A family of half-transitive graphs

Jing Chen*

Cai Heng Li

Department of Mathematics Hunan First Normal University Changsha, P. R. China

School of Mathematics and Statistics Yunnan University Kunming, P. R. China

chenjing827@126.com

cai.heng.li@uwa.edu.au

Ákos Seress

School of Mathematics and Statistics The Ohio State University The University of Western Australia Crawley, WA 6009, Australia

Submitted: Dec 15, 2011; Accepted: Mar 1, 2013; Published: Mar 8, 2013 Mathematics Subject Classifications: 05C25, 20B25

Abstract

We construct an infinite family of half-transitive graphs, which contains infinitely many Cayley graphs, and infinitely many non-Cayley graphs.

Keywords: half-transitive graphs; quotient graphs; automorphism groups.

1 Introduction

Let $\Gamma = (V, E)$ be a graph with vertex set V and edge set E. A permutation of V which preserves the adjacency of Γ is an automorphism of the graph, and all automorphisms form the automorphism group $\operatorname{Aut}\Gamma$. If a subgroup $G \leq \operatorname{Aut}\Gamma$ is transitive on V or E, then Γ is called *G-vertex-transitive* or *G-edge-transitive*, respectively. An ordered pair of adjacent vertices is called an *arc*, and Γ is called *arc-transitive* if $\operatorname{Aut}\Gamma$ is transitive on the set of arcs. An arc-transitive graph is vertex-transitive and edge-transitive, but the converse statement is not true. A graph which is vertex-transitive and edge-transitive but not arc-transitive is called *half-transitive*.

The study of half-transitive graphs was initiated with a question of Tutte [20, p. 60] regarding their existence, and he proved that a vertex-transitive and edge-transitive graph

^{*}This work was partially supported by an ARC Discovery Project Grant, NNSF of China(No. 11171292, 11271208) and Hunan First Normal University(No. XYS12N12).

with odd valency must be arc-transitive. Bouwer [4] in 1970 constructed the first family of half-transitive graphs. Since then, constructing and characterizing half-transitive graphs has been an active topic in algebraic graph theory, refer to [1, 2, 10, 13, 16, 22] and a survey [12] for the work during 1990's, and [14, 16, 17, 18, 19] for more recent work.

In this paper, we present an infinite family of half-transitive graphs. These graphs were originated from Johnson graphs $\mathbf{J}(n, i)$ where i = 1, 2 or 3, the vertex set of which consists of the *i*-element subsets of an *n*-element set such that two vertices are adjacent when they meet in (i - 1)-elements. It is known that the automorphism group of $\mathbf{J}(n, i)$ is S_n , see [9] or [15, Theorem 1].

As usual, we denote by [n] the set $\{1, 2, 3, \ldots, n\}$. Let

$$V_n = \{\{\{i, j\}, k\} \mid i, j, k \in [n]\}.$$

For convenience, we simply write the vertex $\{\{i, j\}, k\}$ as (ij, k). Then (ij, k) = (ji, k), and a 3-subset $\{i, j, k\}$ corresponds to exactly three vertices (ij, k), (ik, j) and (jk, i). Thus, the cardinality is

$$|V_n| = 3\binom{n}{3} = n(n-1)(n-2)/2.$$

Definition 1. For an integer n > 3, let Γ_n be the graph with vertex set V_n such that two vertices (ij, k) and $(i'j', k') \in V_n$ are adjacent if and only if

$$\{i, j\} = \{i', k'\}$$
 or $\{j', k'\}$

and $\{i, j, k\} \neq \{i', j', k'\}.$

The graph Γ_n is regular and has valency 4(n-3). For example, the vertex (12,3) has neighborhood

 $\{(1i,2),(2i,1),(13,i),(23,i) \mid i > 3\},\$

which has size 4(n-3).

Let $\Gamma = (V, E)$ be a graph, and let \mathcal{B} be a partition of the vertex set V. Then the *quotient graph* $\Gamma_{\mathcal{B}}$ induced on \mathcal{B} is the graph with vertex set \mathcal{B} such that B, B' are adjacent if and only if there is an edge which lies between B and B'. In this case, Γ is also said to be *homomorphic* to $\Gamma_{\mathcal{B}}$.

A graph $\Gamma = (V, E)$ is called a *Cayley graph* if there is a group R and a self-inversed subset $S \subset R$ such that V = R and $u, v \in S$ are adjacent if and only if $vu^{-1} \in S$. Cayley graphs are vertex-transitive, but a vertex-transitive graph is not necessarily a Cayley graph. For example, the Petersen graph is the smallest vertex-transitive graph which is not a Cayley graph. The family of graphs Γ_n contains infinitely many non-Cayley graphs.

