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Abstract

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum
number of colors needed to color the vertices and edges of G such that no two
adjacent or incident elements get the same color. It is known that if a planar graph
G has maximum degree ∆ > 9, then χ′′(G) = ∆ + 1. The join K1 ∨ Pn of K1 and
Pn is called a fan graph Fn. In this paper, we prove that if G is an F5-free planar
graph with maximum degree 8, then χ′′(G) = 9.
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1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow [2] for the
terminology and notation not defined here. For a graph G, we denote its vertex set, edge
set and maximum degree by V (G), E(G) and ∆(G) (or simply V , E and ∆), respectively.
For a face f of G, the degree d(f) is the number of edges incident with it, where each
cut-edge is counted twice. The join K1 ∨ Pn of K1 and Pn is called a fan graph Fn. We
say that a graph G is Fn-free if G contains no Fn as a subgraph. A k-cycle is a cycle of
length k. We say that two cycles are adjacent if they share at least one edge.

A total k-coloring of G is a coloring of V ∪E using k colors such that no two adjacent
or incident elements receive the same color. The total chromatic number χ′′(G) is the
smallest integer k such that G has a total k-coloring. Clearly, χ′′(G) > ∆ + 1. Behzad [1]
and Vizing [16] independently posed the following famous conjecture, which is known as
the total coloring conjecture (TCC).

Conjecture A. For any graph G, χ′′(G) 6 ∆ + 2.

This conjecture was confirmed for general graphs with ∆ 6 5. In recent years, the
study of total colorings for the class of planar graphs has attracted considerable attention.
For planar graphs the only open case is ∆ = 6 ([8, 13]), and for planar graphs with large
maximum degree, there is a stronger result. It is shown that χ′′(G) = ∆ + 1 if G is a
planar graph with ∆ > 9 ([9]). This stronger result does not hold for planar graphs of
maximum degree at most 3. For 4 6 ∆ 6 8, it is unknown that χ′′(G) = ∆ + 1 if G is a
planar graph with maximum degree ∆. For ∆ = 8, the following four results have been
recently proved.

Theorem A. ([7]) Let G be a planar graph with ∆ = 8. If G contains no adjacent
3-cycles, then χ′′(G) = ∆ + 1.

Theorem B. ([15]) Let G be a planar graph with ∆ > 8. If G contains no adjacent
4-cycles, then χ′′(G) = ∆ + 1.

Theorem C. ([14]) Let G be a planar graph with ∆ > 8. If G contains no 5- or 6-cycles
with chords, then χ′′(G) = ∆ + 1.

Theorem D. ([5]) Let G be a planar graph with ∆ > 8. If G contain no 5-cycles with
two chords, then χ′′(G) = ∆ + 1.

Here, we generalize these results and get the following result.

Theorem 1. If G be an F5-free planar graph with ∆ > 8, then χ′′(G) = ∆ + 1.

Recently, neighbor sum distinguishing total colorings have received much attention
([10]). In [11, 12] neighbor sum distinguishing total colorings of planar graphs have been
studied.

Now, we introduce some more notations and definitions. Let G be a planar graph with
a plane drawing, denote by F the face set of G. For a vertex v of G, let N(v) denote the
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set of vertices adjacent to v, and let d(v) = |N(v)| denote the degree of v. A k-vertex,
a k−-vertex or a k+-vertex is a vertex of degree k, at most k or at least k, respectively.
Similarly, we can define a k-face, a k−-face and a k+-face. We use (v1, v2, · · · , vk) to denote
a cycle (or a face) whose boundary vertices are v1, v2, · · · , vk in the clockwise order in G.
Denote by nd(v) the number of d-vertices adjacent to v, by fd(v) the number of d-faces
incident with v.

2 Proof of Theorem 1

According to [9], planar graphs with ∆ > 9 have a total (∆ + 1)-coloring, so to prove
Theorem 1, in the following we assume that ∆ = 8. Let G = (V,E, F ) be a minimal
counterexample to Theorem 1, such that |V | + |E| is minimum. Then every proper
subgraph of G has a total 9-coloring. Let L be the color set {1, 2, · · · , 9} for simplicity.
It is easy to prove that G is 2-connected and hence the boundary of each face f is exactly
a cycle. We first show some known properties on G.
(a) G contains no edge uv with min{d(u), d(v)} 6 4 and d(u) + d(v) 6 9 (see [3]).
(b) G contains no even cycle (v1, v2, · · · , v2t) such that d(v1) = d(v3) = · · · = d(v2t−1) = 2
(see [3]).

It follows from (a) that, the two neighbors of a 2-vertex are all 8-vertices, and any two
4−-vertices are not adjacent. Note that in all figures of the paper, vertices marked • have
no edges of G incident with them other than those shown.

Lemma 2. ([5], [6]) G has no configurations depicted in Figure 1, (1)–(6).

Lemma 3. ([4]) Suppose that v is an 8-vertex and v1, v2, · · · , vk are consecutive neighbors
of v with d(v1) = d(vk) = 2 and d(vi) > 3 for 2 6 i 6 k − 1, where k ∈ {3, 4, 5, 6, 7}. If
the face incident with v, vi, vi+1 is a 4-face for all 1 6 i 6 k − 1, then at least one vertex
in {v2, v3, · · · , vk−1} is a 4+-vertex.

Lemma 4. ([17]) Suppose that v is an 8-vertex and u, v1, v2, · · · , vk are consecutive neigh-
bors of v with d(u) = d(v1) = 2 and d(vi) > 3 for 2 6 i 6 k, where k ∈ {3, 4, 5, 6, 7}. If
the face incident with v, vi, vi+1 is a 4-face for all 1 6 i 6 k − 2, and the face incident
with v, vk−1, vk is a 3-face, then at least one vertex in {v2, v3, · · · , vk−1} is a 4+-vertex.

Lemma 5. ([5]) Suppose that v is an 8-vertex and u, v1, v2, · · · , vk are consecutive neigh-
bors of v with d(u) = 2 and d(vi) > 3 for 1 6 i 6 k, where k ∈ {4, 5, 6, 7}. If the
face incident with v, vi, vi+1 is a 4-face for all 2 6 i 6 k − 2, and the face incident with
v, vj, vj+1 is a 3-face for all j ∈ {1, k − 1}, then at least one vertex in {v2, v3, · · · , vk−1}
is a 4+-vertex.

