Total colorings of \boldsymbol{F}_{5}-free planar graphs with maximum degree 8

Jian Chang
Mathematics Science College
Inner Mongolia Normal University
Huhhot 010022, China
changj@imnu.edu.cn
Jian-Liang Wu* Hui-Juan Wang
School of Mathematics
Shandong University
Jinan 250100, China
jlwu@sdu.edu.cn
wanghuijuan-k@163.com
Zhan-Hai Guo
Department of Physiology
Hetao College
Bayannur 015000, China
guozhanhai-1981@163.com

Submitted: Apr 15, 2013; Accepted: Mar 8, 2014; Published: Mar 17, 2014
Mathematics Subject Classifications: 05C15, 05C10

Abstract

The total chromatic number of a graph G, denoted by $\chi^{\prime \prime}(G)$, is the minimum number of colors needed to color the vertices and edges of G such that no two adjacent or incident elements get the same color. It is known that if a planar graph G has maximum degree $\Delta \geqslant 9$, then $\chi^{\prime \prime}(G)=\Delta+1$. The join $K_{1} \vee P_{n}$ of K_{1} and P_{n} is called a fan graph F_{n}. In this paper, we prove that if G is an F_{5}-free planar graph with maximum degree 8 , then $\chi^{\prime \prime}(G)=9$.

Keywords: planar graph; total coloring; cycle

[^0]
1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow [2] for the terminology and notation not defined here. For a graph G, we denote its vertex set, edge set and maximum degree by $V(G), E(G)$ and $\Delta(G)$ (or simply V, E and Δ), respectively. For a face f of G, the degree $d(f)$ is the number of edges incident with it, where each cut-edge is counted twice. The join $K_{1} \vee P_{n}$ of K_{1} and P_{n} is called a fan graph F_{n}. We say that a graph G is F_{n}-free if G contains no F_{n} as a subgraph. A k-cycle is a cycle of length k. We say that two cycles are adjacent if they share at least one edge.

A total k-coloring of G is a coloring of $V \cup E$ using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number $\chi^{\prime \prime}(G)$ is the smallest integer k such that G has a total k-coloring. Clearly, $\chi^{\prime \prime}(G) \geqslant \Delta+1$. Behzad [1] and Vizing [16] independently posed the following famous conjecture, which is known as the total coloring conjecture (TCC).

Conjecture A. For any graph G, $\chi^{\prime \prime}(G) \leqslant \Delta+2$.
This conjecture was confirmed for general graphs with $\Delta \leqslant 5$. In recent years, the study of total colorings for the class of planar graphs has attracted considerable attention. For planar graphs the only open case is $\Delta=6([8,13])$, and for planar graphs with large maximum degree, there is a stronger result. It is shown that $\chi^{\prime \prime}(G)=\Delta+1$ if G is a planar graph with $\Delta \geqslant 9$ ([9]). This stronger result does not hold for planar graphs of maximum degree at most 3 . For $4 \leqslant \Delta \leqslant 8$, it is unknown that $\chi^{\prime \prime}(G)=\Delta+1$ if G is a planar graph with maximum degree Δ. For $\Delta=8$, the following four results have been recently proved.

Theorem A. ([7]) Let G be a planar graph with $\Delta=8$. If G contains no adjacent 3 -cycles, then $\chi^{\prime \prime}(G)=\Delta+1$.

Theorem B. ([15]) Let G be a planar graph with $\Delta \geqslant 8$. If G contains no adjacent 4 -cycles, then $\chi^{\prime \prime}(G)=\Delta+1$.

Theorem C. ([14]) Let G be a planar graph with $\Delta \geqslant 8$. If G contains no 5- or 6-cycles with chords, then $\chi^{\prime \prime}(G)=\Delta+1$.

Theorem D. ([5]) Let G be a planar graph with $\Delta \geqslant 8$. If G contain no 5 -cycles with two chords, then $\chi^{\prime \prime}(G)=\Delta+1$.

Here, we generalize these results and get the following result.
Theorem 1. If G be an F_{5}-free planar graph with $\Delta \geqslant 8$, then $\chi^{\prime \prime}(G)=\Delta+1$.
Recently, neighbor sum distinguishing total colorings have received much attention ([10]). In [11, 12] neighbor sum distinguishing total colorings of planar graphs have been studied.

Now, we introduce some more notations and definitions. Let G be a planar graph with a plane drawing, denote by F the face set of G. For a vertex v of G, let $N(v)$ denote the
set of vertices adjacent to v, and let $d(v)=|N(v)|$ denote the degree of v. A k-vertex, a k^{-}-vertex or a k^{+}-vertex is a vertex of degree k, at most k or at least k, respectively. Similarly, we can define a k-face, a k^{-}-face and a k^{+}-face. We use $\left(v_{1}, v_{2}, \cdots, v_{k}\right)$ to denote a cycle (or a face) whose boundary vertices are $v_{1}, v_{2}, \cdots, v_{k}$ in the clockwise order in G. Denote by $n_{d}(v)$ the number of d-vertices adjacent to v, by $f_{d}(v)$ the number of d-faces incident with v.

2 Proof of Theorem 1

According to [9], planar graphs with $\Delta \geqslant 9$ have a total $(\Delta+1)$-coloring, so to prove Theorem 1, in the following we assume that $\Delta=8$. Let $G=(V, E, F)$ be a minimal counterexample to Theorem 1, such that $|V|+|E|$ is minimum. Then every proper subgraph of G has a total 9 -coloring. Let L be the color set $\{1,2, \cdots, 9\}$ for simplicity. It is easy to prove that G is 2 -connected and hence the boundary of each face f is exactly a cycle. We first show some known properties on G.
(a) G contains no edge $u v$ with $\min \{d(u), d(v)\} \leqslant 4$ and $d(u)+d(v) \leqslant 9$ (see [3]).
(b) G contains no even cycle $\left(v_{1}, v_{2}, \cdots, v_{2 t}\right)$ such that $d\left(v_{1}\right)=d\left(v_{3}\right)=\cdots=d\left(v_{2 t-1}\right)=2$ (see [3]).

It follows from (a) that, the two neighbors of a 2 -vertex are all 8 -vertices, and any two 4^{-}-vertices are not adjacent. Note that in all figures of the paper, vertices marked \bullet have no edges of G incident with them other than those shown.

Lemma 2. ([5], [6]) G has no configurations depicted in Figure 1, (1)-(6).

Lemma 3. ([4]) Suppose that v is an 8 -vertex and $v_{1}, v_{2}, \cdots, v_{k}$ are consecutive neighbors of v with $d\left(v_{1}\right)=d\left(v_{k}\right)=2$ and $d\left(v_{i}\right) \geqslant 3$ for $2 \leqslant i \leqslant k-1$, where $k \in\{3,4,5,6,7\}$. If the face incident with v, v_{i}, v_{i+1} is a 4 -face for all $1 \leqslant i \leqslant k-1$, then at least one vertex in $\left\{v_{2}, v_{3}, \cdots, v_{k-1}\right\}$ is a 4^{+}-vertex.

Lemma 4. ([17]) Suppose that v is an 8 -vertex and $u, v_{1}, v_{2}, \cdots, v_{k}$ are consecutive neighbors of v with $d(u)=d\left(v_{1}\right)=2$ and $d\left(v_{i}\right) \geqslant 3$ for $2 \leqslant i \leqslant k$, where $k \in\{3,4,5,6,7\}$. If the face incident with v, v_{i}, v_{i+1} is a 4-face for all $1 \leqslant i \leqslant k-2$, and the face incident with v, v_{k-1}, v_{k} is a 3 -face, then at least one vertex in $\left\{v_{2}, v_{3}, \cdots, v_{k-1}\right\}$ is a 4^{+}-vertex.

Lemma 5. ([5]) Suppose that v is an 8 -vertex and $u, v_{1}, v_{2}, \cdots, v_{k}$ are consecutive neighbors of v with $d(u)=2$ and $d\left(v_{i}\right) \geqslant 3$ for $1 \leqslant i \leqslant k$, where $k \in\{4,5,6,7\}$. If the face incident with v, v_{i}, v_{i+1} is a 4 -face for all $2 \leqslant i \leqslant k-2$, and the face incident with v, v_{j}, v_{j+1} is a 3 -face for all $j \in\{1, k-1\}$, then at least one vertex in $\left\{v_{2}, v_{3}, \cdots, v_{k-1}\right\}$ is a 4^{+}-vertex.

Let φ be a (partial) total 9-coloring of G. For a vertex v of G, we denote by $C(v)$ the set of colors of edges incident with v. Call φ is nice if only some 4^{-}-vertices are not colored. Note that every nice coloring can be greedily extended to a total 9 -coloring of G, since each 4^{-}-vertex is adjacent to at most four vertices and incident with at most four

Figure 1: Reducible Configurations in $G: d(v)=7$ in (1)
edges. Therefore, in the rest of this paper, we shall always suppose that such vertices are colored at the very end.