Theorem 2. Let Γ_n be a graph defined above. Then the following statements hold:

(i)
$$\Gamma_n$$
 is of order $\frac{n(n-1)(n-2)}{2}$, valency $4(n-3)$, girth 3, and diameter 3,

(ii) Γ_n is homomorphic to \mathbf{K}_n , $\mathbf{J}(n,2)$ and $\mathbf{J}(n,3)$;

The electronic journal of combinatorics $\mathbf{20(1)}$ (2013), #P56

- (iii) Γ_4 and Γ_5 are arc-transitive, and for $n \ge 6$, $\operatorname{Aut}\Gamma_n = \operatorname{Sym}([n])$, and Γ_n is half-transitive;
- (iv) Γ_n is a Cayley graph if and only if n = 8, or n = q + 1 with q a prime-power, and $q \equiv 3 \pmod{4}$.

2 Edge-transitivity

Let $\sigma \in \text{Sym}([n])$. For convenience, we simply denote V_n by V, and denote Γ_n by Γ . Then σ induces a permutation on the vertex set V. Since G = Sym([n]) is 3-transitive on [n], G is transitive on V.

Take an edge $\{(i_1j_1, k_1), (i_2j_2, k_2)\}$ of Γ . Then $\{i_1, j_1\} = \{i_2, k_2\}$ or $\{j_2, k_2\}$, and hence $\{i_1^{\sigma}, j_1^{\sigma}\} = \{i_2^{\sigma}, k_2^{\sigma}\}$ or $\{j_2^{\sigma}, k_2^{\sigma}\}$. Thus, $(i_1^{\sigma}j_1^{\sigma}, k_1^{\sigma})$ and $(i_2^{\sigma}j_2^{\sigma}, k_2^{\sigma})$ are adjacent, that is, σ maps edges to edges. Similarly, σ maps non-edges to non-edges. So σ is an automorphism of Γ , and G = Sym([n]) is a vertex-transitive automorphism group of Γ .

Lemma 3. The graph $\Gamma = \Gamma_n$ is G-vertex-transitive and G-edge-transitive, but not G-arc-transitive.

Proof. We consider the edges incident with the vertex $\alpha = (12,3)$. The stabilizer $G_{\alpha} =$ Sym $(\{1,2\}) \times$ Sym $(\{4,5,\ldots,n\}) \cong$ S₂ × S_{n-3}, and G_{α} acting on the neighborhood $\Gamma(\alpha)$ has two orbits $\{(1i,2),(2i,1) \mid i > 3\}$ and $\{(13,i),(23,i) \mid i > 3\}$. Thus, G is not transitive on the arcs of Γ . Further, the element g = (23i) maps (1i,2) to (12,3), and (12,3) to (13,i), so g maps the edge $\{(1i,2),(12,3)\}$ to the edge $\{(12,3),(13,i)\}$. Since Γ is G-vertex-transitive, we conclude that Γ is G-edge-transitive.

Let H be a subgroup of G, and S be a subset of G. Define the *coset graph* of G with respect to H and S to be the directed graph with vertex set [G : H] and such that, for any $Hx, Hy \in V, Hx$ is connected to Hy if and only if $yx^{-1} \in HSH$ and denote the digraph by Cos(G, H, HSH). With the vertex $\alpha = (12, 3) \in V_n$ and element $g = (234) \in G$, the graph $\Gamma = \Gamma_n$ can be described as a *coset graph* $Cos(G, G_\alpha, G_\alpha\{g, g^{-1}\}G_\alpha)$, which has vertex set $[G : G_\alpha] = \{G_\alpha x \mid x \in G\}$ such that $G_\alpha x$ and $G_\alpha y$ are adjacent if and only if $yx^{-1} \in G_\alpha\{g, g^{-1}\}G_\alpha$. The right multiplication of each element $g \in G$

 $g: G_{\alpha}x \mapsto G_{\alpha}xg$, for all $x \in G$

induces an automorphism of Γ .

Lemma 4. If an automorphism $\tau \in \operatorname{Aut}(G)$ normalizes G_{α} and $(G_{\alpha}\{g, g^{-1}\}G_{\alpha})^{\tau} = G_{\alpha}\{g, g^{-1}\}G_{\alpha}$, then τ is an automorphism of Γ .

Proof. Since τ normalizes G_{α} , it induces a permutation on the vertex set $[G:G_{\alpha}]$.