Let ϕ be a (partial) total 9-coloring of G. For a vertex v of G, we denote by C(v)
the set of colors of edges incident with v. Call ϕ is nice if only some 4−-vertices are not
colored. Note that every nice coloring can be greedily extended to a total 9-coloring of G,
since each 4−-vertex is adjacent to at most four vertices and incident with at most four
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Figure 1: Reducible Configurations in G: d(v) = 7 in (1)

edges. Therefore, in the rest of this paper, we shall always suppose that such vertices are
colored at the very end.

By Euler’s formula |V | − |E|+ |F | = 2, we have∑
v∈V

(2d(v)− 6) +
∑
f∈F

(d(f)− 6) = −12 < 0.

We define ch to be the initial charge. Let ch(v) = 2d(v) − 6 for each v ∈ V and
ch(f) = d(f) − 6 for each f ∈ F . So

∑
x∈V ∪F ch(x) = −12 < 0. In the following,

we will reassign a new charge denoted by ch
′
(x) to each x ∈ V ∪ F according to the

discharging rules. Since our rules only move charges around, and do not affect the sum,
we have

∑
x∈V ∪F ch

′
(x) =

∑
x∈V ∪F ch(x) = −12. If we can show that ch

′
(x) > 0 for each

x ∈ V ∪ F , then we get an obvious contradiction to

0 6
∑

x∈V ∪F

ch
′
(x) =

∑
x∈V ∪F

ch(x) = −12,

which completes our proof.
For f = (v1, v2, · · · , vk) ∈ F , we use (d(v1), d(v2), · · · , d(vk)) → (c1, c2, · · · , ck) to

denote that the vertex vi sends f the amount of charge ci for i = 1, 2, · · · , k. Now we
define the discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.
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R2. For a 3-face (v1, v2, v3), let

(3−, 7+, 7+)→
(
0, 3

2
, 3
2

)
,

(4, 6+, 6+)→
(
1
2
, 5
4
, 5
4

)
,

(5+, 5+, 5+)→
(
1, 1, 1

)
.

R3. For a 4-face (v1, v2, v3, v4), let

(3−, 7+, 3−, 7+)→
(
0, 1, 0, 1

)
,

(3−, 7+, 4+, 7+)→
(
0, 3

4
, 1
2
, 3
4

)
,

(4+, 4+, 4+, 4+)→
(
1
2
, 1
2
, 1
2
, 1
2

)
.

R4. For a 5-face (v1, v2, v3, v4, v5), let

(3−, 7+, 3−, 7+, 7+)→
(
0, 1

3
, 0, 1

3
, 1
3

)
,

(3−, 7+, 4+, 4+, 7+)→
(
0, 1

4
, 1
4
, 1
4
, 1
4

)
,

(4+, 4+, 4+, 4+, 4+)→
(
1
5
, 1
5
, 1
5
, 1
5
, 1
5

)
.

Next we show that ch
′
(x) > 0 for each x ∈ V ∪ F . Since our discharging rules are

designed such that ch
′
(f) > 0 for all f ∈ F and ch

′
(v) > 0 for all 2-vertices v ∈ V , it

suffices to check that ch
′
(v) > 0 for all 3+-vertices in G. Let v ∈ V . Suppose d(v) = 3.

Then ch
′
(v) = ch(v) = 0. Suppose d(v) = 4. Then v sends at most 1

2
to each of its incident

faces and ch
′
(v) > ch(v)− 1

2
× 4 = 0. Suppose d(v) = 5. Then f3(v) 6 3, and v sends at

most 1 to each of its incident 3-faces by R2, at most 1
2

to each of its incident 4+-faces by R3

and R4. So ch
′
(v) > ch(v)−f3(v)×1−(5−f3(v))× 1

2
= 3

2
− 1

2
f3(v) > 0. Suppose d(v) = 6.

Then f3(v) 6 4, and v sends at most 5
4

to each of its incident 3-faces, at most 1
2

to each

of its incident 4+-faces. So ch
′
(v) > ch(v)− f3(v)× 5

4
− (6− f3(v))× 1

2
= 3− 3

4
f3(v) > 0.

Call a 3-face is bad if it has a 3−-vertex, a 4-face is bad if it has two 3−-vertices, good
otherwise.

Suppose d(v) = 7. Note that f3(v) 6 5. If f3(v) 6 2, then ch
′
(v) > ch(v) −

f3(v) × 3
2
− (7 − f3(v)) × 1 = 1 − 1

2
f3(v) > 0. Suppose 3 6 f3(v) 6 5, then v is

incident with at most two bad 3-faces by Figure 1(1). If 3 6 f3(v) 6 4, then ch
′
(v) >

ch(v)−max{2× 3
2

+ (f3(v)− 2)× 5
4

+ (7− f3(v))× 1
2
, 3
2

+ (f3(v)− 1)× 5
4

+ 3
4

+ (7− f3(v)−
1)× 1

2
, f3(v)× 5

4
+ 2× 1 + (7− f3(v)− 2)× 3

4
} = 9

4
− 1

2
f3(v) > 1

4
> 0. If f3(v) = 5, then

ch
′
(v) > ch(v)−max{2× 3

2
+ 3× 5

4
+ 2× 1

2
, 3
2

+ 4× 5
4

+ 3
4

+ 1
2
} = 1

4
> 0.

Suppose d(v) = 8. Let v1, v2, · · · , v8 be neighbors of v and f1, f2, · · · , f8 be faces inci-
dent with v in an clockwise order, where fi is incident with vi, vi+1, and i ∈ {1, 2, · · · , 8}.
Note that all the subscripts in the paper are taken modulo 8. First, we prove some
lemmas.

Lemma 6. Suppose that v is an 8-vertex and v1, v2, · · · , vk, vk+1, vs, vs+1 are consecutive
neighbors of v with d(v1) = 2 and d(vi) = 3 for 2 6 i 6 k, where 3 6 k + 1 6 s and
s ∈ {3, 5, · · · , 7}. If v is incident with 3-faces (v, vk, vk+1) and (v, vs, vs+1), and incident
with 4-faces (v, vj, xj, vj+1) for all 1 6 j 6 k − 1, then min{d(vs), d(vs+1)} > 4.
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vk-1v3

x3
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xk-2

vk+1

vs+1xs+1

xk-1
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Figure 2: Reducible Configuration in G

