A family of half-transitive graphs

Jing Chen*
Department of Mathematics
Hunan First Normal University
Changsha, P. R. China
chenjing827@126.com

Cai Heng Li
School of Mathematics and Statistics
Yunnan University
Kunming, P. R. China
cai.heng.li@uwa.edu.au

Ákos Seress
School of Mathematics and Statistics
The Ohio State University
The University of Western Australia
Crawley, WA 6009, Australia

Submitted: Dec 15, 2011; Accepted: Mar 1, 2013; Published: Mar 8, 2013 Mathematics Subject Classifications: 05C25, 20B25

Abstract

We construct an infinite family of half-transitive graphs, which contains infinitely many Cayley graphs, and infinitely many non-Cayley graphs.

Keywords: half-transitive graphs; quotient graphs; automorphism groups.

1 Introduction

Let $\Gamma=(V, E)$ be a graph with vertex set V and edge set E. A permutation of V which preserves the adjacency of Γ is an automorphism of the graph, and all automorphisms form the automorphism group $A u t \Gamma$. If a subgroup $G \leqslant A u t \Gamma$ is transitive on V or E, then Γ is called G-vertex-transitive or G-edge-transitive, respectively. An ordered pair of adjacent vertices is called an arc, and Γ is called arc-transitive if Aut Γ is transitive on the set of arcs. An arc-transitive graph is vertex-transitive and edge-transitive, but the converse statement is not true. A graph which is vertex-transitive and edge-transitive but not arc-transitive is called half-transitive.

The study of half-transitive graphs was initiated with a question of Tutte [20, p. 60] regarding their existence, and he proved that a vertex-transitive and edge-transitive graph

[^0]with odd valency must be arc-transitive. Bouwer [4] in 1970 constructed the first family of half-transitive graphs. Since then, constructing and characterizing half-transitive graphs has been an active topic in algebraic graph theory, refer to $[1,2,10,13,16,22]$ and a survey [12] for the work during 1990's, and [14, 16, 17, 18, 19] for more recent work.

In this paper, we present an infinite family of half-transitive graphs. These graphs were originated from Johnson graphs $\mathbf{J}(n, i)$ where $i=1$, 2 or 3 , the vertex set of which consists of the i-element subsets of an n-element set such that two vertices are adjacent when they meet in $(i-1)$-elements. It is known that the automorphism group of $\mathbf{J}(n, i)$ is S_{n}, see [9] or [15, Theorem 1].

As usual, we denote by $[n]$ the set $\{1,2,3, \ldots, n\}$. Let

$$
V_{n}=\{\{\{i, j\}, k\} \mid i, j, k \in[n]\} .
$$

For convenience, we simply write the vertex $\{\{i, j\}, k\}$ as $(i j, k)$. Then $(i j, k)=(j i, k)$, and a 3 -subset $\{i, j, k\}$ corresponds to exactly three vertices $(i j, k),(i k, j)$ and $(j k, i)$. Thus, the cardinality is

$$
\left|V_{n}\right|=3\binom{n}{3}=n(n-1)(n-2) / 2 .
$$

Definition 1. For an integer $n>3$, let Γ_{n} be the graph with vertex set V_{n} such that two vertices $(i j, k)$ and $\left(i^{\prime} j^{\prime}, k^{\prime}\right) \in V_{n}$ are adjacent if and only if

$$
\{i, j\}=\left\{i^{\prime}, k^{\prime}\right\} \text { or }\left\{j^{\prime}, k^{\prime}\right\}
$$

and $\{i, j, k\} \neq\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}$.
The graph Γ_{n} is regular and has valency $4(n-3)$. For example, the vertex $(12,3)$ has neighborhood

$$
\{(1 i, 2),(2 i, 1),(13, i),(23, i) \mid i>3\}
$$

which has size $4(n-3)$.
Let $\Gamma=(V, E)$ be a graph, and let \mathcal{B} be a partition of the vertex set V. Then the quotient graph $\Gamma_{\mathcal{B}}$ induced on \mathcal{B} is the graph with vertex set \mathcal{B} such that B, B^{\prime} are adjacent if and only if there is an edge which lies between B and B^{\prime}. In this case, Γ is also said to be homomorphic to $\Gamma_{\mathcal{B}}$.

A graph $\Gamma=(V, E)$ is called a Cayley graph if there is a group R and a self-inversed subset $S \subset R$ such that $V=R$ and $u, v \in S$ are adjacent if and only if $v u^{-1} \in S$. Cayley graphs are vertex-transitive, but a vertex-transitive graph is not necessarily a Cayley graph. For example, the Petersen graph is the smallest vertex-transitive graph which is not a Cayley graph. The family of graphs Γ_{n} contains infinitely many non-Cayley graphs.