For any two vertices $G_{\alpha}x$ and $G_{\alpha}y$, we have

$$\begin{array}{rcl} G_{\alpha}x \sim G_{\alpha}y & \Longleftrightarrow & yx^{-1} \in G_{\alpha}\{g,g^{-1}\}G_{\alpha} \\ & \Leftrightarrow & (yx^{-1})^{\tau} \in (G_{\alpha}\{g,g^{-1}\}G_{\alpha})^{\tau} \\ & \Leftrightarrow & y^{\tau}(x^{\tau})^{-1} \in G_{\alpha}\{g,g^{-1}\}G_{\alpha} \\ & \Leftrightarrow & (G_{\alpha}x)^{\tau} = G_{\alpha}x^{\tau} \sim G_{\alpha}y^{\tau} = (G_{\alpha}y)^{\tau}. \end{array}$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 20(1) (2013), #P56

Thus, τ is an automorphism of the graph Γ .

Lemma 5. Both Γ_4 and Γ_5 are arc-transitive.

Proof. Let $\alpha = (12,3)$, and g = (234). Consider first the case $G = S_4$. Then $G_{\alpha} =$ Sym $(\{1,2\})$, and $\Gamma =$ Cos $(G, G_{\alpha}, G_{\alpha}\{g, g^{-1}\}G_{\alpha})$. Let τ be the inner-automorphism induced by the element $(34) \in G$. Then τ normalizes G_{α} and $g^{\tau} = g^{-1}$. By Lemma 4, τ is an automorphism of the graph. Further, for the edge $\{G_{\alpha}, G_{\alpha}g\}$, we have

$$(G_{\alpha}, G_{\alpha}g)^{\tau g} = (G_{\alpha}, G_{\alpha}g^{-1})^g = (G_{\alpha}g, G_{\alpha}),$$

and so Γ is arc-transitive.

Next, consider the case $G = S_5$. Again let $\alpha = (12, 3)$ and g = (234). Then $G_{\alpha} = \text{Sym}(\{1, 2\}) \times \text{Sym}(\{4, 5\})$, and $\Gamma = \text{Cos}(G, G_{\alpha}, G_{\alpha}\{g, g^{-1}\}G_{\alpha})$. Let τ be the innerautomorphism of G induced by the element $(15)(24) \in G$. Then τ normalizes G_{α} and reverses g. Arguing as above shows that Γ is arc-transitive.

However, we will show that Γ_n for $n \ge 6$ are all half-transitive.

3 The parameters

Denote the graph Γ_n simply by Γ in the following. For vertices $\alpha = (i_1 j_1, k_1)$ and $\beta = (i_2 j_2, k_2)$, we denote $\{i_1, j_1, k_1\} \cap \{i_2, j_2, k_2\}$ by $\alpha \cap \beta$. Then $|\alpha \cap \beta| = 2$ if α and β are adjacent.

Lemma 6. The graph $\Gamma = \Gamma_n$ is of order $\frac{n(n-1)(n-2)}{2}$, valency 4(n-3), girth 3, and diameter 3.

Proof. As noticed above, each 3-subset $\{i, j, k\}$ corresponds to exactly three vertices (ij, k), (jk, i) and (ik, j). Thus, the order |V| of Γ equals $3\binom{n}{3} = \frac{n(n-1)(n-2)}{2}$. By the definition of the graph Γ , the neighborhood of the vertex $\alpha = (ij, k)$ is $\Gamma(\alpha) = \{(ik, m), (jk, m), (im, j), (jm, i) | m \neq i, j, k\}$. Thus, Γ is of valency 4(n-3). Moreover, since (jk, m) and (jm, i) are adjacent, Γ is of girth 3.

We next compute the distance $d(\alpha, \beta)$ between two vertices α and β . As Γ is a vertex-transitive graph, we take $\alpha = (12, 3)$. We first consider a small case that n = 4. Then |V| = 12, and the neighborhood $\Gamma(\alpha) = \{(14, 2), (24, 1), (13, 4), (23, 4)\}$. For other vertices except (12, 4), we have

$$\Gamma(\alpha) \cap \Gamma(\beta) = \begin{cases}
\{(23,4)\}, & \text{if } \beta = (13,2), \\
\{(13,4)\}, & \text{if } \beta = (23,1), \\
\{(24,1)\}, & \text{if } \beta = (14,3), \\
\{(14,2), (23,4)\}, & \text{if } \beta = (34,1), \\
\{(14,2)\}, & \text{if } \beta = (24,3), \\
\{(24,1), (13,4)\}, & \text{if } \beta = (34,2),
\end{cases}$$

and so $d(\alpha, \beta) = 2$. For $\beta = (12, 4), \Gamma(\alpha) \cap \Gamma(\beta) = 0$. Furthermore, the sequence

$$\alpha = (12, 3), (14, 2), (24, 3), \beta = (12, 4)$$

is a path between α and β of length 3. Hence, $d(\alpha, \beta) = 3$, and thus, the graph Γ is of diameter 3.