Proof. By Figure 1(2), we have min{d(vs), d(vs+1)} > 3. Assume to be contradictory
that d(vs) = 3 or d(vs+1) = 3. Without loss of generality, suppose that d(vs+1) = 3, and
N(vs+1) = {v, vs, xs+1} (see Figure 2). Consider a nice coloring ϕ of G′ = G − vv1. If
ϕ(v1x1) ∈ C(v), then the forbidden colors for vv1 number at most 8, so vv1 can be properly
colored. Then we can suppose ϕ(v1x1) 6∈ C(v). Without loss of generality, suppose that
ϕ(v) = 9, ϕ(v1x1) = 1, and ϕ(vvj) = j for j ∈ {2, · · · , k, k + 1, s, s + 1}. It is easy to
see that 1 ∈ C(vj) for j ∈ {2, · · · , k, s + 1}, since otherwise, we can recolor vvj with
1, color vv1 with j, a contradiction. So ϕ(v2x2) = · · · = ϕ(vk−1xk−1) = ϕ(vkvk+1) = 1
and 1 ∈ {ϕ(vsvs+1), ϕ(vs+1xs+1)}. Note that ϕ(vkxk−1) = k + 1, since otherwise, we
may get a contradiction by exchange the colors on vvk+1 and vkvk+1, color vv1 with
k + 1. Thus ϕ(vk−1xk−2) = k + 1, since otherwise, we exchange the colors on vvk+1

and vkvk+1, vkxk−1 and vk−1xk−1, color vv1 with k + 1, also a contradiction. Similarly,
ϕ(vk−2xk−3) = · · · = ϕ(v2x1) = k + 1.

If k + 1 = s, then ϕ(vs+1xs+1) = 1. We exchange the colors on vvk+1 and vkvk+1,
vkxk−1 and vk−1xk−1, · · · , v1x1 and v2x1, recolor vvs+1 with k + 1, color vv1 with s + 1,
a contradiction. So we can suppose k + 1 < s. Then k + 1 ∈ {ϕ(vsvs+1), ϕ(vs+1xs+1)},
since otherwise, we can exchange the colors on vvk+1 and vkvk+1, vkxk−1 and vk−1xk−1,
· · · , v1x1 and v2x1, recolor vvs+1 with k+1, color vv1 with s+1, a contradiction. We first
exchange the colors on vvs and vsvs+1. If ϕ(vsvs+1) = k+ 1, we additionally exchange the
colors on vvk+1 and vkvk+1, vkxk−1 and vk−1xk−1, · · · , v1x1 and v2x1. Then we color vv1
with s, also a contradiction.

Lemma 7. Suppose that v is an 8-vertex and N(v) = {vi|i = 1, 2, · · · , 8} with d(v2) = 3.
If vv2 is incident with two 3-faces (v, v1, v2) and (v, v2, v3), then there exists at most one
3-vertex vj(j 6= 2) such that vvj is incident with a 3-face.

Proof. By Property (a), we have min{d(v1), d(v3)} > 7. Suppose, to be contradictory,
that there are two 3-vertices vj and vk (4 6 j < k 6 8), such that vvj is incident with a
3-face and vvk is incident with another 3-face. Consider a nice coloring ϕ of G

′
= G−vv2.

Without loss of generality, suppose that ϕ(v) = 2 and ϕ(vvi) = i for i ∈ {1, 3, 4, 5, 6, 7, 8}.
If 9 6∈ C(v2), then we can obtain a nice coloring ofG by coloring vv2 with 9, a contradiction.
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So 9 ∈ C(v2), that is, ϕ(v1v2) = 9 or ϕ(v2v3) = 9. Without loss of generality, suppose
that ϕ(v1v2) = 9. At the same time, we have the following results:

(1) For some i ∈ {j, k}, if ϕ(v2v3) 6= i then 9 ∈ C(vi);
(2) For some i ∈ {j, k}, if ϕ(v2v3) 6∈ {1, i}, then C(vi) = {1, i, 9};
(3) For some i ∈ {j, k}, if ϕ(v2v3) = 1, then C(vi) = {3, i, 9}.
For (1), if 9 6∈ C(vi), then we can recolor vvi with 9, and color vv2 with i to obtain

a nice coloring of G, a contradiction. For (2), if {1, i, 9} ⊂ C(vi), then we exchange the
colors on vv1 and v1v2, recolor vvi with 1, and color vv2 with i, a contradiction again.
For (3), if {3, i, 9} ⊂ C(vi), then we exchange the colors on vv1 and v1v2, vv3 and v2v3,
recolor vvi with 3, and color vv2 with i, a contradiction.

Case 1. v1vk 6∈ E(G) and v3vj 6∈ E(G).
Without loss of generality, suppose thatN(vj) = {v, vj+1, xj} andN(vk) = {v, vk−1, xk}

(see Fig. 3(1)). It is obvious that vj+1 6= vk. Suppose ϕ(v2v3) = 1. Then C(vj) = {3, j, 9}
by (3). We exchange the colors on vvj+1 and vjvj+1, color vv2 with j+1. If ϕ(vjvj+1) = 3,
then we additionally exchange the colors on vv1 and v1v2, vv3 and v2v3. Thus we obtain
a nice coloring of G, a contradiction.

   (1)

v2

v1 v3

vj+1

vk

xj

vj

vk-1

v

xk

v2

   (3)

v2

   (2)

v1 v3

vj

vk

xj

vj-1
v

xk

v1 v3

vk

xj

vj

vk-1

v

xk

Figure 3: Reducible Configurations in G

Suppose ϕ(v2v3) = j + 1. Then C(vj) = {1, j, 9} and C(vk) = {1, k, 9} by (2). We
exchange the colors on vvj+1 and vjvj+1, recolor vvk with j + 1, and color vv2 with k.
If ϕ(vjvj+1) = 1, then we additionally exchange the colors on vv1 and v1v2. Thus we
also obtain a nice coloring of G, a contradiction, too. So we have ϕ(v2v3) 6∈ {1, j + 1}.
Since ϕ(v2v3) is different from either j or k, we may assume that ϕ(v2v3) 6= j. Then
C(vj) = {1, j, 9} by (2). We exchange the colors on vvj+1 and vjvj+1, color vv2 with j+1.
If ϕ(vjvj+1) = 1, then we additionally exchange the colors on vv1 and v1v2. Thus we
obtain a nice coloring of G, a contradiction.

