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Abstract

Consider a game played on the edge set of the infinite clique by two players,
Builder and Painter. In each round, Builder chooses an edge and Painter colours
it red or blue. Builder wins by creating either a red copy of G or a blue copy of
H for some fixed graphs G and H. The minimum number of rounds within which
Builder can win, assuming both players play perfectly, is the on-line Ramsey number
r̃(G,H). In this paper, we consider the case where G is a path Pk. We prove that
r̃(P3, P`+1) = d5`/4e = r̃(P3, C`) for all ` > 5, and determine r̃(P4, P`+1) up to an
additive constant for all ` > 3. We also prove some general lower bounds for on-line
Ramsey numbers of the form r̃(Pk+1, H).
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1 Introduction

Ramsey’s theorem [16] states that for all k ∈ N, there exists t ∈ N such that any red-blue
edge colouring of a clique Kt contains a monochromatic clique of order k. We call the
least such t the kth Ramsey number, and denote it by r(k). Ramsey numbers and their
generalisations have been a fundamentally important area of study in combinatorics for
many years. Particularly well-studied are Ramsey numbers for graphs. Here the Ramsey
number of two graphs G and H, denoted by r(G,H), is the least t such that any red-blue
edge colouring of Kt contains a red copy of G or a blue copy of H. See e.g. [15] for a
survey of known Ramsey numbers.

An important generalisation of Ramsey numbers, first defined by Erdős, Faudree,
Rousseau and Schelp [5], is as follows. Let G and H be two graphs. We say that a graph K
has the (G,H)-Ramsey property if any red-blue edge colouring of K must contain either
a red copy of G or a blue copy of H. Then the size Ramsey number r̂(G,H) is given by
the minimum number of edges of any graph with the (G,H)-Ramsey property.

In this paper, we consider the following related generalisation defined independently
by Beck [1] and Kurek and Ruciński [10]. Let G and H be two graphs. Consider a game
played on the edge set of the infinite clique KN with two players, Builder and Painter.
In each round of the game, Builder chooses an edge and Painter colours it red or blue.
Builder wins by creating either a red copy of G or a blue copy of H, and wishes to do
so in as few rounds as possible. Painter wishes to delay Builder for as many rounds as
possible. (Note that Painter may not delay Builder indefinitely – for example, Builder
may simply choose every edge of Kr(G,H).) The on-line Ramsey number r̃(G,H) is the
minimum number of rounds it takes Builder to win, assuming that both Builder and
Painter play optimally. We call this game the r̃(G,H)-game, and write r̃(G) = r̃(G,G).
Note that r̃(G,H) > e(G) + e(H) − 1 for all graphs G and H, as Painter may simply
colour the first e(G) − 1 edges red and all subsequent edges blue. It is also clear that
r̃(G,H) 6 r̂(G,H).

On-line Ramsey theory has been well-studied. The best known bounds for r̃(Kt) are
given by

r(t)− 1

2
6 r̃(Kt) 6 t−c

log t
log log t 4t,

where c is a positive constant. The lower bound is due to Alon (and was first published in
a paper of Beck [1]), and the upper bound is due to Conlon [3]. Note that these bounds
are similar to the best known bounds for classical Ramsey numbers r(t), although Conlon
also proves in [3] that

r̃(Kt) 6 C−t
(
r(t)

2

)
for some constant C > 1 and infinitely many values of t, which gives positive evidences
supporting a conjecture of Kurek and Ruciński [10] that r̃(Kt) = o(r(t)2). For general
graphs G, the best known lower bound for r̃(G) is given by Grytczuk, Kierstead and
Pra lat [8].
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Theorem 1. For graphs G, we have r̃(G) > β(G)(∆(G) − 1)/2 + e(G), where β(G)
denotes the vertex cover number of G.

Various general strategies for Builder and Painter have also been studied. For example,
consider the following strategy for Builder in the r̃(G,H)-game. Builder chooses a large
but finite set of vertices in KN, say a set of size n ∈ N, with n > r(G,H). Then Builder
chooses the edges of the induced Kn in a uniformly random order, allowing Painter to
colour each edge as they wish, until the game ends. This strategy was analysed for the
r̃(K3)-game by Friedgut, Kohayakawa, Rödl, Ruciński and Tetali [6], and for the more
general r̃(G)-game by Marciniszyn, Spöhel and Steger [11, 12].

Finally, let r̃χ(G)-game be the r̃(G)-game in which Builder is forbidden to uncovering a
graph with chromatics number greater than χ(G). Grytczuk, Ha luszczak and Kierstead [7]
proved that Builder can win the r̃χ(G)-game. Kierstead and Konjevod [9] proved the
hypergraph generalisation.

Given the known bounds on r̃(Kt), it is not surprising that determining on-line Ram-
sey numbers exactly has proved even more difficult than determining classical Ramsey
numbers exactly, and very few results are known. A significant amount of effort has been
focused on the special case where G and H are paths. Grytczuk, Kierstead and Pra lat [8]
and Pra lat [13, 14] have determined r̃(Pk+1, P`+1) exactly when max{k, `} 6 8 (where Ps
is a path on s verices). In addition, Beck [2] has proved that the size Ramsey number
r̂(Pk, Pk) is linear in k. (The best known upper bound, due to Dudek and Pra lat [4], is
r̂(Pk, Pk) 6 137k.) The best known bounds on r̃(Pk+1, P`+1) were proved in [8].

Theorem 2. For all k, ` ∈ N, we have k + `− 1 6 r̃(Pk+1, P`+1) 6 2k + 2`− 3.

In general, it seems difficult to bound on-line Ramsey numbers r̃(G,H) below. One
of the major difficulties in doing so is the variety of possible strategies for Builder. We
present a strategy for Painter which mitigates this problem somewhat.

Definition 3. Let F be a family of graphs. We define the F-blocking strategy for Painter
as follows. Write Ri for the graph consisting of all uncovered red edges immediately before
the ith move of the game, and write ei for the ith edge chosen by Builder. Then Painter
colours ei red if Ri + ei is F -free, and blue otherwise. (Recall that a graph is F-free if it
contains no graph in F as a subgraph.)

In an r̃(G,H)-game, it is natural to consider F -blocking strategies with G ∈ F . For
example, if F = {G}, then the F -blocking strategy for Painter consists of colouring every
edge red unless doing so would cause Painter to lose the game. If Painter is using an
F -blocking strategy, one clear strategy for Builder would be to construct a red F -free
graph, then use it to force a blue copy of H in e(H) moves. We will show that this is
effectively Builder’s only strategy (see Proposition 13), and thus to bound r̃(G,H) below
it suffices to prove that no small red F -free graph can be used to force a blue copy of H.
We use this technique to derive some lower bounds for on-line Ramsey numbers of the
form r̃(Pk+1, H), taking F = {Pk+1} ∪ {Ci : i > 3}.
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Theorem 4. Let k, ` ∈ N with k > 2. Let H be a graph on |H| vertices with ` edges and
let ∆ = ∆(H). Then

r̃(Pk+1, H) >


(2∆ + 1)`/(2∆) if k = 2,

(5∆ + 4)`/(5∆) if k = 3,

(∆ + 1)`/∆ if k > 4.

Moreover, if H is connected and k > 4, then

r̃(Pk+1, H) > (∆ + 1)`/∆ + min {k/2− 2, |H| − 1} .

For k = 2, we show that if H = P`+1 for ` > 2 or H = C` for ` > 5, then the bound
on r̃(P3, H) given by Theorem 4 is tight.

Theorem 5. For all ` > 2, we have r̃(P3, P`+1) = d5`/4e. Also,

r̃(P3, C`) =

{
`+ 2 if ` = 3, 4,

d5`/4e if ` > 5.

Furthermore, for k = 3, we determine r̃(P4, P`+1) up to an additive constant for all
` > 3.

Theorem 6. For all ` > 3, we have (7`+ 2)/5 6 r̃(P4, P`+1) 6 (7`+ 52)/5.

Our proof of the upper bound for k = 3 is complicated, so the proof is included in the
Appendix. The lower bound follows from Lemma 18, a simple extension of the proof of
Theorem 4, and we believe that it is tight.

Conjecture 7. For all ` > 3, we have r̃(P4, P`+1) = d(7`+ 2)/5e.

By Theorems 5 and 6, we have

lim
`→∞

r̃(P3, P`+1)/` = 5/4,

lim
`→∞

r̃(P4, P`+1)/` = 7/5.

On the other hand, for all fixed k > 4, Theorems 2 and 4 imply that

3/2 6 lim inf
`→∞

r̃(Pk+1, P`+1)/` 6 lim sup
`→∞

r̃(Pk+1, P`+1)/` 6 2,

and we make the following conjecture.

Conjecture 8. For k > 4, lim`→∞ r̃(Pk+1, P`+1)/` = 3/2. Moreover, for all ` > k > 4,
we have r̃(Pk+1, P`+1) = d3`/2e+ k − 3. In particular, we have r̃(Pk+1) = d5k/2e − 3 for
k > 4.
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Note that Conjecture 8 would imply Conjecture 4.1 of [14]. Conjectures 7 and 8 have
been confirmed for ` 6 8 by Pra lat [13], using a high-performance computer cluster.

Finally, we give some bounds on r̃(C4, P`+1).

Theorem 9. For ` > 3, we have 2` 6 r̃(C4, P`+1) 6 4`− 4. Moreover, r̃(C4, P4) = 8.

Many of the lower bounds above follow from Theorem 4, and all of them follow from
analysing F -blocking strategies. In particular, we obtain tight lower bounds on r̃(P3, P`+1)
and r̃(P3, C`) in this way, as well as a lower bound on r̃(P4, P`+1) which matches Conjec-
ture 7. We are therefore motivated to ask the following question.

Question 10. For which graphs G and H does there exist a family F of graphs such that
the F -blocking strategy is optimal for Painter in the r̃(G,H)-game?

The paper is laid out as follows. In Section 3, we prove Theorem 4. We prove
Theorem 5 in Sections 4 and 5 (see Theorem 21, Proposition 23 and Theorem 24). Finally,
in Section 6 we prove Theorem 9. The proof of Theorem 6 is in the Appendix.

2 Notation and conventions

We write N for the set {1, 2, . . . } of natural numbers, and N0 := N ∪ {0}.
Suppose P = v1 . . . vk and Q = w1 . . . w` are paths. If i < j, we write viPvj (or

vjPvi) for the subpath vivi+1 . . . vj of P . We also write PQ for the concatenation of
P and Q. For example, if i < j and i′ < j′ then uviPvjywi′Qwj′ denotes the path
uvivi+1 . . . vjywi′wi′+1 . . . wj′ .