Theorem 2. Let Γ_{n} be a graph defined above. Then the following statements hold:
(i) Γ_{n} is of order $\frac{n(n-1)(n-2)}{2}$, valency $4(n-3)$, girth 3 , and diameter 3 ;
(ii) Γ_{n} is homomorphic to $\mathbf{K}_{n}, \mathbf{J}(n, 2)$ and $\mathbf{J}(n, 3)$;
(iii) Γ_{4} and Γ_{5} are arc-transitive, and for $n \geqslant 6$, $\operatorname{Aut} \Gamma_{n}=\operatorname{Sym}([n])$, and Γ_{n} is halftransitive;
(iv) Γ_{n} is a Cayley graph if and only if $n=8$, or $n=q+1$ with q a prime-power, and $q \equiv 3(\bmod 4)$.

2 Edge-transitivity

Let $\sigma \in \operatorname{Sym}([n])$. For convenience, we simply denote V_{n} by V, and denote Γ_{n} by Γ. Then σ induces a permutation on the vertex set V. Since $G=\operatorname{Sym}([n])$ is 3 -transitive on [n], G is transitive on V.

Take an edge $\left\{\left(i_{1} j_{1}, k_{1}\right),\left(i_{2} j_{2}, k_{2}\right)\right\}$ of Γ. Then $\left\{i_{1}, j_{1}\right\}=\left\{i_{2}, k_{2}\right\}$ or $\left\{j_{2}, k_{2}\right\}$, and hence $\left\{i_{1}^{\sigma}, j_{1}^{\sigma}\right\}=\left\{i_{2}^{\sigma}, k_{2}^{\sigma}\right\}$ or $\left\{j_{2}^{\sigma}, k_{2}^{\sigma}\right\}$. Thus, $\left(i_{1}^{\sigma} j_{1}^{\sigma}, k_{1}^{\sigma}\right)$ and $\left(i_{2}^{\sigma} j_{2}^{\sigma}, k_{2}^{\sigma}\right)$ are adjacent, that is, σ maps edges to edges. Similarly, σ maps non-edges to non-edges. So σ is an automorphism of Γ, and $G=\operatorname{Sym}([n])$ is a vertex-transitive automorphism group of Γ.

Lemma 3. The graph $\Gamma=\Gamma_{n}$ is G-vertex-transitive and G-edge-transitive, but not G -arc-transitive.

Proof. We consider the edges incident with the vertex $\alpha=(12,3)$. The stabilizer $G_{\alpha}=$ $\operatorname{Sym}(\{1,2\}) \times \operatorname{Sym}(\{4,5, \ldots, n\}) \cong \mathrm{S}_{2} \times \mathrm{S}_{n-3}$, and G_{α} acting on the neighborhood $\Gamma(\alpha)$ has two orbits $\{(1 i, 2),(2 i, 1) \mid i>3\}$ and $\{(13, i),(23, i) \mid i>3\}$. Thus, G is not transitive on the arcs of Γ. Further, the element $g=(23 i) \operatorname{maps}(1 i, 2)$ to $(12,3)$, and $(12,3)$ to $(13, i)$, so g maps the edge $\{(1 i, 2),(12,3)\}$ to the edge $\{(12,3),(13, i)\}$. Since Γ is G-vertex-transitive, we conclude that Γ is G-edge-transitive.

Let H be a subgroup of G, and S be a subset of G. Define the coset graph of G with respect to H and S to be the directed graph with vertex set $[G: H]$ and such that, for any $H x, H y \in V, H x$ is connected to $H y$ if and only if $y x^{-1} \in H S H$ and denote the digraph by $\operatorname{Cos}(G, H, H S H)$. With the vertex $\alpha=(12,3) \in V_{n}$ and element $g=(234) \in G$, the graph $\Gamma=\Gamma_{n}$ can be described as a coset graph $\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}\right)$, which has vertex set $\left[G: G_{\alpha}\right]=\left\{G_{\alpha} x \mid x \in G\right\}$ such that $G_{\alpha} x$ and $G_{\alpha} y$ are adjacent if and only if $y x^{-1} \in G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}$. The right multiplication of each element $g \in G$

$$
g: \quad G_{\alpha} x \mapsto G_{\alpha} x g, \text { for all } x \in G
$$

induces an automorphism of Γ.
Lemma 4. If an automorphism $\tau \in \operatorname{Aut}(G)$ normalizes G_{α} and $\left(G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}\right)^{\tau}=$ $G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}$, then τ is an automorphism of Γ.

Proof. Since τ normalizes G_{α}, it induces a permutation on the vertex set $\left[G: G_{\alpha}\right]$.
For any two vertices $G_{\alpha} x$ and $G_{\alpha} y$, we have

$$
\begin{aligned}
G_{\alpha} x \sim G_{\alpha} y & \Longleftrightarrow y x^{-1} \in G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha} \\
& \Longleftrightarrow\left(y x^{-1}\right)^{\tau} \in\left(G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}\right)^{\tau} \\
& \Longleftrightarrow y^{\tau}\left(x^{\tau}\right)^{-1} \in G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha} \\
& \Longleftrightarrow\left(G_{\alpha} x\right)^{\tau}=G_{\alpha} x^{\tau} \sim G_{\alpha} y^{\tau}=\left(G_{\alpha} y\right)^{\tau}
\end{aligned}
$$