Case 2. v1vk ∈ E(G).
Without loss of generality, suppose that N(vj) = {v, vj−1, xj} and N(vk) = {v, v1, xk}

(see Figure 3(2)). If ϕ(v2v3) 6∈ {1, k}, then C(vk) = {1, k, 9} by (2), so ϕ(v1vk) = 1
or ϕ(v1vk) = 9, a contradiction. Suppose ϕ(v2v3) = 1. Then C(vj) = {3, j, 9} and

the electronic journal of combinatorics 21(1) (2014), #P1.56 7



C(vk) = {3, k, 9} by (3). If v3 = vj−1, then ϕ(v3vj) = 9 and ϕ(v1vk) = 3. We exchange
the colors on vv1 and v1v2, v2v3 and v3vj, recolor vvk with 1, and color vv2 with k, a
contradiction. So we can suppose v3 6= vj−1. We exchange the colors on vvj−1 and vj−1vj,
and color vv2 with j − 1. If ϕ(vj−1vj) = 3, then we additionally exchange the colors on
vv1 and v1v2, vv3 and v2v3. Thus we obtain a nice coloring of G, a contradiction. Suppose
ϕ(v2v3) = k. Then C(vj) = {1, j, 9} by (2). We exchange the colors on vvj−1 and vj−1vj,
color vv2 with j − 1. If ϕ(vj−1vj) = 1, then we additionally exchange the colors on vv1
and v1v2. Thus we also obtain a nice coloring of G, a contradiction, too.

Case 3. v3vj ∈ E(G), but v1vk 6∈ E(G).
Without loss of generality, suppose that N(vj) = {v, v3, xj} and N(vk) = {v, vk−1, xk}

(see Figure 3(3)). It is obvious that vj 6= vk−1. Suppose ϕ(v2v3) = 1. Then C(vj) =
{3, j, 9} and C(vk) = {3, k, 9} by (3). We exchange the colors on vv1 and v1v2, v2v3 and
v3vj, recolor vvk with 1, and color vv2 with k. a contradiction. Suppose ϕ(v2v3) = j.
Then C(vk) = {1, k, 9} by (2). We exchange the colors on vvk−1 and vk−1vk, color vv2
with k − 1. If ϕ(vk−1vk) = 1, then we additionally exchange the colors on vv1 and v1v2.
Thus we also obtain a nice coloring of G, a contradiction. So we have ϕ(v2v3) 6∈ {1, j}.
Then C(vj) = {1, j, 9} by (2). We exchange the colors on vv3 and v3vj, color vv2 with 3.
If ϕ(v3vj) = 1, then we additionally exchange the colors on vv1 and v1v2. Thus we also
obtain a nice coloring of G, a contradiction, too.

Lemma 8. Suppose that d(vi) = d(vk) = 2 and d(vj) > 3 for all j = i+1, · · · , k−1, where
k > i + 2. If min{d(fi), d(fi+1), · · · , d(fk−1)} > 4, then v sends at most 3

2
+ (k − i − 2)

(in total) to fi, fi+1, · · · , fk−1.

Proof. By Lemma 3, max{d(vi+1), · · · , d(vk−1)} > 4 or max{d(fi), · · · , d(fk−1)} > 5. If
max{d(vi+1), · · · , d(vk−1)} > 4, then v sends at most 2 × 3

4
+ (k − i − 2) (in total) to

fi, · · · , fk−1 by R3. If max{d(fi), · · · , d(fk−1)} > 5, then or v sends at most 1
3

+(k− i−1)
(in total) to fi, · · · , fk−1 by R3 and R4. Since 2× 3

4
> 1+ 1

3
, v sends at most 3

2
+(k− i−2)

(in total) to fi, fi+1, · · · , fk−1.

Lemma 9. Suppose that d(vi) = d(vi+4) = 2 and d(vj) > 3 for all j = i + 1, i + 2, i + 3.
If min{d(fi), d(fi+2), d(fi+3)} > 4 and d(fi+1) = 3, then v sends at most 15

4
(in total) to

fi, fi+1, fi+2 and fi+3.

Proof. If d(vi+1) = 3, then d(vi+2) > 7, and d(fi) > 5 by Lemma 4, so v sends at most
1
3

+ 3
2

+ 3
4

+ 1 = 43
12

to fi, fi+1, fi+2 and fi+3. If d(vi+2) = 3, then d(vi+1) > 7, and
d(vi+3) > 4 or there is at least one 5+-face in {fi+2, fi+3} by Lemma 4, so v sends at most
3
4

+ 3
2

+ max{2 × 3
4
, 1 + 1

3
} = 15

4
to fi, fi+1, fi+2 and fi+3. If min{d(vi+1), d(vi+2)} > 4,

then v sends at most 3
4

+ 5
4

+ 3
4

+ 1 = 15
4

to fi, fi+1, fi+2 and fi+3. Since 43
12
< 15

4
, v sends

at most 15
4

(in total) to fi, fi+1, fi+2 and fi+3.

Lemma 10. Suppose that d(vi) = d(vk) = 2 and d(vj) > 3 for all j = i + 1, · · · , k − 1,
where k > i+ 3. If min{d(fi), d(fk−1)} > 4 and d(fi+1) = · · · = d(fk−2) = 3, then v sends
at most 11

4
+ (k − i− 3)× 5

4
(in total) to fi, fi+1, · · · , fk−1.
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Proof. We note that if k > i + 4, then min{d(vi+2), · · · , d(vk−2)} > 4 by Figure 1(5).
If d(fi) = d(fk−1) = 4, then min{d(vi+1), d(vk−1)} > 4 by Lemma 4, so v sends at
most 2 × 3

4
+ (k − i − 2) × 5

4
= 11

4
+ (k − i − 3) × 5

4
(in total) to fi, fi+1, · · · , fk−1.

If one of fi and fk−1 is 4−face, then v sends at most 3
4

+ 1
3

+ 3
2

+ (k − i − 3) × 5
4

=
31
12

+ (k − i − 3) × 5
4

(in total) to fi, fi+1, · · · , fk−1. If min{d(fi), d(fk−1)} > 5, then v
sends at most 2 × 1

3
+ 2 × 3

2
+ (k − i − 4) × 5

4
= 29

12
+ (k − i − 3) × 5

4
(in total) to

fi, fi+1, · · · , fk−1. Since max{11
4
, 31
12
, 29
12
} = 11

4
, v sends at most 11

4
+ (k − i − 3) × 5

4
(in

total) to fi, fi+1, · · · , fk−1.

Now, we come back to check the new charge of 8-vertex v and consider nine cases in
the following.

Case 1. n2(v) = 8. Note that f6+(v) = 8 by Figure 1(3) and (4). Then, no charge is
discharged from v to its incident faces. So ch

′
(v) = ch(v)− 8× 1 = 10− 8 = 2 > 0 by R1.

Case 2. n2(v) = 7. Then f6+(v) > 6 and f3(v) = 0 by Figure 1(4). So ch
′
(v) >

ch(v)− 7× 1− 2× 1 = 10− 9 = 1 > 0.