By Euler's formula $|V|-|E|+|F|=2$, we have

$$
\sum_{v \in V}(2 d(v)-6)+\sum_{f \in F}(d(f)-6)=-12<0 .
$$

We define $c h$ to be the initial charge. Let $c h(v)=2 d(v)-6$ for each $v \in V$ and $c h(f)=d(f)-6$ for each $f \in F$. So $\sum_{x \in V \cup F} c h(x)=-12<0$. In the following, we will reassign a new charge denoted by $c h^{\prime}(x)$ to each $x \in V \cup F$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have $\sum_{x \in V \cup F} \operatorname{ch}^{\prime}(x)=\sum_{x \in V \cup F} c h(x)=-12$. If we can show that $c h^{\prime}(x) \geqslant 0$ for each $x \in V \cup F$, then we get an obvious contradiction to

$$
0 \leqslant \sum_{x \in V \cup F} c h^{\prime}(x)=\sum_{x \in V \cup F} \operatorname{ch}(x)=-12,
$$

which completes our proof.
For $f=\left(v_{1}, v_{2}, \cdots, v_{k}\right) \in F$, we use $\left(d\left(v_{1}\right), d\left(v_{2}\right), \cdots, d\left(v_{k}\right)\right) \rightarrow\left(c_{1}, c_{2}, \cdots, c_{k}\right)$ to denote that the vertex v_{i} sends f the amount of charge c_{i} for $i=1,2, \cdots, k$. Now we define the discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. For a 3 -face $\left(v_{1}, v_{2}, v_{3}\right)$, let

$$
\begin{aligned}
& \left(3^{-}, 7^{+}, 7^{+}\right) \rightarrow\left(0, \frac{3}{2}, \frac{3}{2}\right), \\
& \left(4,6^{+}, 6^{+}\right) \rightarrow\left(\frac{1}{2}, \frac{5}{4}, \frac{5}{4}\right), \\
& \left(5^{+}, 5^{+}, 5^{+}\right) \rightarrow(1,1,1) .
\end{aligned}
$$

R3. For a 4 -face $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$, let $\left(3^{-}, 7^{+}, 3^{-}, 7^{+}\right) \rightarrow(0,1,0,1)$,

$$
\left(3^{-}, 7^{+}, 4^{+}, 7^{+}\right) \rightarrow\left(0, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}\right)
$$

$$
\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right) \rightarrow\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) .
$$

R4. For a 5 -face $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$, let

$$
\begin{aligned}
& \left(3^{-}, 7^{+}, 3^{-}, 7^{+}, 7^{+}\right) \rightarrow\left(0, \frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3}\right) \\
& \left(3^{-}, 7^{+}, 4^{+}, 4^{+}, 7^{+}\right) \rightarrow\left(0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) \\
& \left(4^{+}, 4^{+}, 4^{+}, 4^{+}, 4^{+}\right) \rightarrow\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right) .
\end{aligned}
$$

Next we show that $c h^{\prime}(x) \geqslant 0$ for each $x \in V \cup F$. Since our discharging rules are designed such that $c h^{\prime}(f) \geqslant 0$ for all $f \in F$ and $c h^{\prime}(v) \geqslant 0$ for all 2-vertices $v \in V$, it suffices to check that $c h^{\prime}(v) \geqslant 0$ for all 3^{+}-vertices in G. Let $v \in V$. Suppose $d(v)=3$. Then $c h^{\prime}(v)=c h(v)=0$. Suppose $d(v)=4$. Then v sends at most $\frac{1}{2}$ to each of its incident faces and $c h^{\prime}(v) \geqslant c h(v)-\frac{1}{2} \times 4=0$. Suppose $d(v)=5$. Then $f_{3}(v) \leqslant 3$, and v sends at most 1 to each of its incident 3 -faces by R2, at most $\frac{1}{2}$ to each of its incident 4^{+}-faces by R3 and R4. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-f_{3}(v) \times 1-\left(5-f_{3}(v)\right) \times \frac{1}{2}=\frac{3}{2}-\frac{1}{2} f_{3}(v) \geqslant 0$. Suppose $d(v)=6$. Then $f_{3}(v) \leqslant 4$, and v sends at most $\frac{5}{4}$ to each of its incident 3 -faces, at most $\frac{1}{2}$ to each of its incident 4^{+}-faces. So $c h^{\prime}(v) \geqslant c h(v)-f_{3}(v) \times \frac{5}{4}-\left(6-f_{3}(v)\right) \times \frac{1}{2}=3-\frac{3}{4} f_{3}(v) \geqslant 0$.

Call a 3 -face is bad if it has a 3^{-}-vertex, a 4 -face is bad if it has two 3^{-}-vertices, good otherwise.

Suppose $d(v)=7$. Note that $f_{3}(v) \leqslant 5$. If $f_{3}(v) \leqslant 2$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-$ $f_{3}(v) \times \frac{3}{2}-\left(7-f_{3}(v)\right) \times 1=1-\frac{1}{2} f_{3}(v) \geqslant 0$. Suppose $3 \leqslant f_{3}(v) \leqslant 5$, then v is incident with at most two bad 3-faces by Figure 1(1). If $3 \leqslant f_{3}(v) \leqslant 4$, then $c h^{\prime}(v) \geqslant$ $\operatorname{ch}(v)-\max \left\{2 \times \frac{3}{2}+\left(f_{3}(v)-2\right) \times \frac{5}{4}+\left(7-f_{3}(v)\right) \times \frac{1}{2}, \frac{3}{2}+\left(f_{3}(v)-1\right) \times \frac{5}{4}+\frac{3}{4}+\left(7-f_{3}(v)-\right.\right.$ 1) $\left.\times \frac{1}{2}, f_{3}(v) \times \frac{5}{4}+2 \times 1+\left(7-f_{3}(v)-2\right) \times \frac{3}{4}\right\}=\frac{9}{4}-\frac{1}{2} f_{3}(v) \geqslant \frac{1}{4}>0$. If $f_{3}(v)=5$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-\max \left\{2 \times \frac{3}{2}+3 \times \frac{5}{4}+2 \times \frac{1}{2}, \frac{3}{2}+4 \times \frac{5}{4}+\frac{3}{4}+\frac{1}{2}\right\}=\frac{1}{4}>0$.

Suppose $d(v)=8$. Let $v_{1}, v_{2}, \cdots, v_{8}$ be neighbors of v and $f_{1}, f_{2}, \cdots, f_{8}$ be faces incident with v in an clockwise order, where f_{i} is incident with v_{i}, v_{i+1}, and $i \in\{1,2, \cdots, 8\}$. Note that all the subscripts in the paper are taken modulo 8. First, we prove some lemmas.

Lemma 6. Suppose that v is an 8 -vertex and $v_{1}, v_{2}, \cdots, v_{k}, v_{k+1}, v_{s}, v_{s+1}$ are consecutive neighbors of v with $d\left(v_{1}\right)=2$ and $d\left(v_{i}\right)=3$ for $2 \leqslant i \leqslant k$, where $3 \leqslant k+1 \leqslant s$ and $s \in\{3,5, \cdots, 7\}$. If v is incident with 3 -faces $\left(v, v_{k}, v_{k+1}\right)$ and $\left(v, v_{s}, v_{s+1}\right)$, and incident with 4-faces $\left(v, v_{j}, x_{j}, v_{j+1}\right)$ for all $1 \leqslant j \leqslant k-1$, then $\min \left\{d\left(v_{s}\right), d\left(v_{s+1}\right)\right\} \geqslant 4$.

Figure 2: Reducible Configuration in G

Proof. By Figure $1(2)$, we have $\min \left\{d\left(v_{s}\right), d\left(v_{s+1}\right)\right\} \geqslant 3$. Assume to be contradictory that $d\left(v_{s}\right)=3$ or $d\left(v_{s+1}\right)=3$. Without loss of generality, suppose that $d\left(v_{s+1}\right)=3$, and $N\left(v_{s+1}\right)=\left\{v, v_{s}, x_{s+1}\right\}$ (see Figure 2). Consider a nice coloring φ of $G^{\prime}=G-v v_{1}$. If $\varphi\left(v_{1} x_{1}\right) \in C(v)$, then the forbidden colors for $v v_{1}$ number at most 8 , so $v v_{1}$ can be properly colored. Then we can suppose $\varphi\left(v_{1} x_{1}\right) \notin C(v)$. Without loss of generality, suppose that $\varphi(v)=9, \varphi\left(v_{1} x_{1}\right)=1$, and $\varphi\left(v v_{j}\right)=j$ for $j \in\{2, \cdots, k, k+1, s, s+1\}$. It is easy to see that $1 \in C\left(v_{j}\right)$ for $j \in\{2, \cdots, k, s+1\}$, since otherwise, we can recolor $v v_{j}$ with 1, color $v v_{1}$ with j, a contradiction. So $\varphi\left(v_{2} x_{2}\right)=\cdots=\varphi\left(v_{k-1} x_{k-1}\right)=\varphi\left(v_{k} v_{k+1}\right)=1$ and $1 \in\left\{\varphi\left(v_{s} v_{s+1}\right), \varphi\left(v_{s+1} x_{s+1}\right)\right\}$. Note that $\varphi\left(v_{k} x_{k-1}\right)=k+1$, since otherwise, we may get a contradiction by exchange the colors on $v v_{k+1}$ and $v_{k} v_{k+1}$, color $v v_{1}$ with $k+1$. Thus $\varphi\left(v_{k-1} x_{k-2}\right)=k+1$, since otherwise, we exchange the colors on $v v_{k+1}$ and $v_{k} v_{k+1}, v_{k} x_{k-1}$ and $v_{k-1} x_{k-1}$, color $v v_{1}$ with $k+1$, also a contradiction. Similarly, $\varphi\left(v_{k-2} x_{k-3}\right)=\cdots=\varphi\left(v_{2} x_{1}\right)=k+1$.

