
On computation of Baker and Norine’s rank on

complete graphs

Robert Cori ∗

LaBRI
Université de Bordeaux

Talence, France

cori@labri.fr

Yvan Le Borgne †

CNRS, LaBRI
Université de Bordeaux

Talence, France

borgne@labri.fr

Submitted: May 5, 2014; Accepted: Feb 3, 2016; Published: Feb 19, 2016

Mathematics Subject Classifications: 05C88, 05C89

Abstract

The paper by M. Baker and S. Norine in 2007 introduced a new parameter
on configurations of graphs and gave a new result in the theory of graphs which
has an algebraic geometry flavor. This result was called Riemann-Roch formula for
graphs since it defines a combinatorial version of divisors and their ranks in terms of
configurations on graphs. The so called chip firing game on graphs and the sandpile
model in physics play a central role in this theory.

In this paper we present an algorithm for the determination of the rank of
configurations for the complete graph Kn. This algorithm has linear arithmetic
complexity. The analysis of number of iterations in a less optimized version of this
algorithm leads to an apparently new parameter which we call the prerank. This
parameter and the parameter dinv provide an alternative description to some well
known q, t-Catalan numbers. Restricted to a natural subset of configurations, the
two natural statistics degree and rank lead to a distribution which is described by a
generating function which, up to a change of variables and a rescaling, is a symmetric
fraction involving two copies of Carlitz q-analogue of the Catalan numbers.

In annex, we give an alternative presentation of the theorem of Baker and Norine
in purely combinatorial terms.

1 Introduction

On a graph, a configuration is a map from its vertices to the integers of Z. Motivated by
the generalization for graphs of a Riemann-Roch theorem, Baker and Norine [6] defined

∗The first author acknowledges the support of ERC under the agreement “ERC StG 208471 - Ex-
ploreMap”
†Part of this work was done in PIMS, Simon Fraser University, Burnaby, Canada

the electronic journal of combinatorics 23(1) (2016), #P1.31 1

for any configuration a parameter they called rank. This parameter is an integer greater or
equal to −1. The abelian sandpile model [4, 17, 15] provides a framework for the original
definition of the rank which seems to involve non-trivial computations. At submission
date of this work, the complexity of the computation of the rank for general graphs was
unknown. Just after, Kiss and Tóthmérész announced on arXiv [25] their proof for general
graphs that computation is NP-hard.

The complete graph Kn is the non-oriented graph with n vertices and exactly one
edge between any pair of distinct vertices. We present here an algorithm which computes
the rank of a configuration in the particular case of complete graphs. We prove that our
most efficient version has a linear arithmetic complexity where the size of the problem
is the number of vertices of the graph. The design of this algorithm has enumerative
byproducts in the context of the rank parameter and also some intensively studied q, t-
Catalan numbers [23]. The results in this second context strengthen the connection with
the abelian sandpile model as in recent work involving one of the authors [19, 2].

Let G = (VG, EG) be an non-oriented connected simple graph without loops and with
vertex set VG and edge set EG. Baker’s and, Norine’s theorem [6] states that for any
configuration u = (ui)i∈VG ∈ Z|VG| of G,

rank(u)− rank(KG − u) = degree(u) + |EG| − |VG|

where the cardinality of a set E is denoted by |E|; the definition of the parameter rank
is still postponed to the preliminaries in Section 2; the configurations are seen as vectors
allowing additions and subtractions; the degree of the configuration u is degree(u) :=∑

i∈VG ui; the configuration KG := (ki)i∈VG is defined by ki := di−2 where di is the degree
of the vertex i which is its number of incident edges. In this context, a configuration is
called a divisor but we prefered to use the abelian sandpile model terminology. This paper
focus on the particular case where G is a complete graph Kn: we use the integers 1, 2, . . . n
to label the vertices VKn of the complete graph Kn; the configuration KKn = (ki)i=1...n

satisfies ki = n− 3 for all i.
The two next sections are dedicated to the design of our main algorithm which com-

putes the rank of a configuration on Kn. Section 2 focus on correctness of a first version
of the algorithm. We use the numerous symmetries of the complete graphs to obtain a
greedy algorithm computing the rank. The complexity of this version is not clear but
the aim of Section 3 is to optimize this algorithm. We select a particular run of this
non-deterministic first algorithm to reach the announced complexity while preserving the
correctness. The optimization requires to work at the level of orbits of a subgroup of
symmetries. The toppling equivalence, an additional equivalent relation on configura-
tions based on the sandpile model framework, shows that one can efficiently reduce the
computation to the case of a sorted parking configuration. The configuration u is a sorted
parking configuration if 0 6 ui < i for i < n and u1 6 u2 6 . . . 6 un−1. Notice that there
is no constrain on the value of un. If we had used the divisor terminology, we may called
this configuration a sorted n-reduced divisor. The optimized algorithm computes the rank
via the following rather explicit expression for the rank of a sorted parking configuration

the electronic journal of combinatorics 23(1) (2016), #P1.31 2

u in Kn:

rank(u) =

(
n−1∑
i=1

max(0, q − i+ ui + χ(i 6 r))

)
− 1.

where un + 1 = q(n − 1) + r is the euclidean division defining the quotient q and the
non-negative remainder r, and χ(P) is 1 if the proposition P is true and 0 otherwise.

The second optimized algorithm still manipulates the configurations as vectors. Yet
the proof that it corresponds to a run of the first algorithm deeply relies on another coding
of some configurations. These configurations on Kn may be encoded by a Dyck word of
size n − 1 and one or two integers depending on its additional properties. A word v on
the two-letter alphabet {a, b} is a Dyck word of size n if |v|a = |v|b = n and for any
prefix p of v, |p|a > |p|b where |v|c denotes the number of occurrences of letter c in the
word v. This data is embedded in a cut skew cylinder to make use of a cyclic symmetry.
The skew cylinder of circumference n is an already known slight variation of the usual
Z × Z/(n − 1)Z cylinder, for example already presented by Kramers and Wannier [22]
in 1941. The main interest of this skew is that it merges the usually “parallel” finite
cycles interpreting Z/(n − 1)Z into a single infinite spiral traversal isomorphic to Z. A
cut of this skew cylinder is a self-avoiding directed cycle made up of north and east
steps disconnecting the cylinder into two components. A classical cyclic lemma due to
Dvoretsky and Motzkin [20] implies that any cut may be defined by the choice of a Dyck
word of size n − 1 and a starting vertex. One interest of this change of encoding is that
computation on configurations becomes simpler updates of the Dyck word or the integers.
After all, our optimized algorithm on the configuration u = (ui)i may be interpreted as a
spiral traversal of un + 1 cells on a related cut skew cylinder counting the occurrences of
cells in one of the two components defined by the cut.

In Section 4, we describe as follows the generating function

Kn(r, d) :=
∑
u

rrank(u)ddegree(u) =
d(n−1

2)

rd
Mn(

1

d
, rd)

where u runs over sorted parking configurations on Kn and Mn(x, y) is the coefficient of
zn−1 in

M(x, y; z) :=
1− xy

(1− x)(1− y)

C(x;xz) + C(y; yz)− C(x;xz)C(y; yz)

1− C(x;xz)zC(y; yz)

where C(q; z) is a classical Carlitz q-analogue of Catalan numbers counting the Dyck
words according to size via the variable z and the later defined area via the variable q.
The formula for M(x, y; z) comes from the decomposition, on each cut skew cylinder, of
the spiral traversal at crossings of the cut, leading to geometric sums of reasons x or
y. If the sum in Kn(r, d) were not restricted to sorted parking configurations, we would
have reached a two-variable zeta function for graphs introduced recently by Lorenzini [28].
We provide a combinatorial interpretation of the generating function Mn(x, y) in terms
of cut skew cylinders. Those cut skew cylinders admits an natural involution ξ which

the electronic journal of combinatorics 23(1) (2016), #P1.31 3

roughly speaking consists in reversing the spiral traversal. This involution also explains
via a superimposition principle why Mn(x, y) = Mn(y, x). In addition, this involution
is related to the involution on configurations u → KKn − u appearing in Riemann-Roch
theorem for graphs.