Case 3. n2(v) = 6. Then there are four possibilities in which 2-vertices are located. They
are shown as configurations in Figure 4. For Figure 4(1), f6+(v) > 5 and f3(v) 6 1. So
ch

′
(v) > ch(v)−6×1− 3

2
−2×1 = 1

2
> 0. For Figure 4(2)–(4), f6+(v) > 4 and f3(v) = 0.

So ch
′
(v) > ch(v)− 6× 1− 4× 1 = 0.

)1( )4()3()2(

Figure 4: Fig. 4. n2(v) = 6

Case 4. n2(v) = 5. Then there are five possibilities in which 2-vertices are located. They
are shown as configurations in Figure 5.

)1( )4()3()2( )5(

Figure 5: n2(v) = 5
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For Figure 5(1), f6+(v) > 4 and f3(v) 6 2. So ch
′
(v) > ch(v)−5×1−2× 3

2
−2×1 = 0.

For Figure 5(2) and (3), f6+(v) > 3 and f3(v) 6 1. So ch
′
(v) > ch(v) − 5 × 1 − 3

2
−

max{11
4
, 3
2

+ 1} = 3
4
> 0 by Lemma 8 and Lemma 10. For Figure 5(4) and (5), f6+(v) > 2

and f3(v) = 0. So ch
′
(v) > ch(v)− 5× 1− 3× 3

2
= 1

2
> 0.

Case 5. n2(v) = 4. Then there are eight possibilities in which 2-vertices are located.
They are shown as configurations in Figure 6.

)1( )4()3()2(

)6( )8()7()5(

Figure 6: n2(v) = 4

For Figure 6(1), f6+(v) > 3 and f3(v) 6 3. If f3(v) = 3, then ch
′
(v) > ch(v)− 4× 1−

(11
4

+ 2× 5
4
) = 3

4
> 0. Otherwise, ch

′
(v) > ch(v)− 4× 1− f3(v)× 3

2
− (5− f3(v))× 1 =

1 − 1
2
f3(v) > 0. For Figure 6(2) and (4), f6+(v) > 2 and f3(v) 6 2. If f3(v) = 2, then

ch
′
(v) > ch(v) − 4 × 1 − 3

2
− (11

4
+ 5

4
) = 1

2
> 0 by Lemma 8 and Lemma 10. Otherwise,

ch
′
(v) > ch(v)−4×1− 3

2
−f3(v)× 3

2
−(4−f3(v))×1 = 1

2
− 1

2
f3(v) > 0. For Figure 6(3) and

(7), f6+(v) > 2 and f3(v) 6 2. So ch
′
(v) > ch(v)−4×1−f3(v)× 11

4
−(2−f3(v))×(3

2
+1) =

1 − 1
4
f3(v) > 0 by Lemma 8 and Lemma 10. For Figure 6(5) and (6), f6+(v) > 1 and

f3(v) 6 1. So ch
′
(v) > ch(v)−4×1−2× 3

2
−f3(v)× 11

4
−(1−f3(v))×(3

2
+1) = 1

2
− 1

4
f3(v) > 0.

For Figure 6(8), f3(v) = 0. So ch
′
(v) > ch(v)− 4× 1− 4× 3

2
= 0.

Case 6. n2(v) = 3. Then there are five possibilities in which 2-vertices are located. They
are shown as configurations in Figure 7.

For Figure 7(1), note that min{d(f1), d(f2)} > 6, min{d(f3), d(f8)} > 4, and f3(v) 6 3.
If f3(v) 6 2, then ch

′
(v) > ch(v)− 3× 1− f3(v)× 3

2
− (6− f3(v))× 1 = 1− 1

2
f3(v) > 0.

Suppose f3(v) = 3, Then min{d(f4), d(f7)} = 3. Without loss of generality, suppose
that d(f4) = 3, then v sends at most 3

4
to f3 by Lemma 4. If d(f7) = 3, then ch

′
(v) >

ch(v) − 3 × 1 − 1 − 2 × 3
4
− 3 × 3

2
= 0. Otherwise, d(f4) = d(f5) = d(f6) = 3, then f5 is

good by Figure 1(5). So ch
′
(v) > ch(v)− 3× 1− 2× 1− 3

4
− 5

4
− 2× 3

2
= 0.

For Figure 7(2), d(f1) > 6, min{d(f2), d(f3), d(f4), d(f8)} > 4, and f3(v) 6 3. If
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)1( )4()3()2( )5(

8f

6f

5f

4f

3f2f

1f

7f

8f

6f

5f

4f

3f2f

1f

7f

8f

6f

5f

4f
3f2f

1f

7f

8f

6f

5f

4f

3f2f

1f

7f

8f

6f

5f

4f

3f2f

1f

7f

Figure 7: n2(v) = 3

f3(v) 6 1, then ch
′
(v) > ch(v)−3×1− 3

2
−f3(v)× 3

2
− (5−f3(v))×1 = 1

2
− 1

2
f3(v) > 0 by

Lemma 8. If f3(v) = 3, then d(f5) = d(f6) = d(f7) = 3, so ch
′
(v) > ch(v)−3×1− 3

2
−(11

4
+

2× 5
4
) = 1

4
> 0 by Lemma 8 and Lemma 10. Suppose f3(v) = 2. If max{d(f4), d(f8)} > 5,

then ch
′
(v) > ch(v)− 3× 1− 3

2
− 2× 3

2
− 1

3
− 2× 1 = 1

6
> 0. Otherwise, without loss of

generality, suppose that d(f5) = 3. If d(f6) = 3, then f4 and f5 are good by Figure 1(5)
and Lemma 4. So ch

′
(v) > ch(v)− 3× 1− 3

2
− 3

4
− 5

4
− 3

2
− 2× 1 = 0. If d(f7) = 3, then

f4 and f8 are good. So ch
′
(v) > ch(v)− 3× 1− 3

2
− 2× 3

4
− 2× 3

2
− 1 = 0.

For Figure 7(3), d(f1) > 6, min{d(f2), d(f4), d(f5), d(f8)} > 4, and f3(v) 6 3. If
f3(v) = 3, then ch

′
(v) > ch(v)− 3× 1− (11

4
+ 5

4
)− 11

4
= 1

4
> 0 by Lemma 10. Otherwise,

f3(v) 6 2. If d(f3) = 3, then ch
′
(v) > ch(v) − 3 × 1 − 11

4
− max{15

4
, 4 × 1} = 1

4
> 0. If

d(f3) > 4, then ch
′
(v) > ch(v)− 3× 1− (3

2
+ 1)−max{11

4
+ 5

4
, 15

4
, 4× 1} = 1

2
> 0.