If G is a graph, we will write |G| for the number of vertices of G and e(G) for the
number of edges of G.

In the context of an r̃(G,H)-game, an uncovered edge is an edge of KN that has
previously been chosen by Builder, and a new vertex is a vertex in KN not incident to any
uncovered edge.

Many of our lemmas say that in an r̃(G,H)-game, given a finite coloured graph X ⊆
KN, Builder can force Painter to construct a coloured graph Y ⊆ KN satisfying some
desired property. We will often apply such a lemma to a finite coloured graph X ′ ) X,
and in these cases we will implicitly require V (Y ) ∩ V (X ′) ⊆ V (X). (Intuitively, when
Builder chooses a new vertex while constructing Y , it should be new with respect to X ′

rather than X.) This is formally valid, since we may apply the lemma to an r̃(G,H)-
game on the board KN−(V (X ′)\V (X)) and have Builder choose the corresponding edges
in KN.

For technical convenience, we allow Builder to “waste” a round in the r̃(G,H)-game
by choosing an uncovered edge. If he does so, the round contributes to the duration of the
game but the edge Builder chooses is not recoloured. Since such a move is never optimal
for Builder, the definition of r̃(G,H) is not affected.
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3 General lower bounds

Our aim is to bound r̃(G,H) below for graphs G and H. In this section, Painter will
always use an F -blocking strategy for some family F of graphs with G ∈ F . Hence, as
we shall demonstrate in Proposition 13 below, Builder’s strategy boils down to choosing
a red graph with which to force a blue copy of H.

Definition 11. Let F be a family of graphs and let R ⊆ KN be an F -free graph. We say
that an edge e ∈ KN − R is (R,F)-forceable if R + e is not F -free. We say a graph H
is (R,F)-forceable if there exists H ′ ⊆ KN −R with H ′ isomorphic to H such that every
edge e ∈ E(H ′) is (R,F)-forceable. We call H ′ an (R,F)-forced copy of H. If R and F
are clear from context, we will omit ‘(R,F)-’.

Definition 12. Let F be a family of graphs and let H be a graph. We say a graph
R ⊆ KN is an F-scaffolding for H if the following properties hold.

(i) R is F -free.

(ii) H is (R,F)-forceable.

(iii) R contains no isolated vertices.

Proposition 13. Let G and H be graphs. Let F be a family of graphs with G ∈ F .
Suppose every F-scaffolding for H has at least m edges. Then r̃(G,H) > m+ e(H).

Proof. Consider an r̃(G,H)-game in which Painter uses an F -blocking strategy. Further
suppose Builder wins by claiming edges e1, . . . , er. Since Builder choosing an edge which
Painter colours blue has no effect on Painter’s subsequent choices, without loss of gen-
erality we may assume that there exists i such that Painter colours e1, . . . , ei red and
ei+1, . . . , er blue. Let R ⊆ KN be the subgraph with edge set {e1, . . . , ei}, and let B ⊆ KN
be the subgraph with edge set {ei+1, . . . , er}. Thus R is the uncovered red graph and B
is the uncovered blue graph.

We will show that R is an F -scaffolding for H. First note that R is F -free by Painter’s
strategy, and R has no isolated vertices by definition. Moreover, since G ∈ F and Builder
wins, there exists H ′ ⊆ B with H ′ isomorphic to H. So e(B) > e(H). Moreover, by
Painter’s strategy all edges in B must be (R,F)-forceable, so H is (R,F)-forceable. Hence
R is an F -scaffolding for H, so e(R) > m. Therefore, Builder wins in r > e(R) + e(B) >
m+ e(H) rounds.

Therefore, to bound r̃(G,H) below, it suffices to bound the number of edges in an
F -scaffolding for H below for some family F of graphs with G ∈ F . We first use Propo-
sition 13 to bound r̃(Ck, H) for connected graphs H.

Lemma 14. Let H be a connected graph. Then every {Ci : i > 3}-scaffolding for H has
at least |H| − 1 edges. Moreover, r̃(Ck, H) > |H|+ e(H)− 1 for all k > 3.
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Proof. Let R be a {Ck}-scaffolding for H with e(R) minimal. Note that each (R, {Ck})-
forceable edge must lie entirely in a component of R. Since H is connected, R is connected
and |R| > |H|. Hence, e(R) > |H| − 1.

By Proposition 13, r̃(Ck, H) > |H|+ e(H)− 1.

To prove Theorem 4, we set G = Pk+1 and F = {Pk+1}∪{Ci : i > 3}. Thus an F -free
graph is a forest whose components have diameter less than k. Lemma 17 gives a lower
bound on the number of edges in an F -scaffolding for H.

Note that replacing F by {Pk+1} and attempting a similar proof yields a worse lower
bound in some cases. For example, taking H = P2k+1 with k > 3, if Painter follows the
{Pk+1}-blocking strategy then Builder can win in 3k moves by first constructing a red Ck.

We will see in the proof of Lemma 17 that if R is a red F -free graph with no isolated
vertices, and X ⊆ V (R) is the set of endpoints of Pk’s in R, then Builder may force
at most ∆(H)(|R| + |X|) edges of H using R. It will therefore be very useful to bound
|R|+ |X| above in terms of e(R), first in the special case where R is a tree (see Lemma 15)
and then in general (see Lemma 16).

Lemma 15. Let k,m ∈ N with k > 2. Let R be a Pk+1-free tree with m edges. Let X be
the set of endpoints of Pk’s in R. If X 6= ∅, then |R|+ |X| 6 2m− k + 4.

Proof. We claim that if x ∈ X, then x is a leaf of R. Indeed, let P be a Pk with one
endpoint equal to x. Let y ∈ V (P ) be the neighbour of x in P , and suppose xz ∈ E(R)
for some z 6= y. Then either z ∈ V (P ) and xzPx is a cycle in R, or z /∈ V (P ) and Pxz is
a Pk+1 in R – both are contradictions. Hence if x ∈ X, then x is a leaf. But since X 6= ∅,
R contains a Pk and hence at least k − 2 vertices of degree greater than 1. Hence

|R|+ |X| 6 |R|+ |R| − (k − 2) = 2m− k + 4,

and the proposition follows.

Lemma 16. Let k,m ∈ N with k > 2. Let R be a Pk+1-free forest with m edges and no
isolated vertices. Let X be the set of all endpoints of Pk’s in R. Then

|R|+ |X| 6


4m if k = 2,

5m/2 if k = 3,

2m if k > 4.

Moreover, if k > 4 and there exists an edge e such that R + e contains a Pk+1, then
|R|+ |X| 6 2m− k + 4.

Proof. Let R1, . . . , Rr be the components of R. Let mi = e(Ri) and Xi = X ∩ V (Ri) for
all 1 6 i 6 r. If k = 2, then R is a disjoint union of m edges and the result is immediate.

Suppose k = 3. Without loss of generality, let R1, . . . , Rr′ be those components of R
which consist of a single edge. (Note that we may have r′ = 0.) Then m = r′+

∑r
i=r′+1 mi
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and r − r′ 6 m/2. Then by Lemma 15 we have

|R|+ |X| =
r′∑
i=1

|Ri|+
r∑

i=r′+1

(|Ri|+ |Xi|) 6 2r′ +
r∑

i=r′+1

(2mi + 1)

= 2m+ r − r′ 6 5m/2

and so the result follows.
Finally, suppose k > 4. Let q be the number of components of R containing a Pk.

Without loss of generality suppose that R1, . . . , Rq are the components of R which contain
a Pk. For q < i 6 r, we have |Ri| + |Xi| = |Ri| = mi + 1 6 2mi. Then by Lemma 15 we
have

|R|+ |X| =
r∑
i=1

(|Ri|+ |Xi|) 6
q∑
i=1

(2mi − k + 4) +
r∑

i=q+1

(2mi) = 2m− q(k − 4). (1)

Suppose that there exists an edge e such that R+ e contains a Pk+1. If X 6= ∅, then q > 1
and so |R| + |X| 6 2m − k + 4 by (1). Hence we may assume that X = ∅, and so e is
an edge between two vertices of R. It follows that R contains two vertex-disjoint paths
of combined length at least k − 1, and hence that

|R|+ |X| = |R| = m+ r 6 m+ (m− k + 3) < 2m− k + 4,

as desired. The first inequality follows since all edges in a given path must lie in the same
component of R.

Lemma 17. Let k, ` ∈ N with k > 2. Let H be a graph with ` edges and let ∆ = ∆(H).
Let F = {Pk+1} ∪ {Ci : i > 3}. Suppose R is an F-scaffolding for H. Then, we have

e(R) >


`/(2∆) if k = 2,

4`/(5∆) if k = 3,

`/∆ if k > 4.

Moreover, if H is connected and k > 4 then e(R) > min
{
`
∆

+ k
2
− 2, |H| − 1

}
.

Proof. Let m = e(R). Note that R is a Pk+1-free forest with m edges and no isolated
vertices. Let X be the set of endpoints of Pk’s in R and let Y = V (R) \X.

We first claim that any (R,F)-forceable edge is either incident to X or internal to Y .
Suppose not. Then there exist y ∈ Y and z /∈ V (R) such that yz is a forceable edge. Let
F ∈ F be such that F ⊆ R+e. Note that e ∈ E(F ), since R is F -free. Since dR+e(z) = 1,
we have F = Pk+1. But then y is an endpoint of a Pk in R, contradicting y ∈ Y .

Let H ′ be a forced copy of H. Then H ′ contains at most ∆|X| edges incident to X,
and at most ∆|Y |/2 edges internal to Y . All edges of H ′ are forceable, so it follows that

` = e(H ′) 6 ∆|X|+ ∆|Y |
2

=
∆(|R|+ |X|)

2
. (2)
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Lemma 16 and (2) imply the lemma holds unless k > 4 and H is connected.
Now suppose H is connected and k > 4. If there exists an edge e such that R + e

contains a Pk+1, then |R| + |X| 6 2m − k + 4 by Lemma 16. Hence, (2) implies that
m > `

∆
+ k

2
− 2. Therefore, we may assume that no such edge exists, and in particular

that X = ∅. This implies that R is a {Ci : i > 3}-scaffolding for H. Lemma 14 implies
that m > |H| − 1 as required.

Theorem 4 follows immediately from Proposition 13 and Lemma 17.
We now bound r̃(P4, P`+1) from below.

Lemma 18. Let ` ∈ N with ` > 3. Then we have r̃(P4, P`+1) > (7`+ 2)/5.

Proof. Let F = {P4} ∪ {Ci : i > 3}. Let R be an F -scaffolding for P`+1. Let X be the
set of endpoints of P3’s in R, and let Y = V (R) \X. By Lemma 16 and Proposition 13,
to prove the lemma it suffices to show that |R|+ |X| > `+ 1.