Thus, τ is an automorphism of the graph Γ.
Lemma 5. Both Γ_{4} and Γ_{5} are arc-transitive.
Proof. Let $\alpha=(12,3)$, and $g=(234)$. Consider first the case $G=\mathrm{S}_{4}$. Then $G_{\alpha}=$ $\operatorname{Sym}(\{1,2\})$, and $\Gamma=\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}\right)$. Let τ be the inner-automorphism induced by the element $(34) \in G$. Then τ normalizes G_{α} and $g^{\tau}=g^{-1}$. By Lemma $4, \tau$ is an automorphism of the graph. Further, for the edge $\left\{G_{\alpha}, G_{\alpha} g\right\}$, we have

$$
\left(G_{\alpha}, G_{\alpha} g\right)^{\tau g}=\left(G_{\alpha}, G_{\alpha} g^{-1}\right)^{g}=\left(G_{\alpha} g, G_{\alpha}\right)
$$

and so Γ is arc-transitive.
Next, consider the case $G=\mathrm{S}_{5}$. Again let $\alpha=(12,3)$ and $g=(234)$. Then $G_{\alpha}=$ $\operatorname{Sym}(\{1,2\}) \times \operatorname{Sym}(\{4,5\})$, and $\Gamma=\operatorname{Cos}\left(G, G_{\alpha}, G_{\alpha}\left\{g, g^{-1}\right\} G_{\alpha}\right)$. Let τ be the innerautomorphism of G induced by the element (15)(24) $\in G$. Then τ normalizes G_{α} and reverses g. Arguing as above shows that Γ is arc-transitive.

However, we will show that Γ_{n} for $n \geqslant 6$ are all half-transitive.

3 The parameters

Denote the graph Γ_{n} simply by Γ in the following. For vertices $\alpha=\left(i_{1} j_{1}, k_{1}\right)$ and $\beta=$ $\left(i_{2} j_{2}, k_{2}\right)$, we denote $\left\{i_{1}, j_{1}, k_{1}\right\} \cap\left\{i_{2}, j_{2}, k_{2}\right\}$ by $\alpha \cap \beta$. Then $|\alpha \cap \beta|=2$ if α and β are adjacent.
Lemma 6. The graph $\Gamma=\Gamma_{n}$ is of order $\frac{n(n-1)(n-2)}{2}$, valency $4(n-3)$, girth 3, and diameter 3 .

Proof. As noticed above, each 3 -subset $\{i, j, k\}$ corresponds to exactly three vertices $(i j, k),(j k, i)$ and $(i k, j)$. Thus, the order $|V|$ of Γ equals $3\binom{n}{3}=\frac{n(n-1)(n-2)}{2}$. By the definition of the graph Γ, the neighborhood of the vertex $\alpha=(i j, k)$ is $\Gamma(\alpha)=$ $\{(i k, m),(j k, m),(i m, j),(j m, i) \mid m \neq i, j, k\}$. Thus, Γ is of valency $4(n-3)$. Moreover, since $(j k, m)$ and $(j m, i)$ are adjacent, Γ is of girth 3.

We next compute the distance $d(\alpha, \beta)$ between two vertices α and β. As Γ is a vertex-transitive graph, we take $\alpha=(12,3)$. We first consider a small case that $n=4$. Then $|V|=12$, and the neighborhood $\Gamma(\alpha)=\{(14,2),(24,1),(13,4),(23,4)\}$. For other vertices except $(12,4)$, we have

$$
\Gamma(\alpha) \cap \Gamma(\beta)= \begin{cases}\{(23,4)\}, & \text { if } \beta=(13,2), \\ \{(13,4)\}, & \text { if } \beta=(23,1), \\ \{(24,1)\}, & \text { if } \beta=(14,3), \\ \{(14,2),(23,4)\}, & \text { if } \beta=(34,1), \\ \{(14,2)\}, & \text { if } \beta=(24,3), \\ \{(24,1),(13,4)\}, & \text { if } \beta=(34,2),\end{cases}
$$

and so $d(\alpha, \beta)=2$. For $\beta=(12,4), \Gamma(\alpha) \cap \Gamma(\beta)=0$. Furthermore, the sequence

$$
\alpha=(12,3),(14,2),(24,3), \beta=(12,4)
$$

is a path between α and β of length 3. Hence, $d(\alpha, \beta)=3$, and thus, the graph Γ is of diameter 3.

