On the Typical Structure of Graphs in a Monotone Property

Svante Janson^{*} Andrew J. Uzzell[†]

Department of Mathematics Uppsala University P.O. Box 480 SE-751 06 Uppsala, Sweden {svante.janson,andrew.uzzell}@math.uu.se

Submitted: Apr 9, 2014; Accepted: Aug 20, 2014; Published: Aug 28, 2014 Mathematics Subject Classifications: 05C75, 05C80, 05C30

Abstract

Given a graph property \mathcal{P} , it is interesting to determine the typical structure of graphs that satisfy \mathcal{P} . In this paper, we consider monotone properties, that is, properties that are closed under taking subgraphs. Using results from the theory of graph limits, we show that if \mathcal{P} is a monotone property and r is the largest integer for which every r-colorable graph satisfies \mathcal{P} , then almost every graph with \mathcal{P} is close to being a balanced r-partite graph.

Keywords: Graph limits; Monotone properties; Structure of graphs

1 Introduction and main results

Given a graph property \mathcal{P} , it is natural to study the structure of a typical graph that satisfies \mathcal{P} . A graph property is *monotone* if it is closed under taking subgraphs and *hereditary* if it is closed under taking induced subgraphs. Thus, every monotone property is also hereditary. Many authors have studied the structure of typical graphs in various hereditary properties—see, e.g., [1, 3, 7, 8, 9, 11], as well as the survey [4]. In this note, we use results from graph limit theory to study the structure of a typical graph in a general monotone property.

Before stating our main result, let us recall certain basic notions of graph limit theory. For more details, see, e.g., [5, 6, 13], as well as the monograph [12]. Here, we simply recall that certain sequences of graphs are defined to be *convergent*. A convergent sequence has a limit, called a *graph limit*, which is unique if it exists.

^{*}Partly supported by the Knut and Alice Wallenberg Foundation.

[†]Supported by the Knut and Alice Wallenberg Foundation.

Lovász and Szegedy [13] showed that a graph limit Γ may be represented by a graphon, a symmetric, measurable function $W : [0, 1]^2 \to [0, 1]$. (So, abusing notation slightly, we will sometimes write $G_n \to W$ if the sequence $\{G_n\}_{n=1}^{\infty}$ converges to the graph limit Γ represented by W.) More than one graphon may represent the same graph limit; we say that the graphons W_1 and W_2 are equivalent, and write $W_1 \cong W_2$, if they represent the same graph limit.

Let X_1, X_2, \ldots be i.i.d. uniformly distributed random variables in [0, 1]. Given a graphon W, the *W*-random graph G(n, W) is a graph with vertex set [n] in which vertices i and j are adjacent with probability $W(X_i, X_j)$, independently of all other edges.

Let $h(x) = -x \log_2(x) - (1-x) \log_2(1-x)$ denote the binary entropy function. The *entropy* of a graphon W is

$$\operatorname{Ent}(W) = \int_0^1 \int_0^1 h(W(x,y)) \,\mathrm{d}\mu(x) \mathrm{d}\mu(y),$$

where μ denotes the Lebesgue measure. As noted in [9], if $W_1 \cong W_2$, then $\operatorname{Ent}(W_1) = \operatorname{Ent}(W_2)$. In other words, entropy is a property of a graph limit, rather than of the graphon that represents it. Thus, we may define the entropy $\operatorname{Ent}(\Gamma)$ of a graph limit Γ to be the entropy of any graphon that represents it.

Hatami, Janson, and Szegedy [9] posed the question of which graphons may arise as limits of sequences of graphs with a given property \mathcal{P} . In addition to the intrinsic interest of this question, it turns out that if \mathcal{P} is hereditary, then certain limits of sequences of graphs in \mathcal{P} (namely, those with maximum entropy) give a great deal of information about the number and typical structure of graphs in \mathcal{P} . (We do not distinguish between a graph property and the class of graphs with that property.) In order to state these results, we need to introduce more notation.