Let H be a forced copy of P`+1. Note that any (R,F)-forceable edge is either incident
to X or internal to Y . Note also that Y 6= ∅. Indeed, if X = ∅ then this is immediate. If
X 6= ∅, then R is a P4-free forest containing a P3. The central vertex of this P3 cannot
be an element of X, and is therefore an element of Y .

Since ∆(H) = 2, H contains at most 2|X| edges incident to X. Moreover, since H is
a path, H[Y ] is a forest and so eH(Y ) 6 |Y | − 1. It follows that

` 6 2|X|+ |Y | − 1 = |R|+ |X| − 1,

and hence |R|+ |X| > `+ 1 as desired.

4 Determining r̃(P3, P`+1) for ` > 2

Theorem 4 implies that r̃(P3, P`+1) > d5`/4e for ` > 2. To bound r̃(P3, P`+1) above, we
shall present a strategy for Builder. In the discussion that follows, we assume for clarity
that Painter will never voluntarily lose the r̃(P3, P`+1)-game.

Builder will use the threat of a red P3 to force a blue P`+1. First, Builder will use
Lemma 19 to construct a blue path P with one endpoint incident to a red edge. Builder
will then use a procedure outlined in Lemma 20 to efficiently extend P until it has length
between `− 4 and `. Finally, Builder will carefully extend P into a blue P`+1, yielding a
tight upper bound for r̃(P3, P`+1) (see Theorem 21).

Lemma 19. Let q ∈ N with q > 5. Builder can force one of the following structures
independent of Painter’s choices:

(i) a red P3 in at most q − 1 rounds.

(ii) a blue Pq in q − 1 rounds.
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(iii) a blue Pt with one endpoint incident to a red edge in t rounds for some 4 6 t 6 q−1.

Proof. Builder first chooses an arbitrary vertex x1, then proceeds as follows. Suppose
that Builder has already obtained a blue path x1 . . . xi in i− 1 rounds for some 1 6 i < q.
Builder then chooses the edge xixi+1, where xi+1 is a new vertex. If Painter colours xixi+1

blue, we have obtained a blue path x1 . . . xi+1 in i rounds, and so if i + 1 < q we may
repeat the process. If Painter colours all such edges blue, we will obtain a blue path
x1 . . . xq in q − 1 rounds and achieve (ii). Suppose instead that for some 1 6 i 6 q − 1,
within i rounds we obtain a path x1 . . . xi+1 such that x1 . . . xi is blue and xixi+1 is red.
If i > 4 then we have achieved (iii), so suppose in addition i 6 3.

First suppose i ∈ {1, 2}. In this case, Builder chooses the two edges xiv and vxi+1

where v is a new vertex. If i = 1, Builder also chooses the edge xi+1w where w is a
new vertex. If Painter colours xiv, vxi+1 or xi+1w red, then xi+1xiv, vxi+1xi or xixi+1w
respectively is a red P3 and we have achieved (i). Otherwise, we have achieved (iii).
Indeed, if i = 1 then x1vx2w is a blue P4 constructed in 4 rounds with x1 incident to the
red edge x1x2, and if i = 2 then x1x2vx3 is a blue P4 constructed in 4 rounds with x3

incident to the red edge x3x2.
Finally, suppose i = 3. Then Builder chooses the edge x4x1. If Painter colours the

edge red, then x3x4x1 is a red P3 and we have achieved (i), so suppose Painter colours
the edge blue. Then x4x1x2x3 is a blue P4 constructed in 4 rounds with x3 incident to
the red edge x3x4, so we have achieved (iii).

Lemma 20. Let ` ∈ N with ` > 4. Builder can force one of the following structures
independent of Painter’s choices:

(i) a red P3 in at most 5`/4− 1 rounds.

(ii) a blue P`+1 in at most 5`/4− 1 rounds.

(iii) a blue Pt with one endpoint incident to a red edge in at most 5t/4 − 1 rounds for
some `− 3 6 t 6 `.

Proof. Throughout the proof, we assume for clarity that Painter will always avoid (i)
and (ii) if possible. By Lemma 19 (taking q = ` + 1) we may assume that Builder has
constructed a blue Pt, say v1 . . . vt, which satisfies

(∗) v1 . . . vt has one endpoint incident to a red edge v1u, and Builder constructed v1 . . . vt
in at most 5t/4− 1 rounds. Moreover, 4 6 t 6 `.

Note that t 6 5t/4− 1 since t > 4.
If t > ` − 3, then we have achieved (iii). Hence, we may assume that 4 6 t < ` − 3.

Without loss of generality, let v1u be a red edge as in (∗). Builder will extend v1 . . . vt as
follows. We apply Lemma 19 with q = ` − t + 1 > 5 on a set of new vertices. We split
into cases depending on Painter’s choice.

Case 1: Builder obtains a red P3 in at most `− t rounds, as in Lemma 19(i).
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In this case, Builder has spent at most 5t/4 − 1 + ` − t 6 5`/4 − 2 rounds in total
since t 6 `− 4, and so we have achieved (i).

Case 2: Builder obtains a blue path w1 . . . w`−t+1 in `− t rounds, as in Lemma 19(ii).
In this case, Builder has again spent at most 5`/4 − 2 rounds in total. Builder now

chooses the edge w1v1. If Painter colours it red, then w1v1u is a red P3 and we have
achieved (i). If Painter colours it blue, then w`−t+1 . . . w1v1 . . . vt is a blue P`+1 and we
have achieved (ii).

Case 3: Builder obtains a blue path w1 . . . wt′ and a red edge w1x in at most t′ rounds
for some 4 6 t′ 6 `− t, as in Lemma 19(iii).

In this case, Builder has spent at most

5t

4
− 1 + t′ =

5t

4
+

5t′

4
− t′

4
− 1 6

5(t+ t′)

4
− 2 6

5`

4
− 2

rounds in total. Builder now chooses the edge vtw1. If Painter colours it red, then vtw1x
is a red P3 and we have achieved (i). If Painter colours it blue, then v1 . . . vtw1 . . . wt′ is
a blue Pt+t′ with v1 incident to the red edge v1u. Moreover, this Pt+t′ satisfies (∗) with
t+ t′ > t. Hence by iterating the argument above, the result follows.

Theorem 21. For all ` > 2, r̃(P3, P`+1) = d5`/4e.

Proof. Theorem 4 implies that r̃(P3, P`+1) > d5`/4e. It therefore suffices to prove that
Builder can win the r̃(P3, P`+1)-game within d5`/4e rounds. First note that r̃(P3, P3) =
3 and r̃(P3, P4) = 4, as shown by Grytczuk, Kierstead and Pra lat [8] and Pra lat [13]
respectively, so we may assume ` > 4. Applying Lemma 20, either Builder obtains a blue
path v1 . . . vt+1 and a red edge v1u in at most 5(t+1)/4−1 rounds for some `−3 6 t+1 6 `
or we are done. Write

r(t) =

⌈
5`

4

⌉
−
(⌊

5(t+ 1)

4

⌋
− 1

)
=

⌈
`

4

⌉
−
⌊
t+ 1

4

⌋
+ (`− t),

and note that Builder has at least r(t) rounds left to construct either a red P3 or a blue
P`+1. We now split into cases depending on the precise value of t.

Case 1: t = `− 1, so that r(t) = 1.
Builder chooses the edge v0v1, where v0 is a new vertex. If Painter colours it red, then

v0v1u is a red P3 and we are done. Otherwise, v0v1 . . . v` is a blue P`+1 and we are done.

Case 2: t = `− 2, so that r(t) > 3.
Builder chooses the edge v`−1x, where x is a new vertex. If Painter colours it blue, then

we are in Case 1 with an extra round to spare. If Painter colours it red, Builder chooses
the edges v`−1w and wx, where w is a new vertex. If Painter colours either edge red then
xv`−1w or wxv`−1 respectively is a red P3 and we are done. Otherwise, v1 . . . v`−1wx is a
blue P`+1 and we are done.

Case 3: t = `− 3, so that r(t) > 4.
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Builder chooses the edge v`−2x, where x is a new vertex. If Painter colours it blue,
then we are in Case 2. If Painter colours it red, Builder chooses the edges v`−2w, wx and
xy, where w and y are new vertices. If Painter colours any of these edges red then xv`−2w,
wxv`−2 or v`−2xy respectively is a red P3 and we are done. Otherwise, v1 . . . v`−2wxy is a
blue P`+1 and we are done.

Case 4: t = `− 4, so that r(t) > 5.
Builder chooses the edge v`−3x, where x is a new vertex. If Painter colours it blue,

then we are in Case 3. If Painter colours it red, Builder chooses the edges v0v1, v`−3w,
wx and xy, where v0, w and y are new vertices. If Painter colours any of these edges red
then v0v1u, xv`−3w, wxv`−3 or v`−3xy respectively is a red P3 and we are done. Otherwise,
v0v1 . . . v`−3wxy is a blue P`+1 and we are done.

5 Determining r̃(P3, C`) for ` > 3

Our aim is to determine r̃(P3, C`) for all ` > 3, so proving Theorem 5. As a warmup, we
first determine r̃(P3, C3) and r̃(P3, C4). Note that Theorem 4 implies that r̃(P3, C3) > 5`/4
for all ` > 3, but this lower bound is too weak when ` 6 4. Instead, we consider the
{C`}-blocking strategy for Painter in an r̃(C`, P3)-game.

Proposition 22. For all ` > 3, we have r̃(P3, C`) > `+ 2.

Proof. We consider the {C`}-blocking strategy for Painter in the r̃(C`, P3)-game. Let R
be an edge-minimal {C`}-scaffolding for P3. Then R must contain two distinct P`’s, so
e(R) > `. The result therefore follows from Proposition 13.

The upper bounds are both relatively straightforward.

Proposition 23. We have r̃(P3, C3) = 5 and r̃(P3, C4) = 6.

Proof. By Proposition 22, we have r̃(P3, C3) > 5 and r̃(P3, C4) > 6. It is easy to show
that r(P3, C4) = 4 (see e.g. Radziszowski [15]), so we also have r̃(P3, C4) 6

(
4
2

)
= 6 as

Builder may simply choose the edges of a K4. It therefore suffices to prove that Builder
can win the r̃(P3, C3)-game in 5 rounds.

Take new vertices u, v, w, x, y and z. Builder first chooses the edges uv, uw and ux.
If Painter colours more than one of these edges red, then we have obtained a red P3 and
we are done.

