : An → B is a minor of another function g : Am → B, if there exists a
map σ : {1, . . . ,m} → {1, . . . , n} such that f(a1, . . . , an) = g(aσ(1), . . . , aσ(m)) for all
(a1, . . . , an) ∈ An. The reconstruction problem is thus a deep and intriguing question
about the structure of the minor ordering of functions. Minors have been widely studied
in the literature, under different names. Minors are called “identification minors” by Ekin,
Foldes, Hammer, and Hellerstein [12], “I-minors” (where I stands for the set contain-
ing just the identity function on A) by Pippenger [29], “subfunctions” by Zverovich [37],
“functions obtained by simple variable substitution” by Couceiro and Foldes [9], “J -
subfunctions” (where J stands for the clone of projections on A) by Lehtonen [21], “PA-
minors” (where PA stands for the clone of projections on A) by Lehtonen and Szendrei [22],
and “simple minors” by Couceiro and Lehtonen [10].

This paper is organised as follows. In Section 2, we provide basic definitions on
functions and identification minors that will be needed in the sequel, and we recall the
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definition of multiset. In Section 3, we formulate a reconstruction problem for functions
and identification minors, and we recall the usual terminology of reconstruction problems
in the current setting. We present some examples of reconstructible and recognizable
classes of functions, as well as examples of nonreconstructible functions and reconstructible
parameters. One of our first results is that functions determined by supp or oddsupp (of
sufficiently large arity) are reconstructible. In Section 4, we discuss functions with a unique
identification minor, and we establish an auxiliary result that asserts that 2-set-transitive
functions have a unique identification minor. This will find an application in Section 5,
where we prove our main result that totally symmetric functions (of sufficiently large arity)
are reconstructible. In Section 6, we translate the reconstruction problem of functions
and identification minors into the language of graphs and hypergraphs. Occasionally
throughout the paper, we present open problems to indicate directions for future work.

2 Preliminaries

2.1 General

Throughout this paper, we let k, m and n be positive integers, and we let A and B be
arbitrary sets with at least two elements. For reasons that will become clear in Remark 3.2,
we may assume that these sets are finite, and k usually stands for the cardinality |A| of
A. For a positive integer n, we denote the set {1, . . . , n} by [n]. We denote the set of all
2-element subsets of [n] by

(
[n]
2

)
. We denote tuples by bold-face letters and components

of a tuple by the corresponding italic letters with subscripts, e.g., a = (a1, . . . , an). We
reserve the symbol k to denote the k-tuple (1, 2, . . . , k) ∈ [k]k.

Let a ∈ An, and let σ : [m]→ [n]. We write aσ to denote the m-tuple (aσ(1), . . . , aσ(m)).
Since the n-tuple a can be formally seen as a map a : [n] → A, the m-tuple aσ is just
the composite map a ◦ σ : [m] → A. It is worth stressing here that we always compose
functions and permutations right-to-left, so στ or σ ◦ τ means “do τ first, then do σ”.

2.2 Functions of several arguments and identification minors

A function (of several arguments) from A to B is a map f : An → B for some positive
integer n, called the arity of f . Functions of several arguments from A to A are called
operations on A. Operations on {0, 1} are called Boolean functions. We denote the set of

all n-ary functions from A to B by F (n)
AB, and we denote the set of all functions from A to

B of any finite arity by FAB; in other words, F (n)
AB = BAn and FAB =

⋃
n>1F

(n)
AB. For any

C ⊆ FAB, we denote C(n) := C ∩ F (n)
AB; this is called the n-ary part of C.

A function f : An → B is totally symmetric if for every permutation σ of [n] it holds
that f(a) = f(aσ) for all a ∈ An.

For integers n and i such that 1 6 i 6 n, the i-th n-ary projection on A is the operation
pr

(n)
i : An → A given by the rule pr

(n)
i (a1, . . . , an) = ai for all (a1, . . . , an) ∈ An.

Let f : An → B. For i ∈ [n], the i-th argument of f is essential, or f depends on the
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i-th argument, if there exist elements a,b ∈ An such that aj = bj for all j ∈ [n] \ {i} and
f(a) 6= f(b). Arguments that are not essential are inessential.

We say that a function f : An → B is a minor of another function g : Am → B, and
we write f 6 g, if there exists a map σ : [m]→ [n] such that f(a) = g(aσ) for all a ∈ Am.
The minor relation 6 is a quasiorder on FAB, and, as for all quasiorders, it induces an
equivalence relation on FAB by the following rule: f ≡ g if and only if f 6 g and g 6 f .
We say that f and g are equivalent if f ≡ g. Furthermore, 6 induces a partial order on
the quotient FAB/≡. (Informally speaking, f is a minor of g, if f can be obtained from
g by permutation of arguments, addition of inessential arguments, deletion of inessential
arguments, and identification of arguments. If f and g are equivalent, then each one can be
obtained from the other by permutation of arguments, addition of inessential arguments,
and deletion of inessential arguments.) We will often distinguish between functions only
up to equivalence, i.e., we are dealing with the ≡-classes of functions. We denote the
≡-class of f by f/≡. Note that equivalent functions have the same number of essential
arguments and every nonconstant function is equivalent to a function with no inessential
arguments. Note also in particular that if f, g : An → B, then f ≡ g if and only if there
exists a bijection σ : [n]→ [n] such that f(a) = g(aσ) for all a ∈ An.

A set C ⊆ FAB of functions is closed under formation of minors if for all f, g ∈ FAB, the
conditions f 6 g and g ∈ C together imply f ∈ C. All clones are closed under formation of
minors. (Recall that a clone on A is a set of operations on A that contains all projections
and is closed under functional composition; see [11, 20, 33].) A characterization of sets
of functions closed under formation of minors in terms of a Galois connection between
functions and so-called constraints was presented by Pippenger [29] for functions with
finite domains, and this result was later extended to functions with arbitrary domains by
Couceiro and Foldes [9].

Of particular interest to us are the following minors. Let n > 2, and let f : An → B.
For each I ∈

(
[n]
2

)
, we define the function fI : An−1 → B by the rule fI(a) = f(aδI) for all

a ∈ An−1, where δI : [n]→ [n− 1] is defined as

δI(i) =


i, if i < max I,

min I, if i = max I,

i− 1, if i > max I.

(1)

In other words, if I = {i, j} with i < j, then

fI(a1, . . . , an−1) = f(a1, . . . , aj−1, ai, aj, . . . , an−1).

Note that ai occurs twice on the right side of the above equality: both at the i-th and at
the j-th position. We will refer to the function fI as an identification minor of f . This
name is motivated by the fact that fI is obtained from f by identifying the arguments
indexed by the couple I.

Example 2.1. Let f : R4 → R be given by f(x1, x2, x3, x4) = x21x2 − x1x3 + 2x3x4. The
identification minors of f are

f{1,2}(x1, x2, x3) = x31 − x1x2 + 2x2x3, f{2,3}(x1, x2, x3) = x21x2 − x1x2 + 2x2x3,
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f{1,3}(x1, x2, x3) = x21x2 − x21 + 2x1x3, f{2,4}(x1, x2, x3) = x21x2 − x1x3 + 2x2x3,

f{1,4}(x1, x2, x3) = x21x2 + x1x3, f{3,4}(x1, x2, x3) = x21x2 − x1x3 + 2x23.

Example 2.2. Let g : {0, 1}3 → {0, 1} be given by g(x1, x2, x3) = x1x2 + x2x3 (addition
and multiplication modulo 2). The identification minors of g are

g{1,2}(x1, x2) = x1 + x1x2, g{1,3}(x1, x2) = 0, g{2,3}(x1, x2) = x1x2 + x2.

Note that g{1,2} ≡ g{2,3}.

Example 2.3. Let n be an integer at least 2, let A := {1, . . . n}, let B be a set with
at least two elements, and let α and β be distinct elements of B. Define the function
h : An → B by the rule

h(a1, . . . , an) =

{
α, if (a1, . . . , an) = (1, . . . , n),

β, otherwise.

It is clear that h depends on all of its arguments, and for every I ∈
(
[n]
2

)
, the identification

minor hI : An−1 → B is the constant map taking value β.

2.3 Multisets

Let N := {0, 1, 2, . . . }. A finite multiset S on a set X is a couple (X,1S), where 1S : X →
N is a map with the property that the set {x ∈ X : 1S(x) 6= 0} is finite. Then the sum∑

x∈X 1S(x) is a well-defined natural number, and it is called the cardinality of S. The
map 1S is called a multiplicity function, and for each x ∈ X, the number 1S(x) is called
the multiplicity of x in S. If 1S(x) > 0, then x is called an element of S. We denote the
set of all finite multisets on X by M(X), and we denote the set of all finite multisets of
cardinality n on X by Mn(X).

