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Abstract

We define and study embeddings of cycles in finite affine and projective planes.
We show that for all k, 3 6 k 6 q2, a k-cycle can be embedded in any affine plane
of order q. We also prove a similar result for finite projective planes: for all k,
3 6 k 6 q2 + q + 1, a k-cycle can be embedded in any projective plane of order q.

Keywords: Graph embeddings, finite affine plane, finite projective plane, cycle,
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1 Introduction

Our work concerns substructures in finite affine and projective planes. In order to explain
the questions we consider, we will need the following definitions and notations.

Any graph-theoretic notion not defined here may be found in Bollobás [1]. All of
our graphs are finite, simple and undirected. If G = (V,E) = (V (G), E(G)) is a graph,
then the order of G is v(G) = |V |, the number of vertices of G, and the size of G is
e(G) = |E|, the number of edges in G. Each edge of G is thought as a 2-subset of
V . An edge {x, y} will be denoted by xy or yx. A vertex v is incident with an edge
e if v ∈ e. We say that a graph G′ = (V ′, E ′) is a subgraph of G, and denote it by
G′ ⊂ G, if V ′ ⊂ V and E ′ ⊂ E. If G′ ⊂ G, we will also say that G contains G′. For a
vertex v ∈ V , N(v) = NG(v) = {u ∈ V : uv ∈ E} denotes the neighborhood of v, and
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deg(v) = degG(v) = |N(v)|, the degree of v. If the degrees of all vertices of G are equal
to d, then G is called d-regular. For a graph F , we say that G is F -free if G contains no
subgraph isomorphic to F .

For k > 2, any graph isomorphic to the graph with a vertex-set {x1, . . . , xk} and an
edge-set {x1x2, x2x3, . . . , xk−1xk} is called an x1xk-path, or a k-path, and we denote it by
Pk. The length of a path is its number of edges. For k > 3, the graph with a vertex-set
{x1, . . . , xk} and edge-set {x1x2, x2x3, . . . , xk−1xk, xkx1} is called a k-cycle, and it is often
denoted by C or Ck. Any subgraph of G isomorphic to a k-cycle is called a k-cycle in
G. The girth of a graph G containing cycles, denoted by g = g(G), is the length of a
shortest cycle in G. Let V (G) = A ∪ B be a partition of V (G), and let every edge of G
have one endpoint in A and another in B. Then G is called bipartite and we denote it by
G(A,B;E). If |A| = m and |B| = n, then we refer to G as an (m,n)-bipartite graph.

All notions of incidence geometry not defined here may be found in [2]. A partial
plane π = (P ,L; I) is an incidence structure with a set of points P , a set of lines L,
and a symmetric binary relation of incidence I ⊆ (P × L) ∪ (L × P) such that any
two distinct points are on at most one line, and every line contains at least two points
(note that we have used P for two different objects as of now: to denote a path and to
denote the points on a partial plane. The usage of this symbol should be clear from the
context). The definition implies that any two lines share at most one point. We will often
identify lines with the sets of points on them. We say that a partial plane π′ = (P ′,L′; I ′)
is a subplane of π, denoted π′ ⊂ π, if P ′ ⊂ P ,L′ ⊂ L, and I ′ ⊂ I. If there is a line
containing two distinct points X and Y , we denote it by XY or Y X. For k > 3, we
define a k-gon as a partial plane with k distinct points {P1, P2, . . . Pk}, with k distinct
lines {P1P2, P2P3, . . . , Pk−1Pk, PkP1}. Note that for each k > 5, a line of a k-gon may
contain more than two of its vertices. A subplane of π isomorphic to a k-gon is called a
k-gon in π. The Levi graph of a partial plane π is its point-line bipartite incidence graph
Levi(π) = Levi(P ,L;E), where Pl ∈ E if and only if point P is on line l. The Levi graph
of any partial plane is 4-cycle-free. Clearly, there exists a bijection between the set of all
k-gons in π and the set of 2k-cycles in Levi(π).

A projective plane of order q > 2, denoted πq, is a partial plane with every point on
exactly q + 1 lines, every line containing exactly q + 1 points, and having four points
such that no three of them are collinear. It is easy to argue that πq contains q2 + q + 1
points and q2 + q + 1 lines. Let nq = q2 + q + 1. It is easy to show that a partial plane
is a projective plane of order q if and only if its Levi graph is a (q + 1)-regular graph
of girth 6 and diameter 3. Projective planes πq are known to exist only when the order
q is a prime power. If q > 9 is a prime power but not a prime, there are always non-
isomorphic planes of order q, and their number grows fast with q. Let PG(2, q) denote the
classical projective plane of prime power order q which can be modeled as follows: points
of PG(2, q) are 1-dimensional subspaces in the 3-dimensional vector space over the finite
field of q elements, lines of PG(2, q) are 2-dimensional subspaces of the vector space, and
a point is incident to a line if it is a subspace of it.