In Section 5, we study connections of this work with q, t-Catalan numbers presented
for example by Haglund in [23]. These q, t-Catalan numbers (Cn(q, t))n∈N may be combi-
natorialy described by some pairs of statistics on a generic Dyck word w chosen among
the later defined area(w), bounce(w) and dinv(w):

Cn(q, t) :=
∑
w

qarea(w)tdinv(w) =
∑
w

qarea(w)tbounce(w)

where w runs over Dyck words of size n. The symmetry Cn(q, t) = Cn(t, q) is obvious
once non-trivially proven equivalent to some alternative definitions. There is still no
combinatorial explanation of this symmetry [24]. In this context,Haglund designed an
involution ζ on Dyck words which satisfies for any Dyck word w:

(dinv(w), area(w)) = (area(ζ(w)), bounce(ζ(w)))

establishing combinatorially the equivalence of the two presented definitions of Cn(q, t).
Our involution ξ on cut skew cylinders may be canonically restricted to Dyck words and
this restriction also called ξ. It appears that dinv(ξ(w)) = dinv(w). An early opti-
mization of our algorithm computing the rank leads us to the apparently new parameter
prerank(w) = area(ξ(w)). Hence we have

Cn(q, t) =
∑
w

qdinv(w)tprerank(w)

where w runs of Dyck words of size n. There is also a relation between the maps ζ and ξ:

ζ ◦ ξ = R ◦ ζ

where R(w) classically maps the Dyck word w to its reverse word where each occurrence
of a is replaced by b and conversely.

2 A first greedy algorithm

In our preliminaries, we recall classical properties of the abelian sandpile model and
Baker’s and, Norine’s definition of the rank parameter. We then prove the correctness
of our first version of a greedy algorithm computing the rank for a configuration in a
complete graph.

2.1 Preliminaries

Let G be a non-oriented connected graph without loops and where multiple edges are
allowed. We denote by V = {1, 2, . . . n} where n = |V | the vertex set of G and E its edge

the electronic journal of combinatorics 23(1) (2016), #P1.31 4

set. The number of edges of E between the vertices i and j is denoted by ei,j. Hence the
degree di of the vertex i ∈ V is

∑
j∈V ei,j. A configuration u = (ui)i∈V is a vector of Zn:

the possibly negative number of grains ui is placed on vertex i in configuration u. Since
a configuration u is a vector we can add or subtract configurations: the configuration
w = u − v is defined by wi = ui − vi for any vertex i. The degree of the configuration
u is degree(u) :=

∑
i∈V ui. In the abelian sandpile model, the toppling of the vertex i in

configuration u consists in sending from the vertex i one unit along each incident edge
to the opposite endpoint of the edge. These amounts of one unit are also called grains.
This leads to the configuration u′ = u−∆(i) where ∆

(i)
i := di and ∆

(i)
j := −ei,j otherwise.

This toppling is legal if ui > di ensuring that u′i > 0 and u′j > uj for any j 6= i. In
this paper non legal topplings are sometimes allowed. The toppling of vertex i preserves
the degree of any configuration since degree(∆(i)) = 0. Two configurations u and v are
toppling equivalent if they differ by a finite combination of topplings:

u ≡∆ v := ∃(ai)i∈V ∈ Nn, u = v −
∑
i∈V

ai∆
(i)

The symmetry of this equivalence relation comes from the relation
∑

i∈V ∆(i) = 0 which
allows to use −∆(i) =

∑
j 6=i ∆

(i) to change signs in the combination.
We mainly summarize with our notation the definition of the rank presented by Baker

and Norine in [6]. A configuration u is positive, also denoted u > 0, if ui > 0 for any vertex
i. A configuration v is effective if v is toppling equivalent to a positive configuration:
∃u, v ≡∆ u, and u > 0. The rank of the configuration u is defined by the following
optimization:

rank(u) := −1 + min
f

degree(f)

where f runs over all positive configurations such that u− f is non-effective. An optimal
choice f for the computation of rank(u) is called a proof for the rank of u. The set of
such proofs is denoted by Proofs(u).

The test that a configuration u is effective is a first difficulty in this description of the
rank since naively it may require to run over the infinite set of all configurations toppling
equivalent to u. Hopefully, one can limit the test to a canonical configuration in the class
of toppling equivalence: the n-parking configuration of u denoted park(u) which will be
defined below.1

Lemma 1 ([6],see also Proposition 37 in annex). We have u effective if and only if park(u)
is positive.

The definition of these n-parking configurations requires additional notions. By con-
vention the vertex n is distinguished and called the sink. A vertex i in configuration u is
unstable if ui > di where di is the degree of the vertex i in G. A configuration u is stable
outside the sink if any vertex i 6= n is stable. A configuration u is positive outside the
sink if for any vertex i 6= n, ui > 0. This is also denoted by u > 6=n 0. A subset of vertices

1It corresponds to the notion of n-reduced divisor.

the electronic journal of combinatorics 23(1) (2016), #P1.31 5

A is set-unstable in a configuration u if A is non-empty, n /∈ A and, in the configuration
u′ = u−

∑
a∈A ∆(a), we have u′a > 0 for any a ∈ A. In other words, A is set-unstable if the

toppling of all the vertices of A leads to a configuration whose restriction to A is positive.
If A is a singleton {i}, A is set-unstable if and only if i is unstable and hence the toppling
of i is legal. A configuration u is set-stable if there is no subset of vertices set-unstable
in u. A configuration u is n-parking, also shorten in parking, if u is stable and positive
outside the sink and set-stable. We refer to the literature [15] for a proof that any con-
figuration u is toppling equivalent to exactly one n-parking configuration. This property
implies that the parking configuration park(u) toppling equivalent to the configuration u
is well-defined. There exists many algorithms to compute the map u → park(u) on any
graph. A recent one is due to Baker and Shokrieh [7]. We will use the existence of such
an algorithm in this section but in Section 3 we will design a most efficient one in the
case of the complete graphs.

The stabilization process of the configuration u consists in toppling one unstable vertex
distinct from the sink n while there exists at least one. A key classical property of the
abelian sandpile model [15] is that this stabilization process terminates on a configuration
denoted stabilize(u) which is stable outside the sink and do not depend on the hence
unspecified order in which the unstable vertices are toppled.

2.2 A first greedy algorithm computing the rank on complete graphs

From now on we assume that G is a complete graph Kn with n > 2. Let ε(i) be the
configuration with ε

(i)
i = 1 and for j 6= i, ε

(i)
j = 0. We consider the following greedy

algorithm where the variable g is a configuration on Kn:

First greedy algorithm for the rank :
Input: A configuration u on Kn

u← park(u); rank ← −1; g ← 0;
While un > 0 do let i 6= n such that ui = 0 in u ← park(u − ε(i)); g ← g + ε(i);od;
Output: rank (= rank(u)) and g (∈ Proofs(u)).