We may represent a finite multiset S as a list enclosed in angle brackets, where each
element x ∈ X occurs 1S(x) times, e.g., 〈0, 0, 0, 1, 1, 2〉. Also, if (ai)i∈I is a finite indexed
family of elements of X, then we will write 〈ai : i ∈ I〉 to denote the multiset in which
the multiplicity of each x ∈ X equals |{i ∈ I : ai = x}|.

Let S and T be finite multisets over X. The multiset sum S ] T and the difference
S \ T of S and T are finite multisets on X defined by the multiplicity functions

1S]T (x) = 1S(x) + 1T (x),

1S\T (x) = max(1S(x)− 1T (x), 0).

If S is a multiset on X, then we write set(S) to denote the set {x ∈ X : 1S(x) 6= 0},
called the underlying set of S.
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3 Reconstructing functions from identification minors

3.1 Reconstruction problem for functions of several arguments

We recall the usual terminology of reconstruction problems in the setting of functions of
several arguments and identification minors. Assume that n > 2 and let f : An → B.

(i) The deck of f , denoted deck f , is the multiset 〈fI/≡ : I ∈
(
[n]
2

)
〉 of the equivalence

classes of the identification minors of f . Any element of the deck of f is called a
card of f .

(ii) A function g : An → B is a reconstruction of f , if deck f = deck g, or, equivalently,
if there exists a bijection φ :

(
[n]
2

)
→
(
[n]
2

)
such that fI ≡ gφ(I) for all I ∈

(
[n]
2

)
.

(iii) A function is reconstructible if it is equivalent to all of its reconstructions, or, equiv-
alently, if it is equivalent to all functions with the same deck.

(iv) A parameter defined for all functions is reconstructible if it has the same value for
all the reconstructions of any function.

(v) A class C ⊆ FAB of functions is recognizable if all reconstructions of the members
of C are members of C.

(vi) A class C ⊆ FAB of functions is weakly reconstructible if for every f ∈ C, all recon-
structions of f that are members of C are equivalent to f .

(vii) A class C ⊆ FAB of functions is reconstructible if all members of C are reconstruct-
ible.

Note that if a class of functions is recognizable and weakly reconstructible, then it is
reconstructible.

Using this terminology, we can now address the problem whether and to what extent
functions of several arguments are reconstructible. Perhaps one of the simplest and most
obvious questions to ask is the following.

Question 3.1. Let A and B be sets with at least two elements, and let n be an integer
greater than or equal to 2. Is every function f : An → B reconstructible?

Remark 3.2. The answer to Question 3.1 is negative if n is not sufficiently large. Namely,
if n 6 |A|, then the set

An6= := {(a1, . . . , an) ∈ An : a1, a2, . . . , an are pairwise distinct}

is nonempty. In this case, if f and g are n-ary functions that coincide on An \ An6=, then

fI = gI for every I ∈
(
[n]
2

)
but f and g need not be equivalent—consider, for example,

any functions f and g that coincide on An \ An6= such that f |An6= is constant and g|An6= is

nonconstant. Therefore, no function f : An → B with n 6 |A| is reconstructible. This
also shows that functions with infinite domains are not reconstructible. Furthermore,
Example 3.13 shows that the answer to Question 3.1 is negative if n = |A|+ 1.
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3.2 Examples of reconstructible functions: constant functions

Example 3.3. It is easy to verify that if f : An → B is a constant function and n > |A|,
then f is reconstructible. For, if α ∈ B and f(a) = α for all a ∈ An, then for every
I ∈

(
[n]
2

)
, fI(b) = α for all b ∈ An−1. Assume that g : An → B is a reconstruction of f .

Then there exists a bijection σ :
(
[n]
2

)
→
(
[n]
2

)
such that fI ≡ gσ(I) for all I ∈

(
[n]
2

)
, and

for each I ∈
(
[n]
2

)
, there exists a permutation ρI ∈ Σn−1 such that fI(b) = gσ(I)(bρI) for

all b ∈ An−1. Let a ∈ An. Since n > |A|, there exist b ∈ An−1 and I ∈
(
[n]
2

)
such that

a = bδI . Then g(a) = g(bδI) = gI(b) = fσ(I)(bρI) = α. Thus f = g, and we conclude
that f is reconstructible.

3.3 Further examples of reconstructible functions: functions
determined by supp and oddsupp

Following Berman and Kisielewicz [2], we define the maps supp:
⋃
n>1A

n → P(A) and
oddsupp:

⋃
n>1A

n → P(A) by the rules

supp(a1, . . . , an) = {a1, . . . , an},
oddsupp(a1, . . . , an) = {a ∈ A : |{i ∈ [n] : ai = a}| is odd}.

A function f : An → B is determined by supp, if there exists a map f ∗ : P(A) → B such
that f = f ∗ ◦ supp|An . Similarly, a function f : An → B is determined by oddsupp, if
there exists a map f ∗ : P(A)→ B such that f = f ∗ ◦ oddsupp|An .

Remark 3.4. Functions determined by supp or oddsupp are totally symmetric. Hence,
they depend on all of their arguments or on none of them.

Remark 3.5. For all a ∈ An−1 and for all I ∈
(
[n]
2

)
, we have that supp(a) = supp(aδI).

Remark 3.6. Let f : An → B. It is easy to verify that if f = f ∗ ◦ supp|An for some
f ∗ : P(A)→ B, then fI = f ∗◦supp|An−1 for all I ∈

(
[n]
2

)
. Also, if f = f ∗◦oddsupp|An , then

for all I ∈
(
[n]
2

)
, the (min I)-th argument of fI is inessential and fI ≡ f ∗ ◦ oddsupp|An−2 .

For n > 1, denote

P6n(A) := {S ⊆ A : |S| 6 n},
P ′n(A) := {S ⊆ A : |S| ∈ {n, n− 2, n− 4, . . . }}.

The range of supp|An equals P6n(A). Thus, only the restriction of f ∗ to P6n(A) is
relevant for the composition f ∗ ◦ supp|An , and f ∗ ◦ supp|An = g∗ ◦ supp|An if and only
if f ∗|P6n(A) = g∗|P6n(A). Similarly, the range of oddsupp|An equals P ′n(A). Thus, only
the restriction of f ∗ to P ′n(A) is relevant for the composition f ∗ ◦ oddsupp|An , and f ∗ ◦
oddsupp|An = g∗ ◦ oddsupp|An if and only if f ∗|P ′n(A) = g∗|P ′n(A).

Let us recall a useful result about functions determined by oddsupp from the paper
by Willard [35].
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Lemma 3.7 (Willard [35, Corollary 2.3]). Assume that n > max(|A|, 3) and f : An → B
depends on all of its arguments. If no identification minor of f depends on all of its
arguments, then f is determined by oddsupp.

The reconstructibility of functions determined by supp or oddsupp (of sufficiently large
arity) now follows almost immediately.

Proposition 3.8. Let f : An → B, and assume that n > |A| and f is determined by
supp. Then the function f is reconstructible.

Proof. Since functions determined by supp are totally symmetric, f depends either on all
of its arguments or on none of them. If f has no essential arguments, then it is constant
and hence it is reconstructible by Example 3.3. Assume thus that f depends on all of
its arguments. Then there exists a map f ∗ : P(A) → B such that f = f ∗ ◦ supp|An and
f ∗|P6n(A) is not a constant function. By Remark 3.6, fI = f ∗ ◦ supp|An−1 for all I ∈

(
[n]
2

)
.

Since n > |A|, we have that P6n−1(A) = P(A) = P6n(A); hence fI depends on all of its
n−1 arguments. Let g : An → B be a reconstruction of f . Then gI ≡ f ∗◦supp|An−1 for all
I ∈

(
[n]
2

)
. Since f ∗◦supp|An−1 is totally symmetric, we have in fact that gI = f ∗◦supp|An−1

for all I ∈
(
[n]
2

)
.

We claim that g = f . In order to prove this, let a ∈ An. Since n > |A|, there exist
b ∈ An−1 and I ∈

(
[n]
2

)
such that a = bδI . Then

g(a) = g(bδI) = gI(b) = f ∗(supp(b)) = f ∗(supp(bδI)) = f ∗(supp(a)) = f(a).

Thus g = f , and we conclude that f is reconstructible.