Let \mathcal{U}_n denote the set of unlabeled graphs on n vertices and let \mathcal{L}_n denote the set of labeled graphs with vertex set [n]. Given a graph property \mathcal{P} , we let $\mathcal{P}_n = \mathcal{P} \cap \mathcal{U}_n$ denote the set of unlabeled elements of \mathcal{P} with n vertices and let \mathcal{P}_n^L denote the set of labeled elements of \mathcal{P} with vertex set [n]. The function $n \mapsto |\mathcal{P}_n|$ is called the (unlabeled) speed of \mathcal{P} ; the labeled speed is defined similarly. Observe that

$$\left|\mathcal{P}_{n}\right| \leqslant \left|\mathcal{P}_{n}^{L}\right| \leqslant n! \left|\mathcal{P}_{n}\right|. \tag{1}$$

Given a graph property \mathcal{P} , we let $\widehat{\mathcal{P}}$ denote the set of graph limits of sequences in \mathcal{P} . We furthermore let $\widehat{\mathcal{P}}^*$ denote the set of elements of $\widehat{\mathcal{P}}$ of maximum entropy, i.e.,

$$\widehat{\mathcal{P}}^* = \bigg\{ \Gamma \in \widehat{\mathcal{P}} : \operatorname{Ent}(\Gamma) = \max_{\Gamma' \in \widehat{\mathcal{P}}} \operatorname{Ent}(\Gamma') \bigg\}.$$

We will also use these symbols to refer to the set of graphons (respectively, the set of maximum-entropy graphons) representing limits of sequences in \mathcal{P} . It is shown in [9] that if \mathcal{P} is hereditary (and not finite), then $\max_{\Gamma \in \widehat{\mathcal{P}}} \operatorname{Ent}(\Gamma)$ is achieved—in other words, $\widehat{\mathcal{P}}^*$ is nonempty.

The electronic journal of combinatorics 21(3) (2014), #P3.34

In [9, Theorem 1.6], Hatami, Janson, and Szegedy showed that if a hereditary property \mathcal{P} has a single graph limit Γ of maximum entropy, then a typical element of \mathcal{P} is close to Γ (in terms of the standard cut metric on the space of graph limits).

Theorem 1. Suppose that \mathcal{P} is a hereditary property and that $\max_{\Gamma \in \widehat{\mathcal{P}}} \operatorname{Ent}(\Gamma)$ is attained by a unique graph limit $\Gamma_{\mathcal{P}}$. Then

- (i) if $G_n \in \mathcal{U}_n$ is a uniformly random unlabeled element of \mathcal{P}_n , then G_n converges in probability to $\Gamma_{\mathcal{P}}$ as $n \to \infty$;
- (ii) if $G_n \in \mathcal{L}_n$ is a uniformly random labeled element of \mathcal{P}_n^L , then G_n converges in probability to $\Gamma_{\mathcal{P}}$ as $n \to \infty$.

Now we define a special class of graphons. All of these graphons will be defined on $[0,1)^2$, rather than on $[0,1]^2$; it is easy to see that this change is immaterial. Given $r \in \mathbb{N}$ and $i \in [r]$, let $I_i = [(i-1)/r, i/r)$ and let $E_r = \bigcup_{i \neq j} I_i \times I_j$. We also let $E_{\infty} = [0,1)^2$. Given $r \in \mathbb{N} \cup \{\infty\}$, we let R_r denote the set of graphons W such that W(x,y) = 1/2 if $(x,y) \in E_r$ and $W(x,y) \in \{0,1\}$ otherwise. It is easy to see that if $W \in R_r$, then

Ent(W) =
$$\iint_{E_r} h(1/2) d\mu(x) d\mu(y) = \mu(E_r) = 1 - \frac{1}{r}.$$

For $r \in \mathbb{N}$ and $0 \leq s \leq r$, we let $W_{r,s}^*$ denote the graphon in R_r that equals 1 on $I_i \times I_i$ for $i \leq s$ and equals 0 on $I_i \times I_i$ for $s + 1 \leq i \leq r$. Observe that R_{∞} consists only of the graphon that equals 1/2 everywhere on $[0, 1)^2$; for notational convenience, we denote this graphon by $W_{\infty 0}^*$.

Given $r \in \mathbb{N}$ and $0 \leq s \leq r$, we let $\mathcal{C}(r, s)$ denote the class of graphs whose vertex sets can be partitioned into s (possibly empty) cliques and r-s (possibly empty) independent sets. In particular, $\mathcal{C}(r, 0)$ is the class of r-colorable graphs. Observe that for each r and s, the class $\mathcal{C}(r, s)$ is hereditary, and that $\mathcal{C}(r, 0)$ is monotone.