Now we treat the cases where $n \geqslant 5$. Take $\alpha=(12,3)$, and let $\beta=(i j, k)$.
Case 1. Assume first that $i, j, k \geqslant 4$. If a vertex $\gamma=\left(i^{\prime} j^{\prime}, k^{\prime}\right)$ is adjacent to both α and β, then $|\gamma \cap \alpha|=2$ and $|\gamma \cap \beta|=2$, which is not possible. Thus, $d(\alpha, \beta)$ is at least 3. On the other hand, the sequence

$$
\alpha=(12,3),(1 i, 2),(i k, 1), \beta=(i j, k)
$$

is a path between α and β of length 3 . Hence, $d(\alpha, \beta)=3$.
Case 2. Next, consider the case where $|\alpha \cap \beta|=1$.
Suppose that $\beta=(i j, 3)$, where $i, j \geqslant 4$. Then the sequence $\alpha,(1 i, 2),(i 3,1), \beta$ is a path between α and β, and hence $d(\alpha, \beta) \leqslant 3$. As mentioned above,

$$
\Gamma(\alpha)=\left\{\left(1 i^{\prime}, 2\right),\left(2 i^{\prime}, 1\right),\left(13, i^{\prime}\right),\left(23, i^{\prime}\right) \mid i^{\prime}>3\right\}
$$

and similarly,

$$
\Gamma(\beta)=\left\{\left(i j^{\prime}, j\right),\left(j j^{\prime}, i\right),\left(3 i, j^{\prime}\right),\left(3 j, j^{\prime}\right) \mid j^{\prime} \notin\{3, i, j\}\right\}
$$

Thus, $\Gamma(\alpha) \cap \Gamma(\beta)=\emptyset$, and so $d(\alpha, \beta)=3$.
Assume now that $k \neq 3$. Then $\beta=(1 i, k),(2 i, k),(3 i, k),(i j, 1)$ or $(i j, 2)$, where $i, j, k \geqslant 4$. In each of these cases, $d(\alpha, \beta)=2$ because

$$
\Gamma(\alpha) \cap \Gamma(\beta)= \begin{cases}\{(1 k, 2),(13, i),(2 i, 1)\}, & \text { if } \beta=(1 i, k), \\ \{(2 k, 1),(23, i),(1 i, 2)\}, & \text { if } \beta=(2 i, k), \\ \{(31, i),(32, i)\}, & \text { if } \beta=(3 i, k), \\ \{(1 i, 2),(1 j, 2)\}, & \text { if } \beta=(i j, 1), \\ \{(2 i, 1),(2 j, 1)\}, & \text { if } \beta=(i j, 2) .\end{cases}
$$

Case 3. We then treat the case where $|\alpha \cap \beta|=2$.
Assume that $k=3$. Then $\beta=(1 i, 3)$ or $(2 i, 3)$, where $i \geqslant 4$. If $\beta=(1 i, 3)$, then $\Gamma(\alpha) \cap \Gamma(\beta)=\{(13, m),(2 i, 1) \mid 4 \leqslant m \leqslant n, m \neq i\}$, and thus $d(\alpha, \beta)=2$. Similarly, if $\beta=(2 i, 3)$, there exists $n-3$ paths of length 2 between α and β, and so $d(\alpha, \beta)=2$.

Suppose that $k \neq 3$. Then $\beta=(12, k),(1 i, 2),(2 i, 1),(13, k),(23, k),(3 i, 1),(3 i, 2)$, where $i, k \geqslant 4$. If $\beta=(12, k)$, then $\Gamma(\alpha) \cap \Gamma(\beta)=\{(1 m, 2),(2 m, 1) \mid 4 \leqslant m \leqslant n, m \neq k\}$, and so $d(\alpha, \beta)=2$. For these vertices $\beta=(1 i, 2),(2 i, 1),(13, k)$, or $(23, k)$, we have $\beta \in \Gamma(\alpha)$, and thus $d(\alpha, \beta)=1$. If $\beta=(3 i, 1), \Gamma(\alpha) \cap \Gamma(\beta)=\{(13, m),(23, i),(1 i, 2) \mid 4 \leqslant$ $m \leqslant n, m \neq i\}$, and hence $d(\alpha, \beta)=2$. Similarly, if $\beta=(3 i, 2), \Gamma(\alpha) \cap \Gamma(\beta)=$ $\{(23, m),(13, i),(2 i, 1) \mid 4 \leqslant m \leqslant n, m \neq i\}$, and so $d(\alpha, \beta)=2$.
Case 4. Let $|\alpha \cap \beta|=3$. Then $\beta=(23,1)$ or $(13,2)$.
For $\beta=(23,1)$, we have $d(\alpha, \beta)=2$ as $(13, m)$ is adjacent to both α and β, and thus, there are exactly $n-3$ paths of length 2 between α and β, where $m \neq 1,2,3$. Similarly, if $\beta=(13,2), d(\alpha, \beta)=2$ because there exist exactly $n-3$ paths $\alpha,(23, m), \beta$ of length 2 between α and β, where $m \neq 1,2,3$.

Thus, $\Gamma=\Gamma_{n}$ is of diameter 3 .

4 Quotients

The action of $G=\operatorname{Sym}([n])$ on V_{n} has three types of blocks as below

$$
\begin{aligned}
& B_{k}=\{(i j, k) \mid i, j \in[n] \backslash\{k\}\}, \text { size }\binom{n-1}{2}, \\
& B_{i j}=\{(i j, k) \mid k \in[n] \backslash\{i, j\}\}, \text { size } n-2, \\
& B_{i j k}=\{(i j, k),(j k, i),(k i, j)\}, \text { size } 3 .
\end{aligned}
$$

Let $\mathcal{B}_{1}=B_{k}^{G}, \mathcal{B}_{2}=B_{i j}^{G}$, and $\mathcal{B}_{3}=B_{i j k}^{G}$. Then $\left|\mathcal{B}_{1}\right|=n,\left|\mathcal{B}_{2}\right|=\binom{n}{2}$, and $\left|\mathcal{B}_{3}\right|=\binom{n}{3}$.
Lemma 7. If $n \geqslant 7$, then $V=V_{n}$ has exactly three non-trivial G-invariant partitions: $\mathcal{B}_{1}, \mathcal{B}_{2}$ and \mathcal{B}_{3}.