Proposition 2 (Correctness of the rank algorithm). Given any configuration u on Kn,
the greedy naive algorithm for the rank terminates and returns rank(u) in the variable
rank and the configuration variable g ∈ Proofs(u) is a proof of this rank.

The postponed proof of this proposition requires two main proofs: one for the existence
of some vertex i 6= n such that ui = 0 in any parking configuration and another one that
g is a proof for rank(u). The second proof relies on the combination of the two following
lemmas: the first is related on symmetries of the complete graph Kn while the other,
more general, is probably folklore.

Lemma 3 (Greedy choice for rank’s proof on Kn). Let u be a positive configuration on
the complete graph Kn such that there exists a vertex i for which ui = 0. Then there exists
a proof g ∈ Proofs(u) for the rank of u such that gi > 0.

the electronic journal of combinatorics 23(1) (2016), #P1.31 6

Lemma 4 (Subproof for the rank). Let u be a configuration on any graph G and i a
vertex of G. Assume there is a proof g for the rank of u such that gi > 0. Then any proof
f ′ for the rank of u′ = u− ε(i) leads to a proof f = f ′ + ε(i) of the rank of u.

The possibility in our algorithm of a greedy choice for finding a proof for the rank
comes from the numerous symmetries of the complete graph. Let σ be a generic permu-
tation of the set Sn of permutations on elements of {1, 2, . . . n}. The action of σ on a
configuration u = (ui)i=1...n is defined by σ.u := (uσ(i))i=1...n. We gather in the following
lemma properties related to symmetries used in this section but also later:

Lemma 5 (Symetries on Kn and the rank). Let u and v be any configuration on Kn and
σ any permutation of Sn. We have :

1. u positive ⇐⇒ σ.u positive,

2. u ≡∆ v ⇐⇒ σ.u ≡∆ σ.v,

3. u effective ⇐⇒ σ.u effective,

4. g ∈ Proofs(u) ⇐⇒ σ.g ∈ Proofs(σ.u),

5. rank(σ.u) = rank(u),

6. If σ(n) = n (or with a slight abuse of notation σ ∈ Sn−1 ⊂ Sn) then:

(a) u positive outside the sink ⇐⇒ σ.u positive outside the sink,

(b) u set-stable ⇐⇒ σ.u set-stable,

(c) u parking ⇐⇒ σ.u parking.

(d) park(σ.u) = σ.park(u)

Now we listed the required lemmas to prove the correctness of the algorithm, we use
another schedule to prove them.

Proof. (of Lemma 5: Symmetries on Kn and the rank)
(1) is straightforward. We remark that σ acts also nicely on the configurations ∆(i),

hence u = v−
∑

i ai∆
(i) ⇐⇒ σ.u = σ.v−

∑
i ai∆

(σ(i)). This remark leads to (2); (1) and
(2) imply (3).

The following paragraph proves (4). If g ∈ Proofs(u) then u − g is non-effective and
for any positive configuration f such that degree(f) < degree(g), u− f is effective. From
(3) we deduce that σ.u−σ.g is non-effective and for any positive configuration f such that
degree(f) < degree(g), σ.u − σ.f is effective. Since {f |f > 0, degree(f) < degree(g)} =
{σ.f |σ.f > 0, degree(σ.f) < degree(σ.g)} we deduce that σ.g ∈ Proofs(σ.u). Conversely,
for the opposite implication of (4) we use similarly σ−1, the inverse permutation of σ.

(4) implies (5). The proof of (6.(a)) is similar to the proof (1) and the proof of (6.(b))
to the proof of (2): the single additional remark is that the sink vertex n is simultaneously
excluded from the set-unstable set of vertices and a fix-point of σ ∈ Sn−1 ⊂ Sn. (6.(a))

the electronic journal of combinatorics 23(1) (2016), #P1.31 7

and (6.(b)) imply (6.(c)). We have park(u) = u −
∑

i ai∆
(i) hence like in the proof of

(2), σ.park(u) = σ.u −
∑

i ai∆
(σ(i)) where σ.park(u) is parking according to (6.(c)) and

toppling equivalent to σ.u hence park(σ.u) = σ.park(u).

Proof. (of Lemma 3 Greedy choice for rank’s proof on Kn)
Let f ∈ Proofs(u). If fi > 0 then g = f concludes the proof. In the remaining

case, we have fi = 0. Since f is a proof, u − f is non-effective hence there exists a
vertex j such that uj − fj < 0. We have j 6= i since ui − fi = 0 − 0. We will show
that g = f + (fj − uj)(ε(i) − ε(j)) is the expected proof for the rank of u. By definition,
gi = fj − uj > 0 and more generally g is positive and degree(g) = degree(f). Hence it
simply remains to show that u− g is non-effective. We consider u′ = u− f + (fj −uj)ε(j).
Let σ = (ij) the transposition of Sn which exchanges i and j: σ(i) = j, σ(j) = i and
otherwise σ(k) = k. By definition u′j = uj − fj + (fj − uj) = 0 and u′i = 0 − 0 = 0, so
σ.u′ = u′. Hence:

σ.(u−g) = σ.(u−f−(fj−uj)(ε(i)−ε(j))) = σ.(u′−(fj−uj)ε(i)) = u′−(fj−uj)ε(j) = u−f.

Using σ.(u− g) = u− f and (3) in lemma 5 we deduce as expected that like u− f , u− g
is non-effective.

Proof. (of Lemma 4 Subproof for the rank) Let g a proof of u such that gi > 0 and f ′ a
proof of u′ = u− ε(i). On one hand, u′−f ′ = u− (f ′+ ε(i)) is non-effective so by definition
of g, degree(f ′) + 1 > degree(g). On the other hand, u′ − ε(i)) = u − g is non-effective
and g − ε(i) is positive so by definition of f ′ deg(g) − 1 > deg(f ′). Joining these hands,
degree(f ′) = degree(g)− 1. Since f = f ′ + ε(i) is of degree degree(g) and u− f = u′ − f ′
is non effective, f is a proof for the rank of u.

Proof. (of Proposition 2 Correctness of the rank algorithm)
First, if u is a parking configuration on Kn there exists a vertex i distinct from the

sink such that ui = 0. Indeed we obtain a contradiction if for any i 6= n, ui 6= 0. Since u is
positive outside of the sink, it means that ui > 1. Hence A = {1, 2, . . . n− 1} = V − {n}
is a set-unstable set. This is in contradiction with the assumption that u is parking.

We conclude the proof of correctness by an induction on the rank of the given configu-
ration u. If rank(u) = −1, the configuration u is non-effective so, according to Lemma 1,
park(u) has a negative value on the sink then the algorithm skips the while-loop and
returns rank = −1 and g = 0 as expected. Let m > 0. We assume that the algorithm is
correct on any given configuration of rank at most m−1. Let u be a configuration of rank
m, v = park(u) and i the first chosen vertex by the algorithm such that vi = 0. Lemma 3
on the greedy choice for the rank implies the existence of a proof g for the rank of u such
that gi > 0 and so g − ε(i) is positive. Since v − g = (v − ε(i))− (g − ε(i)) is non-effective,
the rank of v− ε(i) is at most m−1. Our inductive assumption implies that the algorithm
applied to v − ε(i) leads to a proof f of its rank. Applying Lemma 4 about subproofs for
the rank, the configuration f + ε(i) is a proof for the rank of the given u. This is also the
value in the variable g at the end of the run given the configuration u.

the electronic journal of combinatorics 23(1) (2016), #P1.31 8

3 An algorithm of linear arithmetic complexity

In this section we optimize the correct greedy naive algorithm. Subsection 3.1 explains
how to restrict quickly the algorithms to the manipulation of configurations soon defined
and called compact and sorted. Subsection 3.2 motivates this restriction by a bijection
between these compact and sorted configurations and pointed cut skew cylinders. This
second class of combinatorial objects may be encoded by a Dyck word and one up to
three integers. In the algorithms computing the rank or the parking configurations, atomic
updates or tests on configurations admits more regular interpretations in terms of pointed
cut skew cylinders. Subsection 3.3 translates a possible run of the algorithm for the rank
into a simple partial spiral traversal in the cut skew cylinder. The analysis of this traversal
leads to an explicit formula for the rank of a sorted and parking configuration based on a
single euclidean division. Subsection 3.4 describes an algorithm adapted to the complete
graph to find the parking configuration toppling equivalent to any given configuration.
We conclude this section by discussing the details of a possible implementation in linear
arithmetic complexity of an algorithm computing the rank of any configuration on Kn.