Suppose Painter colours uv, uw and ux blue. Then Builder chooses the edges vw and
wx. If Painter colours either edge blue, then vwuv or wxuw respectively is a blue C3 and
we are done. If Painter colours both edges red, then vwx is a red P3 and we are done.

Finally, suppose Painter colours (without loss of generality) uv red, but uw and ux
blue. Then Builder chooses the edge xy. If Painter colours xy red, Builder chooses the
edge wx, yielding either a red P3 (namely wxy), or a blue C3, wxuw, and we are done.
If Painter colours xy blue, Builder chooses the edge yu, yielding either a red P3 (namely
yuv) or a blue C3 (namely uxyu), and we are done.
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We now determine r̃(P3, C`) for ` > 5. As in Section 4, Builder’s strategy will be to
build up a long blue path using Lemma 20. Builder will then carefully close this path
into a blue C`.

Theorem 24. For all ` > 5, r̃(P3, C`) = d5`/4e.

Proof. Theorem 4 implies that r̃(P3, C`) > d5`/4e. It therefore suffices to prove that
Builder can win the r̃(P3, C`)-game within d5`/4e rounds. By Lemma 20, Builder can
force one of the following structures independent of Painter’s choices:

(i) a red P3 in at most 5(`− 1)/4− 1 rounds.

(ii) a blue P` in at most 5(`− 1)/4− 1 rounds.

(iii) a blue Pt with one endpoint incident to a red edge in at most 5t/4 − 1 rounds for
some `− 4 6 t 6 `− 1.

If Painter chooses (i), then we are done. Suppose Painter chooses (ii), so that Builder has
at least ⌈

5`

4

⌉
−
(

5(`− 1)

4
− 1

)
=

⌈
5`

4

⌉
− 5`

4
+

9

4
> 2

rounds to construct a red P3 or a blue C`, and let v1 . . . v` be the corresponding blue path.
Then Builder chooses the edges v`v1, v1v3 and v`v2. If Painter colours v`v1 blue then
v1 . . . v`v1 is a blue C` and we are done. If Painter colours v`v1 red and v1v3 or v`v2 red,
then v`v1v3 or v1v`v2 respectively is a red P3 and we are done. Finally, if Painter colours
both v1v3 and v`v2 blue, then v1v3v4 . . . v`v2v1 is a blue C` and we are done.

Finally, suppose Painter chooses (iii). Let v1 . . . vt be the corresponding blue path and
let v1u be a red edge. Write

r(t) =

⌈
5`

4

⌉
−
(⌊

5t

4

⌋
− 1

)
=

⌈
`

4

⌉
−
⌊
t

4

⌋
+ `− t+ 1,

so that Builder has at least r(t) rounds left to construct either a red P3 or a blue C`. We
split into cases depending on the precise value of t.

Case 1: t = `− 1, so that r(t) > 3.
Builder first chooses the edge v`−1w, where w is a new vertex. If Painter colours v`−1w

blue, then Builder chooses the edge wv1. If Painter colours wv1 red then wv1u is a red P3,
and if Painter colours wv1 blue then v1v2 . . . v`−1wv1 is a blue C`. Now suppose Painter
colours v`−1w red instead. Then Builder chooses the edges v`−1x and xv1, where x is a
new vertex. If Painter colours either edge red, then wv`−1x or xv1u respectively is a red
P3 and we are done. Otherwise, v1 . . . v`−1xv1 is a blue C` and we are done.

Case 2: t = `− 2, so that r(t) > 4.
Builder first chooses the edge v`−2w, where w is a new vertex. If Painter colours v`−2w

blue then we are in Case 1, so suppose Painter colours v`−2w red. Builder then chooses the
edges v`−2x, xw and wv1, where x is a new vertex. If Painter colours any of these edges
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red, then wv`−2x, xwv`−2 or v`−2wv1 respectively is a red P3 and we are done. Otherwise,
v1v2 . . . v`−2xwv1 is a blue C` and we are done.

Case 3: t = `− 3, so that r(t) > 5.
Builder first chooses the edge v`−3w, where w is a new vertex. If Painter colours v`−3w

blue then we are in Case 2, so suppose Painter colours v`−3w red. Builder then chooses
the edges v`−3x, xw, wy and yv1, where x and y are new vertices. If Painter colours any
of these edges red, then wv`−3x, xwv`−3, v`−3wy or yv1u respectively is a red P3 and we
are done. Otherwise, v1v2 . . . v`−3xwyv1 is a blue C` and we are done.

Case 4: t = `− 4, so that r(t) > 6.
Builder first chooses two edges wx and xy, where w, x and y are new vertices. If

Painter colours both edges red, wxy is a red P3 and we are done. Now suppose that
Painter colours one edge blue and one red, say wx red and xy blue. Then Builder chooses
the edges v`−4w, wz, zx and yv1, where z is a new vertex. If Painter colours any of
these edges red, then v`−4wx, xwz, zxw or yv1u respectively is a red P3 and we are done.
Otherwise, v1v2 . . . v`−4wzxyv1 is a blue C` and we are done.

We may therefore assume that Painter colours both wx and xy blue. Builder now
chooses the edge v`−4w. If Painter colours v`−4w blue, we are in Case 1 (taking our path
to be v1v2 . . . v`−4wxy), so suppose Painter colours v`−4w red. Then Builder chooses the
edges v`−4z, zw and yv1, where z is a new vertex. If Painter colours any of these edges
red, then wv`−4z, zwv`−4 or yv1u respectively is a red P3 and we are done. Otherwise,
v1v2 . . . v`−4zwxyv1 is a blue C` and we are done.

6 Bounding r̃(C4, P`+1) for ` > 3

Our aim is to prove Theorem 9, i.e. to bound r̃(C4, P`+1) for all ` > 3. First we prove
that r̃(C4, P4) = 8.

Proposition 25. r̃(C4, P4) = 8.

Proof. First, we consider the {C4}-blocking strategy for Painter in the r̃(C4, P4)-game.
Let R be an edge-minimal {C4}-scaffolding for P4. Then R must contain three distinct
P4’s, so e(R) > 5 as R is C4-free. Proposition 13 implies that r̃(C4, P4) > 8.

It therefore suffices to prove that Builder can win the r̃(C4, P4)-game within 8 rounds.
Builder first chooses the edges uv1, . . . , uv4 for distinct vertices u, v1, . . . , v4. Without
loss of generality we may assume that there exists an integer j such that Painter colours
the edges uvi blue if i 6 j, and red otherwise.

Suppose j > 2. Then Builder chooses four edges v1w, v2w, v1w
′ and v2w

′, where w
and w′ are new vertices. If Painter colours all edges red, then v1wv2w

′v1 is a red C4. If
Painter colours one of the edges blue say v2w, then v1uv2w is a blue P4.

Suppose j 6 1. Then Builder chooses edges v1v2 and v1v3. If Painter colours both
edges red, then uv2v1v3u is a red C4. Suppose that Painter colours both edges blue.
Builder then chooses the edges v2v4 and v3v4. If Painter colours both v2v4 and v3v4 red,
then uv2v4v3u is a red C4. Otherwise, v3v1v2v4 or v2v1v3v4 is a blue P4. Therefore we may
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assume that v1v2 is blue and v1v3 is red. Further suppose that j = 1 and so uv1 is blue.
Then Builder chooses the edges v2v3 and v2v4. If Painter colours one of them blue, then
uv1v2v3 or uv1v2v4 is a blue P4. Otherwise uv3v2v4u is a red C4. Finally, suppose that
j = 0. Builder chooses the edges v2v3 and v3v4. If Painter colours one of them red, then
uv1v3v2u or uv1v3v4u is a red C4. Otherwise v1v2v3v4 is a blue P4.

We now prove Theorem 9.

Proof of Theorem 9. The lower bound follows from Lemma 14 and r̃(C4, P4) = 8 by
Proposition 25. To prove the theorem, it is enough to show that r̃(C4, P`+1) 6 4` − 4
for all ` > 3. We proceed by induction on `. By Proposition 25, this is true for ` = 3.
Suppose instead that ` > 4 and Builder first spends at most 4`−8 rounds forcing Painter
to construct a red C4 or a blue P` = v1 . . . v`. (This is possible by the induction hypoth-
esis.) We may assume that the latter holds or else we are done. Then Builder chooses
four edges v1x, v`x, v1y and v`y, where x and y are new vertices. If Painter colours all
edges red, then v1xv`yv1 is a red C4. If Painter colours one of the edges blue, say v`x,
then v1 . . . v`x is a blue P`+1. In total, Builder has chosen at most 4` − 4 edges and the
proposition follows.
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against a one-armed bandit. Combinatorics, Probability and Computing, 12:515–545,
2003.

[7] J. Grytczuk, M. Ha luszczak and H. Kierstead. On-line Ramsey theory. Electronic
Journal of Combinatorics, 11(1):#R57, 2004.

[8] J. Grytczuk, H. Kierstead and P. Pra lat. On-line Ramsey numbers for paths and
stars. Discrete Mathematics and Theoretical Computer Science, 10(3):63–74, 2008.

the electronic journal of combinatorics 22(1) (2015), #P1.15 15



[9] H. Kierstead and G. Konjevod. Coloring number and on-line Ramsey theory for
graphs and hypergraphs. Combinatorica, 29:49–64, 2009.
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A Bounding r̃(P4, P`+1) for ` > 3

Here, we prove Theorem 6. Lemma 18 implies that r̃(P4, P`+1) > (7`+ 2)/5 for ` > 3. It
therefore suffices to bound r̃(P4, P`+1) above, which we do in Theorem 44. In the following
discussion we take on the role of Builder, and we will assume for clarity that Painter will
not voluntarily lose the game by creating a red P4.

We will employ the following strategy to construct a blue P`+1. We will obtain two
(initially trivial) vertex-disjoint blue paths Q and R, repeatedly extend them, and then
join them together to form a blue P`+1 when they are sufficiently long. Here Q is distinct
from R in that we require one of Q’s endpoints to be incident to a red edge bc disjoint
from V (R). Some of our methods for extending a blue path require this property, and
others destroy it. Thus at each stage we will extend either Q or R depending on which
of our extension methods Painter allows us to use.

We will use the following lemma to joinQ and R together (and sometimes to extendQ).

Lemma 26. Let Q be a (possibly trivial) blue path with endpoints a and b, where b is
incident to a red edge bc. Let R be a (possibly trivial) blue path vertex-disjoint from
V (Q) ∪ {c}. Then Builder can force Painter to construct one of the following while
uncovering at most 2 edges:

(i) a blue path Q′ of length e(Q) + e(R) + 1 with one endpoint incident to a red edge.

(ii) a red P4.