Proof. For the vertex $\beta=(23,1)$, the stabilizer $G_{\beta}=\operatorname{Sym}(\{2,3\}) \times \operatorname{Sym}([n] \backslash\{1,2,3\})$, and G_{β} is contained in $G_{B_{1}}, G_{B_{23}}$ and $G_{B_{123}}$. Moreover, these three subgroups are maximal in G and are the only proper subgroups of G which properly contain G_{β}. Thus, $\mathcal{B}_{1}, \mathcal{B}_{2}$ and \mathcal{B}_{3} are the only block systems of G acting on V_{n}.

By Lemma 7, we have three block systems \mathcal{B}_{i} with $i=1,2$ or 3 , and we have three quotient graph $\Gamma_{\mathcal{B}_{i}}$. Clearly, the induced action of G on \mathcal{B}_{i} is equivalent to the action of G on $[n]^{\{i\}}$, where $i=1,2$ or 3 . We thus identify \mathcal{B}_{1} with $[n], \mathcal{B}_{2}$ with $[n]^{\{2\}}$, and \mathcal{B}_{3} with $[n]^{\{3\}}$. The quotient graph $\Gamma_{\mathcal{B}_{1}}=\mathbf{K}_{n}=\mathbf{J}(n, 1)$. For $\Gamma_{\mathcal{B}_{2}}$, two vertices $B_{i j}$ and $B_{i^{\prime} j^{\prime}}$ are adjacent if and only if $\left|\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\}\right|=1$, and so $\Gamma_{\mathcal{B}_{1}}=\mathbf{J}(n, 2)$. For $\Gamma_{\mathcal{B}_{3}}$, two vertices $B_{i j k}$ and $B_{i^{\prime} j^{\prime} k^{\prime}}$ are adjacent if and only if $\left|\{i, j, k\} \cap\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}\right|=2$. Thus, we have the following lemma.

Lemma 8. The quotient graph $\Gamma_{\mathcal{B}_{i}}$ is the Johnson graph $\mathbf{J}(n, i)$, where $i=1,2$ or 3 .
For a quotient graph $\Gamma_{\mathcal{B}}$, let $B, B^{\prime} \in \mathcal{B}$ be adjacent in $\Gamma_{\mathcal{B}}$. The induced subgraph [$\left.B \cup B^{\prime}\right]$ of Γ over $B \cup B^{\prime}$ is the graph with vertex set $B \cup B^{\prime}$ and edge set $E_{0}=\{\{u, v\} \in$ $\left.E \mid u, v \in B \cup B^{\prime}\right\}$. Then $\left[B \cup B^{\prime}\right]$ is a bipartite graph with biparts B and B^{\prime}; denoted by $\left[B, B^{\prime}\right]$. We next determine the induced subgraph $\left[B, B^{\prime}\right]$ for the quotient graph $\Gamma_{\mathcal{B}_{i}}$.

For a graph $\Sigma=(V, E)$, the vertex-edge incidence graph is the bipartite graph with biparts V and E such that two vertices $v \in V$ and $w \in E$ are adjacent if and only if v, w are incident in Σ. This incidence graph is also called the subdivision of Σ.

Lemma 9. Let $B, B^{\prime} \in \mathcal{B}_{1}$ be adjacent in $\Gamma_{\mathcal{B}_{1}}$. Then the induced subgraph $\left[B, B^{\prime}\right]$ consists of 2 copies of the subdivision of \mathbf{K}_{n-2}.

Proof. Since $(23,1) \in B_{1}$ is adjacent to $(34,2) \in B_{2}$, the vertices B_{1} and B_{2} are adjacent in the quotient $\Gamma_{\mathcal{B}_{1}}$. The edges of the induced subgraph $\left[B_{1}, B_{2}\right]$ are

$$
\{\{(2 i, 1),(i j, 2)\} \mid 3 \leqslant i \leqslant n, j \neq i, 1,2\} \cup\{\{(1 i, 2),(i j, 1)\} \mid 3 \leqslant i \leqslant n, j \neq i, 1,2\},
$$

which form two copies of the subdivision of \mathbf{K}_{n-2}.
A star $\mathbf{K}_{1, m}$ is a bipartite graph with $m+1$ vertices, in which there is one vertex that is adjacent to all other m vertices. In particular, $\mathbf{K}_{1,2}$ is a path of length 2.

Lemma 10. Let $B, B^{\prime} \in \mathcal{B}_{2}$ be adjacent in $\Gamma_{\mathcal{B}_{2}}$. Then the induced subgraph $\left[B, B^{\prime}\right]$ consists of 2 copies of the star $\mathbf{K}_{1, n-3}$.