For Figure 7(4), f3(v) 6 2. So ch
′
(v) > ch(v)−3×1−2× 3

2
−max{11

4
+ 5

4
, 15

4
, 4×1} = 0.

For Figure 7(5), f3(v) 6 2. So ch
′
(v) > ch(v)−3×1− 3

2
−f3(v)× 11

4
−(2−f3(v))×(3

2
+1) =

1
2
− 1

4
f3(v) > 0.

Case 7. n2(v) = 2. Then there are four possibilities in which 2-vertices are located.
They are shown as configurations in Figure 8.

)1( )4()3()2(

8f
6f

5f

4f

3f2f

1f

7f

8f

6f

5f

4f

3f2f

1f

7f
8f

6f
5f

4f

3f2f

1f

7f
8f

6f
5f

4f

3f2f

1f

7f

Figure 8: n2(v) = 2

For Figure 8(1), note that d(f1) > 5 and f3(v) 6 4. Suppose f3(v) = 4. Then without
loss of generality, let d(f3) = d(f4) = d(f7) = d(fi) = 3 (i ∈ {5, 6}). Then d(v4) > 4
by Figure 1(5), and v sends at most max{1

3
+ 3

2
, 3
4

+ 5
4
} = 2 (in total) to f2 and f3. If

d(f8) > 5, then ch
′
(v) > ch(v) − 2 × 1 − 1

3
− 2 − 3 × 3

2
− 3

4
− 1

3
= 1

12
> 0 by Lemma 5.

Otherwise, d(f8) = 4, then d(v8) > 4 by Lemma 4, it follows that f4 (if i = 5) or f7 (if
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i = 6) is good, and v sends at most max{3
2

+ 3
2

+ 1
3
, 3
2

+ 5
4

+ 3
4
} = 7

2
(in total) to f5, f6 and

f7 (or f4). So ch
′
(v) > ch(v)− 2× 1− 1

3
− 2− 5

4
− 7

2
− 3

4
= 1

6
> 0.

Suppose f3(v) = 3. If f5+(v) > 3, then ch
′
(v) > ch(v) − 2 × 1 − f5+(v) × 1

3
− 3 ×

3
2
− (5 − f5+(v)) × 1 = 2

3
f5+(v) − 3

2
> 0. If f5+(v) = 2, then except f1, there is one

5+-face incident with v, and there is at least one good 4-face which incident with v. So
ch

′
(v) > ch(v)− 2× 1− 2× 1

3
− 3× 3

2
− 3

4
− 2× 1 = 1

12
> 0. If f5+(v) = 1, then d(fi) 6 4

for all 2 6 i 6 8. By symmetry, we need to consider the following cases in which 3-faces
are located.

First, suppose d(f3) = d(f4) = d(f5) = 3. Then min{d(v3), d(v4), d(v5)} > 4 and
max{d(v6), d(v7), d(v8)} > 4 by Figure 1(5) and Lemma 4. So ch

′
(v) > ch(v) − 2 × 1 −

1
3
− 2× 5

4
− 3

2
− 2× 3

4
− 2× 1 = 1

6
> 0. Second, suppose d(f4) = d(f5) = d(f6) = 3. Then

min{d(v5), d(v6)} > 4 by Figure 1(5), max{d(v3), d(v4)} > 4 and max{d(v7), d(v8)} > 4
by Lemma 4. So ch

′
(v) > ch(v)−2×1− 1

3
−max{5

4
+2× 3

2
+3× 3

4
+1, 2× 5

4
+ 3

2
+2× 3

4
+2×1} =

1
6
> 0. Third, suppose d(f3) = d(f4) = d(f6) = 3. Then d(v4) > 4 by Figure 1(5),

d(v3) > 4 and max{d(v7), d(v8)} > 4 by Lemma 4, max{d(v5), d(v6)} > 4 by Lemma
5. So ch

′
(v) > ch(v) − 2 × 1 − 1

3
− 2 × 3

2
− 5

4
− 3 × 3

4
− 1 = 1

6
> 0. Fourth, suppose

d(f3) = d(f4) = d(f7) = 3. Then min{d(v3), d(v4), d(v8)} > 4 by Figure 1(5) and Lemma
4, max{d(v5), d(v6), d(v7)} > 4 by Lemma 5. So ch

′
(v) > ch(v) − 2 × 1 − 1

3
− 2 × 3

2
−

5
4
− 3 × 3

4
− 1 = 1

6
> 0. Fifth, suppose d(f4) = d(f5) = d(f7) = 3. Then d(v5) > 4 by

Figure 1(5), d(v8) > 4 and max{d(v3), d(v4)} > 4 by Lemma 4, max{d(v6), d(v7)} > 4 by
Lemma 5. So ch

′
(v) > ch(v)− 2× 1− 1

3
− 2× 3

2
− 5

4
− 3× 3

4
− 1 = 1

6
> 0. Sixth, suppose

d(f3) = d(f5) = d(f7) = 3. Then f2, f4, f6 and f8 are good by Lemma 4 and Lemma 5,
so ch

′
(v) > ch(v)− 2× 1− 1

3
− 3× 3

2
− 4× 3

4
= 1

6
> 0.

Suppose f3(v) = 2. Then without loss of generality, let d(fi) = d(fj) = 3 (3 6 i < j 6
7). If f5+(v) > 2, then ch

′
(v) > ch(v)− 2× 1− f5+(v)× 1

3
− 2× 3

2
− (6− f5+(v))× 1 =

2
3
f5+(v)−1 > 0. Otherwise, d(ft) 6 4 for all 2 6 t 6 8. If there is at least one good 3-face

in {fi, fj}, then each face adjacent to good 3-face is good. So ch
′
(v) > ch(v)−2×1− 1

3
− 5

4
−

3
4
− 3

2
−4×1 = 1

6
> 0. Now we suppose both fi and fj are bad. If j = i+1, then i ∈ {4, 5} by

Figure 1(5) and Lemma 4, it follows that there are at least two good 4-faces in {f2, f3, f4},
so ch

′
(v) > ch(v)− 2× 1− 1

3
− 2× 3

2
− 3× 1− 2× 3

4
= 1

6
> 0. Otherwise, there are two

7+-vertices in {vi, vi+1, vj, vj+1}. So ch
′
(v) > ch(v)−2×1− 1

3
−2× 3

2
−2× 3

4
−3×1 = 1

6
> 0.