Proposition 3.9. Let f : An → B, and assume that n > max(|A|, 3) and f is determined
by oddsupp. Then the function f is reconstructible.

Proof. Functions determined by oddsupp are totally symmetric, so we can assume, as in
the proof of Proposition 3.8, that f depends on all of its arguments. Then there exists a
map f ∗ : P(A)→ B such that f = f ∗◦oddsupp|An and f ∗|P ′n(A) is not a constant function.

By Remark 3.6, for all I ∈
(
[n]
2

)
, fI has an inessential argument and fI ≡ f ∗◦oddsupp|An−2 .

Since n > |A|, it holds that P ′n−2(A) = P ′n(A). Consequently, f ∗|P ′n−2(A)
is not a constant

function, so f ∗ ◦ oddsupp|An−2 depends on all of its arguments. We conclude that fI has
exactly n− 2 essential arguments, for any I ∈

(
[n]
2

)
.

Let g : An → B be a reconstruction of f . We claim that g depends on all of its
arguments. Suppose, on the contrary, that g has an inessential argument, say, the i-th
argument is inessential in g. Let r be the number of essential arguments of g; it clearly
holds that 0 6 r 6 n − 1. If r 6= n − 2, then for j ∈ [n] \ {i}, we have g{i,j} ≡ g, and
g has an identification minor with r essential arguments, contradicting deck f = deck g.
Otherwise r = n− 2. Since n > 4, there are dictinct p, q ∈ [n] such that the p-th and the
q-th arguments are essential in g. Then g{p,q} depends on fewer than n − 2 arguments,
contradicting again deck f = deck g. We conclude that g depends on all of its arguments,
as claimed.
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Lemma 3.7 implies that g is determined by oddsupp. Thus, g = g∗ ◦ oddsupp|An for
some g : P(A)→ B. By Remark 3.6, gI ≡ g∗◦oddsupp|An−2 for all I ∈

(
[n]
2

)
. Then it holds

that f ∗ ◦ oddsupp|An−2 ≡ g∗ ◦ oddsupp|An−2 , because deck f = deck g. Since supp|An−1 is
totally symmetric, we have that f ∗ ◦ oddsupp|An−2 = g∗ ◦ oddsupp|An−2 , and Remark 3.6
implies that f ∗|P ′n−2(A)

= g∗|P ′n−2(A)
. As we have already observed, P ′n−2(A) = P ′n(A), and

it follows that f = f ∗|P ′n(A) ◦ oddsupp|An = g∗|P ′n(A) ◦ oddsupp|An = g. We conclude that
f is reconstructible.

We are going to extend these results in Section 5, in which we prove that all totally
symmetric functions of sufficiently large arity are reconstructible. Let us still note that
it follows from Remark 3.2 that in Proposition 3.8 the lower bound n > |A| is sharp, and
in Proposition 3.9 the condition n > |A| is necessary. The following example shows that
the lower bound n > 4 is sharp for |A| = 2 in Proposition 3.9.

Example 3.10. Let A = {0, 1}, let a, b, c, d ∈ B with b 6= c, and let f, g, h : A3 → B be
given by the following table.

x y z f(x, y, z) g(x, y, z) h(x, y, z)
0 0 0 a a a
0 0 1 b c b
0 1 0 b c b
0 1 1 c b b
1 0 0 b c c
1 0 1 c b c
1 1 0 c b c
1 1 1 d d d

Functions f and g are totally symmetric, but h is not totally symmetric and not even
2-set-transitive (see Section 4). These functions are pairwise nonequivalent. Furthermore,
if a = c and b = d, then f is determined by oddsupp (or if a = b and c = d, then g is
determined by oddsupp).

It is not difficult to verify that for all I ∈
(
[n]
2

)
, each one of fI , gI , and hI is equivalent

to the function (0, 0) 7→ a, (0, 1) 7→ b, (1, 0) 7→ c, (1, 1) 7→ d. Hence f , g, and h are
reconstructions of each other.

3.4 Examples of nonreconstructible functions

We present here a scheme for producing functions of arity |A| + 1 with a predetermined
deck of a special form. With a suitable choice of parameters, nonequivalent functions with
the same deck will arise.

Definition 3.11. Assume that n = k + 1, and let A be a set such that |A| = k. Let
g∗ : P(A) → B and let g : Ak → B, g = g∗ ◦ supp|Ak . Let G := (gI)

I∈([n]
2 ) be a family

of functions gI : Ak → B satisfying gI(a) = g(a) whenever supp(a) 6= A, and let P :=
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(ρI)I∈([n]
2 ) be a family of permutations from Σk. Let φ :

(
[n]
2

)
→
(
[n]
2

)
be a bijection. Define

fG,P,φ : An → B by the rule fG,P,φ(b) = gφ(I)(aρI) if b = aδI . This function is well defined,

because if supp(b) = A, then there is a unique a ∈ Ak and a unique I ∈
(
[n]
2

)
such that

b = aδI ; and if supp(b) 6= A, then for every a ∈ Ak and I ∈
(
[n]
2

)
satisfying b = aδI , we

have supp(a) = supp(b) 6= A and gφ(I)(aρI) = g∗(supp(aρI)) = g∗(supp(b)).

Lemma 3.12. For any family G := (gI)
I∈([n]

2 ) of functions, any family P := (ρI)I∈([n]
2 )

of permutations, and any bijection φ :
(
[n]
2

)
→
(
[n]
2

)
as in Definition 3.11, it holds that

(fG,P,φ)I ≡ gφ(I) for every I ∈
(
[n]
2

)
. Consequently, deck fG,P,φ = 〈gI/≡ : I ∈

(
[n]
2

)
〉.

Proof. It follows directly from the definitions that, for all a ∈ Ak,

(fG,P,φ)I(a) = fG,P,φ(aδI) = gφ(I)(aρI),

that is, (fG,P,φ)I ≡ gφ(I). The claim about deck fG,P,φ follows immediately.

Thus, for a fixed family G of functions and for families P and P ′ of permutations and
for bijections φ and φ′, the functions fG,P,φ and fG,P ′,φ′ are reconstructions of each other
but they are not necessarily equivalent. As the following example illustrates, it is indeed
possible that fG,P,φ 6≡ fG,P ′,φ′ for a suitable choice of G, P , P ′, φ, and φ′. Thus, the
answer to Question 3.1 is negative if n = |A|+ 1.

Example 3.13. Let n = k + 1, and let A and B be sets such that |A| = k and A ⊆ B,
and let β ∈ B. Define the functions f, f ′ : An → B by the rules

f(a) =

{
b, if supp(a) = A and b is an element of A that occurs twice in a,

β, otherwise,

f ′(a) =

{
a1, if supp(a) = A,

β, otherwise.

Note that f is well defined, because if supp(a) = A, then every element of A occurs in
a, and since n = |A| + 1, there exists a unique element of A that occurs twice in a. It
is easy to verify that f 6≡ f ′. To see this, note that if c and d are distinct elements of
A, then, on the one hand, there exists a tuple a ∈ An such that supp(a) = A, a has two
occurrences of c and f ′(a) = d, but, on the other hand, for every tuple b ∈ An such that
supp(b) = A and b has two occurrences of c, it holds that f(b) = c.

Let us now present parameters G, P , P ′, φ, φ′ that give rise to f and f ′ as fG,P,φ and
fG,P ′,φ′ , respectively, as in Definition 3.11. Let g∗ : P(A) → B be the constant map that

sends every S ∈ P(A) to β, and let g := g∗ ◦ supp|Ak . For every I ∈
(
[n]
2

)
, let gI : Ak → B

be the function

gI(a) =

{
a1, if supp(a) = A,

β, otherwise.
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We clearly have that gI satisfies the condition that gI(a) = g(a) whenever supp(a) 6= A.
For each I ∈

(
[n]
2

)
, let ρI be the identity permutation if min I = 1, and let ρI be the

transposition of 1 and min I if min I 6= 1; and let ρ′I be the identity permutation. Let both
φ and φ′ be equal to the identity map on

(
[n]
2

)
. Denote G := (gI)

I∈([n]
2 ), P := (ρI)I∈([n]

2 ),

and P ′ := (ρ′I)I∈([n]
2 ). We leave it to the reader to verify that indeed f = fG,P,φ and

f ′ = fG,P ′,φ′ . Thus, by Lemma 3.12, we have that fI ≡ gI ≡ f ′I for all I ∈
(
[n]
2

)
, so

deck f = deck f ′.
We conclude that f and f ′ are not reconstructible. Note also that the function f

is totally symmetric, but f ′ is not totally symmetric and not even 2-set-transitive (see
Section 4).