Proof. Since $(12,3) \in B_{12}$ is adjacent to $(23,4) \in B_{23}$, the vertices B_{12} and B_{23} are adjacent in the quotient $\Gamma_{\mathcal{B}_{2}}$. The edges of the induced subgraph $\left[B_{12}, B_{23}\right]$ are $\{\{(12,3)$, $(23, i)\} \mid i \geqslant 4\} \cup\{\{(23,1),(12, j)\} \mid j \geqslant 4\}$, which form two stars $\mathbf{K}_{1, n-3}$.
Lemma 11. Let $B, B^{\prime} \in \mathcal{B}_{3}$ be adjacent in $\Gamma_{\mathcal{B}_{3}}$. Then the induced subgraph $\left[B, B^{\prime}\right]$ consists of 2 paths of length 2 .

Proof. For the blocks $B=\{(12,3),(23,1),(31,2)\}$ and $B^{\prime}=\{(12,4),(24,1),(41,2)\}$, the induced subgraph $\left[B, B^{\prime}\right]$ has 4 edges

$$
\{(12,3),(14,2)\},\{(12,3),(24,1)\},\{(12,4),(13,2)\},\{(12,4),(32,1)\}
$$

These edges form two paths of length 2 :

$$
(23,1),(12,4),(13,2), \quad \text { and }(24,1),(12,3),(14,2) .
$$

Thus, $\left[B, B^{\prime}\right]=2 \mathbf{K}_{1,2}$.

5 The automorphism group

In this section, we determine the automorphism group Aut Γ.
Lemma 12. Let $n \geqslant 7$, and let X be a subgroup such that $G \leqslant X \leqslant \operatorname{Aut} \Gamma$. Then X is almost simple, and if $X \neq G$, then X is primitive on V.

Proof. Let M be a minimal normal subgroup of X. Suppose that M is intransitive on V. Let \mathcal{B} be the set of M-orbits on V. Then \mathcal{B} is X-invariant and G-invariant. By Lemma 7, $\mathcal{B}=\mathcal{B}_{i}$ with $i=1,2$ or 3 . For $B_{i} \in \mathcal{B}_{i}$, we have that $G_{B_{1}}^{B_{1}}=S_{n-1}, G_{B_{2}}^{B_{2}}=S_{n-2}$, and $G_{B_{3}}^{B_{3}}=\mathrm{S}_{3}$. Thus, $G_{B_{i}}^{B_{i}}$ is primitive, and so is $X_{B_{i}}^{B_{i}}$.

Let $K=X_{(\mathcal{B})}$, the kernel of X acting on \mathcal{B}. Suppose that $K \neq 1$. Then $1 \neq K^{B} \triangleleft X_{B}^{B}$, and so K^{B} is transitive as X_{B}^{B} is primitive. Let $B^{\prime} \in \mathcal{B}$ be adjacent in $\Gamma_{\mathcal{B}}$ to B. Then K is transitive on B^{\prime}, and since $|B|=\left|B^{\prime}\right|$, we conclude that the induced subgraph $\left[B, B^{\prime}\right]$ is regular, which is a contradiction by Lemmas $9-11$. Thus, $K=1$, and so $M=1$, which is a contradiction. So M is transitive on V, and X is quasiprimitive on V. Further, M is non-abelian since $|V|=3\binom{n}{3}$.

Now let $M=T_{1} \times T_{2} \times \ldots \times T_{l}$, where $l \geqslant 1$, and $T_{1} \cong T_{2} \cong \ldots \cong T_{l}$ are non-abelian simple groups. Then $M \cap G \triangleleft G$, and so $M \cap G=1, \mathrm{~A}_{n}$ or S_{n}.

Suppose that $M \cap G=1$. Let $Z=M G=M: G$. If Z is imprimitive on V, then a block system $\mathcal{B}=\mathcal{B}_{1}, \mathcal{B}_{2}$ or \mathcal{B}_{3}. Hence $Z \cong Z^{\mathcal{B}} \leqslant G^{\mathcal{B}} \cong \mathrm{S}_{n}$, which is not possible. Thus, Z is primitive on V, and G does not centralize M. By O'Nan-Scott's theorem (see [7]), we have that $l \geqslant n$, and $\frac{n(n-1)(n-2)}{2}=|V|=m^{l}$ or m^{l-1} where $m \geqslant 5$, which is not possible.

Therefore, $M \cap G=\mathrm{A}_{n}$ or S_{n}, and letting $L=\operatorname{soc}(G)=\mathrm{A}_{n}$, we have $L \leqslant M$. Since L is non-abelian simple, L is contained in a simple group T_{i}, say T_{1}. Hence, T_{1} is transitive
on V. If $l \geqslant 2$, then as T_{2} centralizes T_{1}, we have that T_{2} is semiregular on V. Then $|V|$ divides $\left|T_{1}\right|$, and $\left|T_{2}\right|=\left|T_{1}\right|$ divides $|V|$. So T_{1} is regular on V, and since G is transitive on $V, L \leqslant T_{1}$ is semiregular with at most 2 orbits. Since T_{1} has no subgroup of index 2 and $G / L \cong \mathbb{Z}_{2}$, we have that $L=T_{1}$ is regular on V, which is a contradiction. Thus, $M=T_{1}$ is simple and $L \leqslant M$. Assume that there exists another minimal normal subgroup N of X such that $N \neq M$. Then $M \cap N=1$; however, the above argument with N in the place of M shows that $L \leqslant N$. So $M \cap N \geqslant L$, which is a contradiction. Therefore, M is simple and the unique minimal normal subgroup of X, and hence X is almost simple.