Suppose f3(v) 6 1. Then ch
′
(v) > ch(v)− 2× 1− 1

3
− f3(v)× 3

2
− (7− f3(v))× 1 =

2
3
− 1

2
f3(v) > 0.

For Figure 8(2), note that f3(v) 6 3, and v sends at most 3
2

(in total) to f1 and f2 by
Lemma 8. Suppose f3(v) = 3, without loss of generality, let d(f4) = d(f5) = d(fi) = 3
(i ∈ {6, 7}). Then v sends at most max{3

2
+ 1

2
, 5
4

+ 3
4
} = 2 (in total) to f3 and f4, and v

sends at most max{3
2
+ 3

2
+1+ 1

3
, 5
4
+ 3

2
+2× 3

4
, 5
4
+ 5

4
+ 3

4
+1} = 13

3
(in total) to f5, f6, f7 and

f8 by Figure 1(5), Lemma 4 and Lemma 5. So ch
′
(v) > ch(v)−2×1− 3

2
−2− 13

3
= 1

6
> 0.

Suppose f3(v) = 2. Then without loss of generality, let d(fi) = d(fj) = 3 (4 6 i <
j 6 7). If there is at least one 5+-face in {ft|3 6 t 6 8}, then ch

′
(v) > ch(v) − 2 ×

1 − 3
2
− 2 × 3

2
− 1

3
− 3 × 1 = 1

6
> 0. Otherwise, d(ft) 6 4 for all 3 6 t 6 8. If there is

at least one good 3-face in {fi, fj}, then each 4-face adjacent to good 3-face is good. So
ch

′
(v) > ch(v)− 2× 1− 3

2
− 3

2
− 5

4
− 3

4
− 3× 1 = 0. Now we suppose both fi and fj are
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bad. If j = i+ 1, then i = 5, f3, f4, f7, and f8 are good by Figure 1(5) and Lemma 4. So
ch

′
(v) > ch(v)− 2× 1− 3

2
− 4× 3

4
− 2× 3

2
= 1

2
> 0. Otherwise, there are two 7+-vertices

in {vi, vi+1, vj, vj+1}. So ch
′
(v) > ch(v)− 2× 1− 3

2
− 2× 3

2
− 1

2
− 3× 1 = 0.

Suppose f3(v) 6 1. Then ch
′
(v) > ch(v)− 2× 1− 3

2
− f3(v)× 3

2
− (6− f3(v))× 1 =

1
2
− 1

2
f3(v) > 0.

For Figure 8(3), note that f3(v) 6 4. If f3(v) = 4, then d(f2) = d(f5) = d(f6) =
d(f7) = 3, so ch

′
(v) > ch(v)− 2× 1− 11

4
− (11

4
+ 2× 5

4
) = 0 by Lemma 10.

Suppose f3(v) = 3. If d(f2) > 4, then d(f5) = d(f6) = d(f7) = 3, so ch
′
(v) >

ch(v) − 2 × 1 − (1 + 3
2
) − (11

4
+ 2 × 5

4
) = 1

4
> 0. If d(f2) = 3, then v sends at most 11

4

(in total) to f1, f2 and f3 by Lemma 10. Without loss of generality, let d(f5) = 3. If
d(f6) = 3, then v sends at most 2 (in total) to f4 and f5, v sends at most 3

4
to f7. So

ch
′
(v) > ch(v)− 2× 1− 11

4
− 2− 3

2
− 3

4
− 1 = 0. If d(f7) = 3, then v sends at most 3

4
to

f4, f6 and f8, respectively. So ch
′
(v) > ch(v)− 2× 1− 11

4
− 2× 3

2
− 3× 3

4
= 0.

Suppose f3(v) = 2. Then without loss of generality, let d(fi) = d(fj) = 3 (i < j). If
i = 2, then v sends at most 11

4
(in total) to f1, f2 and f3, v sends at most 3

4
to fj−1 or fj+1.

So ch
′
(v) > ch(v)− 2× 1− 11

4
− 3

2
− 3

4
− 3× 1 = 0. Otherwise, v sends at most 5

2
(in total)

to f1, f2 and f3 by Lemma 8, without loss of generality, let i = 5. If j = 6, then v sends at
most 2 (in total) to f4 and f5. So ch

′
(v) > ch(v)−2×1− 5

2
−2− 3

2
−2×1 = 0. If j = 7, then v

sends at most 3
4

to f4 and f8, respectively. So ch
′
(v) > ch(v)−2×1− 5

2
−2× 3

4
−2× 3

2
−1 = 0.

Suppose f3(v) 6 1. If d(f2) = 3, then ch
′
(v) > ch(v) − 2 × 1 − 11

4
− 5 × 1 = 1

4
> 0.

Otherwise, ch
′
(v) > ch(v)− 2× 1− 5

2
− 3

2
− 4× 1 = 0.

For Figure 8(4), note that f3(v) 6 4. Suppose f3(v) = 4. Then d(f2) = d(f3) =
d(f6) = d(f7) = 3 and ch

′
(v) > ch(v)− 2× 1− 2× (11

4
+ 5

4
) = 0 by Lemma 10. Suppose

f3(v) = 3. Then ch
′
(v) > ch(v) − 2 × 1 − (11

4
+ 5

4
) − 15

4
= 1

4
> 0 by Lemma 9. Suppose

f3(v) = 2. If two 3-faces incident with v are adjacent, then ch
′
(v) > ch(v)− 2× 1− (11

4
+

5
4
)− 4× 1 = 0. Otherwise, ch

′
(v) > ch(v)− 2× 1− 2× 15

4
= 1

2
> 0. Suppose f3(v) 6 1.

Then ch
′
(v) > ch(v)− 2× 1− f3(v)× 15

4
− (2− f3(v))× (4× 1) = 1

4
f3(v) > 0.

Case 8. n2(v) = 1. Without loss of generality, let v1 be the unique 2-vertex adjacent to
v. First, we consider the case that v1 is not incident with any 3-face. Note that f3(v) 6 5.

Suppose f3(v) = 5. Then d(f2) = d(f3) = d(fi) = d(f6) = d(f7) = 3 (i ∈ {4, 5}), and
at least two faces in {f3, fi, f6} are good by Figure 1(5) and Lemma 5. If min{f1, f8} > 5,
then ch

′
(v) > ch(v)− 1− 2× 1

3
− 3× 3

2
− 2× 5

4
− 1 = 1

3
> 0. Otherwise, min{f1, f8} 6 4,

without loss of generality, let d(f1) = 4. If d(v2) = 3, then f3, fi, f6 and f7 are good by
Lemma 6, so ch

′
(v) > ch(v)−1−1− 3

2
−4× 5

4
−2× 3

4
= 0. If d(v2) > 4, we may assume that

d(f8) > 5 or d(v8) > 4, then ch
′
(v) > ch(v)−1− 3

4
−3× 5

4
− 3

2
−1−max{3

2
+ 1

3
, 5
4

+ 3
4
} = 0.