3.1 Restriction to compact and sorted configurations

The distinguished sink n on Kn implies that we frequently manipulate configurations
where the sink is the only particular case. We often abbreviate a configuration u =
(u1, . . . un) into (ui;un) which means implicitly that the variable i, part of the notation,
runs from 1 to n− 1. Our next definition illustrates this notation.

The compacted configuration uc of u is the configuration

compact(u) := uc := ((ui − un) mod n; degree(u)−
n−1∑
i=1

uci).

In other words, for i = 1 . . . n−1, uci := (ui−un) mod n and for i = n, ucn := degree(u)−∑n−1
i=1 u

c
i .

Lemma 6. (Compact configuration on Kn) For any configuration u on Kn, we have
compact(u) ≡∆ u.

Proof. On one hand, we topple un times each vertex different from the sink in the config-
uration u to obtain

u ≡∆ (ui;un)−
n−1∑
j=1

un∆(j) = (ui − un;nun).

On the other hand, by definition of uc := compact(u) there exists (k1, . . . , kn−1) ∈ Zn
such that for i 6= n, ui − un = uci + kin. Joining the hands, u ≡∆ (uci + kin;nun). Then
we consider

(uci + kin;nun)−
∑
j 6=n

kj(∆
(j) −∆(n)) = (uci ;nun − n

∑
j 6=n

kj) = (uci ; degree(u)−
∑
j 6=n

ucj)

the electronic journal of combinatorics 23(1) (2016), #P1.31 9

where ki(∆
(i) − ∆(n)) cancels kin in uci + kin and degree(u) is introduced using that

topplings preserve the degree of configurations. The rightmost term is the preceding
sequence of equalities is compact(u) which is hence proved to be toppling equivalent to
u.

This definition of compact(u) particular to the complete graphs is inspired by a work
on general graphs of Dhar, Ruelle and, Verma [18]. One find similar ideas also in [7]. We
observe that compact(u) can be quickly computed, it is positive and stable outside of the
sink but not necessarily equal to stabilize(u).

A configuration u on Kn is compact if

max
i 6=n,j 6=n

|ui − uj| 6 n.

It is straightforward that the configuration compact(u) is compact. Moreover, most
of the configurations appearing in the optimized algorithms are compacts.

Another aspect of the optimization consists in working at the level of orbits under
the action of Sn−1 ⊂ Sn permuting the vertices 1, 2, . . . n− 1 distinct from the sink. The
representative of the orbit of u will be the defined below sort(u) sorted configuration. A
configuration u is sorted if u1, . . . un−1 is weakly increasing: for i = 2 . . . n− 1, ui−1 6 ui.
Notice that there is no constraint on un. The configuration sort(u) is obtained by sorting
in weakly increasing order of the first n− 1 entries of the configuration u.

We also combine the action of Sn−1 and the toppling equivalence. Two configurations
u and v on Kn are toppling and permuting equivalent, denoted u ≡∆,Sn−1 v if there exists
a permutation σ ∈ Sn−1 ⊂ Sn such that u and σ.v are toppling equivalent.

Lemma 7. (compatibilities for toppling and permuting equivalence)
(1). The relation ≡∆,Sn−1 is an equivalence relation.
(2). Moreover, for any configuration u, there exists a unique sorted and parking configu-
ration v := sort(park(u)) toppling and permuting equivalent to u.

Proof. (1). The relation is symmetric mainly according to the second of the following
equivalences:

u ≡∆,Sn−1 v ⇐⇒ ∃σ ∈ Sn−1,∃(ai)i ∈ Z, σ.u = v −
n∑
i=1

ai∆
(i)

⇐⇒ ∃σ ∈ Sn−1,∃(ai)i ∈ Z, σ−1.v = u−
n∑
i=1

(−aσ−1(i))∆
(σ−1(i))

⇐⇒ v ≡∆,Sn−1 u

The transitivity of the relation comes from the composition of permutations. Let σ.u =
v −

∑n
i=1 ai∆

(i) and τ.v = w −
∑n

i=1 bi∆
(i) then

(τ ◦ σ).u = w −
n∑
i=1

(bi − aτ−1(i))∆
(i).

the electronic journal of combinatorics 23(1) (2016), #P1.31 10

(2). The existence of a sorted parking configuration toppling and permuting equivalent
to u is straightforward since by definition sort(park(u)) is such a configuration.

Our proof of the uniqueness considers two configurations u and v toppling and permut-
ing equivalent. By assumption, there is a permutation σ ∈ Sn−1 such that σ.u is toppling
equivalent to v. The uniqueness of the parking configuration in a toppling equivalent
class implies that park(σ.u) = park(v). Using the identity 6.(d) of Lemma 5 on symme-
tries of Kn, we deduce that σ.park(u) = park(v) hence sort(park(u)) = sort(park(v)) as
expected.

3.2 From sorted and compact configurations to pointed cut skew cylinders

The parking configurations on the complete graph Kn admits a more explicit description
which explains the adjective parking. A parking function of size n is a map f from
{1, 2, . . . n} to Z such that for i = 1 . . . n−1, f(i) > 0 and for j = 1 . . . n, |{i|f(i) > j}| 6
n− j. It was already noticed in [13] that a configuration u on Kn is parking if and only if
f defined by (f(i))i=1...n−1 := (ui)i=1...n−1 is a parking function of size n− 1. We already
observed that u is parking if and only if σ.u where σ ∈ Sn−1 ⊂ Sn, in particular sort(u),
is parking. Sorting simplifies the checking: a sorted configuration u is parking if and only
if for i = 1 . . . n− 1, 0 6 ui < i.

Until now, we manipulated the configurations as vectors in Zn. We introduce an
alternative description of sorted and compact configurations on Kn which will simplify
our analysis. This description requires some (painful but then rewarding) preliminaries.

40

46

52

58

64

70

35

41

47

53

59

65

30

36

42

48

54

60

25

31

37

43

49

55

20

26

32

38

44

50

15

21

27

33

39

45

10

16

22

28

34

40

5

11

17

23

29

35

0

6

12

18

24

30

1

7

13

19

25

2

8

14

20

3

9

15

4

10 5 0

5 10

4

15

9

3

20

14

8

2

25

19

13

7

1

30

24

18

12

6

35

29

23

17

11

5

40

34

28

22

16

10

a28↑1

a28↑2

a28↑3

a28↑4

a28↑5

a20↑1

a20↑2

a20↑3

a20↑4

a20↑5

a40↑1

a40↑2

a40↑3

a40↑4

a40↑5

Figure 1: Skew cylinder of circumference 6, two of its cuts and three oriented segments.