3.5 Examples of reconstructible parameters

Example 3.14. Let f : An → B. The diagonal of f is the map ∆f : A → B given by
∆f (a) = f(a, a, . . . , a) for all a ∈ A. It is easy to verify that the diagonal of every minor
of f equals ∆f . It follows that the diagonal is a reconstructible parameter of functions.

3.6 Examples of recognizable classes of functions

Let C ⊆ FAB be a class of functions, and let d and r be positive integers. Let S ⊆ (Ar)d

and T ⊆ Br. The couple (S, T ) is called a d-dimensional nonmembership witness scheme

for C, if it holds for every n > 1 and f ∈ F (n)
AB that f /∈ C if and only if there exists elements

aij ∈ A (1 6 i 6 r, 1 6 j 6 n) and a map ρ : [d]→ [n] such that a1j = a2j = · · · = arj for
every j ∈ [n] \ Im ρ and(

(a1ρ(1), a2ρ(1), . . . , arρ(1)), . . . , (a1ρ(d), a2ρ(d), . . . , arρ(d))
)
∈ S,(

f(a11, a12, . . . , a1n), . . . , f(ar1, ar2, . . . , arn)
)
∈ T.

Proposition 3.15. Assume that C ⊆ FAB is a class of functions that is closed under
formation of minors and there exists a d-dimensional nonmembership witness scheme
(S, T ) for C. Then the class D :=

⋃
n>d+|A|+1 C(n) is recognizable.

Proof. Let f : An → B with n > d + |A| + 1. We claim that fI ∈ C for every I ∈
(
[n]
2

)
if

and only if f ∈ C. The sufficiency is clear, because C is closed under formation of minors.
For necessity, assume that f /∈ C. Then there exist a positive integer r and elements
aij ∈ A (1 6 i 6 r, 1 6 j 6 n) such that a1j = a2j = · · · = arj for every j ∈ [n] \ Im ρ and(

(a1ρ(1), a2ρ(1), . . . , arρ(1)), . . . , (a1ρ(d), a2ρ(d), . . . , arρ(d))
)
∈ S,(

f(a11, a12, . . . , a1n), . . . , f(ar1, ar2, . . . , arn)
)
∈ T.

Since n − d > |A| + 1, there exist indices p, q ∈ [n] \ Im ρ such that a1p = a1q. Set
J := {p, q}, and let bij ∈ A (1 6 i 6 r, 1 6 j 6 n− 1) be the unique elements such that
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aij = bi,δJ (j) for all 1 6 i 6 r, 1 6 j 6 n, and let τ = δJ ◦ρ. Then bi,τ(`) = bi,δJ (ρ(`)) = ai,ρ(`),
and it is easy to verify that b1j = b2j = · · · = brj for every j ∈ [n− 1] \ Im τ and(

(b1τ(1), b2τ(1), . . . , brτ(1)), . . . , (b1τ(d), b2τ(d), . . . , brτ(d))
)
∈ S,

(fJ(b11, b12, . . . , b1,n−1), . . . , fJ(br1, br2, . . . , br,n−1)) ∈ T.

Thus, fJ /∈ C, because (S, T ) is a nonmembership witness scheme for C.
This implies that every reconstruction of every member of D is again a member of D,

that is, D is recognizable.

Example 3.16. Let (A;6A) and (B;6B) be partially ordered sets. A function f : An →
B is order-preserving if for all a,b ∈ An, the condition a 6A b (i.e., ai 6A bi for all i ∈ [n])
implies f(a) 6B f(b). We claim that (6A, B2 \ 6B) is a 1-dimensional nonmembership
witness scheme for the class of order-preserving functions from A to B. Consequently,
by Proposition 3.15, the class of order-preserving functions from A to B of arity at least
|A|+ 2 is recognizable.

In order to prove the claim, observe first that if f : An → B is order-preserving, then
for all aij (1 6 i 6 2, 1 6 j 6 n) and for every ρ : [1] → [n] such that a1j = a2j for all
j ∈ [n] \ Im ρ and a1ρ(1) 6A a2ρ(2), we have that (a11, . . . , a1n) 6A (a2n, . . . , a2n); hence
f(a11, . . . , a1n) 6B f(a21, . . . , a2n).

If f : An → B is not order-preserving, then there exist tuples a,b ∈ An such that
a 6A b and f(a) 66B f(b). Consider the sequence

c1 := (a1, a2, a3, . . . , an) = a,

c2 := (b1, a2, a3, . . . , an),

c3 := (b1, b2, a3, . . . , an),

...

cn := (b1, . . . , bn−1, an),

cn+1 := (b1, . . . , bn−1, bn) = b.

It holds that c` 6A c`+1 for all ` ∈ [n]. There exists an index s ∈ [n] such that f(cs) 66B
f(cs+1) (otherwise we would have f(a) 6B f(b) by the transitivity of6B, a contradiction).
Choosing aij := cs−i+1(j) (1 6 i 6 2, 1 6 j 6 n) and ρ : [1] → [n], 1 7→ s, the desired
conditions for a nonmembership witness scheme are satisfied.

4 On 2-set-transitivity and unique identification mi-

nors

In this section, we will prove an auxiliary result (Proposition 4.3) that is needed for
the investigation of reconstructibility of totally symmetric functions in Section 5. The
proposition will be formulated a bit more generally than is needed for our current appli-
cation, and it asserts that the identification minors of any 2-set-transitive function are all
equivalent to each other.
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We denote the symmetric group on [n] by Σn. A function f : An → B is invariant
under a permutation σ ∈ Σn, if for all a ∈ An it holds that f(a) = f(aσ). Let Inv f
denote the set of permutations of [n] under which f is invariant. Clearly every function is
invariant under the identity permutation. If f is invariant under σ and σ′, then f is also
invariant under σ−1 and σσ′. Hence Inv f constitutes a subgroup of Σn, and it is called
the invariance group of f . Note that Inv f = Σn if and only if f is totally symmetric.

A permutation group G 6 Σn is called 2-set-transitive if for all a1, a2, b1, b2 ∈ [n] such
that a1 6= a2 and b1 6= b2, there exists a permutation σ ∈ G such that {σ(a1), σ(a2)} =
{b1, b2}. A function f : An → B is 2-set-transitive if the invariance group of f is 2-set-
transitive. It is clear that totally symmetric functions are 2-set-transitive.

For I ∈
(
[n]
2

)
and σ ∈ Σn, we write Iσ := {σ(i) : i ∈ I}.

Lemma 4.1. Let σ ∈ Σn and I ∈
(
[n]
2

)
. Then there exists a permutation σ̂ ∈ Σn−1 that

satisfies σ̂ ◦ δIσ−1 = δI ◦ σ and σ̂(min Iσ−1) = min I.

Proof. Observe first that for any J ∈ Σn, the restriction of δJ to the set [n] \ {max J}
is a bijection. Define the map βJ : [n− 1] → [n] as βJ(`) = ((δJ)|[n]\{max J})

−1(`) for
all ` ∈ [n− 1]. In other words, βJ is obtained from ((δJ)|[n]\{max J})

−1 by extending the
codomain; both maps are given by the rule ` 7→ ` for 1 6 ` < max J and ` 7→ ` + 1
for max J 6 ` 6 n − 1. Then βJ ◦ δJ : [n] → [n] is the map ` 7→ ` for ` 6= max J and
max J 7→ min J .

Let σ ∈ Σn and I ∈
(
[n]
2

)
. We have that (δI ◦ σ)(σ−1(min I)) = (δI ◦ σ)(σ−1(max I)) =

min I. Based on the above observations, it is easy to see that σ̂ := δI ◦ σ ◦ βIσ−1 is a
permutation of [n− 1]. Furthermore, σ̂ ◦ δIσ−1 = δI ◦ σ ◦ βIσ−1 ◦ δIσ−1 = δI ◦ σ.

Finally, observe that σ̂(min Iσ−1) = δ(σ(βIσ−1(min Iσ−1))) = δI(σ(min Iσ−1)). Since
σ(min Iσ−1) ∈ I and δI maps both elements of I to min I, we have that δI(σ(min Iσ−1)) =
min I.

Lemma 4.2. Assume that f : An → B is invariant under a permutation σ ∈ Σn. Then
fI ≡ fIσ for all I ∈

(
n
2

)
.