Proof. First suppose that R is non-trivial, and let x and y be the endpoints of R. More-
over, suppose that either a = c or Q is trivial, so that both endpoints of Q are incident
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to bc. Builder chooses the edges bx and cy. If Painter colours both edges red, then xbcy is
a red P4. Hence, without loss of generality, we may assume that Painter colours bx blue.
Then Q′ := aQbxRy is a blue path of length e(Q) + e(R) + 1, where a is incident to the
red edge bc.

Now suppose that Q is non-trivial and a 6= c. Builder chooses the edge ax. If Painter
colours ax blue, then bQaxRy is a blue path of length e(Q) + e(R) + 1 with endpoint
b incident to the red edge bc. So we may assume that Painter colours ax red. Builder
then chooses the edge bx. If Painter colours bx red, then cbxa is a red P4. Otherwise
Q′ := aQbxRy is a blue path of length e(Q) + e(R) + 1 where a is incident to the red edge
ax.

Finally, suppose R is trivial with endpoint x. Let y be a new vertex. Then the
argument above implies the lemma on replacing xRy with x throughout.

The arguments that follow are by necessity somewhat technical. The reader may
therefore find the following intuition useful.

(i) For every seven edges we uncover, we will extend either Q or R by five blue edges.

(ii) When we join Q and R, e(Q) + e(R) + 1 should not be too much greater than `.

It is clear that following the above principles will yield a bound of the form r̃(P4, P`+1) 6
7`/5 +C for some constant C. We will violate (i) in the first and last phases of Builder’s
strategy, but this introduces only constant overhead.

Before we can apply Lemma 26 to join Q and R and obtain a blue P`+1, we must
extend them until e(Q) + e(R) + 1 > `. Each time we extend Q and R, we require
two independent edges of the same colour. (Naturally, we can obtain these by choosing
three independent edges.) If these edges are blue, we may extend Q efficiently using
Lemma 30 (see Section A.1). If they are red, we may extend either Q or R efficiently
using Lemma 39 (see Section A.2). Note that the latter case is significantly harder. We
then apply Lemmas 30 and 39 repeatedly to prove Theorem 44 (see Section A.3).

In our figures throughout the section, we shall represent blue edges with solid lines
and red edges with dotted lines.

A.1 Extending Q using two independent blue edges e and f .

Throughout this subsection, e and f will be two independent blue edges vertex-disjoint
from Q and R. We will prove that we can use these two edges to efficiently extend Q
– see Lemma 30. We first define a special type of path which will be important to the
extension process.

Definition 27. We say that a path xySz is of type A if xy is a red edge and S is a
non-trivial blue path with endpoints y and z.

Note that the above definition requires x /∈ V (S). For the remainder of the section,
if we refer to a path xySz of type A, we shall take it as read that x, y, z and S are as in
Definition 27.
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We now sketch the proof of Lemma 30. By greedily extending the blue edge e into
a path, Builder can obtain either a long blue path or a path of type A (see Lemma 28).
If Builder obtains a long blue path P , then we can simply join P and Q together us-
ing Lemma 26. Suppose instead Builder obtains a path xySz of type A. Then we use
Lemma 29 to efficiently join S and Q together. In either case, the resulting blue path Q′

also has an endpoint incident to a red edge, so Q′ retains the defining property of Q.
We first prove that Builder can obtain either a long blue path or a path of type A by

greedily extending e.

Lemma 28. Let m ∈ N and let e be a blue edge. Then Builder can force Painter to
construct one of the following:

(i) a path xySz of type A with e(S) = t while uncovering t edges for some 1 6 t < m.

(ii) a blue path of length m while uncovering m− 1 edges.

Proof. Let S1 be the blue path formed by e. Builder proceeds to extend S1 greedily until
either Builder has constructed a blue path of length m or Painter has coloured an edge
red.

Indeed, suppose Si is a blue path of length i for some 1 6 i 6 m− 1 with endpoints y
and z, and that Builder has uncovered i − 1 edges in forming Si from S1. Then Builder
chooses the edge xy, where x is a new vertex. If Painter colours xy red then xySiz is
a path of type A with e(Si) = i, where 1 6 i < m. Moreover, Builder has uncovered i
edges in constructing it, and so we have achieved (i). If instead Painter colours xy blue,
then Si+1 := xySiz is a blue path of length i + 1 and Builder has uncovered i edges in
constructing it.

By repeating this process, Builder must either obtain a path of type A as in (i) or a
blue path Sm of length m as in (ii).

We now prove that Builder can use a path of type A to efficiently extend Q. Recall
that we were given two independent blue edges, e and f , and that we have already used
e to construct a path of type A.

Lemma 29. Suppose Q is a non-trivial blue path with endpoints a and b, where b is
incident to a red edge bc.Suppose xySz is a path of type A which is vertex-disjoint from
V (Q) ∪ {c}. Further suppose that f = vw is a blue edge vertex-disjoint from V (Q) ∪
V (xySz) ∪ {c}. Then Builder can force Painter to construct one of the following:

(i) a blue path Q′ of length e(Q) + e(S) + 2 with one endpoint b′ incident to a red edge
b′c′ while uncovering 2 edges. Moreover, f is vertex-disjoint from V (Q′) ∪ {c′}.

(ii) a blue path Q′ of length e(Q) + e(S) + 4 with one endpoint incident to a red edge b′c′

while uncovering 4 edges. (Note that f need not be vertex-disjoint from V (Q′)∪{c′}.)

(iii) a red P4 while uncovering at most 4 edges.
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ca bQ x y S z v w

Figure 1: Extending Q using a path of type A as in Lemma 29(i).

c ab Q x y S z

v w

Figure 2: Extending Q using a path of type A and an blue independent edge vw as in
Lemma 29(ii).

Proof. Builder chooses the edge ax. First suppose Painter colours ax blue. Builder then
chooses the edge by. If Painter colours the edge by red, then cbyx is a red P3 and we have
achieved (iii). Suppose not. Then Q′ := xaQbySz (see Figure 1) is a blue path of length
e(Q) + e(S) + 2, where x is incident to the red edge xy, and we have achieved (i).

Now suppose Painter instead colours ax red. Builder then chooses the edges av, wy
and xb. If Painter colours any of these edges red, then yxav, wyxa or yxbc respectively is
a red P4 and we have achieved (iii). Suppose not. Then Q′ := xbQavwySz (see Figure 2)
is a blue path of length e(Q) + e(S) + 4, where x is incident to the red edge xy, and we
have achieved (ii).

We now consolidate Lemmas 28 and 29 into a single lemma which says that given two
independent blue edges, Builder can efficiently extend Q. In applying Lemma 30, we will
take m to be `− e(Q)− e(R)− 1. Thus if we can extend Q by at least m edges, then we
can join Q and R to obtain a blue P`+1 immediately afterwards.

Lemma 30. Let m ∈ N. Suppose Q is a non-trivial blue path with endpoints a and b,
where b is incident to a red edge bc. Suppose e and f are two independent blue edges
which are vertex-disjoint from V (Q) ∪ {c}. Then Builder can force Painter to construct
one of the following:

(i) a blue path Q′ with e(Q′) = e(Q) + `′ for some 3 6 `′ 6 m + 3 such that Q′ has
an endpoint b′ incident to a red edge b′c′. A total of `′ edges are uncovered in the
process. Moreover, if `′ < 5 6 m, then f is vertex-disjoint from V (Q′) ∪ {c′}.

(ii) a red P4 while uncovering at most m+ 3 edges.

Proof. We apply Lemma 28 to e and m, and split into cases depending on Painter’s choice.

Case 1: As in Lemma 28(i), we obtain a path xySz of type A with e(S) = t for some
1 6 t < m which is vertex-disjoint from V (f) ∪ V (Q) ∪ {c}, while uncovering t edges.

We apply Lemma 29 to Q, xySz and f . First suppose that as in Lemma 29(i), we
obtain a blue path Q′ of length e(Q)+ t+2 with one endpoint incident to a red edge while
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preserving f ’s independence. In total we have uncovered t + 2 edges. Hence Q′ satisfies
(i) on setting `′ = t+ 2.

Now suppose that as in Lemma 29(ii), we obtain a blue path Q′ of length e(Q) + t+ 4
with one endpoint incident to a red edge. We have uncovered t+ 4 edges in total. Hence
setting `′ = t+ 4, we have achieved (i) with `′ > 5.

Finally, suppose that as in Lemma 29(iii) we obtain a red P4. Then we have uncovered
at most t+ 4 6 m+ 3 edges in total and so we have achieved (ii).

Case 2: As in Lemma 28(ii), we obtain a blue path S of length m which is vertex-disjoint
from V (Q) ∪ {c} while uncovering m− 1 edges.

We apply Lemma 26 toQ and S to construct either a blue pathQ′ of length e(Q)+m+1
with one endpoint incident to a red edge or a red P4 while uncovering at most 2 additional
edges. We have uncovered at most m+1 edges in total. Hence in the former case we have
achieved (i), and in the latter case we have achieved (ii).

A.2 Extending Q and R using two red edges e and f .

In this subsection, our aim is to extend Q or R efficiently when given two independent
red edges e and f – see Lemma 39. As in Section A.1, it will be convenient to define
some special paths that we will use in the extension process. These paths can be viewed
as analogues of paths of type A.

Definition 31. A path vwxyz is of type B if vw and yz are red edges, and wx and xy
are blue edges.

Definition 32. A path T1 . . . Tk is of type C if the following statements hold:

(C1) k is odd and k > 3.

(C2) T1 is either a blue edge or a path of the form x1y1z1, where z1 ∈ V (T2) and y1z1 is
red (and x1y1 may be red or blue).

(C3) Tk is either a blue edge or a path of the form xkykzk, where xk ∈ V (Tk−1) and xkyk
is red (and ykzk may be red or blue).

(C4) T2, T4, . . . , Tk−1 are blue paths. Exactly one of these paths has length 1 and the rest
have length 2.

(C5) T3, T5, . . . , Tk−2 are all red P3’s.

We say T1 . . . Tk is incomplete if T1 or Tk is a red P3. Otherwise, we say T1 . . . Tk is
complete.

For the remainder of the section, if we refer to a path vwxyz of type B or a path
T1 . . . Tk of type C, we shall take it as read that v, w, x, y, z and T1, . . . , Tk are as in
Definitions 31 and 32 respectively. Note that paths of type C are well-defined with respect
to direction of traversal – if v1 . . . vp is a path of type C, then so is vp . . . v1.
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x1 y1 z1 x5 y5 z5

T1 T2 T3 T4 T5

Figure 3: A complete path T1 . . . T5 of type C.