The skew cylinder of circumference n is a kind of skewed two dimensional grid em-
bedded in a cylinder. A first precise definition considers the quotient of the usual
grid of Z2 where each vertex of integer coordinates (x, y) admits the four neighbours
{(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)} by the equivalent relation (x, y) ≡ (x′, y′) if
there exists k ∈ Z such that (x′, y′) = (x+ kn, y + k(n− 1)). A possible notation for this
is Z2/(n, n− 1)Z. We fix our notation on a second precise and more explicit definition of
skew cylinder which has the drawback to partially hide the invariance by translation. This

the electronic journal of combinatorics 23(1) (2016), #P1.31 11

definition is illustrated by the example in Figure 1. The strip of n−1 rows is the subgraph
of the usual two dimensional grid Z2 induced by the vertices {(x, y)|x ∈ Z, 0 6 y 6 n−1}.
The two-dimensional of cell coordinates (x, y) ∈ Z2 is the unit square which corners are
{(x, y), (x−1, y), (x−1, y+1), (x, y+1)}. In other words the two-dimensional coordinates
of a cell are the coordinates of its south-east corner. For a cell c we denote by (x(c), y(c))
its two-dimensional coordinates. We will use the spiral coordinate as an alternative coor-
dinate for the cells of the strip. The cell of two dimensional coordinate (0, 0) is labeled by
the spiral coordinate 0 ∈ Z, then we label the cells, incrementing the spiral coordinate,
from south-west to north-east in the cells along the diagonal in north-east direction, then
the next diagonal is the next on the west. This spiral traversal labels all the cells of spiral
coordinate k ∈ N. In Figure 1, the spiral coordinate of each cell is indicated by the small
number written in the south-west corner. Negative coordinate −x is written x for graph-
ical purpose. This number is blue for partial cells in the top row and means that these
are repetitions of the cells on the bottom row. In the opposite direction and starting from
the cell (0, 0), the reversed spiral traversal labels all the cells with a non-positive spiral
coordinate. Hence, this spiral traversal defines a bijection between the cells of the strip of
n− 1 rows and Z. We frequently use the cell (of spiral coordinate) k ∈ Z and the vertex
(of spiral coordinate) k which is the south-east corner of this cell k. A more operational
description is that the cell of two dimensional coordinates (x, y) in the strip has spiral
coordinate ny − (n − 1)x and the cell of spiral coordinate k ∈ Z has two dimensional
coordinates (r − q, r) where k = q(n − 1) + r is the euclidean division of k by n − 1.
We turn this strip into the skew cylinder of circumference n by an identification of the
vertices of coordinates (x, 0) and (x + n, n − 1) which implies that the south side of the
cell (x, 0) is also the north side of the cell (x+ n− 1, n− 2).

In a word w, we denote by |w|x the number of occurrences of the letter x. An almost
balanced word of size n is a word on the alphabet {a, b} such that |w|a = n − 1 and
|w|b = n. Let Dn denotes the set of almost balanced words of size n.

Given a vertex k ∈ Z in the skew cylinder of circumference n and a word w on the
two-letter alphabet {a, b}, the embedding of the word w at vertex k is the path starting
from vertex k and such that an occurrence of letter a in w corresponds to a unit north
step and an occurrence of letter b to a unit east step. The cell of a north step in such a
path is the cell whose east side is the north step.

We first observe that the embedding at vertex m ∈ Z of an almost balanced word
w ∈ Dn in the skew cylinder of circumference n also ends at vertex m. This defines a
(self-avoiding) loop that we call a cut. The resulting cut skew cylinder is denoted by
cylinder[m 	 w]. In Figure 1, the blue path is a cut defining cylinder[10 	 abaababbabb]
and the magenta path is a cut defining cylinder[2 	 bbaabbaabab] = cylinder[−3 	
baabbaababb].

Definition 8. A cut skew cylinder cylinder[m 	 w] and two additional integers k ∈ Z
and s ∈ Z allow the definition of a configuration on Kn

scompact[k ⇒ m 	 w; s] := (ui;un) = (x(ai)− x(ak↑i); s)

where the ak↑i for i = 1 . . . n− 1 are the n− 1 north steps of the oriented segment which

the electronic journal of combinatorics 23(1) (2016), #P1.31 12

is the embedding of the word an−1 at vertex k, and ai is the north step of the cut on
cylinder[m 	 w] which crosses the same row as the north step ak↑i and x(.) is the first
coordinate of the two-dimensional coordinates of the starting vertex of a step.

In Figure 1, there are three oriented segments: the red one starts from 20, the orange
one from −40 and the green one from 28. The last one is drawn into two green lines since
it visits the two copies of the vertex 40. The red oriented segment, the blue cut and the
integer 39 define the configuration

scompact[20⇒ 10 	 abaababbabb; 39] = (2, 3, 3, 4, 6; 39)

= (x(10)− x(20), x(11)− x(26), x(17)− x(32), x(18)− x(38), x(14)− x(44); 39).

The properties of the description scompact[k ⇒ m 	 w; s] require additional prelimi-
nary definitions.

Two cells are connected in a cut skew cylinder if they share a common side which is
not a step of the cut. In the cut skew cylinder cylinder[m 	 w] there are two connected
components of cells: the left component L[m 	 w], which contains the cell m, and the
other called the right component R[m 	 w]. A cell is left if it belongs to L[m 	 w] and
right otherwise.

A Dyck word of size n is a word w on the two-letters alphabet A = {a, b} where for
any prefix p of w, |p|a > |p|b and in addition |w|a = |w|b = n. Any factorization w = w′w′′

defines a cyclic conjugate v = w′′w′ of the word w. The classical cyclic lemma due to
Dvoreztky and Motzkin [20] states that among the 2n − 1 distinct cyclic conjugates of
an almost balanced word w ∈ Dn exactly one may be written vb where v is a Dyck word
of size n− 1. We recover this lemma in our setting. In Figure 1, a dashed line indicates
the Dyck factor abaababbab respectively aabbaababb in the cyclic conjugate for the blue,
respectively magenta, cut. A first indication is that pairs (w, s) where w is a Dyck word
of size n− 1 and s ∈ Z are in classical bijection with sorted parking configurations on Kn

as follows.

(ui;un) = (
i∑

j=1

kj; s)↔ (w, s) = (abu2−u1abu3−u2 . . . abun−1−un−2abn−1−un−1 , un)

where2 w = bk1abk2abk3 . . . abkn . This bijection translates the fact that in a sorted parking
configuration u we have 0 6 ui < i for i = 1 . . . n − 1 into the fact that w is a Dyck
word. Another classical notion for an non-empty Dyck word w is its non-ambiguous
decomposition at first return w = afbg where f and g are both possibly empty Dyck
words.

We define the map T on sorted configurations on Kn:

T.u := sort(u−∆(n−1))

and the map E on sorted parking configurations on Kn which corresponds to the subtrac-
tion of one unit on a vertex with value 0 in the configuration:

E.u := u− ε(1).

2Remark that k1 = 0 and u1 = 0

the electronic journal of combinatorics 23(1) (2016), #P1.31 13

Proposition 9. (From sorted compact configurations to pointed cut skew cylinders)

1. A configuration u on Kn is sorted and compact if and only if there exists a word
w ∈ Dn and three integers (k,m, s) ∈ Z3 such that u = scompact[k ⇒ m 	 w; s].

2. For any factorization w = w′w′′ of w ∈ Dn we have

cylinder[m 	 w′w′′] = cylinder[m+ n|w′|a − (n− 1)|w′|b 	 w′′w′].