Proof. Let σ ∈ Inv f and I ∈
(
[n]
2

)
. Let σ̂ be the permutation of [n− 1] given by

Lemma 4.1. We have that for all a ∈ An−1,

fI(a) = f(aδI) = f(aδIσ) = f(aσ̂δIσ−1) = fIσ−1(aσ̂).

The first and the last equalities hold by the definition of identification minor. The second
equality holds because f is invariant under σ. The third equality holds by Lemma 4.1.
We conclude that fI ≡ fIσ−1 , whence the claim follows.

Proposition 4.3. If f : An → B is 2-set-transitive, then fI ≡ fJ for all I, J ∈
(
[n]
2

)
.

Proof. Let I, J ∈
(
[n]
2

)
. By the 2-set-transitivity of f , there exists a permutation σ ∈ Inv f

such that Iσ = J . Lemma 4.2 implies that fI ≡ fJ .
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These observations naturally lead to the following definition and problem that are of
interest on their own right, even outside of the context of the reconstruction problem for
functions. We say that a function f : An → B has a unique identification minor if fI ≡ fJ
for all I, J ∈

(
[n]
2

)
.

Problem 4.4. Characterize the functions that have a unique identification minor.

To the best of the author’s knowledge, this is an open problem. By Proposition 4.3,
the 2-set-transitive functions have a unique identification minor. There exist functions
with a unique identification minor that are not 2-set-transitive, e.g., the function h of
Example 3.10 and the function f ′ of Example 3.13.

Problem 4.4 was raised also by Bouaziz, Couceiro and Pouzet (see Problem 2(ii) in [6]).
They considered the closely related problem of characterizing join-irreducible functions,
i.e., functions with a unique lower cover in the minor partial order. Having a unique
identification minor is a stronger condition than join-irreducibility. Indeed, if a function
f has a unique identification minor, then this unique minor is obviously the unique lower
cover of f . The following example illustrates that these two conditions are not equivalent.

Example 4.5. Let (A;∧,∨) be a lattice. Define the function f : A4 → A by the rule

f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x3 ∧ x4).

It is easy to verify that the identification minors of f are

f{1,2} = f{1,3} = f{1,4} = pr
(3)
1 , f{2,3} = f{2,4} = f{3,4} = µ,

where µ : A3 → A is given by

µ(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

Note also that µI is a projection for all I ∈
(
[3]
2

)
. This shows that f has a unique lower

cover in the minor partial order, i.e., f is join-irreducible. It is obvious that f does not
have a unique identification minor.

In [6], Bouaziz, Couceiro and Pouzet represent each Boolean function f : {0, 1}n →
{0, 1} by a hypergraph on [n] whose edges correspond to the monomials of the unique
multilinear polynomial over the two-element field representing f (further details are pro-
vided in Section 6), and they describe the join-irreducible functions among those Boolean
functions whose representation is a Steiner system or a graph. A noteworthy result (The-
orem 21 in [6]) is that for the Boolean functions whose hypergraph representation is a
Steiner system, join-irreducibility is equivalent to having a unique identification minor,
and both conditions are equivalent to −2-monomorphicity of the Steiner system.
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5 Totally symmetric functions are reconstructible

We now focus on totally symmetric functions. Our main result, Theorem 5.1, asserts
that totally symmetric functions f : An → B are reconstructible, provided n > |A| + 2.
This generalizes Propositions 3.8 and 3.9 except when n = |A| + 1. We also show that
totally symmetric functions f : An → B are weakly reconstructible if n > max(|A|, 3)
(Proposition 5.2). The lower bound of Theorem 5.1 is sharp: in Example 3.13 we have
already seen totally symmetric functions of arity n = |A|+ 1 that are not reconstructible.
Example 3.10 shows that the lower bound of Proposition 5.2 is sharp when |A| = 2.

Let ms:
⋃
n>1A

n → M(A) be the map that sends each tuple to the multiset of its
entries, i.e., ms(a1, . . . , an) = 〈a1, . . . , an〉 for every (a1, . . . , an) ∈ An (n > 1). It is easy
to verify that a function f : An → B is totally symmetric if and only if f = f ∗ ◦ms|An for
some f ∗ : Mn(A)→ B.

Before stating the result, let us introduce a notational device that will be used many
times in the sequel. We write expressions such as

(. . . ,

i
↓
a, . . . ,

j

↓
b, . . . ) or (a1, . . . ,

i
↓
a, . . . ,

j

↓
b, . . . , an)

to denote an n-tuple whose i-th component is a and the j-th component is b. The
remaining components are irrelevant to the argument at hand and they are clear from the
context. The indices i and j are always distinct and they may be equal to 1 or n, but it
does not necessarily hold that i < j; however, if it is known that i < j, then we usually
write the i-th component to the left of the j-th one. Also, whenever possible, we write
components indexed by i and i+ 1 next to each other, and we write components indexed
by 1 or n at the beginning and at the end of the tuple, respectively, as in the following:

(. . . ,

i
↓
a,

i+1
↓
b, . . . ,

`
↓
c, . . . ,

n
↓
d).

Theorem 5.1. Assume that n > k + 2 and |A| = k. If f : An → B is totally symmetric,
then f is reconstructible.

Proof. Since f is totally symmetric, there exists a map f ∗ : Mn(A) → B such that f =
f ∗ ◦ms|An . Let h : An−1 → B be the function given by the rule h(b) = f ∗(ms(b) ] 〈b1〉)
for all b ∈ An−1. Then for every I ∈

(
[n]
2

)
, it holds that fI ≡ h. This innocent-looking fact

will be crucial for the proof and justifies the formalism that we are going to build. Let
g : An → B be a reconstruction of f . Then for every I ∈

(
[n]
2

)
, it holds that gI ≡ h and

hence there exists a permutation ρI ∈ Σn−1 such that gI(b) = h(bρI) for all b ∈ An−1.
Let qI := min δ−1I (ρI(1)).

Let a ∈ An. Since n > k + 2, there exist I ∈
(
[n]
2

)
and b ∈ An−1 such that a = bδI . It

holds that g(a) = g(bδI) = gI(b) = h(bρI) = f ∗(ms(bρI) ] 〈bρI(1)〉). Since ai = bδI(i) for

every i ∈ [n] and δI(qI) = ρI(1), we have bρI(1) = aqI . Therefore, for any I ∈
(
[n]
2

)
and for

every a ∈ An such that amin I = amax I , it holds that

g(a) = f ∗(ms(a) \ 〈amax I〉 ] 〈aqI 〉). (2)
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In the sequel, we write “
(2)
=
J

” for some J ∈
(
[n]
2

)
to indicate that the equality in question

holds by Equation (2) with I = J .

Claim 5.1.1. If there exist I, J ∈
(
[n]
2

)
such that I ∩ J = ∅ and qI /∈ I and qJ /∈ J , then

f ∗(S) = f ∗(T ) for all S, T ∈Mn(A) such that set(S) = set(T ).

Proof of Claim 5.1.1. Let I = {i, j}, J = {p, q}, and assume that I ∩ J = ∅ and qI /∈ I
and qJ /∈ J . We split the analysis into several cases.

Case 1: qI , qJ /∈ I ∪ J , qI 6= qJ . In this case n > 6. We have for any α, β, γ, δ ∈ A and
for any u ∈ An−6 that

f ∗(〈α, α, β, γ, δ, δ〉 ]ms(u))
(2)
=
I
g(

qI
↓
α,

i
↓
β,

j

↓
β,

qJ
↓
γ,

p

↓
δ,

q

↓
δ,u)

(2)
=
J
f ∗(〈α, β, β, γ, γ, δ〉 ]ms(u)).

Let K = {qI , qJ}. If qK ∈ K, then for any α, β, γ, δ ∈ A and for any u ∈ An−6,

f ∗(〈α, α, α, β, γ, δ〉 ]ms(u))
(2)
=
I
g(

qI
↓
α,

i
↓
δ,

j

↓
δ,

qJ
↓
α,

p

↓
β,

q

↓
γ,u)

(2)
=
K

f ∗(〈α, α, β, γ, δ, δ〉 ]ms(u)) = f ∗(〈α, β, β, γ, γ, δ〉 ]ms(u)).

If qK /∈ K ∪ I, then for any α, β, γ ∈ A and for any u ∈ An−5,

f ∗(〈α, α, α, β, γ〉 ]ms(u))
(2)
=
I
g(

qI
↓
α,

i
↓
β,

j

↓
β,

qJ
↓
α,

qK
↓
γ,u)

(2)
=
K
f ∗(〈α, β, β, γ, γ〉 ]ms(u)).