It is shown in [9, Theorem 1.9] that if \mathcal{P} is a hereditary property, then the maximum entropy of an element of $\widehat{\mathcal{P}}$ takes one of countably many values, and furthermore that this value determines the asymptotic speed of \mathcal{P}_n .

Theorem 2. If \mathcal{P} is a hereditary property, then there exists $r \in \mathbb{N} \cup \{\infty\}$ such that $\max_{\Gamma \in \widehat{\mathcal{P}}} \operatorname{Ent}(\Gamma) = 1 - 1/r$ and such that every graph limit $\Gamma \in \widehat{\mathcal{P}}^*$ can be represented by a graphon $W \in R_r$. Moreover,

$$|\mathcal{P}_n| = 2^{\left(1 - \frac{1}{r} + o(1)\right)\binom{n}{2}}.$$

Given a graph F, we say that a graph G is F-free if no subgraph of G is isomorphic to F. Given a (possibly infinite) family of graphs \mathcal{F} , we say that G is \mathcal{F} -free if it is F-free for every $F \in \mathcal{F}$. Observe that for any family \mathcal{F} , the class of \mathcal{F} -free graphs is monotone. (Conversely, every monotone class \mathcal{P} equals the class of \mathcal{F} -free graphs for some family \mathcal{F} —for example, $\mathcal{F} = \mathcal{U} \setminus \mathcal{P}$.) We write Forb(\mathcal{F}) for the class of \mathcal{F} -free graphs and write Forb(F) when $\mathcal{F} = \{F\}$. Note in particular that Forb(\emptyset) equals the class of all unlabeled finite graphs, which we denote by \mathcal{U} . The *coloring number* of a family of graphs \mathcal{F} is

$$\operatorname{col}(\mathcal{F}) = \min_{F \in \mathcal{F}} \chi(F).$$

In particular, we define

$$\operatorname{col}(\emptyset) = \infty.$$
 (2)

Our main result says that if $col(\mathcal{F}) = r + 1$, then a typical element of $Forb(\mathcal{F})$ resembles a balanced *r*-partite graph in which cross-edges are present independently with probability 1/2.

Theorem 3. Let \mathcal{F} be a family of graphs and let $r = \operatorname{col}(\mathcal{F}) - 1$. If $\mathcal{P} = \operatorname{Forb}(\mathcal{F})$, then as n tends to ∞ , a sequence of uniformly random unlabeled (respectively, labeled) elements of \mathcal{P}_n (respectively, elements of \mathcal{P}_n^L) converges in probability to the graph limit Γ_r represented by $W_{r,0}^*$.

Note that the quantity r in the statement of the theorem also equals the largest integer t for which every t-colorable graph is in Forb(\mathcal{F}).

It follows from Theorems 2 and 3 that if $col(\mathcal{F}) = r + 1$ then

$$\left|\operatorname{Forb}(\mathcal{F})_n\right| = 2^{\left(1 - \frac{1}{r} + o(1)\right)\binom{n}{2}},\tag{3}$$

which was first shown in [7]. Let us also note that Balogh, Bollobás, and Simonovits [2] obtained a fairly sharp bound on the error term in (3).

Remark 4. The proof of Theorem 3 shows that if $r = \operatorname{col}(\mathcal{F}) - 1$ and $\mathcal{P} = \operatorname{Forb}(\mathcal{F})$, then $W_{r,0}^*$ is the unique maximum-entropy element of $\widehat{\mathcal{P}}$. For certain families \mathcal{F} , it is also possible to describe the set of all \mathcal{F} -free graph limits. For example, the set of limits of bipartite graphs is determined in [9, Example 2.1], and a very similar argument holds for r-partite graphs when $r \ge 3$. However, we know of no representation of the set of all \mathcal{F} -free graph limits for arbitrary \mathcal{F} .

Remark 5. Erdős, Frankl, and Rödl [7] showed that if $\chi(F) = r + 1$, then every *F*-free graph *G* may be made K_{r+1} -free by removing $o(n^2)$ edges from *G*. This result is similar in spirit to Theorem 3, but we see no direct implication: if $\{G_n\}_{n=1}^{\infty}$ is a sequence of uniformly random *F*-free graphs and $\{G'_n\}_{n=1}^{\infty}$ is the sequence of resulting K_{r+1} -free graphs, then the distribution of G'_n need not be uniform in Forb $(K_{r+1})_n$.