If $k+1=s$, then $\varphi\left(v_{s+1} x_{s+1}\right)=1$. We exchange the colors on $v v_{k+1}$ and $v_{k} v_{k+1}$, $v_{k} x_{k-1}$ and $v_{k-1} x_{k-1}, \cdots, v_{1} x_{1}$ and $v_{2} x_{1}$, recolor $v v_{s+1}$ with $k+1$, color $v v_{1}$ with $s+1$, a contradiction. So we can suppose $k+1<s$. Then $k+1 \in\left\{\varphi\left(v_{s} v_{s+1}\right), \varphi\left(v_{s+1} x_{s+1}\right)\right\}$, since otherwise, we can exchange the colors on $v v_{k+1}$ and $v_{k} v_{k+1}, v_{k} x_{k-1}$ and $v_{k-1} x_{k-1}$, $\cdots, v_{1} x_{1}$ and $v_{2} x_{1}$, recolor $v v_{s+1}$ with $k+1$, color $v v_{1}$ with $s+1$, a contradiction. We first exchange the colors on $v v_{s}$ and $v_{s} v_{s+1}$. If $\varphi\left(v_{s} v_{s+1}\right)=k+1$, we additionally exchange the colors on $v v_{k+1}$ and $v_{k} v_{k+1}, v_{k} x_{k-1}$ and $v_{k-1} x_{k-1}, \cdots, v_{1} x_{1}$ and $v_{2} x_{1}$. Then we color $v v_{1}$ with s, also a contradiction.

Lemma 7. Suppose that v is an 8-vertex and $N(v)=\left\{v_{i} \mid i=1,2, \cdots, 8\right\}$ with $d\left(v_{2}\right)=3$. If $v v_{2}$ is incident with two 3 -faces $\left(v, v_{1}, v_{2}\right)$ and $\left(v, v_{2}, v_{3}\right)$, then there exists at most one 3 -vertex $v_{j}(j \neq 2)$ such that $v v_{j}$ is incident with a 3 -face.

Proof. By Property (a), we have $\min \left\{d\left(v_{1}\right), d\left(v_{3}\right)\right\} \geqslant 7$. Suppose, to be contradictory, that there are two 3 -vertices v_{j} and $v_{k}(4 \leqslant j<k \leqslant 8)$, such that $v v_{j}$ is incident with a 3 -face and $v v_{k}$ is incident with another 3 -face. Consider a nice coloring φ of $G^{\prime}=G-v v_{2}$. Without loss of generality, suppose that $\varphi(v)=2$ and $\varphi\left(v v_{i}\right)=i$ for $i \in\{1,3,4,5,6,7,8\}$. If $9 \notin C\left(v_{2}\right)$, then we can obtain a nice coloring of G by coloring $v v_{2}$ with 9 , a contradiction.

So $9 \in C\left(v_{2}\right)$, that is, $\varphi\left(v_{1} v_{2}\right)=9$ or $\varphi\left(v_{2} v_{3}\right)=9$. Without loss of generality, suppose that $\varphi\left(v_{1} v_{2}\right)=9$. At the same time, we have the following results:
(1) For some $i \in\{j, k\}$, if $\varphi\left(v_{2} v_{3}\right) \neq i$ then $9 \in C\left(v_{i}\right)$;
(2) For some $i \in\{j, k\}$, if $\varphi\left(v_{2} v_{3}\right) \notin\{1, i\}$, then $C\left(v_{i}\right)=\{1, i, 9\}$;
(3) For some $i \in\{j, k\}$, if $\varphi\left(v_{2} v_{3}\right)=1$, then $C\left(v_{i}\right)=\{3, i, 9\}$.

For (1), if $9 \notin C\left(v_{i}\right)$, then we can recolor $v v_{i}$ with 9 , and color $v v_{2}$ with i to obtain a nice coloring of G, a contradiction. For (2), if $\{1, i, 9\} \subset C\left(v_{i}\right)$, then we exchange the colors on $v v_{1}$ and $v_{1} v_{2}$, recolor $v v_{i}$ with 1 , and color $v v_{2}$ with i, a contradiction again. For (3), if $\{3, i, 9\} \subset C\left(v_{i}\right)$, then we exchange the colors on $v v_{1}$ and $v_{1} v_{2}, v v_{3}$ and $v_{2} v_{3}$, recolor $v v_{i}$ with 3 , and color $v v_{2}$ with i, a contradiction.

Case 1. $v_{1} v_{k} \notin E(G)$ and $v_{3} v_{j} \notin E(G)$.
Without loss of generality, suppose that $N\left(v_{j}\right)=\left\{v, v_{j+1}, x_{j}\right\}$ and $N\left(v_{k}\right)=\left\{v, v_{k-1}, x_{k}\right\}$ (see Fig. 3(1)). It is obvious that $v_{j+1} \neq v_{k}$. Suppose $\varphi\left(v_{2} v_{3}\right)=1$. Then $C\left(v_{j}\right)=\{3, j, 9\}$ by (3). We exchange the colors on $v v_{j+1}$ and $v_{j} v_{j+1}$, color $v v_{2}$ with $j+1$. If $\varphi\left(v_{j} v_{j+1}\right)=3$, then we additionally exchange the colors on $v v_{1}$ and $v_{1} v_{2}, v v_{3}$ and $v_{2} v_{3}$. Thus we obtain a nice coloring of G, a contradiction.

(1)

(2)

(3)

Figure 3: Reducible Configurations in G

Suppose $\varphi\left(v_{2} v_{3}\right)=j+1$. Then $C\left(v_{j}\right)=\{1, j, 9\}$ and $C\left(v_{k}\right)=\{1, k, 9\}$ by (2). We exchange the colors on $v v_{j+1}$ and $v_{j} v_{j+1}$, recolor $v v_{k}$ with $j+1$, and color $v v_{2}$ with k. If $\varphi\left(v_{j} v_{j+1}\right)=1$, then we additionally exchange the colors on $v v_{1}$ and $v_{1} v_{2}$. Thus we also obtain a nice coloring of G, a contradiction, too. So we have $\varphi\left(v_{2} v_{3}\right) \notin\{1, j+1\}$. Since $\varphi\left(v_{2} v_{3}\right)$ is different from either j or k, we may assume that $\varphi\left(v_{2} v_{3}\right) \neq j$. Then $C\left(v_{j}\right)=\{1, j, 9\}$ by (2). We exchange the colors on $v v_{j+1}$ and $v_{j} v_{j+1}$, color $v v_{2}$ with $j+1$. If $\varphi\left(v_{j} v_{j+1}\right)=1$, then we additionally exchange the colors on $v v_{1}$ and $v_{1} v_{2}$. Thus we obtain a nice coloring of G, a contradiction.

Case 2. $v_{1} v_{k} \in E(G)$.
Without loss of generality, suppose that $N\left(v_{j}\right)=\left\{v, v_{j-1}, x_{j}\right\}$ and $N\left(v_{k}\right)=\left\{v, v_{1}, x_{k}\right\}$ (see Figure 3(2)). If $\varphi\left(v_{2} v_{3}\right) \notin\{1, k\}$, then $C\left(v_{k}\right)=\{1, k, 9\}$ by (2), so $\varphi\left(v_{1} v_{k}\right)=1$ or $\varphi\left(v_{1} v_{k}\right)=9$, a contradiction. Suppose $\varphi\left(v_{2} v_{3}\right)=1$. Then $C\left(v_{j}\right)=\{3, j, 9\}$ and
$C\left(v_{k}\right)=\{3, k, 9\}$ by (3). If $v_{3}=v_{j-1}$, then $\varphi\left(v_{3} v_{j}\right)=9$ and $\varphi\left(v_{1} v_{k}\right)=3$. We exchange the colors on $v v_{1}$ and $v_{1} v_{2}, v_{2} v_{3}$ and $v_{3} v_{j}$, recolor $v v_{k}$ with 1 , and color $v v_{2}$ with k, a contradiction. So we can suppose $v_{3} \neq v_{j-1}$. We exchange the colors on $v v_{j-1}$ and $v_{j-1} v_{j}$, and color $v v_{2}$ with $j-1$. If $\varphi\left(v_{j-1} v_{j}\right)=3$, then we additionally exchange the colors on $v v_{1}$ and $v_{1} v_{2}, v v_{3}$ and $v_{2} v_{3}$. Thus we obtain a nice coloring of G, a contradiction. Suppose $\varphi\left(v_{2} v_{3}\right)=k$. Then $C\left(v_{j}\right)=\{1, j, 9\}$ by (2). We exchange the colors on $v v_{j-1}$ and $v_{j-1} v_{j}$, color $v v_{2}$ with $j-1$. If $\varphi\left(v_{j-1} v_{j}\right)=1$, then we additionally exchange the colors on $v v_{1}$ and $v_{1} v_{2}$. Thus we also obtain a nice coloring of G, a contradiction, too.