Removing a line from a projective plane, and removing its points from all other lines,
yields a partial plane known as an affine plane. The line removed is often referred to as
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the line at infinity, and it is denoted by l∞. Conversely, a projective plane of order q can
be obtained from an affine plane of order q (i.e. having q+ 1 lines through each point) by
adding a line at infinity to it, which can be thought of as a set of q+ 1 new points, called
points at infinity, which are in bijective correspondence with the set of parallel classes
(also called the set of all slopes) of lines in the affine plane. We will use πq to denote a
projective plane of order q, and αq for affine planes of order q.

The following problem, stated in terms of set systems, appears in Erdős [5]:

Problem 1. Is every finite partial linear space embedded in a finite projective plane?

It is possible that the question was asked before, as it was well known that every
partial linear space embeds in some infinite projective plane, by a process of free closure
due to Hall [10]. For recent results related to the question, see Moorhouse and Williford
[16]. Rephrased in terms of graphs, Problem 1 is the following:

Problem 1∗. Is every finite bipartite graph without 4-cycles a subgraph of the Levi graph
of a finite projective plane?

Thinking about cycles in Levi graphs of projective planes, we introduced the following
notion of embedding of a graph into a partial plane, and found it useful. Let G be a graph
and let π = (P ,L; I) be a partial plane. Let

f : V (G) ∪ E(G)→ P ∪ L

be an injective map such that f(V (G)) ⊂ P , f(E(G)) ⊂ L, and for every vertex x and
edge e of G, their incidence in G implies the incidence of point f(x) and line f(e) in π.
We call such a map f an embedding of G in π, and if it exists we say that G embeds in π
and write G ↪→ π. If G ↪→ π, then adjacent vertices of G are mapped to collinear points
of π. Note that if G ↪→ πq, then v(G) 6 nq, e(G) 6 nq, and degG(x) 6 q + 1 for all
x ∈ V (G).

A cycle containing all vertices of a graph is called a hamiltonian cycle of the graph,
and if such exists, the graph is called a hamiltonian graph. Similarly, if πq contains an
nq-gon, we call it hamiltonian. A graph G containing k-cycles of all possible lengths,
3 6 k 6 v(G), is called pancyclic. Similarly, we say that πq is pangonal, if it contains
k-gons for all 3 6 k 6 nq. The latter is equivalent to Levi(πq) containing 2k-cycles
for all 3 6 k 6 nq. Clearly, if G ↪→ πq, a k-cycle in G corresponds to a k-gon in πq,
which, in turn, corresponds to a 2k-cycle in Levi(πq). From now on we choose to be less
pedantic, and will feel free to use graph theoretic and geometric terms interchangeably.
For example, we will say ‘point’ for a vertex of a graph, ‘vertex’ for a point of a partial
plane, and we will speak about ‘path’ and ‘cycle’ in a plane, etc.

Determining whether a graph is hamiltonian, or, more generally, understanding what
cycles it contains, is one of the central problems in graph theory, and it has been a subject
of active research for many years. The existence of hamiltonian cycles in πq (or Levi(πq)),
or its pancyclicity, was addressed by several researchers. The presence of k-gons of some
small lengths in πq is easy to establish. In [14], the authors presented explicit formuli for
the numbers of distinct k-gons in every projective plane of order q for k = 3, 4, 5, 6. Very
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recently, and in a very impressive way, Voropaev [21] extended this list to k = 7, 8, 9, 10.
The existence of very special hamiltonian cycles in PG(2, q) is a celebrated result of
Singer [19]. These cycles are often referred to as the Singer cycles in PG(2, q). For q = p
(prime) Schmeichel [18] showed by explicit constructions that PG(2, p) is pancyclic, and
that the hamiltonian cycles he constructed were different from Singer cycles. DeMarco
and Lazebnik [4] constructed a hamiltonian cycle in a Hall plane of order p2. Most of the
known sufficient conditions for the existence of hamiltonian cycles in graphs are effective
for rather dense graphs: graphs of order n and size greater that cn2 for some positive
constant c (see a survey by Gould [9]). Levi graphs of projective planes are much sparser;
being (q + 1)-regular, their size is (1/(2

√
2) + o(1))n3/2 for n → ∞, and that is why

most techniques of proving hamiltonicity of graphs do not apply to them. For the same
reason, upper bounds on the Turán number of a 2k-cycle, see, e.g., Pikhurko [17] and and
references therein, are not effective for proving the existence of 2k-cycles in Levi graphs
of projective planes for most values of k (as k may depend on q).