Remark 6. Theorem 3 says that if $\operatorname{col}(\mathcal{F}) = r+1$ then almost every (labeled or unlabeled) \mathcal{F} -free graph is close to a balanced *r*-partite graph. (Conversely, every *r*-partite graph is trivially \mathcal{F} -free.) In the case of labeled graphs, Prömel and Steger [14] proved a much stronger result for a specific class of monotone properties: they characterized the graphs Ffor which almost every labeled F-free graph is $(\chi(F) - 1)$ -partite. Given a graph F, we say that $e \in E(F)$ is critical if $\chi(F - e) < \chi(F)$. Prömel and Steger showed that if $\chi(F) = r + 1$ then

$$\left|\operatorname{Forb}(F)_{n}^{L}\right| = \left(1 + o(1)\right) \left|\mathcal{C}(r, 0)_{n}^{L}\right|$$

The electronic journal of combinatorics 21(3) (2014), #P3.34

if and only if F contains a critical edge. They also showed that if F does not contain a critical edge, then there exists a constant $c_r > 0$ not depending on F such that

$$\left|\operatorname{Forb}(F)_{n}^{L}\right| \geqslant c_{r} n \left| \mathcal{C}(r,0)_{n}^{L} \right| \tag{4}$$

for all *n* sufficiently large. Theorem 3 shows that if \mathcal{F} is any family of graphs with $\operatorname{col}(\mathcal{F}) = r + 1$, then $\operatorname{Forb}(\mathcal{F})^L$ and $\mathcal{C}(r, 0)^L$ have roughly the same asymptotic speed. Note that this result does not contradict (4) when $\mathcal{F} = \{F\}$ and *F* does not contain a critical edge: if $\chi(F) = r + 1$, then, in view of (1) and (3), Theorem 3 implies the weaker statement that $|\operatorname{Forb}(F)_n^L|$ and $|\mathcal{C}(r, 0)_n^L|$ differ by a factor of $2^{o(n^2)}$.

2 Proof of Theorem 3

Lemma 7. Let \mathcal{P} be a monotone property and let $W \in \widehat{\mathcal{P}}$. If W' is a graphon such that $W' \leq W$ pointwise, then $W' \in \widehat{\mathcal{P}}$.

Proof. Consider the sequences of random graphs $\{G(n, W)\}_{n=1}^{\infty}$ and $\{G(n, W')\}_{n=1}^{\infty}$. Since $W' \leq W$ pointwise, a standard argument shows that the two sequences can be coupled so that for each $n, G(n, W') \subseteq G(n, W)$ almost surely. It is shown in [10, Theorem 3.1] that if $W \in \widehat{\mathcal{P}}$ then, for each $n, G(n, W) \in \mathcal{P}$ almost surely. It follows that for each n, we almost surely have $G(n, W') \in \mathcal{P}$, as well. Finally, it is shown in [5, Theorem 4.5] that $G(n, W') \to W'$ almost surely as $n \to \infty$, which implies that $W' \in \widehat{\mathcal{P}}$, as claimed.

Now we prove our main result, Theorem 3.

Proof of Theorem 3. We begin by showing that, up to equivalence of graphons, $\widehat{\mathcal{P}}$ contains a unique element of maximum entropy. By Theorem 2, there exists $t \in \mathbb{N} \cup \{\infty\}$ such that $\widehat{\mathcal{P}}^* \subseteq R_t$ up to equivalence of graphons.

First, suppose that $t < \infty$. Observe that if $W \in \widehat{\mathcal{P}}^* \cap R_t$, then $W \ge W_{t,0}^*$ pointwise, which by Lemma 7 implies that $W_{t,0}^* \in \widehat{\mathcal{P}}^*$. We claim that, up to equivalence of graphons, $W_{t,0}^*$ is in fact the only maximum-entropy element of $\widehat{\mathcal{P}}$. Indeed, let $W' \in \widehat{\mathcal{P}}^* \cap R_t$ and suppose that $\mu(W' = 1) > 0$. But then Lemma 7 implies that $\min\{W', 1/2\}$ is a graphon in $\widehat{\mathcal{P}}$ with entropy strictly larger than 1 - 1/t, which contradicts the definition of t.