See Figure 3 for an example of a path of type C.
We now sketch the proof of Lemma 39. Let e and f be two independent red edges.

Using these edges, Builder can force either a path of type B or a path of type C using
Lemma 33. If Builder obtains a path vwxyz of type B, they will apply Lemma 34 to
efficiently extend Q using vwxyz.

Suppose instead Builder obtains a path T1 . . . Tk of type C. Then we run into a problem
– T1 . . . Tk is not complete, and only a complete path of type C may be used to efficiently
extend R (see Lemma 38). Builder will therefore use Corollary 37 to extend T1 . . . Tk into
a path T ′1 . . . T

′
k′ of type C which is either complete or arbitrarily long. Builder then uses

Lemma 38 to extend R using T ′1 . . . T
′
k′ . If T ′1 . . . T

′
k′ is complete, this extension is efficient;

otherwise, Builder wins the game immediately afterwards by joining Q and the resulting
blue path. Thus an incomplete path of type C is used to extend R at most once over the
course of the game, adding only constantly many rounds to the game’s length.

We first prove that given two independent red edges Builder can force either a path
of type B or a path of type C.

Lemma 33. Given two independent red edges e and f , Builder can force Painter to
construct one of the following:

(i) a path of type B while uncovering 2 edges;

(ii) an incomplete path T1T2T3 of type C and length 5 while uncovering 3 edges;

(iii) a red P4 while uncovering 2 edges.

Proof. Write e = uv and f = xy. Builder chooses the edges vw and wx, where w is a new
vertex. If Painter colours both edges red, then uvwx is a red P4 and we have achieved (iii).
Suppose without loss of generality that Painter colours vw blue. If Painter also colours
wx blue, then uvwxy is a path of type B and we have achieved (i). If instead Painter
colours wx red, then Builder chooses the edge tu. However Painter colours tu, tuvwxy is
now a path of type C and length 5, taking T1 = tuv, T2 = vw and T3 = wxy. Moreover,
T3 is a red P3, so T1T2T3 is incomplete and we have achieved (ii).

We next prove that Builder can use a path of type B to efficiently extend Q.

Lemma 34. Suppose Q is a non-trivial blue path with endpoints a and b, where b is
incident to a red edge bc. Suppose vwxyz is a path of type B vertex-disjoint from V (Q)∪
{c}. Then, by uncovering at most 3 edges, Builder can force Painter to construct one of
the following:
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ca bQ v w x y z

Figure 4: Extending Q using a path of type B as in Lemma 34.

(i) a blue path Q′ of length e(Q) + 5 with one endpoint b′ incident to a red edge b′c′.

(ii) a red P4.

Proof. Builder chooses the edges bv, vy and wz. If Painter colours any of these edges red,
then cbvw, wvyz or vwzy respectively is a red P4 and we have achieved (ii). Otherwise,
aQbvyxwz is a blue path of length e(Q) + 5, where z is incident to the red edge zy (see
Figure 4), and we have achieved (i).

We now focus on paths of type C. We first note the following simple property of such
paths, which follows immediately from their definition (Definition 32).

Proposition 35. Suppose T1 . . . Tk is a path of type C. Then

e(T1 . . . Tk) = 2k − 5 + e(T1) + e(Tk).

Let T1 . . . Tk be an incomplete path of type C. We first prove an ancillary lemma,
which says that Builder can always extend an incomplete path of type C into a slightly
longer path of type C.

Lemma 36. Suppose T1 . . . Tk is an incomplete path of type C and length `. Then Builder
can force Painter to do one of the following:

(i) for some i ∈ {3, 4}, extend T1 . . . Tk to a path T ′1 . . . T
′
k+2 of type C and length `+ i

while uncovering i edges.

(ii) construct a red P4 while uncovering at most 4 edges.

Proof. Suppose without loss of generality that Tk = xkykzk is a red P3, where xk ∈
V (Tk−1). Set T ′i = Ti for i 6 k. Then Builder chooses two edges uv and vw, where u, v
and w are new vertices.

First suppose Painter colours both edges blue. Then Builder chooses the edge zku. If
Painter colours zku red, then xkykzku is a red P4 and we have achieved (ii). If Painter
colours zku blue, then set T ′k+1 = zkuv and T ′k+2 = vw. Thus, T ′1 . . . T

′
k+2 is a path of

type C and length `+ 3, and we have achieved (i).
Now suppose that Painter colours both uv and vw red. Then Builder chooses the

edges zkt and tu, where t is a new vertex. If Painter colours one of these edges red, then
xkykzkt or tuvw is a red P4, respectively, and we have achieved (ii). If Painter colours
both zkt and tu blue, then set T ′k+1 = zktu and T ′k+2 = uvw. Thus, T ′1 . . . T

′
k+2 is a path

of type C and length `+ 4, and we have achieved (i).
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Finally, suppose without loss of generality that Painter colours uv blue and vw red.
Then Builder chooses the edges zku and wx, where x is a new vertex. If Painter colours
zku red, then xkykzku is a red P4 and we have achieved (ii). If Painter colours zku blue,
then set T ′k+1 = zkuv and T ′k+2 = vwx. Thus T ′1 . . . T

′
k+2 is a path of type C of length

`+ 4, however Painter colours wx, and we have achieved (i).

By applying Lemma 36 repeatedly, Builder can extend the path T1T2T3 of type C given
by Lemma 33 into either a complete path of type C or an arbitrarily long incomplete path
of type C. Recall from Proposition 35 that a path T1 . . . Tk of type C has length at most
2k − 1.

Corollary 37. Let k0 > 5 be an odd integer. Suppose T1T2T3 is an incomplete path of
type C and length 5. Then Builder can force Painter to do one of the following:

(i) for some k, ` ∈ N, extend T1T2T3 to a complete path T ′1 . . . T
′
k of type C and length `

such that 5 6 k 6 k0, while uncovering `− 5 edges.

(ii) for some ` ∈ N, extend T1T2T3 to an incomplete path T ′1 . . . T
′
k0

of type C and length `
while uncovering `− 5 edges.

(iii) construct a red P4 while uncovering at most 2k0 − 6 edges.

We next prove that Builder can extend R using a path of type C.

Lemma 38. Suppose T1 . . . Tk is a path of type C with k > 5 and e(T1 . . . Tk) = `. Suppose
R is a (possibly trivial) blue path which is vertex-disjoint from T1 . . . Tk. Then Builder
can force Painter to construct one of the following:

(i) a blue path R′ of length e(R) + (5k − 7)/2 while uncovering 3(k − 1)/2 edges. This
case can only occur if T1 . . . Tk is incomplete.

(ii) a blue path R′ of length e(R) + `′ while uncovering at most 7`′/5− ` edges for some
1 6 `′ 6 5(k − 1)/2. This case can only occur if T1 . . . Tk is complete.

(iii) a red P4 while uncovering at most 3(k − 1)/2 edges.

Proof. Let a and b be the endpoints of R. (If R is trivial, then let a = b.)For i ∈
{3, 5, . . . , k − 2}, write Ti = xiyizi where xi ∈ V (Ti−1) and zi ∈ V (Ti+1). Thus xiyizi is a
red P3 for each i ∈ {3, 5, . . . , k − 2}. Builder chooses the set

F1 = {x3a, bz3, x5c1, c1z5, x7c2, c2z7, . . . , xk−2c k−5
2
, c k−5

2
zk−2}

of edges, where c1, . . . , c k−5
2

are new vertices. Note that

|F1| = 2 + 2 · k − 5

2
= k − 3 <

3(k − 1)

2
. (3)

If Painter colours an edge in F1 red, say xiw or wzi for some integer i and some vertex
w, then ziyixiw or wziyixi respectively is a red P4. So in this case we have achieved (iii).
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T1 x3 y3 z3 x5 y5 z5 T7

a b c1R

S1

S2

Figure 5: Structure of S1 and S2 in Lemma 38 for a path T1 . . . T7 of type C.

Now suppose Painter colours all edges in F1 blue. Then we have obtained a blue path

S1 = T2x3aRbz3T4x5c1z5T6x7c2z7 . . . Tk−3xk−2c k−5
2
zk−2Tk−1.

Note that S1 has length

e(S1) = e(T2) + e(T4) + · · ·+ e(Tk−1) + |F1|+ e(R)

=

(
2 · k − 3

2
+ 1

)
+ (k − 3) + e(R) = e(R) + 2k − 5,

(4)

where the second equality follows from (3).
Builder now chooses the set

F2 = {y3y5, y5y7, . . . , yk−4yk−2}

of edges. Note that |F2| = (k − 5)/2, so by (3) we have uncovered

|F1|+ |F2| = k − 3 +
k − 5

2
=

3k − 11

2
(5)

edges in total so far. If Painter colours an edge in F2 red, say yiyi+2 for some i ∈
{3, 5, . . . , k − 4}, then ziyiyi+2xi+2 is a red P4. So in this case we have achieved (iii).
Suppose Painter colours all edges in F2 blue. Then we have obtained a blue path

S2 = yk−2yk−4 . . . y5y3.

Note that S2 has length |F2| = (k − 5)/2. Moreover, S1 and S2 are vertex-disjoint (see
Figure 5) and by (4) we have

e(S1) + e(S2) = e(R) + 2k − 5 +
k − 5

2
= e(R) +

5(k − 3)

2
. (6)

Our aim is now to join S1 and S2 together to form R′. The way in which we do this
depends on the structure of T1 and Tk.

Case 1: T1 . . . Tk is incomplete.
Without loss of generality we may assume that T1 is a red P3, say x1y1z1 with z1 ∈

V (T2). Builder chooses the edges y1yk−2, y3x1, x1u and uz1, where u is a new vertex.
In total, Builder has uncovered |F1| + |F2| + 4 = 3(k − 1)/2 edges by (5). If Painter
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u

x1 y1 z1 x3 y3 z3 x5 y5 z5 T7

a b c1R(i)

x1 z1 x3 y3 z3 x5 y5 z5 x7 z7

a b c1R(ii)

x1 z1 x3 y3 z3 x5 y5 z5 x7 y7 z7

a b c1R(iii)

x1 y1 z1 x3 y3 z3 x5 y5 z5 x7 y7 z7

a b c1R(iv)

Figure 6: Extending a blue path R with a path T1 . . . T7 as in cases 1 through 4 (respec-
tively) of Lemma 38.

colours any of the edges red, then x1y1yk−2zk−2, y3x1y1z1, z1y1x1u or uz1y1x1 is a red P4,
respectively, and we have achieved (iii). Suppose Painter colours them all blue. Then
R′ := y1yk−2S2y3x1uz1S1 is a blue path of length e(S1) + e(S2) + 4 = e(R) + (5k − 7)/2
by (6) (see Figure 6(i)) and hence we have achieved (i).