A new approach for establishing hamiltonicity and the existence of shorter cycles came
from probabilistic techniques and studies of cycles in random and pseudo-random graphs
(we omit the definition). See, e.g., Thomasson [20], Chung, Graham and Wilson [3], Frieze
[7], and Frieze and Krivelevich [8].

In [12], Krivelevich and Sudakov explored relations between pseudo-randomness and
hamiltonicity in regular non-bipartite graphs. Some other results related to hamiltonicity
and pancyclicity appeared in recent publications by Keevash and Sudakov [11], Krivele-
vich, Lee and Sudakov [13], and Lee and Sudakov [15].

It is likely that proofs in these papers can be modified to give results for (bipartite)
Levi graphs of projective planes, but the requirement on the order of the graph to be
sufficiently large (as is the case in the aforementioned papers) will remain. In this paper
we establish the pancyclicity of πq and αq, for all q, and our proof is constructive.

Our main results follow.

Theorem 1. Let αq be an affine plane of order q > 2. Then Ck ↪→ αq for all k, 3 6 k 6
q2.

Theorem 2. Let πq be a projective plane of order q > 2, and nq = q2 + q + 1. Then
Ck ↪→ πq for all k, 3 6 k 6 nq.

We now proceed to give a construction for paths and cycles in any finite affine or
projective plane. We start with a remark that will be very useful later on.

Remark 3. Let P1 → P2 → · · · → Pk and Q1 → Q2 → · · · → Qn be two disjoint (in terms
of points and lines) paths embedded in πq or αq. Then, if the line ` = PkQn has not been
used in these embeddings, we can create the following embedding for a path on n + k
vertices:

P1 → P2 → · · · → Pk
`−→ Qn → Qn−1 → · · ·Q2 → Q1.

Here, the symbol Pk
`−→ Qn indicates that the line ` joins the points Pk and Qn. Moreover,

if the line m = Q1P1 is still available, then we get a cycle of length k+ n embedded in πq
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(or αq).

Our main technique in the next two sections will be to construct paths that can be
combined using Remark 3 to create cycles of any length.

2 Cycles in Affine Planes

Let αq be an affine plane of order q, and let O be any point of the plane. We label the
q+ 1 lines through O by l0, l1, . . . , lq. For any given point Q ∈ αq, we use li +Q to denote
the line parallel to li that passes through Q. Let a mod q + 1 denote the remainder of
the division of a by q + 1.

Pick any point P0 on l0, different from O. Let P1 be the point of intersection of l2 +P0

and l1. Let P2 be the point of intersection of l3 + P1 and l2, etc. In general, let Pi be the
point of intersection of li+1 mod q+1 + Pi−1 and li, for all i = 1, 2, . . . , q. Since O 6= Pi ∈ li,
for all i = 1, 2, . . . , q, then all these points are distinct. Similarly, the lines Pi−1Pi are in
different parallel classes, for all i = 1, 2, . . . , q. It follows that by joining the points Pi−1
and Pi, for all i = 1, 2, . . . , q, we obtain a path on q+ 1 vertices. Denote this path by PP0 .

O

Q0

Q1

Q2

Q3

Q4

P0

P1

P2

P3

P4

l0 l1 l2 l3 l4

PP0

PQ0

Figure 1: Two vertex/edge disjoint paths, PP0 and PQ0 , for q = 4.

Lemma 4. Let P0 6= Q0 ∈ l0. Then the paths PP0 and PQ0 share neither points nor lines.

Proof. Let

PP0 : P0 → P1 → · · · → Pq PQ0 : Q0 → Q1 → · · ·Qq

Clearly Pi 6= Qj, for i 6= j. We also know that P0 6= Q0. So, assume that Pi = Qi, for
some i = 1, . . . , q, so that Pj 6= Qj, for all 0 6 j < i. It follows that

(li+1 mod q+1 + Pi−1) ∩ li = Pi = Qi = (li+1 mod q+1 +Qi−1) ∩ li
which forces li+1 mod q+1+Pi−1 = li+1 mod q+1+Qi−1, and thus Pi−1 = Qi−1, a contradiction.

Finally, it is easy to see that if PP0 and PQ0 shared a line, then they would also share
a point.
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Lemma 5. We can partition the points of αq \ {O} into s cycles, C1, . . . , Cs, where the
length of Ci is ti(q + 1) for some integer ti, 1 6 i 6 s 6 q − 1, 1 6 t1 6 . . . 6 ts, and
t1 + · · ·+ ts = q − 1.