3. For any p ∈ Z, we have

scompact[k ⇒ m 	 w; s] = scompact[k + p⇒ m+ p 	 w; s].

4. The map (v, k, s)→ scompact[k ⇒ 0 	 vb; s] defines a bijection between the triplets
made up of a Dyck word v of size n− 1 and two integers (k, s) ∈ Z2 and the sorted
and compact configurations on Kn.

Moreover, the sorted and compact configurations toppling and permuting equivalent
to scompact[k ⇒ 0 	 vb; s] are exactly the configurations (scompact[k + r ⇒ 0 	
vb; s− r])r∈Z.

5. The restriction of T to sorted and compact configurations is well-defined and re-
versible. Moreover we have

T.scompact[k ⇒ m 	 w; s] = scompact[k − 1⇒ m 	 w; s+ 1]

and for any sorted and compact configuration u on Kn we have

T 1−n.u = u−∆(n).

6. The configuration scompact[k ⇒ m 	 w; s] is parking if and only if k = minL[m 	
w] where we use the spiral coordinate for cells of L[m 	 w]. Moreover

park(scompact[k ⇒ m 	 w; s]) = T k−minL[m	w].scompact[k ⇒ m 	 w; s]

= scompact[minL[m 	 w]⇒ m 	 w; s+ k −minL[m 	 w]].

7. The map (v, s) → scompact[0 ⇒ 0 	 vb; s] defines a bijection between the pairs
made up of a Dyck word v of size n − 1 and one integer s ∈ Z and the sorted and
parking configurations on Kn.

8. Let u = scompact[m⇒ m 	 vb; s] and v = afbg be the factorization at first return
of the Dyck word v and j = min(L[m 	 vb] − {m}) the second smallest spiral
coordinate of a left cell, we have

sort(park(E.u)) = scompact[j ⇒ j 	 gabfb; s− (j −m)]

where gabf is a Dyck word and moreover

L[j 	 gabfb] = L[m 	 vb]− {m}.

the electronic journal of combinatorics 23(1) (2016), #P1.31 14

Proof. 1. If u = (ui;un) is a sorted and compact configuration, let m = 0, k = (n− 1)u1,
s = un and w = abu2−u1abu3−u2abu4−u3 . . . abun−1−un−2abn−(un−1−u1) ∈ Dn. By definition,
we have u = scompact[k ⇒ m 	 w; s]. Conversely, given w ∈ Dn and (m, k, s) ∈ Z3.
Let k = q(n − 1) + r be the euclidean division of k by n − 1 and factorize w as w =
bk1abk2abk3 . . . abkn . By definition we have u = scompact[k ⇒ m 	 w; s] which is also
defined by un = s and ui = q +

∑i
j=1 kj. Hence u is sorted and un−1 − u1 =

∑n−1
j=2 kj 6 n

so u is also compact.
2. Moving the start of the cut along the first step does not modify the cut skew

cylinder. This remark leads to either cylinder[m 	 aw′] = cylinder[m+ n 	 w′a] or
cylinder[m 	 bw′] = cylinder[m− (n− 1) 	 w′b]. Iterations of these two rules leads to
the expected claim.

3. Two equal translations of the cut and the oriented segment preserve the pairs
(ai, ak↑i) and their differences x(ai)− x(ak↑i) hence proves the claim.

5. (see 4. below) Let u be a sorted and compact configuration. First we compute
explicitly

v := T.u = sort((u1 + 1, u2 + 1, . . . un−2 + 1, un−1 − (n− 1);un + 1))
= (un−1 − (n− 1), u1 + 1, u2 + 1, . . . un−2 + 1;un + 1)

where sort induces the cyclic permutation τ of the n−1 first entry sending n−1 to 1, since
un−1−(n−1) 6 u1+1 because u is compact. Moreover vn−1−v1 = un−2+1−un−1+(n−1) 6
n so v is also compact. The inverse of the cyclic permutation τ is well defined and also
the inverse of the toppling of n − 1 which corresponds to the toppling of all vertices
distinct from n− 1. The reader may then check that the inverse T−1 of T is the expected
composition of these two inverses, ie T−1.v = u.

According to 1., let (k,m,w, s) such that u = scompact[k ⇒ m 	 w; s]. Inspection
shows that scompact[k − 1⇒ m 	 w; s+ 1] = v = T.u.

During the computation of T 1−n = (T−1)n−1, the fact that τ−1 is cyclic implies that
each vertex distinct from the sink n is toppled n− 2 times and the sink n is toppled n− 1
times. Since toppling n− 2 times each vertex does not change the configuration and τ 1−n

is the identity we deduce that T 1−n is equivalent to one toppling of the sink n as claimed.
6. First we suppose that u is parking. The cells at west of the oriented segment

(ak↑i)i=1...n−1 are (k + n(i− 1))i=1...n−1. We consider the vector (li)i=1...n−1 where li is the
minimal spiral coordinate of a cell in the left component of L[m 	 w] on the same row as

ak↑i. Hence by definition of scompact[k ⇒ m 	 w; s], we have for i 6= n, ui = k+n(i−1)−li
n−1

.
The configuration u is sorted and parking so we have ui < i. This is equivalent to
k+n(i−1)−li

n−1
< i ⇐⇒ li > k − 1 ⇐⇒ li > k. Moreover, u1 = 0 so k = l1 ∈ L[m 	 w] and

k = minL[m 	 w].
Conversely, we suppose that k = minL[m 	 w]. The cut is made of east or south steps

so k ∈ L[m 	 w] implies recursively via the north sides of cells that k+n(i−1) ∈ L[m 	 w]
for i = 1, . . . , n− 1. Combined with the backward equivalences of the previous argument
we have k 6 li 6 k + n(i− 1) and so 0 6 ui < i. So u is a sorted parking configuration.

The power of T in the description of park(scompact[k ⇒ m 	 w; s]) is chosen so that,
in the resulting configuration, the oriented segment starts at the vertex in the south-east

the electronic journal of combinatorics 23(1) (2016), #P1.31 15

corner of the cell minL[m 	 w]. This choice is correct by uniqueness of the toppling and
permuting equivalent sorted and parking configuration.

7. Let u = scompact[k ⇒ m 	 w; s] be a parking configuration. According to 6.,
k = minL[m 	 w] ∈ L[m 	 w]. Hence the cell k− (n−1) sharing the vertical east side of
the cell k belongs to R[m 	 w]. So this vertical side is a step of the cut of cylinder[m 	
w] and according to 2. there exists a cyclic conjugate w′ of w and k′ ∈ Z such that
u = scompact[k′ ⇒ k′ 	 w′; s]. According to 3., we have u = scompact[0 ⇒ 0 	 w′; s].
We have minL[0 	 w′] = 0 so the cells (−i)i=1...n−1 belong to R[0 	 w′]. This implies
that w′ = vb where v is a Dyck word of size n− 1.

Conversely, if u = scompact[0⇒ 0 	 vb; s] where v is a Dyck word of size n− 1, then
minL[0 	 vb] = 0 so u is sorted and parking.

The map (v, s) → scompact[0 ⇒ 0 	 vb; s] is obviously injective. Hence this map is
the expected bijection.

4. Let u be a sorted and compact configuration and u′ = sort ◦ park(u). According to
6., there exists m ∈ Z such that u = Tm.u′. According to 8., u′ = scompact[0⇒ 0 	 vb; s]
where v is a Dyck word of size n − 1 and s ∈ Z and the pair (v, s) is unique. Hence,
according to 5., u = Tm.scompact[0 ⇒ 0 	 vb; s] = scompact[m ⇒ 0 	 vb; s−m]. The
observation of the value on the sink n shows that all sorted and compact configurations
(scompact[m ⇒ 0 	 vb; s−m])m∈Z are distinct and toppling and permuting equivalent
to u′ and also u.