Case 2: T1 . . . Tk is complete and each of T1 and Tk is a blue edge.
Write T1 = x1z1 and Tk = xkzk with z1 ∈ V (T2) and xk ∈ V (Tk−1). First suppose

that k > 7. Builder chooses the edges y3x1 and yk−2x1. In total, Builder has uncovered
|F1|+|F2|+2 = (3k−7)/2 edges by (5). If Painter colours both edges red, then x3y3x1yk−2

is a red P4 and we have achieved (iii). Suppose Painter colours x1y3 blue. Then R′ :=
S2y3x1z1S1xkzk is a blue path of length e(S1) + e(S2) + 3 = e(R) + (5k− 9)/2 by (6) (see
Figure 6(ii)). Writing `′ := e(R′)− e(R) = (5k − 9)/2, Builder has uncovered

3k − 7

2
<

7

5
· 5k − 9

2
− (2k − 3) =

7`′

5
− `

edges in total, where the last equality follows from Proposition 35. Hence we have
achieved (ii). If instead Painter colours x1yk−2 blue, the same argument shows we have
achieved (ii) on replacing S2y3 by S2yk−2. So if k > 7, we are done.

If instead k = 5, Builder chooses the edges y3x1 and ux1, where u is a new vertex.
If Painter colours both edges red, then ux1y3z3 is a red P4 and we have achieved (iii).
Suppose instead Painter colours wx1 blue for some w ∈ {u, y3}. Then R′ := wx1z1S1x5z5
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is a blue path of length e(S1) + e(S2) + 3 (as e(S2) = 0) and Builder has uncovered
|F1|+ |F2|+ 2 edges. Thus we have achieved (ii) as above.

Case 3: T1 . . . Tk is complete and exactly one of T1 and Tk is a blue edge.
Without loss of generality we may assume that T1 is a blue edge. Let T1 = x1z1

with z1 ∈ V (T2), and let Tk = xkykzk with xk ∈ V (Tk−1). Note that xkyk is red and
ykzk is blue. Builder chooses the edges xkyk−2 and y3yk. In total, Builder has uncovered
|F1|+ |F2|+2 = (3k−7)/2 edges by (5). If Painter colours either xkyk−2 or y3yk red, then
ykxkyk−2xk−2 or x3y3ykxk is a red P4 respectively, and we have achieved (iii). Suppose
Painter instead colours both edges blue. Then R′ := x1z1S1xkyk−2S2y3ykzk is a blue
path of length e(S1) + e(S2) + 4 = e(R) + (5k − 7)/2 by (6) (see Figure 6(iii)). Writing
`′ := e(R′)− e(R) = (5k − 7)/2, Builder has uncovered

3k − 7

2
<

7

5
· 5k − 7

2
− (2k − 2) =

7`′

5
− `

edges in total, where the last equality follows from Proposition 35. Hence we have
achieved (ii).

Case 4: T1 . . . Tk is complete and neither T1 nor Tk is a blue edge.
Let T1 = x1y1z1 and Tk = xkykzk where z1 ∈ V (T2) and xk ∈ V (Tk−1). Thus x1y1

and ykzk are blue, and y1z1 and xkyk are red. Then Builder chooses the edges ykz1,
xkyk−2, and y3y1. In total, Builder has uncovered |F1| + |F2| + 3 = (3k − 5)/2 edges
by (5). If Painter colours one of these edges red, then xkykz1y1, ykxkyk−2xk−2 or z3y3y1z1

respectively is a red P4 and we have achieved (iii). Suppose Painter colours them all
blue. Then R′ := zkykz1S1xkyk−2S2y3y1x1 is a blue path (see Figure 6(iv)) of length
e(S1) + e(S2) + 5 = e(R) + 5(k − 1)/2 by (6). Writing `′ := e(R′) − e(R) = (5k − 5)/2,
Builder has uncovered

3k − 5

2
=

7

5
· 5k − 5

2
− (2k − 1) =

7`′

5
− `

edges in total, where the last equality follows from Proposition 35. We have achieved
case (ii).

Finally, we consolidate Lemmas 33, 34 and 38 and Corollary 37 into a single lemma
which says that given two independent red edges, Builder can extend either Q or R. As
with Lemma 30, in applying Lemma 39 we will take m to be `− e(Q)− e(R)− 1.

Lemma 39. Let m > 9 be an integer. Let Q and R be blue paths and let e and f be two
red edges. Suppose that Q is non-trivial and has an endpoint b incident to a red edge bc.
Further suppose that V (Q) ∪ {c}, R, e and f are pairwise vertex-disjoint. Then Builder
can force Painter to construct one of the following:

(i) a blue path Q′ with one endpoint b′ incident to a red edge b′c′ such that e(Q′) =
e(Q)+5, while uncovering 5 edges. Moreover, R is vertex-disjoint from V (Q′)∪{c′}.

(ii) a blue path R′ such that e(R′) = e(R) + `′ for some 1 6 `′ 6 m+ 5 while uncovering
at most 7`′/5− 2 edges. Moreover, R′ is vertex-disjoint from V (Q) ∪ {c}.
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(iii) a blue path R′ such that e(R′) > e(R)+m while uncovering at most 7m/5+6 edges.
Moreover, R′ is vertex-disjoint from V (Q) ∪ {c}.

(iv) a red P4 while uncovering at most 7m/5 + 6 edges.

Proof. We first apply Lemma 33 to e and f . If as in Lemma 33(iii) we obtain a red P4

while uncovering 2 edges, then we have achieved (iv). Suppose we do not. Then we split
into cases depending on Painter’s choice.

Case 1: We obtain a path vwxyz of type B while uncovering 2 edges, as in Lemma 33(i).
Moreover, vwxyz is vertex-disjoint from V (Q) ∪ {c} and R.

We apply Lemma 34 to Q and vwxyz. Hence we have uncovered at most 5 edges in
total. If we obtain a red P4, then we have achieved (iv). Suppose instead we obtain a blue
path Q′ of length q+5 with one endpoint b′ incident to a red edge b′c′, where V (Q′)∪{c′}
is vertex-disjoint from R. Then we have achieved (i).

Case 2: We obtain an incomplete path T1T2T3 of type C and length 5 while uncovering
3 edges, as in Lemma 33(ii). Moreover, T1T2T3 is vertex-disjoint from V (Q)∪ {c} and R.

Let k0 be the least odd number such that k0 > (2m+7)/5. Since 5k0 < (2m+7)+5 ·2,
and both 5k0 and 2m + 17 are odd integers, we have k0 6 2m/5 + 3. Moreover, k0 >
(2m + 7)/5 > 5 since m > 9. We apply Corollary 37 to T1T2T3 and k0. If we obtain a
red P4 while uncovering at most 2k0 − 6 additional edges, then we have achieved (iv).
Suppose we do not. Then we split into subcases depending on Painter’s choice.

Case 2a: For some k, ` ∈ N, we obtain a complete path T ′1 . . . T
′
k of type C and length

` such that 5 6 k 6 k0 while uncovering ` − 5 additional edges, as in Corollary 37(i).
Moreover, T ′1 . . . T

′
k is vertex-disjoint from V (Q) ∪ {c} and R.

We now apply Lemma 38 to T ′1 . . . T
′
k and R. Suppose we obtain a blue path R′ with

length e(R) + `′, where

`′ 6
5(k − 1)

2
6

5(k0 − 1)

2
6

5

2
·
(

2m

5
+ 2

)
= m+ 5,

while uncovering at most 7`′/5−` edges as in Lemma 38(ii). Note that R′ is vertex-disjoint
from V (Q)∪{c}. In total we have uncovered at most 3 + (`− 5) + (7`′/5− `) = 7`′/5− 2
edges, so we have achieved (i).

Suppose instead we obtain a red P4 while uncovering at most 3(k − 1)/2 edges as in
Lemma 38(iii). Note that ` 6 2k0 − 1 by Proposition 35. In total we have therefore
uncovered at most

3 + (`− 5) +
3(k0 − 1)

2
6

7k0 − 9

2
6

7

2
·
(

2m

5
+ 3

)
− 9

2
=

7m

5
+ 6 (7)

edges, and thus we have achieved (iv).

Case 2b: For some ` ∈ N, we obtain an incomplete path T ′1 . . . T
′
k0

of type C and length
` while uncovering ` − 5 additional edges, as in Corollary 37(ii). Moreover, T ′1 . . . T

′
k0

is
vertex-disjoint from V (Q) ∪ {c} and R.
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We apply Lemma 38 to T ′1 . . . T
′
k0

and R. Whatever the outcome, we uncover at most
3(k0−1)/2 edges. We have therefore uncovered at most 7m/5+6 edges in total, as in (7).
If we obtain a red P4 as in Lemma 38(iii), then we have achieved (iv). Hence we may
assume that we obtain a blue path R′ of length

e(R) +
5k0 − 7

2
> e(R) +

5

2
· 2m+ 7

5
− 7

2
= e(R) +m,

as in Lemma 38(i). (The inequality follows from the definition of k0.) We have therefore
achieved (iii).

A.3 An upper bound on r̃(P4, P`+1) for ` > 3

We now use Lemmas 26, 30 and 39 to bound r̃(P4, P`+1) above in Theorem 44. Together
with Theorem 4, this will imply Theorem 6.

Recall that Builder’s strategy is to extend blue paths Q and R using independent
edges. For the remainder of the section, we denote the graph Builder has uncovered by
G. In order to keep track of the lengths of Q and R and the number of independent edges
available, we introduce the following notation.

Definition 40. Let G be a graph. Given q, r, nblue, nred ∈ N0, we say that G contains a
(q, r, nblue, nred)-structure if it satisfies the following properties:

(P1) G contains a (possibly trivial) blue path Q of length q with one endpoint b incident
to a red edge bc.

(P2) G contains a (possibly trivial) blue path R of length r.

(P3) G contains a set F of independent edges containing nblue blue edges and nred red
edges.

(P4) V (Q) ∪ {c}, R and F are pairwise vertex-disjoint.

This notation substantially simplifies the statements of Lemmas 26, 30 and 39. The
corresponding statements are as follows.

Corollary 41. Let q, r, nred, nblue ∈ N0 and let G be a graph. Suppose G contains a
(q, r, nblue, nred)-structure. Then Builder can force Painter to construct a graph G′ ⊇ G
with e(G′) 6 e(G)+2 such that G′ contains a (q+r+1, 0, nblue, nred)-structure or a red P4.