Proof. If we label the points on l0 \ {O} by x1, x2, · · · , xq−1, by Lemma 4, Px1 , Px2 , . . .,
Pxq−1 yields a partition of the points of αq \{O} into q−1 disjoint paths each having q+1
vertices. If q > 3, then we have at least two such paths, and we may want to connect
them to create longer paths and/or cycles.

Note that in the paths Pxi
, no line parallel to l1 has been used. Now, if we consider

a path PP0 , then the line l1 + Pq intersects l0 at a point Q, which can never be equal to
O, otherwise l1 + Pq = l1, and thus Pq ∈ l1 ∩ lq = {O}, a contradiction. This point Q is
uniquely determined by P0 (and the way we do this construction, of course). If Q = P0,
then we get a (q + 1)-cycle. If Q 6= P0, then we re-label Q = Q0 and consider the path
PQ0 . This will give us a path with 2(q + 1) vertices, namely

P0 → P1 → · · · → Pq → Q0 → Q1 → · · ·Qq.

We then proceed to find R0 := (l1 +Qq)∩ l0. If R0 = P0 we get a cycle of length 2(q+ 1).
If R0 = Q0, then we get that Q0 is on two lines that are parallel to l1, namely l1 +Qq and
l1 + Pq. This forces Pq and Qq to coincide, but this is impossible because of Lemma 4. It
follows that we either get a cycle of length 2(q + 1) or we can keep extending this path
using PR0 . Since l0 contains finitely many points this process must end. Moreover, it is
impossible to ‘close’ this cycle at any point that is not P0, as this would yield the same
contradiction we obtained above when we assumed R0 = Q0. Hence, by combining paths
we can construct cycles of length t(q+ 1), for some positive integer t, these are the cycles
Ci we wanted to find.

In order to prove Theorem 1 we will need to construct paths out of the cycles C1, C2, . . . , Cs.
Firstly, we define terms and set notation that will be necessary for the rest of this article.

Definition 6. For every i = 1, . . . , s, let Pi,i−1 be an arbitrary point on li−1 ∩ Ci (note
that there are ti such points), and let Pi,i be its neighbor on li.

We construct two different types of paths in Ci: all of them start at Pi,i−1 and

1. the next vertex is Pi,i. The other vertices in the path are easily determined from
these first two, or

2. the next vertex is the neighbor of Pi,i−1 in Ci that is on the line li−2 mod q+1. The
other vertices in the path are easily determined from these first two.

We will say that the first path is a positive path, and that the second is a negative path.

Lemma 7. k-cycles can be embedded in αq, for all 3 6 k 6 t1(q + 1).
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Proof. If q = 2, 3 the result is immediate. We assume q > 4 for the rest of this proof.
The cycle C1 is of length t1(q + 1), and so we only need to construct k-cycles with

3 6 k < t1(q + 1).
If k ≡ 1 (mod q + 1), then, since k > 3, we consider a positive k-path in C1 starting at
P1,0. As k ≡ 1 (mod q+ 1), this path ends at some Q0 ∈ l0, and Q0 6= P0. Connect P0 to
Q0 using l0 to get a k-cycle.
If k ≡ 2 (mod q+ 1) and 2 < k < t1(q+ 1), then t1 > 1. Consider a positive (k− 2)-path
P in C1 starting at P1,0. This path ends at a point Pq ∈ lq. Since k < t1(q+ 1) then there
is a 2-path in C1, disjoint from P , of the form Qq−1 → Qq with Qi ∈ li, for i = q − 1, q.
Consider the following k cycle

O
l0−→ P0 → · · · → Pq−1︸ ︷︷ ︸

in P

lq−1−−→ Qq−1 → Qq
lq−→ O,

where Pq−1 ∈ lq−1 was the neighbor of Pq in P .
If k 6≡ 1, 2 (mod q + 1), then, since 3 6 k 6 t1(q + 1), take a positive (k − 1)-path in C1
starting at P1,0. This path will end on a point Pk−2 ∈ lk−2. Connect P0 and Pk−2 to O
using l0 and lk−2, respectively, to get a k-cycle.

We now focus on the construction of k-cycles for k > t1(q+ 1). In order to do that we
will use the following construction.