8. By definition, m = minL[m 	 afbgb]. Inspection shows that the explicit occurrence
of the letter b in the factor afb corresponds to the south side of the cell j. Hence j =
m + |afb|a and the vertex j belongs to the cut. Changing the start of the cut from
m to j, we also have u = scompact[m ⇒ j 	 gbafb; s]. By definition the occurrence
of the letter a in gbabfb, appears in the definition of u1. Hence the commutation of
this occurrence of a with the preceding occurrence, which is necessarily a letter b, has
two consequences. First, exactly u1 is decremented by one, leading to the sorted and
compact configuration E.u = scompact[m ⇒ j 	 gabfb; s]. Second, the left cell m in
scompact[m ⇒ j 	 gbafb; s] becomes a right cell in scompact[m ⇒ j 	 gabfb; s] since
the cut visiting the south and east side of cell m in the first case, visits the west and north
side of this cell after the commutation. As expected, we have L[j 	 gabfb] = L[m 	
afbgb] − {m}. Moreover, after the deletion of the smallest value m, the second smallest
value j becomes minimal: minL[j 	 gabfb] = j. By application of 6., we deduce that
sort(park(E.u)) = Tm−j.E.u = scompact[j ⇒ j 	 gabfb; s− (j −m)].

3.3 An explicit formula for the rank of sorted parking configurations on Kn

We describe a possible run of our correct first greedy algorithm for the rank presented
in Section 2 combined with the action of the symmetric group Sn−1 ⊂ Sn. In a sorted
parking configuration u, we necessarily have u1 = 0 which will be our systematic choice
of i 6= n such that ui = 0. Hence a possible run of the correct algorithm on parking
configurations in terms of the sorted configurations is

the electronic journal of combinatorics 23(1) (2016), #P1.31 16

Algorithm selecting a run for the rank on sorted configurations:
Input: A sorted parking configuration u on Kn

rank ← −1;
While un > 0 do u← sort(park(E.u)); rank ← rank + 1; od;
Output: rank(= rank(u))

This run is tightly related to the following spiral traversal of some cells of the cut skew
cylinder such that u = scompact[m ⇒ m 	 vb; s]. We define S[m	vb](s) = min{s′|s′ >
s and s′ ∈ L[vb 	 s]} which is the minimal spiral coordinate strictly greater than s of a
left cell in cylinder[m 	 vb].

Algorithms for the rank via a spiral traversal on a cut skew cylinder:

Input: A sorted parking configuration u = scompact[m⇒ m 	 vb; s] on Kn.
rank =← −1;
For k from m to F (u) do

if k is a left cell (k ∈ L[m 	 vb]) then rank ← rank + 1; od;
Output: rank(= rank(u)).

0 0 0 1 1 1 4 7 7 9 26

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

3

2

1

1

0

0

1

2

1

2

= 13

R = 7

Q = 2

Figure 2: Calculation of the rank on a Dyck path

We use two versions of this algorithm corresponding to the two distinct definitions of
F (u). If F (u) := S[m	vb](m + s)− 1, it defines the extended spiral traversal for the rank.
If F (u) := m + s, it defines the shortest spiral traversal for the rank. In Figure 2, we
labeled the cells visited by the shortest spiral traversal for the rank of

u = (0, 0, 0, 1, 1, 1, 4, 7, 7, 9; 26) = scompact[0⇒ 0 	 aaabaaabbbabbbaabbabb; 26].

the electronic journal of combinatorics 23(1) (2016), #P1.31 17

The 14 visited cells in the left component contains a green disk so the returned value for
the rank is 13. These two versions of the spiral traversal produce exactly the same values
since all the additional cell visited in the extended version belongs to the right component
by definition of S[m	vb](m + s). The extended spiral is closer to the algorithm selecting
a run for the rank while the shortest spiral induces more symmetries in the forthcoming
the enumerative studies.

This paragraph consider the connection between the extended spiral traversal for the
rank and the selected run on sorted configurations for the rank. We discuss the beginning
of this spiral traversal, if any. If s < 0, then S[m	vb](m+s) 6 m so there is no loop iteration
and the output rank = −1 as expected. Otherwise, let j = S[m	vb](m). We consider the
iterations for k from m to j−1. It visits j−m cells m,m+1,. . . j−1 where m is a left cell
and all other cells are right while j is the next left cell. This part may be interpreted as
the computation of sort(park(E.u)) = scompact[j ⇒ j 	 gabfb; s− (j −m)] as described
by 8. in Proposition 9: move via operator E the left cell m = minL[m 	 vb] to the right
component, increment the rank, then visit via operator T−1 all the j−m cells starting at
m in spiral order until you find the next left cell j = minL[j 	 gabfb]. In addition, the
value of s is decremented at each visit of a cell so we have S[m	vb](m+s) = S[j	gabfb](j+s).
Hence, by induction, we observe that this traversal simulates the run of the sorted version
of the correct algorithm.

Proposition 10. (Reading a proof for the rank using spiral traversals)
Let u = scompact[m⇒ m 	 vb; s] be a sorted parking configuration. The extended spiral
traversal for the rank on cylinder[m 	 vb] returns rank(u).

Proof. The discussion preceding this proposition shows that the correct algorithm on
sorted configurations with input u is simulated by the traversal algorithm on cylinder[m 	
vb] so that both return rank(u).

We recall that by definition all the cells of spiral indices from m+s+1 to S[m	vb](s)−1,
if any, are right cells so the extended and shortest spiral traversals, which differs only by
these cells, returns the same value. We can also recover from the shortest traversal a
proof g for the rank of the sorted parking configuration u = scompact[m ⇒ m 	 vb; s].
For a cut skew cylinder and i = 1 . . . n − 1 we define the set Li[m 	 vb; s] of left cells of
spiral coordinate at most m+ s and on the same row as the step related to am↑i the i-th
step of the oriented segment an−1 starting at m.

Proposition 11. (Reading a proof for rank in spiral traversals) Let u = scompact[m ⇒
m 	 vb; s] be a sorted parking configuration on Kn. The configuration g = (gi; gn) :=
(|Li[m 	 vb; s]|; 0) is a proof for rank(u).

Proof. In the correspondence between the selected run on sorted configurations and the
extended traversal, a grain ε(i) is removed on the vertex i each time a cell of the row
related to ui is moved from the left to the right component. All such left cells are the left
cells in L[m 	 vb] of spiral coordinate between m and m+ s since between m+ s+ 1 and
m+ S[m	vb](m+ s)− 1 there are only right cells, if any. When those cells are partitioned

the electronic journal of combinatorics 23(1) (2016), #P1.31 18

into rows, it corresponds exactly to the definition of Li[m 	 vb; s]. Hence gi count the
number of removed grains on vertex i during the algorithm so g is a proof for the rank of
u according to the sorted version of the correct greedy naive algorithm.

It appears that the (|Li[m 	 vb; s]|)i=1...n−1 may be efficiently computed via a single
euclidean division.

Theorem 12. (Formula for the rank of a sorted parking configuration) Let u be a sorted
parking configuration on Kn and un + 1 = q(n− 1) + r the euclidean division of un + 1 by
n− 1.

rank(u) =

(
n−1∑
i=1

max(0, q − i+ 1 + ui + χ(i 6 r)

)
− 1

and the proof for the rank found from the algorithm selecting a run for the rank by col-
lecting removed grains is

g = (max(0, q − i+ 1 + ui + χ(i 6 r); 0).

