Coloring 2-intersecting hypergraphs

Lucas Colucci
Instituto de Matemàtica e Estatìstica
Universidade de São Paulo
Rua do Matão 1010, 05508-090
São Paulo, Brazil
lucas.colucci.souza@gmail.com

András Gyárfás*
Computer and Automation Research Institute Hungarian Academy of Sciences
Budapest, P.O. Box 63
Budapest, Hungary, H-1518
gyarfas.andras@renyi.mta.hu

Submitted: Jul 25, 2013; Accepted: Sep 2, 2013; Published: Sep 13, 2013

Abstract

A hypergraph is 2 -intersecting if any two edges intersect in at least two vertices. Blais, Weinstein and Yoshida asked (as a first step to a more general problem) whether every 2 -intersecting hypergraph has a vertex coloring with a constant number of colors so that each hyperedge has at least $\min \{|e|, 3\}$ colors. We show that there is such a coloring with at most 5 colors (which is best possible).

A proper coloring of a hypergraph is a coloring of its vertices so that no edge is monochromatic, i.e. contains at least two vertices with distinct colors. It is well-known that intersecting hypergraphs without singleton edges have proper colorings with at most three colors. This statement is from the seminal paper of Erdős and Lovász [3]. Recently Blais, Weinstein and Yoshida suggested a generalization in [1]. They consider t-intersecting hypergraphs, in which any two edges intersect in at least t vertices and they call a coloring of the vertices c-strong if every edge e is colored with at least $\min \{|e|, c\}$ distinct colors. One of the problems they consider is the following.

Problem 1. ([1]) Suppose that \mathcal{H} is a t-intersecting hypergraph. Is there $a(t+1)$ strong vertex coloring of \mathcal{H} where the number of colors is bounded by a function of t ? In particular, is there a $t+1$-strong vertex coloring with at most $2 t+1$ colors? If true, it would be best possible, as the $2 t$-element sets of a $3 t$ element set demonstrate.

Notice that for $t=1$ the answer to Problem 1 is affirmative (for both parts) according to the starting remark but open for $t \geqslant 2$ [1]. Our aim is to give an affirmative answer to both parts of the problem in case of $t=2$. Notice that intersecting hypergraphs do

[^0]not always have 3 -strong colorings with any fixed number of colors: if every edge of a $(k+1)$-chromatic graph is extended by the same new vertex, the resulting intersecting hypergraph has no 3 -strong coloring with k colors. Thus the 2 -intersecting condition is important in the following theorem.

Theorem 2. Every 2-intersecting hypergraph G has a 3-strong coloring with at most five colors.

We learned from a referee that a weaker form of Theorem 2 (with 21 colors instead of 5) is proved recently in [2]. We also prove a lemma that will be used in the proof of Theorem 2 but has independent interest. A hypergraph has property P_{t} for some integer $t \geqslant 2$ if any i edges intersect in at least $t+1-i$ vertices, for all $i, 2 \leqslant i \leqslant t$.

Lemma 3. Suppose that \mathcal{H} is a hypergraph with property P_{t}. Then \mathcal{H} has a t-strong coloring with at most $t+1$ colors.

Proof. Let \mathcal{H} be a hypergraph with property P_{t} for $t \geqslant 2$. Select an edge e of \mathcal{H} which is minimal for containment. Let \mathcal{F} be the hypergraph defined on the vertex set of e with edge set $\{h \cap e: h \in E(\mathcal{H})\}$. Color each vertex not in e with color $t+1$. If $t=2$, color the vertices of e arbitrarily using colors 1,2 (or just color 1 if e has just one vertex). If $|e|=t-1$, color vertices of e by $1,2, \ldots, t-1$. Otherwise, since \mathcal{F} has property P_{t-1}, we can find by induction a $(t-1)$-strong coloring C on \mathcal{F} with colors $1,2, \ldots, t$. We may suppose that C uses all colors $1,2, \ldots, t$ on e, otherwise we may change some repeated colors to the missing colors maintaining the $(t-1)$-strong coloring. Thus C colors e with at least t colors and, since for any other edge $h \in \mathcal{H},|h \cap e| \geqslant t-1, C$ uses at least $t-1$ colors on $h \cap e$ and h also has at least one vertex of color $t+1$. Therefore we have a t-strong coloring of \mathcal{H} with $t+1$ colors.

It is worth noting that Lemma 3 does not hold if we require a t-strong coloring with at most t colors. Indeed, all t-sets of $t+1$ elements have property P_{t} but a t-strong coloring must use $t+1$ colors.

Proof of Theorem 2. By the condition, there are no singleton edges. Also, if some edge e has just two vertices, coloring them with colors 1,2 and all other vertices by 3 , we obviously have a 3 -strong coloring. Thus we may assume that every edge has at least three vertices, therefore a 3 -strong coloring on the minimal edges of G is also a 3 -strong coloring on G. Thus we may assume that G is an antichain.

If any three edges of G have non-empty intersection, we can apply Lemma 3 and get a 3 -strong coloring with at most 4 colors. Thus, we may suppose that G contains three edges with empty intersection, select them with the smallest possible union, let these edges be e_{1}, e_{2}, e_{3} and set $X=e_{1} \cup e_{2} \cup e_{3}$. A vertex $v \in X$ is called a private part of e_{i} $(i=1,2,3)$ if $v \in e_{i}$ but v is not covered by any of the other two e_{j}-s.