Construction 1. Let λm = t1 + t2 + · · ·+ tm. We will construct a λm(q + 1)-path Pm out
of the cycles C1, C2, . . . , Cm, where 2 6 m 6 s (recall that s 6 q − 1).
For each i = 1, . . . ,m − 1, we connect Ci with Ci+1 by joining Pi,i with Pi+1,i using li.
Then, for all i = 1, . . . ,m, we take the Pi,i−1Pi,i path in Ci having ti(q + 1) vertices, and
construct the following path

P1,0 → · · · → P1,1︸ ︷︷ ︸
in C1

l1−→ P2,1 → · · · → P2,2︸ ︷︷ ︸
in C2

l2−→ · · · lm−1−−−→ Pm,m−1 → · · · → Pm,m︸ ︷︷ ︸
in Cm

Since no vertices were eliminated or added, and all new lines are distinct and through O
(none used in the construction of the Ci’s), this construction yields a P1,0Pm,m-path with
λm(q + 1) vertices.
Note that O has not been used in the construction of Pm, and that neither have the lines
lm, . . . , lq, and l0.
Finally, we will denote the neighbor of P1,0 in Pm, which is a point on lq, by P1,q.
Figure 2, at the top of the next page, depicts this construction.

We now prove Theorem 1.

Proof of Theorem 1. In this proof we follow the notation introduced in Construction 1.
If q = 2, the existence of 3- and 4-cycles is obvious. If q = 3, pancyclicity can be easily

verified. In what follows we assume q > 4, though most arguments hold for q > 3.
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Cm

C3

C2

C1P1,1

P1,0

P3,3

l3

Pm,m

lm−1

Pm,m−1

P2,1

P3,2

l1 P2,2

l2

P1,q

Figure 2: Construction of Pm

We want to embed all possible k-cycles in αq that have not been already discussed in
Lemma 7. For any given k, we write it as either k = λs(q + 1), k = λs(q + 1) + 1 = q2, or
k = λm(q+ 1) + r, for some m = 1, . . . , s− 1 and 0 6 r < tm+1(q+ 1). Note that the case
m = 0 was taken care of in Lemma 7.

Firstly, we can join P1,0 and Ps,s with O, using the lines l0 and ls respectively, to obtain
a cycle of length λs(q + 1) + 1. Note that this grants hamiltonicity. Moreover, if we cut
Ps short one vertex, and thus we ask it to end at P1,q, then joining the endpoints of this
new path to O yields a λs(q + 1)-cycle.

From now on, let k = λm(q+1)+r, for some m = 1, . . . , s−1 and some 0 6 r < tm+1(q+1).
Our strategy for constructing a k-cycle in αq will be to connect a path on Cm+1 (note that
m < s) to O and Pm. The paths on Cm+1 we will consider always starts at Pm+1,m, which
will be connected to Pm,m ∈ Pm by using lm.

Cm+1

Pm

P1,0

Pm+1,m

P1,q

lm

Pm,m

Figure 3: Connecting Pm and Cm+1

We consider several cases.
(a) If r ≡ 3 (mod q + 1) we first get a positive path on r − 1 vertices on Cm+1 that ends
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on a point Qm+1 ∈ lm+1. We then join P1,0 with O using l0, Qm+1 with O using lm+1. The
result is a cycle of the desired length. (b) If r ≡ 1 (mod q + 1) we consider a negative
(r − 2)-path on Cm+1 that ends on a point Qm+1 ∈ lm+1. We finish the construction as
in case (a). (c) If r ≡ 2 (mod q + 1) or r ≡ 0 (mod q + 1), then we cut Pm short one
vertex, so it ends at P1,q. We get the path in Cm+1 as in part (a) (for r ≡ 2 (mod q+ 1))
or (b) (for r ≡ 0 (mod q + 1)). We close the cycle by joining P1,q with O using lq, Qm+1

with O using lm+1.
(d) If r ≡ i (mod q + 1), where 4 6 i 6 q. We want to get a positive (r − 2)-path on
Cm+1 starting at Pm+1,m. This path would end at a point on lm+i−2 mod q+1.
(i) If i 6 q + 2 −m, then m + i − 2 6 q, and thus this path on r − 1 vertices ends at a
point Qm+i−2 ∈ lm+i−2. We then get a cycle of the desired length by joining P1,0 with O
using l0, Qm+i−2 with O using lm+i−2.
(ii) If i > q+ 3−m, then m+ i− 2 > q+ 1, and thus this path on r− 1 vertices ends at a
point Qt−2 ∈ lt−2, where 0 6 t− 2 6 m− 3. We next ‘shift’ this path to make it start at
Pm+1,m+1 instead of Pm+1,m and add a vertex to make it a path on r vertices. Now this
path ends at Qt ∈ lt, where 2 6 t 6 m − 1. Since the line lt is needed to construct Pm

we will need to modify the construction of Pm by connecting the cycles C1, C2, . . . , Cm+1

in the following way

C1 l1−→ C2 l2−→ · · · lt−2−−→ Ct−1
lt−1−−→ Ct

lt+1−−→ Ct+1
lt+2−−→ · · · lm+1−−−→ Cm+1

Note that this can be done for all 2 6 t 6 m− 1, and that doing this means that Pt,t is a
‘loose’ vertex, not used in Pm anymore.
Now we connect this path to the path on Cm+1 that ends on Qt. The line lt is now free,
and thus it can be used to close the cycle at O. We get the cycle