Case 3. $v_{3} v_{j} \in E(G)$, but $v_{1} v_{k} \notin E(G)$.
Without loss of generality, suppose that $N\left(v_{j}\right)=\left\{v, v_{3}, x_{j}\right\}$ and $N\left(v_{k}\right)=\left\{v, v_{k-1}, x_{k}\right\}$ (see Figure 3(3)). It is obvious that $v_{j} \neq v_{k-1}$. Suppose $\varphi\left(v_{2} v_{3}\right)=1$. Then $C\left(v_{j}\right)=$ $\{3, j, 9\}$ and $C\left(v_{k}\right)=\{3, k, 9\}$ by (3). We exchange the colors on $v v_{1}$ and $v_{1} v_{2}, v_{2} v_{3}$ and $v_{3} v_{j}$, recolor $v v_{k}$ with 1 , and color $v v_{2}$ with k. a contradiction. Suppose $\varphi\left(v_{2} v_{3}\right)=j$. Then $C\left(v_{k}\right)=\{1, k, 9\}$ by (2). We exchange the colors on $v v_{k-1}$ and $v_{k-1} v_{k}$, color $v v_{2}$ with $k-1$. If $\varphi\left(v_{k-1} v_{k}\right)=1$, then we additionally exchange the colors on $v v_{1}$ and $v_{1} v_{2}$. Thus we also obtain a nice coloring of G, a contradiction. So we have $\varphi\left(v_{2} v_{3}\right) \notin\{1, j\}$. Then $C\left(v_{j}\right)=\{1, j, 9\}$ by (2). We exchange the colors on $v v_{3}$ and $v_{3} v_{j}$, color $v v_{2}$ with 3. If $\varphi\left(v_{3} v_{j}\right)=1$, then we additionally exchange the colors on $v v_{1}$ and $v_{1} v_{2}$. Thus we also obtain a nice coloring of G, a contradiction, too.

Lemma 8. Suppose that $d\left(v_{i}\right)=d\left(v_{k}\right)=2$ and $d\left(v_{j}\right) \geqslant 3$ for all $j=i+1, \cdots, k-1$, where $k \geqslant i+2$. If $\min \left\{d\left(f_{i}\right), d\left(f_{i+1}\right), \cdots, d\left(f_{k-1}\right)\right\} \geqslant 4$, then v sends at most $\frac{3}{2}+(k-i-2)$ (in total) to $f_{i}, f_{i+1}, \cdots, f_{k-1}$.

Proof. By Lemma 3, $\max \left\{d\left(v_{i+1}\right), \cdots, d\left(v_{k-1}\right)\right\} \geqslant 4$ or $\max \left\{d\left(f_{i}\right), \cdots, d\left(f_{k-1}\right)\right\} \geqslant 5$. If $\max \left\{d\left(v_{i+1}\right), \cdots, d\left(v_{k-1}\right)\right\} \geqslant 4$, then v sends at most $2 \times \frac{3}{4}+(k-i-2)$ (in total) to f_{i}, \cdots, f_{k-1} by R3. If $\max \left\{d\left(f_{i}\right), \cdots, d\left(f_{k-1}\right)\right\} \geqslant 5$, then or v sends at most $\frac{1}{3}+(k-i-1)$ (in total) to f_{i}, \cdots, f_{k-1} by R3 and R4. Since $2 \times \frac{3}{4}>1+\frac{1}{3}, v$ sends at most $\frac{3}{2}+(k-i-2)$ (in total) to $f_{i}, f_{i+1}, \cdots, f_{k-1}$.

Lemma 9. Suppose that $d\left(v_{i}\right)=d\left(v_{i+4}\right)=2$ and $d\left(v_{j}\right) \geqslant 3$ for all $j=i+1, i+2, i+3$. If $\min \left\{d\left(f_{i}\right), d\left(f_{i+2}\right), d\left(f_{i+3}\right)\right\} \geqslant 4$ and $d\left(f_{i+1}\right)=3$, then v sends at most $\frac{15}{4}$ (in total) to f_{i}, f_{i+1}, f_{i+2} and f_{i+3}.

Proof. If $d\left(v_{i+1}\right)=3$, then $d\left(v_{i+2}\right) \geqslant 7$, and $d\left(f_{i}\right) \geqslant 5$ by Lemma 4 , so v sends at most $\frac{1}{3}+\frac{3}{2}+\frac{3}{4}+1=\frac{43}{12}$ to f_{i}, f_{i+1}, f_{i+2} and f_{i+3}. If $d\left(v_{i+2}\right)=3$, then $d\left(v_{i+1}\right) \geqslant 7$, and $d\left(v_{i+3}\right) \geqslant 4$ or there is at least one 5^{+}-face in $\left\{f_{i+2}, f_{i+3}\right\}$ by Lemma 4 , so v sends at most $\frac{3}{4}+\frac{3}{2}+\max \left\{2 \times \frac{3}{4}, 1+\frac{1}{3}\right\}=\frac{15}{4}$ to f_{i}, f_{i+1}, f_{i+2} and f_{i+3}. If $\min \left\{d\left(v_{i+1}\right), d\left(v_{i+2}\right)\right\} \geqslant 4$, then v sends at most $\frac{3}{4}+\frac{5}{4}+\frac{3}{4}+1=\frac{15}{4}$ to f_{i}, f_{i+1}, f_{i+2} and f_{i+3}. Since $\frac{43}{12}<\frac{15}{4}, v$ sends at most $\frac{15}{4}$ (in total) to f_{i}, f_{i+1}, f_{i+2} and f_{i+3}.

Lemma 10. Suppose that $d\left(v_{i}\right)=d\left(v_{k}\right)=2$ and $d\left(v_{j}\right) \geqslant 3$ for all $j=i+1, \cdots, k-1$, where $k \geqslant i+3$. If $\min \left\{d\left(f_{i}\right), d\left(f_{k-1}\right)\right\} \geqslant 4$ and $d\left(f_{i+1}\right)=\cdots=d\left(f_{k-2}\right)=3$, then v sends at most $\frac{11}{4}+(k-i-3) \times \frac{5}{4}$ (in total) to $f_{i}, f_{i+1}, \cdots, f_{k-1}$.

Proof. We note that if $k \geqslant i+4$, then $\min \left\{d\left(v_{i+2}\right), \cdots, d\left(v_{k-2}\right)\right\} \geqslant 4$ by Figure 1(5). If $d\left(f_{i}\right)=d\left(f_{k-1}\right)=4$, then $\min \left\{d\left(v_{i+1}\right), d\left(v_{k-1}\right)\right\} \geqslant 4$ by Lemma 4 , so v sends at most $2 \times \frac{3}{4}+(k-i-2) \times \frac{5}{4}=\frac{11}{4}+(k-i-3) \times \frac{5}{4}$ (in total) to $f_{i}, f_{i+1}, \cdots, f_{k-1}$. If one of f_{i} and f_{k-1} is 4-face, then v sends at most $\frac{3}{4}+\frac{1}{3}+\frac{3}{2}+(k-i-3) \times \frac{5}{4}=$ $\frac{31}{12}+(k-i-3) \times \frac{5}{4}$ (in total) to $f_{i}, f_{i+1}, \cdots, f_{k-1}$. If $\min \left\{d\left(f_{i}\right), d\left(f_{k-1}\right)\right\} \geqslant 5$, then v sends at most $2 \times \frac{1}{3}+2 \times \frac{3}{2}+(k-i-4) \times \frac{5}{4}=\frac{29}{12}+(k-i-3) \times \frac{5}{4}$ (in total) to $f_{i}, f_{i+1}, \cdots, f_{k-1}$. Since $\max \left\{\frac{11}{4}, \frac{31}{12}, \frac{29}{12}\right\}=\frac{11}{4}, v$ sends at most $\frac{11}{4}+(k-i-3) \times \frac{5}{4}$ (in total) to $f_{i}, f_{i+1}, \cdots, f_{k-1}$.

Now, we come back to check the new charge of 8 -vertex v and consider nine cases in the following.

Case 1. $n_{2}(v)=8$. Note that $f_{6^{+}}(v)=8$ by Figure 1(3) and (4). Then, no charge is discharged from v to its incident faces. So $c h^{\prime}(v)=c h(v)-8 \times 1=10-8=2>0$ by R1.

Case 2. $n_{2}(v)=7$. Then $f_{6^{+}}(v) \geqslant 6$ and $f_{3}(v)=0$ by Figure $1(4)$. So $c h^{\prime}(v) \geqslant$ $\operatorname{ch}(v)-7 \times 1-2 \times 1=10-9=1>0$.

Case 3. $n_{2}(v)=6$. Then there are four possibilities in which 2 -vertices are located. They are shown as configurations in Figure 4. For Figure $4(1), f_{6^{+}}(v) \geqslant 5$ and $f_{3}(v) \leqslant 1$. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-6 \times 1-\frac{3}{2}-2 \times 1=\frac{1}{2}>0$. For Figure $4(2)-(4), f_{6^{+}}(v) \geqslant 4$ and $f_{3}(v)=0$. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-6 \times 1-4 \times 1=0$.

Figure 4: Fig. 4. $n_{2}(v)=6$

Case 4. $n_{2}(v)=5$. Then there are five possibilities in which 2 -vertices are located. They are shown as configurations in Figure 5.