Suppose that $X>G$ and X is imprimitive on V. Let \mathcal{B} be a block system for X on V. Then \mathcal{B} is a block system for G on V. By Lemma $7, \mathcal{B}=\mathcal{B}_{i}$ where $i=1,2$ or 3, and by Lemma $8, \Gamma_{\mathcal{B}}=\mathbf{J}(n, i)$. As noticed in the Introduction, Aut $\Gamma_{\mathcal{B}}=\mathrm{S}_{n}$, and so $\mathrm{S}_{n} \cong G<X \cong X^{\mathcal{B}} \leqslant \operatorname{Aut} \Gamma_{\mathcal{B}} \cong \mathrm{S}_{n}$, which is not possible. Hence either $X=G$, or X is primitive on V, as claimed.

A transitive permutation group G on Ω is called k-homogeneous if G is transitive on the set of k-subsets of Ω, where k is a positive integer.
Lemma 13. If $n \geqslant 8$, then Aut $\Gamma=G=\operatorname{Sym}([n])$.
Proof. Let $n \geqslant 8$. Suppose that $G<\operatorname{Aut} \Gamma$. Let $L \leqslant \operatorname{Aut} \Gamma$ be such that G is a maximal subgroup of L. Since G is transitive on V, the almost simple group L has a factorization $L=G L_{\alpha}$. Further, since L is primitive on V, the factorization $L=G L_{\alpha}$ is a maximal factorization. Thus, the triple (L, G, L_{α}) is classified in [11], see the MAIN THEOREM on page 1. An inspection of the candidates with one factor being $G=\mathrm{S}_{n}$, we conclude that one of the following holds:
(i) $n \leqslant 12$, or
(ii) $L=\mathrm{S}_{n+1}$, or
(iii) $L=\mathrm{S}_{m}$ or A_{m}, and G is k-homogenous of degree m, where $1 \leqslant k \leqslant 5$.

Consider the small groups where $n \leqslant 12$. We note that as Γ is not a complete group, $L<\operatorname{Sym}(V)$.

Let $n=12$ first. Then $|V|=\frac{n(n-1)(n-2)}{2}=660$, and L is a primitive group of degree 660. Hence L lies in Appendix B of [7], which shows that $\operatorname{soc}(L)=\operatorname{PSL}(2,659)$ or $\operatorname{PSL}(2,11) \times \operatorname{PSL}(2,11)$. So L does not contains S_{12}, which is a contradiction. Similarly, the cases where $n=8,9$ and 10 are excluded.

Suppose that $n=11$. Then $|V|=495$, and Γ is of valency 32. By Appendix B of [7], as $\mathrm{S}_{11}<L$, we conclude that $\left(L, L_{\alpha}\right)=\left(\mathrm{S}_{12}, \mathrm{~S}_{8} \times \mathrm{S}_{4}\right)$ or $\left(\mathrm{O}_{10}^{-}(2), 2^{8}: \mathrm{O}_{8}^{-}(2)\right)$. The former is not possible since $\mathrm{S}_{12} \neq \mathrm{S}_{11}\left(\mathrm{~S}_{8} \times \mathrm{S}_{4}\right)$, and the latter is not possible since $\mathrm{O}_{8}^{-}(2)$ does not have a transitive representation of degree at most 32 .

Next, let $L=\mathrm{S}_{n+1}$, with $n \geqslant 13$. Since $L=G L_{\alpha}$, the stabilizer L_{α} is a transitive permutation group of degree $n+1$ such that $\left|L: L_{\alpha}\right|=|V|=\frac{n(n-1)(n-2)}{2}$. Assume that L_{α} is primitive of degree $n+1$. By Bochert's theorem (see [21, Theorem 14.2]),
$\left|L: L_{\alpha}\right| \geqslant\left[\frac{n+2}{2}\right]!$. Computation shows that $n \leqslant 10$, which is a contradiction. Thus, L_{α} is imprimitive of degree $n+1$. Then $L_{\alpha}=\mathrm{S}_{b}$ 々 S_{m}, where $b m=n+1$, and thus,

$$
\frac{n(n-1)(n-2)}{2}=|V|=\left|L: L_{\alpha}\right|=\frac{(n+1)!}{(b!)^{l} m!}
$$

which is not possible.
Finally, assume that $G=\mathrm{S}_{n}$ is k-homogenous of degree m, and $L=\mathrm{S}_{m}$ or A_{m}, and $L_{\alpha}=\mathrm{S}_{k} \times \mathrm{S}_{m-k}$, where $k \leqslant 5$. Since L is not 2-transitive on V, we have $k \geqslant 2$. Thus, by the classification of 2 -homogeneous groups, we conclude that $n \leqslant 8$, which is a contradiction.