O
l0−→ C1 l1−→ · · · lm−→ Cm

lm+1−−−→ Pm+1,m+1 → · · · → Qt
lt−→ O

This cycle has length:

λm(q + 1)− 1 + r + 1 = λm(q + 1) + r = k

The ‘minus one’ is because of the loose vertex, the ‘plus one’ is because of O.

3 Cycles in Projective Planes

In this section we will study embeddings of cycles in finite projective planes. Let πq denote
a projective plane of order q. We think about πq as obtained from an affine plane αq by
adding a line, denoted `∞, consisting of points (i), for i = 0, · · · , q. Using the notations
from the previous section, each of these points (i) is incident with only the following lines:
`∞, line li of αq, and the q − 1 lines of αq parallel to li. The next statement follows
immediately from our work in Section 2.

Corollary 8. Let πq be a projective plane of order q. Then, a k-cycle can be embedded
in πq, for all k = 3, . . . , q2.
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Therefore in order to prove the pancyclicity of πq, we need to show that k-cycles can
be embedded into πq for all k, q2 + 1 6 k 6 q2 + q+ 1. At this point one would expect to
use heavily the pancyclicity of αq for the construction of ‘long’ cycles in πq, but we could
not make use of this idea. Instead, we base our construction methods on using the cycles
Ci in similar ways to that in the proof of Theorem 1.

Let W1 be any of the vertices of C1 that are on lq, and let V1 = (l1 +W1)∩ l0. It follows
that V1 is a vertex of C1, and that l1 + W1 is an edge of C1. Similarly, for 2 6 i 6 s, let
Wi ∈ li−2 be a vertex of Ci, and Vi = (li + Wi) ∩ li−1. Hence, Vi is a vertex of Ci, and
li + Wi is an edge of Ci. For each i = 1, · · · , s, let [Vi,Wi] denote the ViWi-path in Ci,
different from the edge ViWi. Next we define Ui to be the vertex of Ci that is on lq and
that is the closest to Vi, when we move from Vi towards Wi along Ci. By [ViUi] we denote
the subpath of [Vi,Wi] having q − i+ 2 vertices and endpoints Vi and Ui.

(q)(0)
!∞

O

[Vi,Wi]

Wi Vi

Ui

[ViUi]

(i − 2) (i − 1)

Figure 4: Paths [Vi,Wi] and [ViUi]

(2)(0)
!∞

(1)

V1

W1

W2

V2

O

V3W3

(q − 2) (q − 1) (q)(3)

Figure 5: Paths [V1,W1], [V2,W2], and [V3,W3]

Recall that (i) = li ∩ `∞. We now construct a path P (for s > 2) by connecting Wi

with (i) using li +Wi (which is not an edge of [Vi,Wi]), and connecting (i) with Vi+1 using
li. Thus P is the path:

[V1,W1]
l1+W1−−−−→ (1)

l1−→ [V2,W2]
l2+W2−−−−→ (2)→ · · · → (s− 1)

ls−1−−→ [Vs,Ws].
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For s = 1, P is obtained from the cycle C1 by removing the edge V1W1.
Note that for all s, P has (q2−1)+(s−1) = q2 +s−2 vertices. The lines ls, · · · , lq, l0,

ls +Ws, and `∞ have not been used in the construction of P , and neither have the points
(s), · · · , (q), (0), and O.

(2)(0)
!∞

(1)

V1

W1

W2

V2

O

V3W3

P

(q − 2) (q − 1) (q)(3)

Figure 6: Paths [V1,W1], [V2,W2], [V3,W3] joined into a path P . Its endpoints are V1 and
W3

(0)
!∞

O

Ws

P
Ws−1

Vs

V1

(s − 3) (s − 2) (s − 1) (q)(q − 1)(s)

Figure 7: A simple diagram of the path P

Now we begin our construction of k-cycles in πq of lengths from q2 + 1 to q2 + q + 1
by using the path P and/or modifications of it. Recall that s denotes the number of all
cycles Ci, or of all paths [Vi,Wi], and that 1 6 s 6 q− 1. We will first construct cycles of
length between q2 + 1 to q2 + s+ 2, and then the ones that are longer than q2 + s+ 2.