Now we show that $t = \operatorname{col}(\mathcal{F}) - 1 = r$. Suppose that $t < \infty$. It is observed in [9, Remark 1.10] that if \mathcal{P} is hereditary and $0 \leq s \leq r < \infty$, then $W_{r,s}^* \in \widehat{\mathcal{P}}$ if and only if $\mathcal{C}(r,s) \subseteq \mathcal{P}$. By the definition of $\operatorname{col}(\mathcal{F})$, it is easy to see that if $u \leq r$, then $\mathcal{C}(u,0) \subseteq \mathcal{P}$ and hence $W_{u,0}^* \in \widehat{\mathcal{P}}$. On the other hand, \mathcal{F} contains some element of $\mathcal{C}(r+1,0)$, which implies that $\mathcal{C}(r+1,0) \notin \mathcal{P}$. This implies that $W_{u,0}^* \notin \widehat{\mathcal{P}}$ when $u \geq r+1$, and hence that t = r.

If $t = \infty$, then we claim that $\mathcal{P} = \operatorname{Forb}(\emptyset) = \mathcal{U}$; the conclusion then follows from (2). Suppose to the contrary that \mathcal{P} does not contain some graph F. Then $\mathcal{C}(\chi(F), 0) \not\subseteq \mathcal{P}$, which implies that $W^*_{\chi(F),0} \notin \widehat{\mathcal{P}}$. However, $W^*_{\chi(F),0} \leqslant W^*_{\infty,0}$ pointwise, so Lemma 7 implies that $W^*_{\infty,0} \notin \widehat{\mathcal{P}}$, which is a contradiction. Finally, since \mathcal{P} is a hereditary property, it follows from Theorem 1 that a uniformly random (labeled or unlabeled) element of \mathcal{P} converges in probability to Γ_r , as claimed. \Box

References

- N. Alon, J. Balogh, B. Bollobás, and R. Morris. The structure of almost all graphs in a hereditary property. J. Combin. Theory Ser. B, 101(2):85–110, 2011.
- [2] J. Balogh, B. Bollobás, and M. Simonovits. The number of graphs without forbidden subgraphs. J. Combin. Theory Ser. B, 91(1):1–24, 2004.
- [3] J. Balogh, B. Bollobás, and M. Simonovits. The typical structure of graphs without given excluded subgraphs. *Random Structures Algorithms*, 34(3):305–318, 2009.
- [4] B. Bollobás. Hereditary and monotone properties of combinatorial structures. In Surveys in Combinatorics 2007, volume 346 of London Math. Soc. Lecture Note Ser., pages 1–39. Cambridge Univ. Press, Cambridge, 2007.
- [5] C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi. Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. Adv. Math., 219(6):1801–1851, 2008.
- [6] P. Diaconis and S. Janson. Graph limits and exchangeable random graphs. Rend. Mat. Appl. (7), 28(1):33-61, 2008.
- [7] P. Erdős, P. Frankl, and V. Rödl. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. *Graphs Combin.*, 2(1):113–121, 1986.
- [8] P. Erdős, D.J. Kleitman, and B.L. Rothschild. Asymptotic enumeration of K_n-free graphs. In Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, pages 19–27. Atti dei Convegni Lincei, No. 17. Accad. Naz. Lincei, Rome, 1976.
- [9] H. Hatami, S. Janson, and B. Szegedy. Graph properties, graph limits, and entropy. Preprint, arXiv:1312.5626, 2013.
- [10] S. Janson. Graph limits and hereditary properties. *European J. Combin.*, to appear.
- [11] S. Janson and A.J. Uzzell. On string graph limits and the structure of a typical string graph. Preprint, arXiv:1403.2911, 2014.
- [12] L. Lovász. Large networks and graph limits, volume 60 of Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Providence, RI, 2012.
- [13] L. Lovász and B. Szegedy. Limits of dense graph sequences. J. Combin. Theory Ser. B, 96(6):933–957, 2006.
- [14] H.J. Prömel and A. Steger. The asymptotic number of graphs not containing a fixed color-critical subgraph. *Combinatorica*, 12(4):463–473, 1992.