Figure 5: $n_{2}(v)=5$

For Figure $5(1), f_{6^{+}}(v) \geqslant 4$ and $f_{3}(v) \leqslant 2$. So $c h^{\prime}(v) \geqslant c h(v)-5 \times 1-2 \times \frac{3}{2}-2 \times 1=0$. For Figure $5(2)$ and $(3), f_{6^{+}}(v) \geqslant 3$ and $f_{3}(v) \leqslant 1$. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-5 \times 1-\frac{3}{2}-$ $\max \left\{\frac{11}{4}, \frac{3}{2}+1\right\}=\frac{3}{4}>0$ by Lemma 8 and Lemma 10. For Figure 5(4) and (5), $f_{6^{+}}(v) \geqslant 2$ and $f_{3}(v)=0$. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-5 \times 1-3 \times \frac{3}{2}=\frac{1}{2}>0$.

Case 5. $n_{2}(v)=4$. Then there are eight possibilities in which 2 -vertices are located. They are shown as configurations in Figure 6.

Figure 6: $n_{2}(v)=4$

For Figure $6(1), f_{6^{+}}(v) \geqslant 3$ and $f_{3}(v) \leqslant 3$. If $f_{3}(v)=3$, then $c h^{\prime}(v) \geqslant c h(v)-4 \times 1-$ $\left(\frac{11}{4}+2 \times \frac{5}{4}\right)=\frac{3}{4}>0$. Otherwise, $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-4 \times 1-f_{3}(v) \times \frac{3}{2}-\left(5-f_{3}(v)\right) \times 1=$ $1-\frac{1}{2} f_{3}(v) \geqslant 0$. For Figure 6(2) and (4), $f_{6^{+}}(v) \geqslant 2$ and $f_{3}(v) \leqslant 2$. If $f_{3}(v)=2$, then $c h^{\prime}(v) \geqslant c h(v)-4 \times 1-\frac{3}{2}-\left(\frac{11}{4}+\frac{5}{4}\right)=\frac{1}{2}>0$ by Lemma 8 and Lemma 10. Otherwise, $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-4 \times 1-\frac{3}{2}-f_{3}(v) \times \frac{3}{2}-\left(4-f_{3}(v)\right) \times 1=\frac{1}{2}-\frac{1}{2} f_{3}(v) \geqslant 0$. For Figure 6(3) and (7), $f_{6^{+}}(v) \geqslant 2$ and $f_{3}(v) \leqslant 2$. So $c h^{\prime}(v) \geqslant c h(v)-4 \times 1-f_{3}(v) \times \frac{11}{4}-\left(2-f_{3}(v)\right) \times\left(\frac{3}{2}+1\right)=$ $1-\frac{1}{4} f_{3}(v)>0$ by Lemma 8 and Lemma 10. For Figure 6(5) and (6), $f_{6^{+}}(v) \geqslant 1$ and $f_{3}(v) \leqslant 1$. So $c h^{\prime}(v) \geqslant c h(v)-4 \times 1-2 \times \frac{3}{2}-f_{3}(v) \times \frac{11}{4}-\left(1-f_{3}(v)\right) \times\left(\frac{3}{2}+1\right)=\frac{1}{2}-\frac{1}{4} f_{3}(v)>0$. For Figure $6(8), f_{3}(v)=0$. So $c h^{\prime}(v) \geqslant c h(v)-4 \times 1-4 \times \frac{3}{2}=0$.

Case 6. $n_{2}(v)=3$. Then there are five possibilities in which 2 -vertices are located. They are shown as configurations in Figure 7.

For Figure $7(1)$, note that $\min \left\{d\left(f_{1}\right), d\left(f_{2}\right)\right\} \geqslant 6, \min \left\{d\left(f_{3}\right), d\left(f_{8}\right)\right\} \geqslant 4$, and $f_{3}(v) \leqslant 3$. If $f_{3}(v) \leqslant 2$, then $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-3 \times 1-f_{3}(v) \times \frac{3}{2}-\left(6-f_{3}(v)\right) \times 1=1-\frac{1}{2} f_{3}(v) \geqslant 0$. Suppose $f_{3}(v)=3$, Then $\min \left\{d\left(f_{4}\right), d\left(f_{7}\right)\right\}=3$. Without loss of generality, suppose that $d\left(f_{4}\right)=3$, then v sends at most $\frac{3}{4}$ to f_{3} by Lemma 4. If $d\left(f_{7}\right)=3$, then $c h^{\prime}(v) \geqslant$ $\operatorname{ch}(v)-3 \times 1-1-2 \times \frac{3}{4}-3 \times \frac{3}{2}=0$. Otherwise, $d\left(f_{4}\right)=d\left(f_{5}\right)=d\left(f_{6}\right)=3$, then f_{5} is good by Figure 1(5). So $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-3 \times 1-2 \times 1-\frac{3}{4}-\frac{5}{4}-2 \times \frac{3}{2}=0$.

For Figure $7(2), d\left(f_{1}\right) \geqslant 6, \min \left\{d\left(f_{2}\right), d\left(f_{3}\right), d\left(f_{4}\right), d\left(f_{8}\right)\right\} \geqslant 4$, and $f_{3}(v) \leqslant 3$. If

Figure 7: $n_{2}(v)=3$
$f_{3}(v) \leqslant 1$, then $c h^{\prime}(v) \geqslant c h(v)-3 \times 1-\frac{3}{2}-f_{3}(v) \times \frac{3}{2}-\left(5-f_{3}(v)\right) \times 1=\frac{1}{2}-\frac{1}{2} f_{3}(v) \geqslant 0$ by Lemma 8. If $f_{3}(v)=3$, then $d\left(f_{5}\right)=d\left(f_{6}\right)=d\left(f_{7}\right)=3$, so $c h^{\prime}(v) \geqslant c h(v)-3 \times 1-\frac{3}{2}-\left(\frac{11}{4}+\right.$ $\left.2 \times \frac{5}{4}\right)=\frac{1}{4}>0$ by Lemma 8 and Lemma 10. Suppose $f_{3}(v)=2$. If $\max \left\{d\left(f_{4}\right), d\left(f_{8}\right)\right\} \geqslant 5$, then $c h^{\prime}(v) \geqslant c h(v)-3 \times 1-\frac{3}{2}-2 \times \frac{3}{2}-\frac{1}{3}-2 \times 1=\frac{1}{6}>0$. Otherwise, without loss of generality, suppose that $d\left(f_{5}\right)=3$. If $d\left(f_{6}\right)=3$, then f_{4} and f_{5} are good by Figure $1(5)$ and Lemma 4. So $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-3 \times 1-\frac{3}{2}-\frac{3}{4}-\frac{5}{4}-\frac{3}{2}-2 \times 1=0$. If $d\left(f_{7}\right)=3$, then f_{4} and f_{8} are good. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-3 \times 1-\frac{3}{2}-2 \times \frac{3}{4}-2 \times \frac{3}{2}-1=0$.

For Figure $7(3), d\left(f_{1}\right) \geqslant 6, \min \left\{d\left(f_{2}\right), d\left(f_{4}\right), d\left(f_{5}\right), d\left(f_{8}\right)\right\} \geqslant 4$, and $f_{3}(v) \leqslant 3$. If $f_{3}(v)=3$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-3 \times 1-\left(\frac{11}{4}+\frac{5}{4}\right)-\frac{11}{4}=\frac{1}{4}>0$ by Lemma 10. Otherwise, $f_{3}(v) \leqslant 2$. If $d\left(f_{3}\right)=3$, then $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-3 \times 1-\frac{11}{4}-\max \left\{\frac{15}{4}, 4 \times 1\right\}=\frac{1}{4}>0$. If $d\left(f_{3}\right) \geqslant 4$, then $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-3 \times 1-\left(\frac{3}{2}+1\right)-\max \left\{\frac{11}{4}+\frac{5}{4}, \frac{15}{4}, 4 \times 1\right\}=\frac{1}{2}>0$.

For Figure $7(4), f_{3}(v) \leqslant 2$. So $c h^{\prime}(v) \geqslant c h(v)-3 \times 1-2 \times \frac{3}{2}-\max \left\{\frac{11}{4}+\frac{5}{4}, \frac{15}{4}, 4 \times 1\right\}=0$. For Figure $7(5), f_{3}(v) \leqslant 2$. So $c h^{\prime}(v) \geqslant c h(v)-3 \times 1-\frac{3}{2}-f_{3}(v) \times \frac{11}{4}-\left(2-f_{3}(v)\right) \times\left(\frac{3}{2}+1\right)=$ $\frac{1}{2}-\frac{1}{4} f_{3}(v) \geqslant 0$.

Case 7. $n_{2}(v)=2$. Then there are four possibilities in which 2 -vertices are located. They are shown as configurations in Figure 8.

Figure 8: $n_{2}(v)=2$

For Figure $8(1)$, note that $d\left(f_{1}\right) \geqslant 5$ and $f_{3}(v) \leqslant 4$. Suppose $f_{3}(v)=4$. Then without loss of generality, let $d\left(f_{3}\right)=d\left(f_{4}\right)=d\left(f_{7}\right)=d\left(f_{i}\right)=3(i \in\{5,6\})$. Then $d\left(v_{4}\right) \geqslant 4$ by Figure $1(5)$, and v sends at $\operatorname{most} \max \left\{\frac{1}{3}+\frac{3}{2}, \frac{3}{4}+\frac{5}{4}\right\}=2$ (in total) to f_{2} and f_{3}. If $d\left(f_{8}\right) \geqslant 5$, then $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\frac{1}{3}-2-3 \times \frac{3}{2}-\frac{3}{4}-\frac{1}{3}=\frac{1}{12}>0$ by Lemma 5 . Otherwise, $d\left(f_{8}\right)=4$, then $d\left(v_{8}\right) \geqslant 4$ by Lemma 4 , it follows that f_{4} (if $i=5$) or f_{7} (if
$i=6$) is good, and v sends at most $\max \left\{\frac{3}{2}+\frac{3}{2}+\frac{1}{3}, \frac{3}{2}+\frac{5}{4}+\frac{3}{4}\right\}=\frac{7}{2}$ (in total) to f_{5}, f_{6} and $f_{7}\left(\right.$ or $\left.f_{4}\right)$. So $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\frac{1}{3}-2-\frac{5}{4}-\frac{7}{2}-\frac{3}{4}=\frac{1}{6}>0$.