If qK /∈ K ∪ J , then for any α, β, γ ∈ A and for any u ∈ An−5,

f ∗(〈α, α, α, β, γ〉 ]ms(u))
(2)
=
J
g(

qI
↓
α,

qJ
↓
α,

p

↓
β,

q

↓
β,

qK
↓
γ,u)

(2)
=
K
f ∗(〈α, β, β, γ, γ〉 ]ms(u)).

Thus, for all α, β, γ, δ ∈ A and for all u ∈ An−6, it holds that

f ∗(〈α, α, α, β, γ, δ〉 ]ms(u)) = f ∗(〈α, α, β, γ, δ, δ〉 ]ms(u)) =

f ∗(〈α, β, β, γ, γ, δ〉 ]ms(u)). (3)

Let S ∈ Mn(A), let E := set(S), and fix an element e ∈ E. Let F be the multiset on A
given by the multiplicity function

1F (x) =


|E| − n+ 1, if x = e,

1, if x ∈ E \ {e},
0, if x /∈ E.

We will construct a sequence S = S0, S1, . . . , Sr = F (r > 1) of multisets in Mn(A) that
satisfy f ∗(Si) = f ∗(Si−1) for all i ∈ [r]. Let S0 := S, and define S1 by the following rules.
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• If 1S(e) > 1, then let S1 := S0. In this case obviously f ∗(S0) = f ∗(S1).

• If 1S(e) = 1 and there exists a ∈ A such that 1S(a) > 3, then let S1 := S0]〈e〉 \ 〈a〉.
Then f ∗(S0) = f ∗(S1) by (3) (take α = a and δ = e, and consider the first and
second expression in (3)).

• Otherwise we have that 1S(e) = 1 and, since n > |A| + 2, there exist distinct
elements a or b of A such that 1S(a) = 1S(b) = 2. Let S1 := S0 ] 〈e, e〉 \ 〈a, b〉. Then
f ∗(S0) = f ∗(S1) by (3) (take α = e, β = a, and γ = b, and consider the first and
third expression in (3)).

Thus S1 is a multiset with 1S1(e) > 1. We proceed by the following recursion.

• If i > 1 and there exists a ∈ A such that 1Si(a) > 1 and a 6= e, then let Si+1 :=
Si ] 〈e〉 \ 〈a〉. Then f ∗(Si) = f ∗(Si+1) by (3) (take α = e and δ = a, and consider
the first and second expression in (3)). Furthermore, 1Si+1

(e) > 1, and we can apply
the recursive step again.

• Otherwise Si = U , and we let r := i and stop the recursion.

The recursion will stop after a finite number of steps, and we have that f ∗(S) = f ∗(S0) =
f ∗(S1) = · · · = f ∗(Sr) = f ∗(F ). We conclude that if S, T ∈ MN(A) are multisets such
that set(S) = set(T ), then we have f ∗(S) = f ∗(F ) = f ∗(T ), as claimed.

Case 2: qI , qJ /∈ I ∪ J , qI = qJ . In this case n > 5. We have for any α, β, γ ∈ A and
for any u ∈ An−5 that

f ∗(〈α, α, β, γ, γ〉 ]ms(u))
(2)
=
I
g(

qI=qJ
↓
α,

i
↓
β,

j

↓
β,

p

↓
γ,

q

↓
γ,u)

(2)
=
J
f ∗(〈α, α, β, β, γ〉 ]ms(u)).

Let K = {qI , p}. If qK ∈ K, then for all α, β ∈ A and for all u ∈ An−4,

f ∗(〈α, α, α, β〉 ]ms(u))
(2)
=
I
g(

qI
↓
α,

i
↓
β,

j

↓
β,

p

↓
α,u)

(2)
=
K
f ∗(〈α, α, β, β〉 ]ms(u)).

If qK /∈ J ∪K, then for all α, β ∈ A and for all u ∈ An−4,

f ∗(〈α, α, α, β〉 ]ms(u))
(2)
=
J
g(

qI
↓
α,

p

↓
α,

q

↓
α,

qK
↓
β,u)

(2)
=
K
f ∗(〈α, α, β, β〉 ]ms(u)).

If qK /∈ I ∪K, then for all α, β, γ ∈ A and for all u ∈ An−5,

f ∗(〈α, α, α, β, γ〉 ]ms(u))
(2)
=
I
g(

qI
↓
α,

i
↓
β,

j

↓
β,

p

↓
α,

qK
↓
γ,u)

(2)
=
K
f ∗(〈α, β, β, γ, γ〉 ]ms(u)).

Thus, for all α, β, γ ∈ A and for all u ∈ An−5, it holds that

f ∗(〈α, α, α, β, γ〉 ]ms(u)) = f ∗(〈α, α, β, β, γ〉 ]ms(u)) =

f ∗(〈α, α, β, γ, γ〉 ]ms(u)) = f ∗(〈α, β, β, γ, γ〉 ]ms(u)).

Proceeding in a similar way as in Case 1, we can show that the above identities imply
that f ∗(S) = f ∗(T ) for all S, T ∈Mn(A) such that set(S) = set(T ).

the electronic journal of combinatorics 21(2) (2014), #P2.6 17



Case 3: qI /∈ I ∪ J , qJ ∈ I. In this case n > 5. We have for any α, β, γ ∈ A and for
any u ∈ An−5 that

f ∗(〈α, α, β, γ, γ〉 ]ms(u))
(2)
=
I
g(

qI
↓
α,

i
↓
β,

j

↓
β,

p

↓
γ,

q

↓
γ,u)

(2)
=
J
f ∗(〈α, β, β, β, γ〉 ]ms(u)).

Let K = {qI , p}. If qK ∈ K, then for all α, β, γ ∈ A and for all u ∈ An−5,

f ∗(〈α, α, α, β, γ〉 ]ms(u))
(2)
=
I
g(

qI
↓
α,

i
↓
β,

j

↓
β,

p

↓
α,

q

↓
γ,u)

(2)
=
K
f ∗(〈α, α, β, β, γ〉 ]ms(u)).

If qK ∈ I, then for all α, β, γ ∈ A and for all u ∈ An−5,

f ∗(〈α, α, α, β, γ〉 ]ms(u))
(2)
=
I
g(

qI
↓
α,

i
↓
β,

j

↓
β,

p

↓
α,

q

↓
γ,u)

(2)
=
K
f ∗(〈α, β, β, β, γ〉 ]ms(u)).

If qK = q, then for all α, β, γ ∈ A and for all u ∈ An−5,

f ∗(〈α, α, β, γ, γ〉 ]ms(u))
(2)
=
J
g(

qI
↓
α,

i
↓
β,

j

↓
γ,

p

↓
α,

q

↓
α,u)

(2)
=
K
f ∗(〈α, α, α, β, γ〉 ]ms(u)).

If qK /∈ I ∪ J ∪ {qI}, then for all α, β, γ ∈ A and for all u ∈ An−5,

f ∗(〈α, α, β, β, γ〉 ]ms(u))
(2)
=
J
g(

qI
↓
α,

qJ
↓
β,

p

↓
α,

q

↓
α,

qK
↓
γ,u)

(2)
=
K
f ∗(〈α, α, β, γ, γ〉 ]ms(u)).

Thus, for all α, β, γ ∈ A and for all u ∈ An−5, it holds that

f ∗(〈α, α, α, β, γ〉 ]ms(u)) = f ∗(〈α, β, β, β, γ〉 ]ms(u)) =

f ∗(〈α, β, γ, γ, γ〉 ]ms(u)) = f ∗(〈α, α, β, β, γ〉 ]ms(u)) =

f ∗(〈α, α, β, γ, γ〉 ]ms(u)) = f ∗(〈α, β, β, γ, γ〉 ]ms(u)).

As in the previous cases, we can show that f ∗(S) = f ∗(T ) for all S, T ∈Mn(A) such that
set(S) = set(T ).

Case 4: qI ∈ J , qJ ∈ I. Without loss of generality, we may assume that qI = p and
qJ = j. We have for any α, β ∈ A and for any u ∈ An−4,

f ∗(〈α, β, β, β〉 ]ms(u))
(2)
=
I
g(

i
↓
α,

j

↓
α,

p

↓
β,

q

↓
β,u)

(2)
=
J
f ∗(〈α, α, α, β〉 ]ms(u)).