Therefore, Aut $\Gamma=G=\operatorname{Sym}([n])$, as claimed.

6 Proof of Theorem 2

In this section, we prove the main theorem.
By Lemma 6, part (i) of Theorem 2 is true. By Lemma 8, Theorem 2 (ii) holds.
For $n=4$ or 5 , Theorem 2 is proved by Lemma 5. Thus, we next assume $n \geqslant 6$.
For $n=6$ or 7 , a computation using Gap shows that $\operatorname{Aut} \Gamma_{n}=\mathrm{S}_{n}$, and for $n \geqslant 8$, Lemma 13 shows that Aut $\Gamma=G$. Then, by Lemma 3, Γ is half-transitive, as in part (iii).

Finally, assume that Γ is a Cayley graph of a group R. Then R is regular on V (see [3, Proposition 16.3]), and hence R is 3 -homogeneous but not 3 -transitive on $[n]$. Further, as $|R|=|V|=3\binom{n}{3}, R$ is not sharply 3-homogeneous on $[n]$. Inspecting 3homogeneous groups which are not 3 -transitive, refer to [7, Theorem 9.4B], we conclude that $R=\operatorname{A\Gamma L}(1,8)$ or $\operatorname{PSL}(2, q)$ where $q \equiv 3(\bmod 4)$. So $n=8$ or $q+1$, respectively. This proves part (iv) of Theorem 2.

Acknowledgements

The authors are grateful to the referee for the valuable comments.

References

[1] B. Alspach, D. Marušič, and L. Nowitz. Constructing graphs which are 1/2-transitive. J. Austral. Math. Soc. Ser. A, 56:391-402, 1994.
[2] B. Alspach and M. Y. Xu. 1/2-transitive graphs of order 3p. J. Algebraic Combin., 3:347-355, 1994.
[3] N. Biggs. Algebraic Graph Theory. Cambridge University Press, New York, 1992.
[4] I. Z. Bouwer. Vertex and edge-transitive but not 1-transitive graphs. Canad. Math. Bull., 13:231-237, 1970.
[5] A. E. Brouwer, A. M. Cohen and A. Neumaier. Distance-Regular Graphs. Ergeb. Math. Grenzgeb. (Results in Mathematics and Related Areas (3)), vol. 18, SpringerVerlag, Berlin, 1989.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of Finite Groups. Oxford Univ. Press, London/New York, 1985.
[7] J. D. Dixon and B. Mortimer. Permutation Groups. Springer, 1991.
[8] Y. Q. Feng, K. S. Wang and C. X. Zhou. Tetravalent half-transitive graphs of order 4p. Europ. J. Combin., 28:726-733, 2007.
[9] G. A. Jones. Automorphisms and regular embeddings of merged Johnson graphs. European J. Combin., 26(3-4):417-435, 2005.
[10] C. H. Li and H. S. Sim. On half-transitive metacirculant graphs of prime-power order. J. Combin. Theory Ser. B, 81:45-57, 2001.
[11] M. Liebeck, C. E. Praeger and J. Saxl. The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Amer. Math. Soc., 86(432), 1990.
[12] D. Marušič. Recent developments in half-transitive graphs. Discrete Math., 182:219231, 1998.
[13] D. Marušič and C. E. Praeger. Tetravalent graphs admitting half-transitive groups actions: alternating cycles. J. Combin. Theory Ser. B, 75:185-205, 1999.
[14] D. Marušič and P. Šparl. On quartic half-arc-transitive metacirculants. J. Algebraic Combin., 28:365-395, 2008.
[15] Mark Ramras and Elizabeth Donovan. The Automorphism Group of a Johnson Graph. Siam J. Discrete Math., 25:267-270, 2011.
[16] M. Šajna. Half-transitivity of some metacirculants. Discrete Math., 185:117-136, 1998.
[17] Shu-Jiao Song, C. H. Li, and Dian-Jun Wang. Classifying a family of edge-transitive metacirculant graphs. J. Algebraic Combin., 35:497-513, 2012.
[18] Primoz Sparl. A classification of tightly attached half-arc-transitive graphs of valency 4. J. Combin. Theory Ser. B, 98, 2008.
[19] Primoz Sparl. Almost all quartic half-arc-transitive weak metacirculants of Class II are of Class IV. Discrete Math., 310:1737-1742, 2010.
[20] W. T. Tutte. Connectivity in Graphs. University of Toronto Press, Toronto, 1966.
[21] H. Wielandt. Finite Permutations Groups. Academic Press Inc, 1964.
[22] M. Y. Xu. Half-transitive graphs of prime-cube order. J. Algebraic Combin., 1:275282, 1992.

[^0]: *This work was partially supported by an ARC Discovery Project Grant, NNSF of China(No. 11171292 , 11271208) and Hunan First Normal University(No. XYS12N12).