Suppose $f_{3}(v)=3$. If $f_{5^{+}}(v) \geqslant 3$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-f_{5^{+}}(v) \times \frac{1}{3}-3 \times$ $\frac{3}{2}-\left(5-f_{5^{+}}(v)\right) \times 1=\frac{2}{3} f_{5^{+}}(v)-\frac{3}{2}>0$. If $f_{5^{+}}(v)=2$, then except f_{1}, there is one 5^{+}-face incident with v, and there is at least one good 4 -face which incident with v. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-2 \times \frac{1}{3}-3 \times \frac{3}{2}-\frac{3}{4}-2 \times 1=\frac{1}{12}>0$. If $f_{5^{+}}(v)=1$, then $d\left(f_{i}\right) \leqslant 4$ for all $2 \leqslant i \leqslant 8$. By symmetry, we need to consider the following cases in which 3 -faces are located.

First, suppose $d\left(f_{3}\right)=d\left(f_{4}\right)=d\left(f_{5}\right)=3$. Then $\min \left\{d\left(v_{3}\right), d\left(v_{4}\right), d\left(v_{5}\right)\right\} \geqslant 4$ and $\max \left\{d\left(v_{6}\right), d\left(v_{7}\right), d\left(v_{8}\right)\right\} \geqslant 4$ by Figure 1(5) and Lemma 4. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-$ $\frac{1}{3}-2 \times \frac{5}{4}-\frac{3}{2}-2 \times \frac{3}{4}-2 \times 1=\frac{1}{6}>0$. Second, suppose $d\left(f_{4}\right)=d\left(f_{5}\right)=d\left(f_{6}\right)=3$. Then $\min \left\{d\left(v_{5}\right), d\left(v_{6}\right)\right\} \geqslant 4$ by Figure $1(5), \max \left\{d\left(v_{3}\right), d\left(v_{4}\right)\right\} \geqslant 4$ and $\max \left\{d\left(v_{7}\right), d\left(v_{8}\right)\right\} \geqslant 4$ by Lemma 4 . So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{1}{3}-\max \left\{\frac{5}{4}+2 \times \frac{3}{2}+3 \times \frac{3}{4}+1,2 \times \frac{5}{4}+\frac{3}{2}+2 \times \frac{3}{4}+2 \times 1\right\}=$ $\frac{1}{6}>0$. Third, suppose $d\left(f_{3}\right)=d\left(f_{4}\right)=d\left(f_{6}\right)=3$. Then $d\left(v_{4}\right) \geqslant 4$ by Figure $1(5)$, $d\left(v_{3}\right) \geqslant 4$ and $\max \left\{d\left(v_{7}\right), d\left(v_{8}\right)\right\} \geqslant 4$ by Lemma $4, \max \left\{d\left(v_{5}\right), d\left(v_{6}\right)\right\} \geqslant 4$ by Lemma 5. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{1}{3}-2 \times \frac{3}{2}-\frac{5}{4}-3 \times \frac{3}{4}-1=\frac{1}{6}>0$. Fourth, suppose $d\left(f_{3}\right)=d\left(f_{4}\right)=d\left(f_{7}\right)=3$. Then $\min \left\{d\left(v_{3}\right), d\left(v_{4}\right), d\left(v_{8}\right)\right\} \geqslant 4$ by Figure 1(5) and Lemma $4, \max \left\{d\left(v_{5}\right), d\left(v_{6}\right), d\left(v_{7}\right)\right\} \geqslant 4$ by Lemma 5 . So $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\frac{1}{3}-2 \times \frac{3}{2}-$ $\frac{5}{4}-3 \times \frac{3}{4}-1=\frac{1}{6}>0$. Fifth, suppose $d\left(f_{4}\right)=d\left(f_{5}\right)=d\left(f_{7}\right)=3$. Then $d\left(v_{5}\right) \geqslant 4$ by Figure $1(5), d\left(v_{8}\right) \geqslant 4$ and $\max \left\{d\left(v_{3}\right), d\left(v_{4}\right)\right\} \geqslant 4$ by Lemma $4, \max \left\{d\left(v_{6}\right), d\left(v_{7}\right)\right\} \geqslant 4$ by Lemma 5. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{1}{3}-2 \times \frac{3}{2}-\frac{5}{4}-3 \times \frac{3}{4}-1=\frac{1}{6}>0$. Sixth, suppose $d\left(f_{3}\right)=d\left(f_{5}\right)=d\left(f_{7}\right)=3$. Then f_{2}, f_{4}, f_{6} and f_{8} are good by Lemma 4 and Lemma 5 , so $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{1}{3}-3 \times \frac{3}{2}-4 \times \frac{3}{4}=\frac{1}{6}>0$.

Suppose $f_{3}(v)=2$. Then without loss of generality, let $d\left(f_{i}\right)=d\left(f_{j}\right)=3(3 \leqslant i<j \leqslant$ 7). If $f_{5^{+}}(v) \geqslant 2$, then $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-f_{5^{+}}(v) \times \frac{1}{3}-2 \times \frac{3}{2}-\left(6-f_{5^{+}}(v)\right) \times 1=$ $\frac{2}{3} f_{5^{+}}(v)-1 \geqslant 0$. Otherwise, $d\left(f_{t}\right) \leqslant 4$ for all $2 \leqslant t \leqslant 8$. If there is at least one good 3 -face in $\left\{f_{i}, f_{j}\right\}$, then each face adjacent to good 3 -face is good. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{1}{3}-\frac{5}{4}-$ $\frac{3}{4}-\frac{3}{2}-4 \times 1=\frac{1}{6}>0$. Now we suppose both f_{i} and f_{j} are bad. If $j=i+1$, then $i \in\{4,5\}$ by Figure 1(5) and Lemma 4, it follows that there are at least two good 4-faces in $\left\{f_{2}, f_{3}, f_{4}\right\}$, so $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{1}{3}-2 \times \frac{3}{2}-3 \times 1-2 \times \frac{3}{4}=\frac{1}{6}>0$. Otherwise, there are two 7^{+}-vertices in $\left\{v_{i}, v_{i+1}, v_{j}, v_{j+1}\right\}$. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{1}{3}-2 \times \frac{3}{2}-2 \times \frac{3}{4}-3 \times 1=\frac{1}{6}>0$.

Suppose $f_{3}(v) \leqslant 1$. Then $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{1}{3}-f_{3}(v) \times \frac{3}{2}-\left(7-f_{3}(v)\right) \times 1=$ $\frac{2}{3}-\frac{1}{2} f_{3}(v) \geqslant 0$.

For Figure $8(2)$, note that $f_{3}(v) \leqslant 3$, and v sends at most $\frac{3}{2}$ (in total) to f_{1} and f_{2} by Lemma 8. Suppose $f_{3}(v)=3$, without loss of generality, let $d\left(f_{4}\right)=d\left(f_{5}\right)=d\left(f_{i}\right)=3$ $(i \in\{6,7\})$. Then v sends at most $\max \left\{\frac{3}{2}+\frac{1}{2}, \frac{5}{4}+\frac{3}{4}\right\}=2$ (in total) to f_{3} and f_{4}, and v sends at most $\max \left\{\frac{3}{2}+\frac{3}{2}+1+\frac{1}{3}, \frac{5}{4}+\frac{3}{2}+2 \times \frac{3}{4}, \frac{5}{4}+\frac{5}{4}+\frac{3}{4}+1\right\}=\frac{13}{3}$ (in total) to f_{5}, f_{6}, f_{7} and f_{8} by Figure 1(5), Lemma 4 and Lemma 5. So $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\frac{3}{2}-2-\frac{13}{3}=\frac{1}{6}>0$.

Suppose $f_{3}(v)=2$. Then without loss of generality, let $d\left(f_{i}\right)=d\left(f_{j}\right)=3(4 \leqslant i<$ $j \leqslant 7$). If there is at least one 5^{+}-face in $\left\{f_{t} \mid 3 \leqslant t \leqslant 8\right\}$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times$ $1-\frac{3}{2}-2 \times \frac{3}{2}-\frac{1}{3}-3 \times 1=\frac{1}{6}>0$. Otherwise, $d\left(f_{t}\right) \leqslant 4$ for all $3 \leqslant t \leqslant 8$. If there is at least one good 3 -face in $\left\{f_{i}, f_{j}\right\}$, then each 4 -face adjacent to good 3 -face is good. So $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{3}{2}-\frac{3}{2}-\frac{5}{4}-\frac{3}{4}-3 \times 1=0$. Now we suppose both f_{i} and f_{j} are
bad. If $j=i+1$, then $i=5, f_{3}, f_{4}, f_{7}$, and f_{8} are good by Figure 1(5) and Lemma 4. So $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{3}{2}-4 \times \frac{3}{4}-2 \times \frac{3}{2}=\frac{1}{2}>0$. Otherwise, there are two 7^{+}-vertices in $\left\{v_{i}, v_{i+1}, v_{j}, v_{j+1}\right\}$. So $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\frac{3}{2}-2 \times \frac{3}{2}-\frac{1}{2}-3 \times 1=0$.