Now we treat the cases where $n \ge 5$. Take $\alpha = (12, 3)$, and let $\beta = (ij, k)$.

Case 1. Assume first that $i, j, k \ge 4$. If a vertex $\gamma = (i'j', k')$ is adjacent to both α and β , then $|\gamma \cap \alpha| = 2$ and $|\gamma \cap \beta| = 2$, which is not possible. Thus, $d(\alpha, \beta)$ is at least 3. On the other hand, the sequence

$$\alpha = (12, 3), (1i, 2), (ik, 1), \beta = (ij, k)$$

is a path between α and β of length 3. Hence, $d(\alpha, \beta) = 3$.

Case 2. Next, consider the case where $|\alpha \cap \beta| = 1$.

Suppose that $\beta = (ij, 3)$, where $i, j \ge 4$. Then the sequence α , (1i, 2), (i3, 1), β is a path between α and β , and hence $d(\alpha, \beta) \le 3$. As mentioned above,

$$\Gamma(\alpha) = \{ (1i', 2), (2i', 1), (13, i'), (23, i') \mid i' > 3 \},\$$

and similarly,

$$\Gamma(\beta) = \{ (ij', j), (jj', i), (3i, j'), (3j, j') \mid j' \notin \{3, i, j\} \}.$$

Thus, $\Gamma(\alpha) \cap \Gamma(\beta) = \emptyset$, and so $d(\alpha, \beta) = 3$.

Assume now that $k \neq 3$. Then $\beta = (1i, k)$, (2i, k), (3i, k), (ij, 1) or (ij, 2), where $i, j, k \ge 4$. In each of these cases, $d(\alpha, \beta) = 2$ because

$$\Gamma(\alpha) \cap \Gamma(\beta) = \begin{cases} \{(1k, 2), (13, i), (2i, 1)\}, & \text{if } \beta = (1i, k), \\ \{(2k, 1), (23, i), (1i, 2)\}, & \text{if } \beta = (2i, k), \\ \{(31, i), (32, i)\}, & \text{if } \beta = (3i, k), \\ \{(1i, 2), (1j, 2)\}, & \text{if } \beta = (ij, 1), \\ \{(2i, 1), (2j, 1)\}, & \text{if } \beta = (ij, 2). \end{cases}$$

Case 3. We then treat the case where $|\alpha \cap \beta| = 2$.

Assume that k = 3. Then $\beta = (1i, 3)$ or (2i, 3), where $i \ge 4$. If $\beta = (1i, 3)$, then $\Gamma(\alpha) \cap \Gamma(\beta) = \{(13, m), (2i, 1) \mid 4 \le m \le n, m \ne i\}$, and thus $d(\alpha, \beta) = 2$. Similarly, if $\beta = (2i, 3)$, there exists n - 3 paths of length 2 between α and β , and so $d(\alpha, \beta) = 2$.

Suppose that $k \neq 3$. Then $\beta = (12, k)$, (1i, 2), (2i, 1), (13, k), (23, k), (3i, 1), (3i, 2), where $i, k \ge 4$. If $\beta = (12, k)$, then $\Gamma(\alpha) \cap \Gamma(\beta) = \{(1m, 2), (2m, 1) \mid 4 \le m \le n, m \ne k\}$, and so $d(\alpha, \beta) = 2$. For these vertices $\beta = (1i, 2), (2i, 1), (13, k)$, or (23, k), we have $\beta \in \Gamma(\alpha)$, and thus $d(\alpha, \beta) = 1$. If $\beta = (3i, 1), \Gamma(\alpha) \cap \Gamma(\beta) = \{(13, m), (23, i), (1i, 2) | 4 \le m \le n, m \ne i\}$, and hence $d(\alpha, \beta) = 2$. Similarly, if $\beta = (3i, 2), \Gamma(\alpha) \cap \Gamma(\beta) = \{(23, m), (13, i), (2i, 1) | 4 \le m \le n, m \ne i\}$, and so $d(\alpha, \beta) = 2$.

Case 4. Let $|\alpha \cap \beta| = 3$. Then $\beta = (23, 1)$ or (13, 2).

For $\beta = (23, 1)$, we have $d(\alpha, \beta) = 2$ as (13, m) is adjacent to both α and β , and thus, there are exactly n - 3 paths of length 2 between α and β , where $m \neq 1, 2, 3$. Similarly, if $\beta = (13, 2), d(\alpha, \beta) = 2$ because there exist exactly n - 3 paths α , $(23, m), \beta$ of length 2 between α and β , where $m \neq 1, 2, 3$.

Thus, $\Gamma = \Gamma_n$ is of diameter 3.