Suppose f3(v) = 4. Then there is at least one 3-face in {f2, f7}, without loss of
generality, let d(f2) = d(fi) = d(fj) = d(ft) = 3, where 2 < i < j < t and t ∈ {6, 7}. If
f5+(v) > 2, then ch

′
(v) > ch(v)−1−f5+(v)× 1

3
−4× 3

2
−(4−f5+(v))×1 = 2

3
f5+(v)−1 > 0.

Then f5+(v) 6 1. We need to consider two cases. First, suppose there is one 5+-face in
{f1}∪{fx|t+1 6 x 6 8}, then at least two faces in {f3, f4, f5, f6} are good by Figure 1(5)
and Lemma 5. So ch

′
(v) > ch(v)− 1− 1

3
−max{2× 3

2
+ 2× 5

4
+ 3× 1, 3× 3

2
+ 5

4
+ 2× 1 +
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3
4
, 4 × 3

2
+ 1 + 2 × 3

4
} = 1

6
> 0. Second, suppose d(f1) = d(fx) = 4 for all t + 1 6 x 6 8.

If d(v2) = 3 or d(vy) = 3 for all t+ 1 6 y 6 8, then v is incident with at least three good
3-faces and one good 4-face by Lemma 6. So ch

′
(v) > ch(v)−1− 3

2
−3× 5

4
−3×1− 3

4
= 0.

Otherwise, d(v2) > 4 and max{d(vy)|t + 1 6 y 6 8} > 4, that is, there are at least two
good 4-faces in {f1} ∪ {fx|t + 1 6 x 6 8}. Then f5+(v) = 1 or at least two faces in
{f3, f4, f5, f6} are good. So ch

′
(v) > ch(v)− 1−max{4× 3

2
+ 1 + 2× 3

4
+ 1

3
, 2× 3

2
+ 2×

5
4

+ 2× 1 + 2× 3
4
, 3× 3

2
+ 5

4
+ 1 + 3× 3

4
, 4× 3

2
+ 4× 3

4
} = 0.

Suppose f3(v) = 3. If f5+(v) > 1, then ch
′
(v) > ch(v)− 1− f5+(v)× 1

3
− 3× 3

2
− (5−

f5+(v))× 1 = 2
3
f5+(v)− 1

2
> 0. Otherwise, at least two faces incident with v are good by

Lemma 5 and Lemma 6. So ch
′
(v) > ch(v)−1−max{2× 3

2
+ 5

4
+ 3

4
+4×1, 3× 3

2
+2× 3

4
+

3× 1} = 0. Suppose f3(v) 6 2. Then ch
′
(v) > ch(v)− 1− f3(v)× 3

2
− (8− f3(v))× 1 =

1− 1
2
f3(v) > 0.

Next, we consider the case that v1 is incident with a 3-face. Then f3(v) 6 6, and the
other 3-faces incident with v are good by Figure 1(2). If f3(v) = 6, then d(f1) = d(f2) =
d(f3) = d(f5) = d(f6) = d(f7) = 3, v sends at most 1

2
to f4, and v sends at most 3

4
to

f8. So ch
′
(v) > ch(v) − 1 − 3

2
− 5 × 5

4
− 1

2
− 3

4
= 0. Suppose f3(v) 6 5. If f5+(v) > 1,

then ch
′
(v) > ch(v) − 1 − 3

2
− 4 × 5

4
− f5+(v) × 1

3
− (3 − f5+(v)) × 1 = 2

3
f5+(v) − 1

2
> 0.

Otherwise, f5+(v) = 0. If f3(v) = 5, then at least two 4-faces incident with v are good. So
ch

′
(v) > ch(v)−1− 3

2
−4× 5

4
−1−2× 3

4
= 0. If f3(v) 6 4, then at least one 4-face incident

with v is good. So ch
′
(v) > ch(v) − 1 − 3

2
− (f3(v) − 1) × 5

4
− (8 − f3(v) − 1) × 1 − 3

4
=

1− 1
4
f3(v) > 0.

Case 9. n2(v) = 0. Note that f3(v) 6 6. If f3(v) 6 4, then ch
′
(v) > ch(v)− f3(v)× 3

2
−

(8−f3(v))×1 = 2− 1
2
f3(v) > 0. Suppose f3(v) = 5. Then there are two adjacent 3-cycles

which incident with v, without loss of generality, let d(fi) = d(fi+1) = 3. If f5+(v) > 1,
then ch

′
(v) > ch(v) − 5 × 3

2
− f5+(v) × 1

3
− (3 − f5+(v)) × 1 = 2

3
f5+(v) − 1

2
> 0. Then

f5+(v) = 0. If d(vi+1) = 3, then v is incident with at most four bad 3-faces by Lemma 7,
so ch

′
(v) > ch(v)− 4× 3

2
− 5

4
− 2× 1− 3

4
= 0. Otherwise, no two 3-cycles have a common

3-vertex, then there are at least two good faces which incident with v by Figure 1(6),
so ch

′
(v) > ch(v) − 3 × 3

2
− 1 − max{2 × 5

4
+ 2 × 1, 3

2
+ 5

4
+ 1 + 3

4
, 2 × 3

2
+ 2 × 3

4
} = 0.

Suppose f3(v) = 6. Then without loss of generality, let d(f1) = d(f2) = d(f3) = d(f5) =
d(f6) = d(f7) = 3. If min{d(v2), d(v3), d(v6), d(v7)} = 3, then v is incident with at
most four bad 3-faces by Lemma 7. So ch

′
(v) > ch(v) − 4 × 3

2
− 2 × 5

4
− 2 × 3

4
= 0.

Otherwise, min{d(v2), d(v3), d(v6), d(v7)} > 4. If max{d(v1), d(v4), d(v5), d(v8)} > 4, then
ch

′
(v) > ch(v) − 3 × 3

2
− 3 × 5

4
− 1 − 3

4
= 0. If d(v1) = d(v4) = d(v5) = d(v8) = 3, then

min{d(v2), d(v3), d(v6), d(v7)} > 7, so ch
′
(v) > ch(v)− 4× 3

2
− 2× 1− 2× 1 = 0.

Hence we complete the proof of the theorem.
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