Suppose $f_{3}(v) \leqslant 1$. Then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{3}{2}-f_{3}(v) \times \frac{3}{2}-\left(6-f_{3}(v)\right) \times 1=$ $\frac{1}{2}-\frac{1}{2} f_{3}(v) \geqslant 0$.

For Figure $8(3)$, note that $f_{3}(v) \leqslant 4$. If $f_{3}(v)=4$, then $d\left(f_{2}\right)=d\left(f_{5}\right)=d\left(f_{6}\right)=$ $d\left(f_{7}\right)=3$, so $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{11}{4}-\left(\frac{11}{4}+2 \times \frac{5}{4}\right)=0$ by Lemma 10 .

Suppose $f_{3}(v)=3$. If $d\left(f_{2}\right) \geqslant 4$, then $d\left(f_{5}\right)=d\left(f_{6}\right)=d\left(f_{7}\right)=3$, so $\operatorname{ch}^{\prime}(v) \geqslant$ $\operatorname{ch}(v)-2 \times 1-\left(1+\frac{3}{2}\right)-\left(\frac{11}{4}+2 \times \frac{5}{4}\right)=\frac{1}{4}>0$. If $d\left(f_{2}\right)=3$, then v sends at most $\frac{11}{4}$ (in total) to f_{1}, f_{2} and f_{3} by Lemma 10 . Without loss of generality, let $d\left(f_{5}\right)=3$. If $d\left(f_{6}\right)=3$, then v sends at most 2 (in total) to f_{4} and f_{5}, v sends at most $\frac{3}{4}$ to f_{7}. So $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{11}{4}-2-\frac{3}{2}-\frac{3}{4}-1=0$. If $d\left(f_{7}\right)=3$, then v sends at most $\frac{3}{4}$ to f_{4}, f_{6} and f_{8}, respectively. So $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\frac{11}{4}-2 \times \frac{3}{2}-3 \times \frac{3}{4}=0$.

Suppose $f_{3}(v)=2$. Then without loss of generality, let $d\left(f_{i}\right)=d\left(f_{j}\right)=3(i<j)$. If $i=2$, then v sends at most $\frac{11}{4}$ (in total) to f_{1}, f_{2} and f_{3}, v sends at most $\frac{3}{4}$ to f_{j-1} or f_{j+1}. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{11}{4}-\frac{3}{2}-\frac{3}{4}-3 \times 1=0$. Otherwise, v sends at most $\frac{5}{2}$ (in total) to f_{1}, f_{2} and f_{3} by Lemma 8 , without loss of generality, let $i=5$. If $j=6$, then v sends at most 2 (in total) to f_{4} and f_{5}. So $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\frac{5}{2}-2-\frac{3}{2}-2 \times 1=0$. If $j=7$, then v sends at most $\frac{3}{4}$ to f_{4} and f_{8}, respectively. So $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\frac{5}{2}-2 \times \frac{3}{4}-2 \times \frac{3}{2}-1=0$.

Suppose $f_{3}(v) \leqslant 1$. If $d\left(f_{2}\right)=3$, then $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\frac{11}{4}-5 \times 1=\frac{1}{4}>0$. Otherwise, $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-\frac{5}{2}-\frac{3}{2}-4 \times 1=0$.

For Figure $8(4)$, note that $f_{3}(v) \leqslant 4$. Suppose $f_{3}(v)=4$. Then $d\left(f_{2}\right)=d\left(f_{3}\right)=$ $d\left(f_{6}\right)=d\left(f_{7}\right)=3$ and $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-2 \times\left(\frac{11}{4}+\frac{5}{4}\right)=0$ by Lemma 10. Suppose $f_{3}(v)=3$. Then $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\left(\frac{11}{4}+\frac{5}{4}\right)-\frac{15}{4}=\frac{1}{4}>0$ by Lemma 9. Suppose $f_{3}(v)=2$. If two 3-faces incident with v are adjacent, then $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-\left(\frac{11}{4}+\right.$ $\left.\frac{5}{4}\right)-4 \times 1=0$. Otherwise, $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-2 \times 1-2 \times \frac{15}{4}=\frac{1}{2}>0$. Suppose $f_{3}(v) \leqslant 1$. Then $c h^{\prime}(v) \geqslant c h(v)-2 \times 1-f_{3}(v) \times \frac{15}{4}-\left(2-f_{3}(v)\right) \times(4 \times 1)=\frac{1}{4} f_{3}(v) \geqslant 0$.

Case 8. $n_{2}(v)=1$. Without loss of generality, let v_{1} be the unique 2 -vertex adjacent to v. First, we consider the case that v_{1} is not incident with any 3 -face. Note that $f_{3}(v) \leqslant 5$.

Suppose $f_{3}(v)=5$. Then $d\left(f_{2}\right)=d\left(f_{3}\right)=d\left(f_{i}\right)=d\left(f_{6}\right)=d\left(f_{7}\right)=3(i \in\{4,5\})$, and at least two faces in $\left\{f_{3}, f_{i}, f_{6}\right\}$ are good by Figure 1(5) and Lemma 5. If $\min \left\{f_{1}, f_{8}\right\} \geqslant 5$, then $c h^{\prime}(v) \geqslant c h(v)-1-2 \times \frac{1}{3}-3 \times \frac{3}{2}-2 \times \frac{5}{4}-1=\frac{1}{3} \geqslant 0$. Otherwise, $\min \left\{f_{1}, f_{8}\right\} \leqslant 4$, without loss of generality, let $d\left(f_{1}\right)=4$. If $d\left(v_{2}\right)=3$, then f_{3}, f_{i}, f_{6} and f_{7} are good by Lemma 6, so $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-1-1-\frac{3}{2}-4 \times \frac{5}{4}-2 \times \frac{3}{4}=0$. If $d\left(v_{2}\right) \geqslant 4$, we may assume that $d\left(f_{8}\right) \geqslant 5$ or $d\left(v_{8}\right) \geqslant 4$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-1-\frac{3}{4}-3 \times \frac{5}{4}-\frac{3}{2}-1-\max \left\{\frac{3}{2}+\frac{1}{3}, \frac{5}{4}+\frac{3}{4}\right\}=0$.

Suppose $f_{3}(v)=4$. Then there is at least one 3 -face in $\left\{f_{2}, f_{7}\right\}$, without loss of generality, let $d\left(f_{2}\right)=d\left(f_{i}\right)=d\left(f_{j}\right)=d\left(f_{t}\right)=3$, where $2<i<j<t$ and $t \in\{6,7\}$. If $f_{5^{+}}(v) \geqslant 2$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-1-f_{5^{+}}(v) \times \frac{1}{3}-4 \times \frac{3}{2}-\left(4-f_{5^{+}}(v)\right) \times 1=\frac{2}{3} f_{5^{+}}(v)-1 \geqslant 0$. Then $f_{5^{+}}(v) \leqslant 1$. We need to consider two cases. First, suppose there is one 5^{+}-face in $\left\{f_{1}\right\} \cup\left\{f_{x} \mid t+1 \leqslant x \leqslant 8\right\}$, then at least two faces in $\left\{f_{3}, f_{4}, f_{5}, f_{6}\right\}$ are good by Figure 1(5) and Lemma 5. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-1-\frac{1}{3}-\max \left\{2 \times \frac{3}{2}+2 \times \frac{5}{4}+3 \times 1,3 \times \frac{3}{2}+\frac{5}{4}+2 \times 1+\right.$
$\left.\frac{3}{4}, 4 \times \frac{3}{2}+1+2 \times \frac{3}{4}\right\}=\frac{1}{6}>0$. Second, suppose $d\left(f_{1}\right)=d\left(f_{x}\right)=4$ for all $t+1 \leqslant x \leqslant 8$. If $d\left(v_{2}\right)=3$ or $d\left(v_{y}\right)=3$ for all $t+1 \leqslant y \leqslant 8$, then v is incident with at least three good 3 -faces and one good 4-face by Lemma 6. So $c h^{\prime}(v) \geqslant c h(v)-1-\frac{3}{2}-3 \times \frac{5}{4}-3 \times 1-\frac{3}{4}=0$. Otherwise, $d\left(v_{2}\right) \geqslant 4$ and $\max \left\{d\left(v_{y}\right) \mid t+1 \leqslant y \leqslant 8\right\} \geqslant 4$, that is, there are at least two good 4-faces in $\left\{f_{1}\right\} \cup\left\{f_{x} \mid t+1 \leqslant x \leqslant 8\right\}$. Then $f_{5^{+}}(v)=1$ or at least two faces in $\left\{f_{3}, f_{4}, f_{5}, f_{6}\right\}$ are good. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-1-\max \left\{4 \times \frac{3}{2}+1+2 \times \frac{3}{4}+\frac{1}{3}, 2 \times \frac{3}{2}+2 \times\right.$ $\left.\frac{5}{4}+2 \times 1+2 \times \frac{3}{4}, 3 \times \frac{3}{2}+\frac{5}{4}+1+3 \times \frac{3}{4}, 4 \times \frac{3}{2}+4 \times \frac{3}{4}\right\}=0$.