4 Quotients

The action of G = Sym([n]) on V_n has three types of blocks as below

$$B_{k} = \{(ij,k) \mid i, j \in [n] \setminus \{k\}\}, \text{ size } \binom{n-1}{2}, \\ B_{ij} = \{(ij,k) \mid k \in [n] \setminus \{i,j\}\}, \text{ size } n-2, \\ B_{ijk} = \{(ij,k), (jk,i), (ki,j)\}, \text{ size } 3.$$

Let $\mathcal{B}_1 = B_k^G$, $\mathcal{B}_2 = B_{ij}^G$, and $\mathcal{B}_3 = B_{ijk}^G$. Then $|\mathcal{B}_1| = n$, $|\mathcal{B}_2| = \binom{n}{2}$, and $|\mathcal{B}_3| = \binom{n}{3}$. Lemma 7. If $n \ge 7$, then $V = V_n$ has exactly three non-trivial G-invariant partitions: \mathcal{B}_1 , \mathcal{B}_2 and \mathcal{B}_3 .

Proof. For the vertex $\beta = (23, 1)$, the stabilizer $G_{\beta} = \text{Sym}(\{2, 3\}) \times \text{Sym}([n] \setminus \{1, 2, 3\})$, and G_{β} is contained in G_{B_1} , $G_{B_{23}}$ and $G_{B_{123}}$. Moreover, these three subgroups are maximal in G and are the only proper subgroups of G which properly contain G_{β} . Thus, \mathcal{B}_1 , \mathcal{B}_2 and \mathcal{B}_3 are the only block systems of G acting on V_n .

By Lemma 7, we have three block systems \mathcal{B}_i with i = 1, 2 or 3, and we have three quotient graph $\Gamma_{\mathcal{B}_i}$. Clearly, the induced action of G on \mathcal{B}_i is equivalent to the action of G on $[n]^{\{i\}}$, where i = 1, 2 or 3. We thus identify \mathcal{B}_1 with $[n], \mathcal{B}_2$ with $[n]^{\{2\}}$, and \mathcal{B}_3 with $[n]^{\{3\}}$. The quotient graph $\Gamma_{\mathcal{B}_1} = \mathbf{K}_n = \mathbf{J}(n, 1)$. For $\Gamma_{\mathcal{B}_2}$, two vertices B_{ij} and $B_{i'j'}$ are adjacent if and only if $|\{i, j\} \cap \{i', j'\}| = 1$, and so $\Gamma_{\mathcal{B}_1} = \mathbf{J}(n, 2)$. For $\Gamma_{\mathcal{B}_3}$, two vertices B_{ijk} and $B_{i'j'k'}$ are adjacent if and only if $|\{i, j, k\} \cap \{i', j', k'\}| = 2$. Thus, we have the following lemma.

Lemma 8. The quotient graph $\Gamma_{\mathcal{B}_i}$ is the Johnson graph $\mathbf{J}(n,i)$, where i = 1, 2 or 3.

For a quotient graph $\Gamma_{\mathcal{B}}$, let $B, B' \in \mathcal{B}$ be adjacent in $\Gamma_{\mathcal{B}}$. The *induced subgraph* $[B \cup B']$ of Γ over $B \cup B'$ is the graph with vertex set $B \cup B'$ and edge set $E_0 = \{\{u, v\} \in E \mid u, v \in B \cup B'\}$. Then $[B \cup B']$ is a bipartite graph with biparts B and B'; denoted by [B, B']. We next determine the induced subgraph [B, B'] for the quotient graph $\Gamma_{\mathcal{B}_i}$.

For a graph $\Sigma = (V, E)$, the vertex-edge incidence graph is the bipartite graph with biparts V and E such that two vertices $v \in V$ and $w \in E$ are adjacent if and only if v, ware incident in Σ . This incidence graph is also called the *subdivision* of Σ .

Lemma 9. Let $B, B' \in \mathcal{B}_1$ be adjacent in $\Gamma_{\mathcal{B}_1}$. Then the induced subgraph [B, B'] consists of 2 copies of the subdivision of \mathbf{K}_{n-2} .

Proof. Since $(23, 1) \in B_1$ is adjacent to $(34, 2) \in B_2$, the vertices B_1 and B_2 are adjacent in the quotient $\Gamma_{\mathcal{B}_1}$. The edges of the induced subgraph $[B_1, B_2]$ are

$$\{\{(2i,1),(ij,2)\} \mid 3 \leqslant i \leqslant n, \ j \neq i,1,2\} \cup \{\{(1i,2),(ij,1)\} \mid 3 \leqslant i \leqslant n, \ j \neq i,1,2\},\$$

which form two copies of the subdivision of \mathbf{K}_{n-2} .