Let K = {i, q}. If qK ∈ {i, j, q}, then for all α, β ∈ A and for all u ∈ An−4,

f ∗(〈α, α, β, β〉 ]ms(u))
(2)
=
I
g(

i
↓
α,

j

↓
α,

p

↓
β,

q

↓
α,u)

(2)
=
K
f ∗(〈α, α, α, β〉 ]ms(u)).
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If qK ∈ {i, p, q}, then for all α, β ∈ A and for all u ∈ An−4,

f ∗(〈α, α, β, β〉 ]ms(u))
(2)
=
J
g(

i
↓
α,

j

↓
β,

p

↓
α,

q

↓
α,u)

(2)
=
K
f ∗(〈α, α, α, β〉 ]ms(u)).

If qK /∈ {i, j, p, q}, then n > 5. Let L = {qK , i}. If qL ∈ {qK , i, j}, then for all α, β, γ ∈ A
and for all u ∈ An−5,

f ∗(〈α, α, β, β, γ〉 ]ms(u))
(2)
=
I
g(

qK
↓
α,

i
↓
α,

j

↓
α,

p

↓
β,

q

↓
γ,u)

(2)
=
L
f ∗(〈α, α, α, β, γ〉 ]ms(u)).

If qL ∈ {p, q}, then for all α, β, γ ∈ A and for all u ∈ An−5,

f ∗(〈α, α, β, β, γ〉 ]ms(u))
(2)
=
J
g(

qK
↓
α,

i
↓
α,

j

↓
β,

p

↓
γ,

q

↓
γ,u)

(2)
=
L
f ∗(〈α, β, γ, γ, γ〉 ]ms(u)).

If qL /∈ {i, j, p, q}, then for all α, β ∈ A and for all u ∈ An−4,

f ∗(〈α, α, α, β〉 ]ms(u))
(2)
=
K
g(

qK
↓
α,

i
↓
α,

q

↓
α,

qL
↓
γ,u)

(2)
=
L
f ∗(〈α, α, β, β〉 ]ms(u)).

Thus, for all α, β ∈ A and for all u ∈ An−4, it holds that

f ∗(〈α, α, α, β〉 ]ms(u)) = f ∗(〈α, α, β, β〉 ]ms(u)) = f ∗(〈α, β, β, β〉 ]ms(u)).

As in the previous cases, we can show that f ∗(S) = f ∗(T ) for all S, T ∈Mn(A) such that
set(S) = set(T ).

Cases 1–4 exhaust all possibilities, and the proof of the claim is complete. �

Claim 5.1.2. If there exist I, J ∈
(
[n]
2

)
such that I ∩ J = ∅ and qI , qJ ∈ J , then f ∗(S) =

f ∗(T ) for all S, T ∈Mn(A) such that set(S) = set(T ).

Proof of Claim 5.1.2. Let I = {i, j}, J = {p, q}, and assume that I∩J = ∅ and qI , qJ ∈ J .
Then for any α, β ∈ A and for any u ∈ An−4 we have

f ∗(〈α, β, β, β〉 ]ms(u))
(2)
=
I
g(

i
↓
α,

j

↓
α,

p

↓
β,

q

↓
β,u)

(2)
=
J
f ∗(〈α, α, β, β〉 ]ms(u)).

Proceeding as we did in the proof of Claim 5.1.1, we can show that f ∗(S) = f ∗(T ) for all
S, T ∈Mn(A) such that set(S) = set(T ). �

Claim 5.1.3. If there exists I ∈
(
[n]
2

)
such that qI /∈ I, then f ∗(S) = f ∗(T ) for all

S, T ∈Mn(A) such that set(S) = set(T ).

Proof of Claim 5.1.3. Assume that I ∈
(
[n]
2

)
is such that qI /∈ I. Since n > 4, there exists

p ∈ [n] \ (I ∪ {qI}). Let J = {p, qI}. Depending on whether qJ /∈ J or qJ ∈ J , either
Claim 5.1.1 or Claim 5.1.2 implies that f ∗(S) = f ∗(T ) for all S, T ∈ Mn(A) such that
set(S) = set(T ). �
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(Proof of Theorem 5.1 continued) If there exists I ∈
(
[n]
2

)
such that qI /∈ I, then by

Claim 5.1.3, we have that f ∗(S) = f ∗(T ) for all S, T ∈Mn(A) such that set(S) = set(T ).
Then f is determined by supp, and it is reconstructible by Proposition 3.8. Otherwise
qI ∈ I for all I ∈

(
[n]
2

)
, and we have for every a ∈ An that if amin I = amax I for some

I ∈
(
[n]
2

)
, then aqI = amin I = amax I . Then Equation (2) yields g(a) = f ∗(ms(a)\〈amax I〉]

〈aqI 〉) = f ∗(ms(a)) for all a ∈ An, i.e., g = f . We conclude that f is reconstructible.

Proposition 5.2. Assume that n > max(k, 3) and f, g : An → B are totally symmetric.
If deck f = deck g, then f = g.

Proof. Proposition 4.3 and the assumption that deck f = deck g imply that fI ≡ gJ for
all I, J ∈

(
[n]
2

)
. In particular, setting N := {n − 1, n}, we have that fN ≡ gN ; hence

there exists a permutation τ ∈ Σn−1 such that fN(a) = gN(aτ) for all a ∈ An−1. By the
definition of identification minor, we have

f(aδN) = fN(a) = gN(aτ) = g(aτδN) (4)

for all a ∈ An−1.
We want to show that f = g, that is f(a) = g(a) for all a ∈ An. Let a ∈ An be

arbitrary. Since n > k, there is an element α ∈ A that has at least two occurrences in a.
By the total symmetry of f and g, we may assume that the last two components of a are
equal to α, i.e., an−1 = an = α. Let b be the (n− 1)-tuple that is obtained by removing
the last entry from a. We clearly have a = bδN .

We need to distinguish between two cases depending on whether τ(n − 1) = n − 1
or not. Consider first the case that τ(n − 1) = n − 1. By Equation (4) and the total
symmetry (TS) of g we have

f(a) = f(bδN)
(4)
= g(bτδN)

TS
= g(a).

Consider then the case that τ(n−1) = r 6= n−1. Fix an element s of [n− 1]\{r, n−1};
this set is nonempty since n > 3. Let β := ar, γ := as. Repeated applications of (4) and
the total symmetry of f and g yield

f(a) = f(a1, . . . ,

r
↓
β, . . . ,

s
↓
γ, . . . , an−2,

n−1
↓
α,

n
↓
α)

(4)
= g(aτ(1), . . . ,

τ−1(n−1)

↓
α, . . . ,

τ−1(s)

↓
γ, . . . , aτ(n−2),

n−1
↓
β,

n
↓
β)

TS
= g(aτ(1), . . . ,

τ−1(n−1)

↓
γ, . . . ,

τ−1(s)

↓
α, . . . , aτ(n−2),

n−1
↓
β,

n
↓
β)

(4)
= f(a1, . . . ,

r
↓
β, . . . ,

s
↓
α, . . . , an−2,

n−1
↓
γ,

n
↓
γ)

TS
= f(a1, . . . ,

r
↓
α, . . . ,

s
↓
β, . . . , an−2,

n−1
↓
γ,

n
↓
γ)

(4)
= g(aτ(1), . . . ,

τ−1(n−1)

↓
γ, . . . ,

τ−1(s)

↓
β, . . . , aτ(n−2),

n−1
↓
α,

n
↓
α)

TS
= g(a1, . . . ,

r
↓
β, . . . ,

s
↓
γ, . . . , an−2,

n−1
↓
α,

n
↓
α) = g(a).

This shows that f(a) = g(a) for all a ∈ An, i.e., f = g.
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6 Reconstruction problems for hypergraphs

We conclude this paper with a brief discussion of how our reconstruction problem for
functions and identification minors can be interpreted in terms of hypergraphs. In the
special case of Boolean functions, the problem translates straightforwardly into certain
reconstruction problems for hypergraphs.

The n-ary Boolean functions are in one-to-one correspondence with the hypergraphs
with vertex set [n]. Perhaps the most natural correspondence is obtained by associating
to each n-ary Boolean function f a hypergraph on [n] whose edges correspond to the
true points of f . In precise terms, for a Boolean function f : {0, 1}n → {0, 1}, define
the hypergraph Gtrue

f = (Vf , E
true
f ), where Vf := [n] and for every S ⊆ Vf it holds that

S ∈ Etrue
f if and only if f(eS) = 1. Here eS denotes the characteristic tuple of S ⊆ [n],

i.e., the unique n-tuple (e1, . . . , en) ∈ {0, 1}n satisfying ei = 1 if and only if i ∈ S.
For a hypergraph G = (V,E) with V = [n] and for I ∈

(
[n]
2

)
, define the hypergraph

G−I = (V −I , E
−
I ) with V −I = [n] \ I ∪ {v}, where v is a new element not in [n], and

E−I := {S : S ∈ E, S ∩ I = ∅} ∪ {S \ I ∪ {v} : S ∈ E, I ⊆ S}.