Suppose $f_{3}(v)=3$. If $f_{5^{+}}(v) \geqslant 1$, then $c h^{\prime}(v) \geqslant c h(v)-1-f_{5^{+}}(v) \times \frac{1}{3}-3 \times \frac{3}{2}-(5-$ $\left.f_{5^{+}}(v)\right) \times 1=\frac{2}{3} f_{5^{+}}(v)-\frac{1}{2} \geqslant 0$. Otherwise, at least two faces incident with v are good by Lemma 5 and Lemma 6. So $c h^{\prime}(v) \geqslant c h(v)-1-\max \left\{2 \times \frac{3}{2}+\frac{5}{4}+\frac{3}{4}+4 \times 1,3 \times \frac{3}{2}+2 \times \frac{3}{4}+\right.$ $3 \times 1\}=0$. Suppose $f_{3}(v) \leqslant 2$. Then $c h^{\prime}(v) \geqslant c h(v)-1-f_{3}(v) \times \frac{3}{2}-\left(8-f_{3}(v)\right) \times 1=$ $1-\frac{1}{2} f_{3}(v) \geqslant 0$.

Next, we consider the case that v_{1} is incident with a 3 -face. Then $f_{3}(v) \leqslant 6$, and the other 3 -faces incident with v are good by Figure $1(2)$. If $f_{3}(v)=6$, then $d\left(f_{1}\right)=d\left(f_{2}\right)=$ $d\left(f_{3}\right)=d\left(f_{5}\right)=d\left(f_{6}\right)=d\left(f_{7}\right)=3, v$ sends at most $\frac{1}{2}$ to f_{4}, and v sends at most $\frac{3}{4}$ to f_{8}. So $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-1-\frac{3}{2}-5 \times \frac{5}{4}-\frac{1}{2}-\frac{3}{4}=0$. Suppose $f_{3}(v) \leqslant 5$. If $f_{5^{+}}(v) \geqslant 1$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-1-\frac{3}{2}-4 \times \frac{5}{4}-f_{5^{+}}(v) \times \frac{1}{3}-\left(3-f_{5^{+}}(v)\right) \times 1=\frac{2}{3} f_{5^{+}}(v)-\frac{1}{2} \geqslant 0$. Otherwise, $f_{5^{+}}(v)=0$. If $f_{3}(v)=5$, then at least two 4 -faces incident with v are good. So $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-1-\frac{3}{2}-4 \times \frac{5}{4}-1-2 \times \frac{3}{4}=0$. If $f_{3}(v) \leqslant 4$, then at least one 4 -face incident with v is good. So $c h^{\prime}(v) \geqslant c h(v)-1-\frac{3}{2}-\left(f_{3}(v)-1\right) \times \frac{5}{4}-\left(8-f_{3}(v)-1\right) \times 1-\frac{3}{4}=$ $1-\frac{1}{4} f_{3}(v) \geqslant 0$.

Case 9. $n_{2}(v)=0$. Note that $f_{3}(v) \leqslant 6$. If $f_{3}(v) \leqslant 4$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-f_{3}(v) \times \frac{3}{2}-$ $\left(8-f_{3}(v)\right) \times 1=2-\frac{1}{2} f_{3}(v) \geqslant 0$. Suppose $f_{3}(v)=5$. Then there are two adjacent 3-cycles which incident with v, without loss of generality, let $d\left(f_{i}\right)=d\left(f_{i+1}\right)=3$. If $f_{5^{+}}(v) \geqslant 1$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-5 \times \frac{3}{2}-f_{5^{+}}(v) \times \frac{1}{3}-\left(3-f_{5^{+}}(v)\right) \times 1=\frac{2}{3} f_{5^{+}}(v)-\frac{1}{2}>0$. Then $f_{5^{+}}(v)=0$. If $d\left(v_{i+1}\right)=3$, then v is incident with at most four bad 3 -faces by Lemma 7 , so $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-4 \times \frac{3}{2}-\frac{5}{4}-2 \times 1-\frac{3}{4}=0$. Otherwise, no two 3 -cycles have a common 3 -vertex, then there are at least two good faces which incident with v by Figure 1(6), so $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-3 \times \frac{3}{2}-1-\max \left\{2 \times \frac{5}{4}+2 \times 1, \frac{3}{2}+\frac{5}{4}+1+\frac{3}{4}, 2 \times \frac{3}{2}+2 \times \frac{3}{4}\right\}=0$. Suppose $f_{3}(v)=6$. Then without loss of generality, let $d\left(f_{1}\right)=d\left(f_{2}\right)=d\left(f_{3}\right)=d\left(f_{5}\right)=$ $d\left(f_{6}\right)=d\left(f_{7}\right)=3$. If $\min \left\{d\left(v_{2}\right), d\left(v_{3}\right), d\left(v_{6}\right), d\left(v_{7}\right)\right\}=3$, then v is incident with at most four bad 3 -faces by Lemma 7. So $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-4 \times \frac{3}{2}-2 \times \frac{5}{4}-2 \times \frac{3}{4}=0$. Otherwise, $\min \left\{d\left(v_{2}\right), d\left(v_{3}\right), d\left(v_{6}\right), d\left(v_{7}\right)\right\} \geqslant 4$. If $\max \left\{d\left(v_{1}\right), d\left(v_{4}\right), d\left(v_{5}\right), d\left(v_{8}\right)\right\} \geqslant 4$, then $c h^{\prime}(v) \geqslant \operatorname{ch}(v)-3 \times \frac{3}{2}-3 \times \frac{5}{4}-1-\frac{3}{4}=0$. If $d\left(v_{1}\right)=d\left(v_{4}\right)=d\left(v_{5}\right)=d\left(v_{8}\right)=3$, then $\min \left\{d\left(v_{2}\right), d\left(v_{3}\right), d\left(v_{6}\right), d\left(v_{7}\right)\right\} \geqslant 7$, so $\operatorname{ch}^{\prime}(v) \geqslant \operatorname{ch}(v)-4 \times \frac{3}{2}-2 \times 1-2 \times 1=0$.

Hence we complete the proof of the theorem.

Acknowledgements

We are indebted to the anonymous reviewer for their detailed reports. This research is supported by NSFC (11271006, 11201440).

References

[1] M. Behzad. Graphs and their chromatic numbers. Ph.D. Thesis, Michigan State University, 1965.
[2] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. MacMillan, London, 1976.
[3] O. V. Borodin, A. V. Kostochka, and D. R. Woodall. Total colorings of planar graphs with large maximum degree. J. Graph Theory, 26:53-59, 1997.
[4] G. J. Chang, J. F. Hou, and N. Roussel. Local condition for planar graphs of maximum degree 7 to be 8-totally colorable. Discrete Appl. Math., 159:760-768, 2011.
[5] J. Chang, H. J. Wang, J. L. Wu, and Y. G. A. Total colorings of planar graphs with maximum degree 8 and without 5 -cycles with two chords. Theoretical Computer Sci., 476:16-23, 2013.
[6] J. S. Cai, G. H. Wang, and G. Y. Yan. Planar graphs with maximum degree 8 and without intersecting chordal 4-cycles are 9-totally colorable. Sci. China Math., 55:2601-2612, 2012.
[7] D. Z. Du, L. Shen, and Y. Q. Wang. Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable. Discrete Appl. Math., 157:27782784, 2009.
[8] A. V. Kostochka. The total chromatic number of any multigraph with maximum degree five is at most seven. Discrete Math., 162:199-214, 1996.
[9] L. Kowalik, J. S. Sereni, and R. S̆krekovski. Total-Coloring of plane graphs with maximum degree nine. SIAM J. Discrete Math., 22:1462-1479, 2008.
[10] H. L. Li, B. Q. Liu, and G. H. Wang. Neighbor sum distinguishing total colorings of K_{4}-minor free graphs. Front. Math. China, 8(6):1351-1366, 2013.
[11] H. L. Li, L. H. Ding, B. Q. Liu, and G. H. Wang. Neighbor sum distinguishing total colorings of planar graphs. J. Comb. Optim., doi:10.1007/s10878-013-9660-6, 2013.
[12] M. Pilśniak and M. Woźniak. On the adjacent-vertex-distinguishing index by sums in total proper colorings. Preprint MD 051, available at http://www.ii.uj.edu. pl/preMD/index.php
[13] D. P. Sanders and Y. Zhao. On total 9-coloring planar graphs of maximum degree seven. J. Graph Theory, 31:67-73, 1999.
[14] L. Shen and Y. Q. Wang. Total colorings of planar graphs with maximum degree at least 8. Sci. China, 38:1356-1364, 2008 (in Chinese).
[15] X. Tan, H. Y. Chen, and J. L. Wu. Total colorings of planar graphs without adjacent 4-cycles. in: ISORA'09, pp. 167-173.
[16] V. G. Vizing. Some unsolved problems in graph theory. Uspekhi Mat. Nauk, 23:117134, 1968 (in Russian).
[17] B. Wang and J. L. Wu. Total colorings of planar graphs with maximum degree seven and without intersecting 3-cycles. Discrete Math., 311:2025-2030, 2011.

[^0]: *Corresponding author.