A star $\mathbf{K}_{1,m}$ is a bipartite graph with m + 1 vertices, in which there is one vertex that is adjacent to all other m vertices. In particular, $\mathbf{K}_{1,2}$ is a path of length 2.

Lemma 10. Let $B, B' \in \mathcal{B}_2$ be adjacent in $\Gamma_{\mathcal{B}_2}$. Then the induced subgraph [B, B'] consists of 2 copies of the star $\mathbf{K}_{1,n-3}$.

Proof. Since $(12,3) \in B_{12}$ is adjacent to $(23,4) \in B_{23}$, the vertices B_{12} and B_{23} are adjacent in the quotient $\Gamma_{\mathcal{B}_2}$. The edges of the induced subgraph $[B_{12}, B_{23}]$ are $\{\{(12,3), (23,i)\} \mid i \ge 4\} \cup \{\{(23,1), (12,j)\} \mid j \ge 4\}$, which form two stars $\mathbf{K}_{1,n-3}$. \Box

Lemma 11. Let $B, B' \in \mathcal{B}_3$ be adjacent in $\Gamma_{\mathcal{B}_3}$. Then the induced subgraph [B, B'] consists of 2 paths of length 2.

Proof. For the blocks $B = \{(12,3), (23,1), (31,2)\}$ and $B' = \{(12,4), (24,1), (41,2)\}$, the induced subgraph [B, B'] has 4 edges

 $\{(12,3),(14,2)\},\{(12,3),(24,1)\},\{(12,4),(13,2)\},\{(12,4),(32,1)\}.$

These edges form two paths of length 2:

(23, 1), (12, 4), (13, 2), and (24, 1), (12, 3), (14, 2).

Thus, $[B, B'] = 2\mathbf{K}_{1,2}$.

5 The automorphism group

In this section, we determine the automorphism group $\operatorname{Aut}\Gamma$.

Lemma 12. Let $n \ge 7$, and let X be a subgroup such that $G \le X \le \text{Aut}\Gamma$. Then X is almost simple, and if $X \ne G$, then X is primitive on V.

Proof. Let M be a minimal normal subgroup of X. Suppose that M is intransitive on V. Let \mathcal{B} be the set of M-orbits on V. Then \mathcal{B} is X-invariant and G-invariant. By Lemma 7, $\mathcal{B} = \mathcal{B}_i$ with i = 1, 2 or 3. For $B_i \in \mathcal{B}_i$, we have that $G_{B_1}^{B_1} = S_{n-1}, G_{B_2}^{B_2} = S_{n-2}$, and $G_{B_3}^{B_3} = S_3$. Thus, $G_{B_i}^{B_i}$ is primitive, and so is $X_{B_i}^{B_i}$.

Let $K = X_{(\mathcal{B})}$, the kernel of X acting on \mathcal{B} . Suppose that $K \neq 1$. Then $1 \neq K^B \triangleleft X^B_B$, and so K^B is transitive as X^B_B is primitive. Let $B' \in \mathcal{B}$ be adjacent in $\Gamma_{\mathcal{B}}$ to B. Then Kis transitive on B', and since |B| = |B'|, we conclude that the induced subgraph [B, B']is regular, which is a contradiction by Lemmas 9-11. Thus, K = 1, and so M = 1, which is a contradiction. So M is transitive on V, and X is quasiprimitive on V. Further, M is non-abelian since $|V| = 3\binom{n}{3}$.

Now let $M = T_1 \times T_2 \times \ldots \times T_l$, where $l \ge 1$, and $T_1 \cong T_2 \cong \ldots \cong T_l$ are non-abelian simple groups. Then $M \cap G \triangleleft G$, and so $M \cap G = 1$, A_n or S_n .

Suppose that $M \cap G = 1$. Let Z = MG = M:G. If Z is imprimitive on V, then a block system $\mathcal{B} = \mathcal{B}_1$, \mathcal{B}_2 or \mathcal{B}_3 . Hence $Z \cong Z^{\mathcal{B}} \leq G^{\mathcal{B}} \cong S_n$, which is not possible. Thus, Z is primitive on V, and G does not centralize M. By O'Nan-Scott's theorem (see [7]), we have that $l \ge n$, and $\frac{n(n-1)(n-2)}{2} = |V| = m^l$ or m^{l-1} where $m \ge 5$, which is not possible.