Corollary 42. Let m, q, r, nred ∈ N0 with q,m > 1. Suppose G is a graph containing a
(q, r, 2, nred)-structure. Then Builder can force Painter to construct a graph G′ ⊇ G such
that one of the following holds:

(i) G′ contains a (q + `′, r, nblue, nred)-structure and e(G′) = e(G) + `′ for some 3 6
`′ 6 m + 3 and some nblue ∈ N0. Moreover, if 3 6 `′ < 5 6 m, then we may take
nblue = 1.
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(ii) G′ contains a red P4 and e(G′) 6 e(G) +m+ 3.

Corollary 43. Let m, q, r, nblue ∈ N0 with q > 1 and m > 9. Suppose G is a graph
containing a (q, r, nblue, 2)-structure. Then Builder can force Painter to construct a graph
G′ ⊇ G such that one of the following holds:

(i) e(G′) = e(G) + 5 and G′ contains a (q + 5, r, nblue, 0)-structure.

(ii) There exists 1 6 `′ 6 m + 5 such that e(G′) 6 e(G) + 7`′/5 − 2 and G′ contains a
(q, r + `′, nblue, 0)-structure.

(iii) e(G′) 6 e(G) + 7m/5 + 6 and G′ contains a (q, r +m,nblue, 0)-structure.

(iv) e(G′) 6 e(G) + 7m/5 + 6 and G′ contains a red P4.

Theorem 44. For all ` ∈ N, we have r̃(P4, P`+1) 6 (7`+ 52)/5.

Proof. Our aim is to show that Builder can construct a graph G with e(G) 6 (7`+ 52)/5
containing a red P4 or a blue P`+1.

We first obtain an initial blue path Q with one endpoint incident to a red edge. We
claim that either Builder can construct a path xySz of type A with e(S) < `, while
uncovering at most (7e(S) + 4)/5 edges, or we are done. We proceed as follows. Builder
chooses an edge e = uv. First suppose Painter colours uv blue. Then apply Lemma 28
to uv, taking m = `. If we find a blue P`+1 while uncovering `− 1 additional edges, then
since we have uncovered ` edges in total we are done. Suppose instead we find a path
xySz of type A with e(S) < `, while uncovering e(S) additional edges in the process.
Then in total Builder has uncovered e(S) + 1 < (7e(S) + 4)/5 edges, as desired.

Suppose instead Painter colours uv red. Then Builder chooses the edge vx, where x
is a new vertex. If Painter colours vx blue, then uvx is a path of type A constructed
while uncovering 2 < (7 + 4)/5 edges in total. If Painter colours vx red, then Builder
chooses the edges tu, uw and wx, where t and w are new vertices. If Painter colours any
of these edges red, then tuvx, xvuw or wxvu respectively is a red P4 and we are done.
Otherwise, tuwxv is a path of type A (taking S = tuwx), constructed while uncovering
5 = (7 · 3 + 4)/5 edges in total. Therefore, we may assume that Builder has constructed
a path xySz of type A with e(S) < ` while uncovering at most (7e(S) + 4)/5 edges as
claimed.

Let G0 be the graph consisting of all edges uncovered so far. Thus G0 contains a
(q0, 0, 0, 0)-structure for some 1 6 q0 < `, and e(G0) 6 (7q0 +4)/5. Suppose that for some
i > 0, Builder has already constructed a graph Gi such that there exist qi, ri, nblue,i, nred,i ∈
N0 satisfying the following properties:

(G1) Gi ⊆ KN is the graph of all uncovered edges.

(G2) Gi contains a (qi, ri, nblue,i, nred,i)-structure, and qi > 0.

(G3) qi + ri 6 `+ 4.
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(G4) nred,i, nblue,i 6 1.

(G5) e(Gi) 6 (7(qi + ri) + 4)/5 + nblue,i + nred,i.

Note that (G1)–(G5) hold for i = 0. We are going to show that Builder can force a graph
Gi+1 ⊇ Gi such that one of the following holds:

(a) Gi+1 contains a red P4 or a blue P`+1 and e(Gi+1) 6 (7`+ 52)/5.

(b) there exist qi+1, ri+1, nblue,i+1, nred,i+1 ∈ N0 such that qi+1 + ri+1 > qi + ri and Gi+1,
qi+1, ri+1, nblue,i+1 and nred,i+1 together satisfy (G1)–(G5).

If (a) holds, we are done. If (b) holds, then Builder can repeat the algorithm to obtain
Gi+2. We then simply repeat the process until it terminates, which must happen by (G3)
(since qi+1 + ri+1 > qi + ri whenever these quantities are defined). It therefore remains
only to prove that forcing such a graph is possible.

Let m = ` − qi − ri − 1. We split into cases depending on the values of qi, ri, nblue,i

and nred,i.

Case 1: qi + ri > `− 1.
In this case, we may simply join our two blue paths together to achieve (a). Apply

Corollary 41 to Gi. Builder obtains a graph Gi+1 ⊇ Gi with

e(Gi+1) = e(Gi) + 2
(G5)

6
7(qi + ri) + 4

5
+ nblue,i + nred,i + 2

(G3),(G4)

6
7`+ 52

5
.

Moreover, G′ contains a red P4 or a blue P`+1, so we have achieved (a).

Case 2: `− 9 6 qi + ri 6 `− 2, so that 1 6 m 6 8.
In this case, it is more efficient to naively extend our paths to the right combined

length and join them than it is to apply our normal extension methods and potentially
end up with paths longer than we need. Builder will force a red P4 or a blue P`+1 as
follows. Apply Corollary 41 to Gi to obtain a graph G′ ⊇ Gi with e(G′) = e(Gi) + 2.
Note that G′ contains a red P4 or a (qi + ri + 1, 0, nblue,i, nred,i)-structure. By repeating
the process at most m additional times, Builder obtains a graph G′′ ⊇ G′ ⊇ Gi, where

e(G′′) 6 e(G) + 2m+ 2
(G5)

6
7(qi + ri) + 4

5
+ nblue,i + nred,i + 2m+ 2

(G4)

6
7(`−m− 1) + 4

5
+ 2 + 2m+ 2 =

7`

5
+

3m+ 17

5
6

7`+ 41

5
,

such that G′′ contains a red P4 or a (qi + ri + m + 1, 0, nblue,i, nred,i)-structure (which
contains a blue P`+1). Thus we have achieved (a).

Case 3: qi + ri 6 `− 10, so that m > 9.
In this case, we will extend our paths efficiently using Corollaries 42 and 43. By

choosing at most 3−nblue,i−nred,i additional independent edges (on new vertices), Builder
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obtains a graph G′i ⊇ Gi containing a (qi, ri, n
′
blue, n

′
red)-structure such that n′blue+n′red 6 3,

either n′blue = 2 or n′red = 2, and

e(G′i)
(G5)

6
7(qi + ri) + 4

5
+ n′blue + n′red. (8)

We split into subcases depending on the values of n′blue and n′red.

Case 3a: n′blue = 2 and n′red 6 1.
We apply Corollary 42 to G′i, obtaining a graph G′ ⊇ G′i. First suppose Corollary 42(i)

holds, so that there exists some 3 6 `′ 6 m+3 such thatG′ contains a (qi+`
′, ri, n

′′
blue, n

′
red)-

structure and e(G′) = e(G′i)+`′. Set Gi+1 = G′, qi+1 = qi+`
′, ri+1 = ri and nred,i+1 = n′red.

Set nblue,i+1 = 0 if `′ > 5 and nblue,i+1 = 1 otherwise. Clearly qi+1 + ri+1 > qi + ri, and
(G1) and (G4) are satisfied. Recall from Corollary 42(i) that if `′ < 5 6 m then we may
take n′′blue = 1, so (G2) is satisfied. We have qi+1 + ri+1 6 qi +m+ 3 + ri = `+ 2, so (G3)
is satisfied. If 3 6 `′ 6 4, we have

e(G′) = e(G′i) + `′
(8)

6
7(qi + ri) + 4

5
+ 2 + n′red + `′

=
7(qi + ri + `′) + 4

5
− 2`′

5
+ 2 + n′red 6

7(qi+1 + ri+1) + 4

5
+ 1 + n′red

=
7(qi+1 + ri+1) + 4

5
+ nblue,i+1 + nred,i+1.

So (G5) is satisfied and we have therefore achieved (b). A similar argument holds for the
case when `′ > 5.

Suppose instead that Corollary 42(ii) holds, so that G′ contains a red P4 and e(G′) 6
e(G′i) +m+ 3. Then we have

e(G′)
(8)

6
7(qi + ri) + 4

5
+ 2 + n′red +m+ 3 6

2(qi + ri) + 4

5
+ `+ 5 6

7`+ 9

5
,

where the final inequality follows since qi + ri 6 `− 10. We have therefore achieved (a).

Case 3b: n′red = 2 and n′blue 6 1.
We apply Corollary 43 to G′i, obtaining a graph G′ ⊇ G′i. Suppose Corollary 43(i)

or (ii) holds. In either case, it follows that there exist q′ and r′ such that G′ contains a
(q′, r′, n′blue, 0)-structure and

1 6 q′ + r′ − (qi + ri) 6 m+ 5.

Write `′ = q′ + r′ − (qi + ri). Set Gi+1 = G′, qi+1 = q′, ri+1 = r′, nblue,i+1 = n′blue and
nred,i+1 = 0. Clearly (G1)–(G4) are satisfied, and qi+1 + ri+1 > qi + ri. Moreover, we have

e(Gi+1) 6 e(G′i) +
7`′

5
− 2

(8)

6
7(qi + ri + `′) + 4

5
+ n′blue

=
7(qi+1 + ri+1) + 4

5
+ nblue,i+1 + nred,i+1,
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so (G5) is satisfied. We have therefore achieved (b).
Now suppose Corollary 43(iii) holds, so that G′ contains a (qi, ri+m,n

′
blue, 0)-structure

and e(G′) 6 e(G′i) + 7m/5 + 6. We apply Corollary 41 to G′, obtaining a graph G′′ such
that

e(G′′) = e(G′) + 2 6 e(G′i) +
7m

5
+ 8

(8)

6
7(qi + ri +m) + 4

5
+ n′blue + 10 6

7`+ 52

5
.

Moreover, G′′ contains a red P4 or an (`, 0, n′blue, 0)-structure (which contains a blue P`+1).
We have therefore achieved (a).

Finally suppose Corollary 43(iv) holds, so that G′ contains a red P4 and e(G′) 6
e(G′i) + 7m/5 + 6. Then we have

e(G′) 6 e(G′i) +
7m

5
+ 6

(8)

6
7(qi + ri +m) + 4

5
+ n′blue + 8 6

7`+ 42

5
.

We have therefore achieved (a). This completes the proof of the theorem.
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