Lemma 9. Cycles of length ranging from q2 + 1 to q2 + s+ 2 can be embedded in πq.

Proof. Using the path P we can construct

1. a cycle of length q2 + s+ 2:

V1 → · · · → Ws︸ ︷︷ ︸
in P

ls+Ws−−−→ (s)
ls−→ O

lq−→ (q)
`∞−→ (0)

l0−→ V1,
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2. a cycle of length q2 + s+ 1:

V1 → · · · → Ws︸ ︷︷ ︸
in P

ls+Ws−−−→ (s)
`∞−→ (q)

lq−→ O
l0−→ V1, and

3. a cycle of length q2 + s:

V1 → · · · → Ws︸ ︷︷ ︸
in P

ls+Ws−−−→ (s)
`∞−→ (0)

l0−→ V1.

Note that the lines ls, · · · , lq have not been used in the construction of this last
cycle, and neither have the points (s+ 1), · · · , (q), and O. We will denote this cycle
by C.

If q + 1 6 2s, then, for every q − s+ 1 6 i 6 s, let us modify C in the following way:

• Delete q − i+ 1 vertices of the path [ViUi], all except Ui.

• Connect (i− 1) with O (recall that (i− 1) was connected to Vi in C via li−1).

• Connect O with Ui using lq.

This yields the cycle

Ui → · · · → (i− 1)︸ ︷︷ ︸
in C

li−1−−→ O
lq−→ Ui

which has length (q2 + s)− (q − i+ 1) + 1 = q2 − q + s+ i.
Since q−s+1 6 i 6 s, the length of this cycle ranges between q2+1 and (q2+s)−(q−s).

Note that if q+ 1 > 2s, then (q2 + s)− (q− s) < q2 + 1. So, for all relevant values of s we
have been able to construct cycles with lengths ranging from q2 + 1 to (q2 + s)− (q − s).

Next we want to construct k-cycles for (q2 + s)− (q − s) < k < q2 + s. In order to do
that we need to set more notation.

Let us relabel the vertices in the path [VsUs] by Vs = Ps−1, Ps, · · · , Pq−1, Pq, where
Pi ∈ li, for all i = s, . . . , q. Note that Pq = Us. For s − 1 6 i < q, let [PiPj] denote the
subpath of [VsUs] joining Pi and Pj.

Note that a cycle of length (q2 + s)− (q − s) vertices may be obtained using i = s in
the previous construction. We want to use a similar construction to get a cycle of length
(q2 + s)− (q − s) + 1. We modify C by replacing its subpath [Ps−1Pq−1] by a path

(s− 1)
ls−1−−→ O

lq−1−−→ Pq−1 → Pq

leading to the following cycle of length (q2 + s)− (q − s) + 1.

Us → · · · → (s− 1)︸ ︷︷ ︸
in C

ls−1−−→ O
lq−1−−→ Pq−1 → Pq
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Note that we are using here that s 6 q − 1.
Now, to create cycles of length larger than (q2 + s)− (q − s) + 1 we use the following

strategy.
For every i = s, · · · , q − 1, we modify C, by connecting Pi with O, and O with Pq to

get the cycle

Pq → · · · → Pi︸ ︷︷ ︸
in C

li−→ O
lq−→ Pq,

which has length (q2 + s)− (q− i− 1) + 1 = (q2 + s)− (q− i− 2). Since i = s, · · · , q− 1,
then the length of this cycle ranges from (q2 + s)− (q − s) + 2 to (q2 + s) + 1.

Corollary 10. With the same notation used in Lemma 9, if s = q−1, then πq is pancyclic.

Now we want to construct cycles longer than q2 + s+ 2 for when 1 6 s < q − 1.

Lemma 11. For every 1 6 s < q−1, cycles of length ranging from q2 +s+3 to q2 +q+1
can be embedded in πq.

Proof. Just as we did in the proof of Lemma 9, the idea is to modify the path P to get
the desired cycles. Hence, we will use the same notation introduced earlier in this section,
including that used in the proof of Lemma 9.

We first eliminate the edge ls+1 + Vs from P , and connect Ws with Vs using ls + Ws.
This gives us a path P̃ that has the same length of P (q2 + s− 2 vertices) with endpoints
V1 and Ps.

(q − 1)(0) (q)
!∞

(s)

O

Ws

P̃
Ws−1

Vs

V1

Ps

(s − 3) (s − 2) (s − 1)

Figure 8: The path P̃

Note that the lines ls, · · · , lq, l0, ls+1 + Vs, and `∞ have not been used, neither have
the points (s), · · · , (q), (0), and O.