Therefore, $M \cap G = A_n$ or S_n , and letting $L = \text{soc}(G) = A_n$, we have $L \leq M$. Since L is non-abelian simple, L is contained in a simple group T_i , say T_1 . Hence, T_1 is transitive

on V. If $l \ge 2$, then as T_2 centralizes T_1 , we have that T_2 is semiregular on V. Then |V| divides $|T_1|$, and $|T_2| = |T_1|$ divides |V|. So T_1 is regular on V, and since G is transitive on $V, L \le T_1$ is semiregular with at most 2 orbits. Since T_1 has no subgroup of index 2 and $G/L \cong \mathbb{Z}_2$, we have that $L = T_1$ is regular on V, which is a contradiction. Thus, $M = T_1$ is simple and $L \le M$. Assume that there exists another minimal normal subgroup N of X such that $N \ne M$. Then $M \cap N = 1$; however, the above argument with N in the place of M shows that $L \le N$. So $M \cap N \ge L$, which is a contradiction. Therefore, M is simple and the unique minimal normal subgroup of X, and hence X is almost simple.

Suppose that X > G and X is imprimitive on V. Let \mathcal{B} be a block system for Xon V. Then \mathcal{B} is a block system for G on V. By Lemma 7, $\mathcal{B} = \mathcal{B}_i$ where i = 1, 2 or 3, and by Lemma 8, $\Gamma_{\mathcal{B}} = \mathbf{J}(n, i)$. As noticed in the Introduction, $\operatorname{Aut}\Gamma_{\mathcal{B}} = S_n$, and so $S_n \cong G < X \cong X^{\mathcal{B}} \leq \operatorname{Aut}\Gamma_{\mathcal{B}} \cong S_n$, which is not possible. Hence either X = G, or X is primitive on V, as claimed. \Box

A transitive permutation group G on Ω is called *k*-homogeneous if G is transitive on the set of *k*-subsets of Ω , where *k* is a positive integer.

Lemma 13. If $n \ge 8$, then $\operatorname{Aut}\Gamma = G = \operatorname{Sym}([n])$.

Proof. Let $n \ge 8$. Suppose that $G < \operatorname{Aut}\Gamma$. Let $L \le \operatorname{Aut}\Gamma$ be such that G is a maximal subgroup of L. Since G is transitive on V, the almost simple group L has a factorization $L = GL_{\alpha}$. Further, since L is primitive on V, the factorization $L = GL_{\alpha}$ is a maximal factorization. Thus, the triple (L, G, L_{α}) is classified in [11], see the MAIN THEOREM on page 1. An inspection of the candidates with one factor being $G = S_n$, we conclude that one of the following holds:

- (i) $n \leq 12$, or
- (ii) $L = S_{n+1}$, or
- (iii) $L = S_m$ or A_m , and G is k-homogenous of degree m, where $1 \le k \le 5$.

Consider the small groups where $n \leq 12$. We note that as Γ is not a complete group, L < Sym(V).

Let n = 12 first. Then $|V| = \frac{n(n-1)(n-2)}{2} = 660$, and L is a primitive group of degree 660. Hence L lies in Appendix B of [7], which shows that $\operatorname{soc}(L) = \operatorname{PSL}(2, 659)$ or $\operatorname{PSL}(2, 11) \times \operatorname{PSL}(2, 11)$. So L does not contains S_{12} , which is a contradiction. Similarly, the cases where n = 8, 9 and 10 are excluded.

Suppose that n = 11. Then |V| = 495, and Γ is of valency 32. By Appendix B of [7], as $S_{11} < L$, we conclude that $(L, L_{\alpha}) = (S_{12}, S_8 \times S_4)$ or $(O_{10}^-(2), 2^8:O_8^-(2))$. The former is not possible since $S_{12} \neq S_{11}(S_8 \times S_4)$, and the latter is not possible since $O_8^-(2)$ does not have a transitive representation of degree at most 32.

Next, let $L = S_{n+1}$, with $n \ge 13$. Since $L = GL_{\alpha}$, the stabilizer L_{α} is a transitive permutation group of degree n + 1 such that $|L : L_{\alpha}| = |V| = \frac{n(n-1)(n-2)}{2}$. Assume that L_{α} is primitive of degree n + 1. By Bochert's theorem (see [21, Theorem 14.2]),

 $|L:L_{\alpha}| \ge \lfloor \frac{n+2}{2} \rfloor!$ Computation shows that $n \le 10$, which is a contradiction. Thus, L_{α} is imprimitive of degree n+1. Then $L_{\alpha} = S_b \wr S_m$, where bm = n+1, and thus,

$$\frac{n(n-1)(n-2)}{2} = |V| = |L: L_{\alpha}| = \frac{(n+1)!}{(b!)^l m!},$$

which is not possible.

Finally, assume that $G = S_n$ is k-homogenous of degree m, and $L = S_m$ or A_m , and $L_{\alpha} = S_k \times S_{m-k}$, where $k \leq 5$. Since L is not 2-transitive on V, we have $k \geq 2$. Thus, by the classification of 2-homogeneous groups, we conclude that $n \leq 8$, which is a contradiction.