We color the vertices in X as follows. The private parts of e_{1}, e_{2}, e_{3} (if they exist) are colored with $1,2,3$ respectively. Notice that each intersection has at least two vertices, color $e_{1} \cap e_{3}$ with colors 1,3 so that color 1 is used only once, color $e_{1} \cap e_{2}$ with colors 2 , 4 so that color 2 is used only once. Vertices in $e_{2} \cap e_{3}$ are all colored with color 5 .

The coloring outside X varies according to the number of private parts of e_{i}-s.
Case 1. Each e_{i} has private parts, $i=1,2,3$.
Here we color vertices not covered by X one by one with 1 or 2 by the following greedy type algorithm: if an uncolored vertex $w \notin X$ completes an edge f such that all vertices of $f-\{w\}$ are colored with colors 2,3 only (both present otherwise $\left|f \cap e_{1}\right| \leqslant 1$ or $\left|f \cap e_{2}\right| \leqslant 1$) then color w with color 1 , otherwise color it with color 2 . We claim that a 3 -strong coloring is obtained.

Suppose there is an edge $f_{i j}$ with colors i, j only, $1 \leqslant i<j \leqslant 5$. Edges f_{12}, f_{14}, f_{24} would intersect e_{3} in at most one vertex, edge f_{25} would intersect e_{1} in at most one vertex and f_{13} would not intersect e_{2} at all. Edges f_{35}, f_{45} would form a proper subset of e_{3}, e_{2}, respectively, contradicting the antichain property.

Edge f_{34} cannot exist because the triple f_{34}, e_{2}, e_{3} has no intersection and $Y=f_{34} \cup$ $e_{2} \cup e_{3}$ is a proper subset of X because e_{1} has a private vertex. Thus we get a contradiction with the definition of e_{1}, e_{2}, e_{3}. The same argument can be applied to exclude $f_{15}, f_{23} \subset X$ (with $Y=f_{15} \cup e_{1} \cup e_{2}, Y=f_{23} \cup e_{2} \cup e_{3}$ and using that e_{3}, e_{1} have private vertices).

Thus the only possibility is that there is an edge f_{15} or f_{23} with some vertex $w \notin X$. However, no such f_{15} exists since $w \notin X$ is colored with 1 only if there exists edge f of G such that $f-\{w\}$ is colored with colors 2,3 only thus $\left|f \cap f_{15}\right|=1$ contradiction. Moreover, no such f_{23} can exist either, because its vertex in $V-X$ colored last got color 1 according to the rule governing Case 1.

Case 2. Two of e_{1}, e_{2}, e_{3} have private parts, by suitable relabeling we may suppose that the private part of e_{2} is empty.

In this case vertices not covered by X are colored with color 2 and claim that we have a 3 -strong coloring. The nonexistence of $f_{12}, f_{13}, f_{14}, f_{24}, f_{25}$ follow as in Case 1 and here f_{23} can be excluded the same way since $\left|f_{23} \cap e_{2}\right| \leqslant 1$. The exclusion of f_{34}, f_{35}, f_{45} and $f_{15} \subset X$ is also exactly the same as in Case 1 . Thus here we have to exclude only the existence of an edge f_{15} containing some vertices $w \notin X$. However, this cannot happen since here every vertex outside X is colored with color 2 .
Case 3. Exactly one of e_{1}, e_{2}, e_{3} has a private part, by suitable relabeling we may suppose that it is e_{2}.

Here all vertices not covered by X are colored with 1 . Edges $f_{12}, f_{13}, f_{14}, f_{15}, f_{24}, f_{25}$ are all excluded since there is some e_{i} intersecting them in at most one vertex. The edges f_{34}, f_{35}, f_{45} are excluded since they are proper subsets of some e_{i}. The only possible edge is f_{23} but in this case we can replace the triple e_{1}, e_{2}, e_{3} by the non-intersecting triple f_{23}, e_{2}, e_{3} which has the same union but they have two private parts: the vertices of color 4 in e_{2} and the vertex of color 1 in e_{3}. This reduces Case 3 to Case 2.

Case 4. None of the edges e_{1}, e_{2}, e_{3} have private parts.
Vertices uncovered by X are colored with 1 . Here $f_{12}, f_{13}, f_{14}, f_{15}, f_{23}, f_{24}, f_{25}$ are all excluded since there is some e_{i} intersecting them in at most one vertex. The other three edges f_{34}, f_{35}, f_{45} are excluded since they are proper subsets of some e_{i}.

In all cases we found a 3 -strong coloring with at most five colors.

References

[1] E. Blais. A. Weinstein, Y. Yoshida, Semistrong coloring of intersecting hypergraphs, arXiv:1203.2868v1 [math.CO] 13 Mar 2012.
[2] Ping Ngai Chung, On the c-strong chromatic number of t-intersecting hypergraphs, Discrete Mathematics 313 (2013) 1063-1069
[3] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, Coll. Math. Soc. J. Bolyai 10. Infinite and finite sets, Keszthely, Hungary, (1973), 609-627

[^0]: *Research coordinator of the junior author at the Elective Undergraduate Research Program of Budapest Semesters in Mathematics, 2013 Summer program