If we now eliminate the edge ls+2 + Ps and, instead, connect Ps with Ps+1 using

Ps
ls+1+Vs−−−−→ (s+ 1)

ls+1−−→ Ps+1,

we get a path G1 in (q2 + s− 2) + 1 vertices (one more than P̃ ). We may close this path
into a cycle by

V1
l0−→ (0)

`∞−→ (s)
ls−→ Ps

ls+1+Vs−−−−→ (s+ 1)
ls+1−−→ Ps+1 → · · · → V1︸ ︷︷ ︸

in P̃
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which has length (q2 + s− 1) + 2 = q2 + s+ 1.
Now we eliminate the edge ls+3 mod q+1 +Ps+1 from G1 and instead connect Ps+1 with

Ps+2 using

Ps+1
ls+2+Ps−−−−→ (s+ 2)

ls+2−−→ Ps+2.

This yields a path G2 in (q2 + s− 2) + 2 vertices (two more than P̃). We may close this
path into a cycle by using P̃ as above

V1
l0−→ (0)

`∞−−→ (s)
ls−→ Ps

ls+1+Vs−−−−−→ (s + 1)
ls+1−−→ Ps+1

ls+2+Ps−−−−−→ (s + 2)
ls+2−−→ Ps+2 → · · · → V1︸ ︷︷ ︸

in P̃

which has length (q2 + s) + 2 = q2 + s+ 2.
In general, for 1 6 i < q − s (and thus s + i + 1 < q + 1), given a path Gi of length

(q2 + s− 2) + i constructed as above we can eliminate the edge ls+i+2 mod q+1 +Ps+i from
Gi and instead connect Ps+i with Ps+i+1 using

Ps+i
ls+i+1+Ps+i−1−−−−−−−−→ (s+ i+ 1)

ls+i+1−−−→ Ps+i+1

this yields a path Gi+1 in (q2 + s− 2) + i+ 1 vertices (i+ 1 more than P̃). We may close
this path into a cycle as we did above

V1
l0−→ (0)

`∞−→ (s)
ls−→ Ps

ls+1+Vs−−−−→ (s+ 1)
ls+1−−→ Ps+1

ls+2+Ps−−−−→ (s+ 2)→ · · ·

· · · → Ps+i
ls+i+1+Ps+i−1−−−−−−−−→ (s+ i+ 1)

ls+i+1−−−→ Ps+i+1 → · · · → V1︸ ︷︷ ︸
in P̃

which has length q2 + s+ i+ 1.
This will yield cycles of length up to q2 + q. The line not used in the (q2 + q)-cycle Q

is l0 + Pq−1, and the point not used is O. Figure 9 gives an idea of what Q looks like.

Ws

O

(s)

Q

V1

Vs

Ws−1

(s − 2)(0)
!∞

Pq−1
Pq

(s − 3) (q − 1) (q)(s − 1)

Figure 9: Cycle Q

In order to construct a (q2 + q + 1)-cycle we use Q and modified it as follows.

• eliminate `∞, which connected l0 and ls.
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• eliminate lq−1, which connected (q − 1) and Pq−1.

• eliminate lq, which connected (q) and Pq.

• connect (s) and (q) using `∞.

• connect (q − 1) and O using lq−1

• connect Pq and O using lq

• connect (q − 1) and (0) using l0 + Pq−1

We get the following hamiltonian cycle:

O

Ws

Ws−1

Vs

V1

Pq−1

Pq

(s − 2) (s − 1) (s) (q − 1)(s − 3)(0)
!∞

(q)

Figure 10: A hamiltonian cycle

Proof of Theorem 2. It follows from Lemmas 9 and 11.

We wish to conclude this paper with a conjecture. Let s > 1 and n > 2. A finite partial
plane G = (P ,L; I) is called a generalized n-gon of order s if its Levi graph is (s + 1)-
regular, has diameter n, and has girth 2n. It is known that a generalized n-gons of order s
exists only for n = 2, 3, 4, 6, see Feit and Higman [6]. It is easy to argue that the number of

points and the number of lines in the generalized n-gon is p
(n)
s := sn−1 +sn−2 + · · ·+s+ 1.

Note that a projective plane of order q is a generalized 3-gon (generalized triangle) of

order q, and so p
(3)
q = q2 + q + 1 = nq – the notation used in this paper earlier.

Conjecture 12. Let s > 2 and n > 3. Then Ck ↪→ G for all k, n 6 k 6 p
(n)
s .
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