Therefore, $\operatorname{Aut}\Gamma = G = \operatorname{Sym}([n])$, as claimed.

6 Proof of Theorem 2

In this section, we prove the main theorem.

By Lemma 6, part (i) of Theorem 2 is true. By Lemma 8, Theorem 2 (ii) holds.

For n = 4 or 5, Theorem 2 is proved by Lemma 5. Thus, we next assume $n \ge 6$.

For n = 6 or 7, a computation using Gap shows that $\operatorname{Aut}\Gamma_n = S_n$, and for $n \ge 8$, Lemma 13 shows that $\operatorname{Aut}\Gamma = G$. Then, by Lemma 3, Γ is half-transitive, as in part (iii).

Finally, assume that Γ is a Cayley graph of a group R. Then R is regular on V (see [3, Proposition 16.3]), and hence R is 3-homogeneous but not 3-transitive on [n]. Further, as $|R| = |V| = 3\binom{n}{3}$, R is not sharply 3-homogeneous on [n]. Inspecting 3-homogeneous groups which are not 3-transitive, refer to [7, Theorem 9.4B], we conclude that $R = A\Gamma L(1,8)$ or PSL(2,q) where $q \equiv 3 \pmod{4}$. So n = 8 or q + 1, respectively. This proves part (iv) of Theorem 2.

Acknowledgements

The authors are grateful to the referee for the valuable comments.

References

- B. Alspach, D. Marušič, and L. Nowitz. Constructing graphs which are 1/2-transitive. J. Austral. Math. Soc. Ser. A, 56:391-402, 1994.
- [2] B. Alspach and M. Y. Xu. 1/2-transitive graphs of order 3p. J. Algebraic Combin., 3:347-355, 1994.
- [3] N. Biggs. Algebraic Graph Theory. Cambridge University Press, New York, 1992.
- [4] I. Z. Bouwer. Vertex and edge-transitive but not 1-transitive graphs. Canad. Math. Bull., 13:231-237, 1970.

- [5] A. E. Brouwer, A. M. Cohen and A. Neumaier. *Distance-Regular Graphs.* Ergeb. Math. Grenzgeb. (Results in Mathematics and Related Areas (3)), vol. 18, Springer-Verlag, Berlin, 1989.
- [6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of Finite Groups. Oxford Univ. Press, London/New York, 1985.
- [7] J. D. Dixon and B. Mortimer. *Permutation Groups*. Springer, 1991.
- [8] Y. Q. Feng, K. S. Wang and C. X. Zhou. Tetravalent half-transitive graphs of order 4p. Europ. J. Combin., 28:726-733, 2007.
- G. A. Jones. Automorphisms and regular embeddings of merged Johnson graphs. European J. Combin., 26(3-4):417-435, 2005.
- [10] C. H. Li and H. S. Sim. On half-transitive metacirculant graphs of prime-power order. J. Combin. Theory Ser. B, 81:45-57, 2001.
- [11] M. Liebeck, C. E. Praeger and J. Saxl. The maximal factorizations of the finite simple groups and their automorphism groups. *Mem. Amer. Math. Soc.*, 86(432), 1990.
- [12] D. Marušič. Recent developments in half-transitive graphs. *Discrete Math.*, 182:219-231, 1998.
- [13] D. Marušič and C. E. Praeger. Tetravalent graphs admitting half-transitive groups actions: alternating cycles. J. Combin. Theory Ser. B, 75:185-205, 1999.
- [14] D. Marušič and P. Sparl. On quartic half-arc-transitive metacirculants. J. Algebraic Combin., 28:365-395, 2008.
- [15] Mark Ramras and Elizabeth Donovan. The Automorphism Group of a Johnson Graph. Siam J. Discrete Math., 25:267-270, 2011.
- [16] M. Sajna. Half-transitivity of some metacirculants. Discrete Math., 185:117-136, 1998.
- [17] Shu-Jiao Song, C. H. Li, and Dian-Jun Wang. Classifying a family of edge-transitive metacirculant graphs. J. Algebraic Combin., 35:497-513, 2012.
- [18] Primoz Sparl. A classification of tightly attached half-arc-transitive graphs of valency 4. J. Combin. Theory Ser. B, 98, 2008.
- [19] Primoz Sparl. Almost all quartic half-arc-transitive weak metacirculants of Class II are of Class IV. Discrete Math., 310:1737-1742, 2010.
- [20] W. T. Tutte. *Connectivity in Graphs*. University of Toronto Press, Toronto, 1966.
- [21] H. Wielandt. *Finite Permutations Groups*. Academic Press Inc, 1964.
- [22] M. Y. Xu. Half-transitive graphs of prime-cube order. J. Algebraic Combin., 1:275-282, 1992.