In other words, if I = {i, j}, then the operation of forming G−I from G performs the
following: vertices i and j are contracted into a new vertex v, every edge that contains i
or j but not both is deleted, and each edge S that contains both i and j is replaced by
S \ I ∪ {v}.

We can now define the deck of a hypergraph G on vertex set [n] as the multiset
〈G−I /∼= : I ∈

(
[n]
2

)
〉 of isomorphism types of the hypergraphs G−I . It is straightforward to

verify that Gtrue
fI

is isomorphic to (Gtrue
f )−I for any Boolean function f : {0, 1}n → {0, 1}

and for any I ∈
(
[n]
2

)
. Therefore, the reconstruction problem for hypergraphs G and

derived hypergraphs G−I is essentially the same as the reconstruction problem for Boolean
functions and identification minors.

Another natural translation between Boolean functions and hypergraphs was proposed
by Bouaziz, Couceiro and Pouzet in [6]. It is well known that every Boolean function is
represented by a unique multilinear polynomial over the two-element field GF(2), i.e., a
polynomial in which each variable in each monomial has degree at most one (see Reed [31],
Muller [27] or Zhegalkin [36]). We can then associate to each n-ary Boolean function f a
hypergraph on [n] whose edges correspond to the monomials of the polynomial represen-
tation of f . In precise terms, if f : {0, 1}n → {0, 1} is given by

f(x1, . . . , xn) =
∑
S∈S

∏
i∈S

xi

for some S ⊆ P([n]) (such a set system S exists and is unique), then we define the
hypergraph Gpoly

f = (Vf , E
poly
f ) with Vf := [n] and Epoly

f := S.

For a hypergraph G = (V,E) with V = [n] and for I ∈
(
[n]
2

)
, define the hypergraph

G+
I = (V +

I , E
+
I ) with V +

I = [n] \ I ∪{v}, where v is a new element not in [n], and for each
S ⊆ V +

I , we have S ∈ E+
I if and only if either
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(i) v /∈ S and S ∈ E, or
(ii) v ∈ S and |{T ∈ E : T ∩ I 6= ∅ & T \ I = S \ {v}}| is odd.

In other words, if I = {i, j}, then the operation of forming G+
I from G performs the

following: vertices i and j are contracted into a new vertex v, edges containing i or j are
deleted, and for each S ⊆ V \ I, the set S ∪ {v} is taken as an edge of G+

I if and only if
exactly one or three of the sets S ∪ {i}, S ∪ {j} and S ∪ {i, j} are edges of G.

We can now define the deck of a hypergraph G on vertex set [n] as the multiset
〈G+

I /
∼= : I ∈

(
[n]
2

)
〉 of isomorphism types of the hypergraphs G+

I . It is easy to verify,

and it was shown in [6], that Gpoly
fI

is isomorphic to (Gpoly
f )+I for any Boolean function

f : {0, 1}n → {0, 1} and for any I ∈
(
[n]
2

)
. Therefore, the reconstruction problem for

hypergraphs G and derived hypergraphs G+
I is essentially the same as the reconstruction

problem for Boolean functions and identification minors.
The two reconstruction problems for hypergraphs described above do not seem to be

related to the reconstruction problems for graphs or hypergraphs that were mentioned in
Section 1, because the cards are formed in rather different ways. They might, however,
be of interest on their own right, due to the connection to the reconstruction problem
for functions and identification minors. It would perhaps be worthwhile investigating
the reconstructibility of some subclasses of hypergraphs. A particularly important and
natural subclass of hypergraphs is that of graphs.

Problem 6.1. Which graphs G on [n] are uniquely determined, up to isomorphism, by
the deck 〈G−I /∼= : I ∈

(
[n]
2

)
〉? Which ones are determined by the deck 〈G+

I /
∼= : I ∈

(
[n]
2

)
〉?

Acknowledgments

I would like to thank Miguel Couceiro, Karsten Schölzel, and Tamás Waldhauser for many
inspiring discussions on minors of functions, reconstruction problems, and permutations.
I am also grateful to the anonymous referee for constructive remarks and valuable sug-
gestions that greatly helped improve this paper.

References

[1] L. Babai. Automorphism groups, isomorphism, reconstruction. In: R. L. Graham,
M. Grötschel, and L. Lovász (eds.), Handbook of Combinatorics, Vol. 2, pages 1447–
1540. Elsevier, Amsterdam, 1995.

[2] J. Berman and A. Kisielewicz. On the number of operations in a clone. Proc. Amer.
Math. Soc. 122 (1994) 359–369.

[3] J. A. Bondy. A graph reconstructor’s manual. In: A. D. Keedwell (ed.), Surveys
in Combinatorics, 1991, volume 166 of London Math. Soc. Lecture Note Ser., pages
221–252. Cambridge Univ. Press, Cambridge, 1991.

[4] J. A. Bondy and R. L. Hemminger. Graph reconstruction—a survey. J. Graph Theory
1 (1977) 227–268.

the electronic journal of combinatorics 21(2) (2014), #P2.6 22



[5] J. A. Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics,
no. 244. Springer, 2008.

[6] M. Bouaziz, M. Couceiro, and M. Pouzet. Join-irreducible Boolean functions. Order
27 (2010) 261–282.

[7] T. H. Brylawski. Reconstructing combinatorial geometries. In: R. A. Bari and F.
Harary (eds.), Graphs and Combinatorics, volume 406 of Lecture Notes in Math.,
pages 226–235. Springer, 1974.

[8] T. H. Brylawski. On the nonreconstructibility of combinatorial geometries. J. Com-
bin. Theory Ser. B 19 (1975) 72–76.

[9] M. Couceiro and S. Foldes. On closed sets of relational constraints and classes of
functions closed under variable substitutions. Algebra Universalis 54 (2005) 149–165.

[10] M. Couceiro and E. Lehtonen. Generalizations of Świerczkowski’s lemma and the
arity gap of finite functions. Discrete Math. 309 (2009) 5905–5912.

[11] K. Denecke and S. L. Wismath. Universal Algebra and Applications in Theoretical
Computer Science. Chapman & Hall/CRC, Boca Raton, 2002.

[12] O. Ekin, S. Foldes, P. L. Hammer, and L. Hellerstein. Equational characterizations
of Boolean function classes. Discrete Math. 211 (2000) 27–51.

[13] M. N. Ellingham. Recent progress in edge-reconstruction. Seventeenth Manitoba
Conference on Numerical Mathematics and Computing, Congr. Numer. 62 (1988)
3–20.
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[22] E. Lehtonen and Á. Szendrei. Equivalence of operations with respect to discriminator
clones. Discrete Math. 309 (2009) 673–685.

the electronic journal of combinatorics 21(2) (2014), #P2.6 23



[23] B. Manvel. Reconstruction of graphs: progress and prospects. 250th Anniversary
Conference on Graph Theory, Congr. Numer. 63 (1988) 177–187.

[24] B. Manvel and P. K. Stockmeyer. On reconstruction of matrices. Math. Mag. 44
(1971) 218–221.

[25] B. D. McKay. Small graphs are reconstructible. Australas. J. Combin. 15 (1997)
123–126.

[26] M. Monks. The solution to the partition reconstruction problem. J. Combin. Theory
Ser. A 116 (2009) 76–91.

[27] D. E. Muller. Application of Boolean algebra to switching circuit design and to error
correction. IRE Trans. Electron. Comput. 3(3) (1954) 6–12.

[28] C. St. J. A. Nash-Williams. The reconstruction problem. In: L. W. Beinecke and
R. J. Wilson (eds.), Selected Topics in Graph Theory, pages 205–236. Academic Press,
London, 1978.

[29] N. Pippenger. Galois theory for minors of finite functions. Discrete Math. 254 (2002)
405–419.

[30] J.-X. Rampon. What is reconstruction for ordered sets? Discrete Math. 291 (2005)
191–233.

[31] I. S. Reed. A class of multiple-error-correcting codes and the decoding scheme. IRE
Trans. Inf. Theory 4(4) (1954) 38–49.

[32] P. K. Stockmeyer. A census of nonreconstructible digraphs. I. Six related families.
J. Combin. Theory Ser. B 31 (1981) 232–239.
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