Proof. Let u = scompact[m ⇒ m 	 vb; s] with s = un. In this proof, we consider that
the visited cells during the traversal algorithm are exactly the cells with spiral coordinate
from m to m+s, if any. It means that we deliberately ignore the cells of spiral coordinates
from m+s+1 to m+S[m	vb](m+s)−1. These cells are necessarily right cells by definition
of S[m	vb](m+ s). With this convention, the number of visited cells on the row crossed by
am↑i is q + χ(i 6 r). Moreover, on this row the traversal begins by visiting all the right
cells of spiral coordinate at least m. These cells are counted by i−1−ui > 0 by definition
of scompact[m⇒ m 	 vb; s]. We conclude that

|Li[m 	 vb; s]| = max(0, (q + χ(i 6 r))− (i− 1− ui))

since the visited left cell on the row crossed by am↑i are the visited cells minus the possibly
first visited right cells. This shows that g is the proof computed by the traversal algorithm
and a summation leads to the formula for the rank.

3.4 Optimizing the search of the equivalent sorted parking configuration

We describe here an efficient algorithm to compute for any configuration u on Kn the
toppling and permuting equivalent configuration sort(park(u)).

Search toppling and permuting equivalent sorted parking configuration
Input: A configuration u on Kn.
u′ ← compact(u);
u′ ← sort(u′);
For i from 1 to n− 1 do ki ← (n− 1)u′i − n(i− 1);od;
imax ← i such that ki = maxj=1...n−1(kj);
Let kimax = q(n− 1) + r be the euclidean division by n− 1 defining q and r;
For i from 1 to n− 1 do u′′i ← u′((i−1−r) mod (n−1))+1 − q + r + χ(i 6 r);od;
u′′n ← u′n + kimax ;
Output: The configuration u′′ (= sort(park(u))).

the electronic journal of combinatorics 23(1) (2016), #P1.31 19

Proposition 13. The preceding algorithm correctly returns u′′ = sort(park(u)) and may
be implemented with a linear arithmetic complexity.

Proof. First we show that this algorithm is correct.
We implicitly use a formula for T j.u where j ∈ Z and u is a sorted compact configu-

ration:

T j.u = (T (1−n))−qT r.u = T r.u+ q∆(n) = (u(i−1−r mod n−1)+1 − q + r − nχ(i 6 r);un + j)

where j = q(n−1)+r is the euclidean division of j by n−1. This formula is obtain by itera-
tion of the formula in the proof of 5. in Proposition 9. Roughly speaking, u(i−1−r mod n−1)+1

takes into account the cyclic permutations induced by T r, −q corresponds to the −q top-
plings of the sink, +r to the r topplings of vertices in T r and −nχ(i 6 r) compensate in
the case where the vertex is toppled once during the computation of T r.

The configuration u′ = sort(compact(u)) is a sorted and compact configuration. We
search the power j ∈ Z such that T j.u′ = u′′ = sort(park(u′)). If u′′ = T j.u′ is sorted
and parking then in particular u′′1 = 0. We use this equality as a criterion to filter
the possible values of j. We discuss the n − 1 possible values of r and indeed the two
values of χ(1 6 r). It will appear that for each value there exists a single value jr such

that u(r) := T jr .u′ satisfies u
(r)
1 = 0. For any choice of r, let jr = qr(n − 1) + r the

euclidean division by n− 1 of this hypothetical jr and i = (1− r) mod (n− 1) + 1. We

then use the preceding formula for T jr .u′. If r = 0 then i = r + 1 and u
(r)
1 = 0 ⇐⇒

u′i−qr +r = 0 ⇐⇒ jr = (n−1)u′i+nr = (n−1)u′i+n(i−1). If r > 0 then i = n−r and

u
(r)
1 = 0 ⇐⇒ u′i−qr+r−n = 0 ⇐⇒ jr = (n−1)u′i+nr−n(n−1) = (n−1)u′i+n(i−1).

Hence, the expected value of j appears in {(n − 1)u′i + n(i − 1)}i=1...n−1 also called the
{ki}i=1...n−1 in the algorithm.

We may write u′ = scompact[k ⇒ 0 	 w; s] for k = (n−1)u′1, s = u′n and some almost
balanced word w. Since by definition T jr .u′ = u(r) = scompact[k − jr ⇒ 0 	 w; s+ jr]

satisfies u
(r)
1 = 0, the cell of spiral coordinate k − jr is a left cell of cylinder[0 	 w]. In

the cut skew cylinder related to the sorted and parking u′′ = T j.u′ the cell k − j should
also be minL[0 	 w] according to 6. in Proposition 9. This means that j is the maximal
value among the {jr}r=1...n−1 = {ki}i=1...n−1. This value is called kimax in the algorithm.
This algorithm is correct since it returns u′′ = T kimax .u′ computed via the first formula of
this proof.

Then we discuss how this algorithm may be implemented within a linear arithmetic
complexity also called O(n).

The explicit definition of compact(u) may be evaluated in O(n). The sort of the
compact configuration u′ = compact(u) may be performed in O(n) using a classical sort
by values since those values are between 0 and n − 1. More precisely we use a vector
v = (vi)i=0...n−1 initialized to v = 0 ∈ Zn−1, then we increment v[u′i] for i = 1 . . . n− 1 and
finally we compute sort(u′) has the concatenation of blocks of vi values i for i from 0 to
n − 1. Our model of complexity is called arithmetic since we assume that an euclidean
division or a comparison may be performed in constant time, no matter of the size of
the involved integers. Within this framework, the evaluation of the ki, the search of the

the electronic journal of combinatorics 23(1) (2016), #P1.31 20

maximal element max{ki}i=1...n−1 by a classical loop and the evaluation of T kimax .u′ are
explicitly in O(n).

Theorem 14. There exists an explicit algorithm of linear arithmetic complexity computing
the rank of any configuration on the complete graph Kn.

Proof. Let u be a configuration on Kn. We compute u′ = sort(park(sort(compact(u))))
in O(n) via the preceding algorithm. Then we return rank(u′)(= rank(u)) computed via
an evaluation in O(n) of the formula in Theorem 12.

4 Enumerative byproducts related to the context

The degree and rank parameters are the two parameters on configurations involved in
the Riemann-Roch theorem for graphs. These two parameters are invariant by toppling
and permuting vertices. We use as canonical element the unique sorted and parking
configuration in each equivalence class by toppling and permuting. Hence, a natural
generating function in this context is

Kn(r, d) :=
∑
u

rrank(u)ddegree(u)

where u runs on sorted parking configurations on Kn. This series is not a usual power
series since degree(u) may be as small as wished however if is a formal Laurent series.

14 14 13

1

12

2

10

4

7

7

4

8

2

1

9

3

1

4

8

2

7

7 10

4 12

2 13

1 14

14

d−2d−1d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10d11d12

r−1

r0

r1

r2

r3

r4

r5

r6

1

4

7

10

12

13

14

4

9

8

7

4

2

1

7

8

3

2

10

7

2

1

12

4

13

2

14

1

14

14

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

Figure 3: Part of the support of K5(r, d) and the related support of M5(x, y)

Inspection of the data for the small values of n leads to conjecture a symmetry. In
the left part of Figure 3 we present the values in a two dimensional array where the cell
(i, j) contains the coefficient [dirj]K5(r, d) for configurations on the complete graph K5

of degree between −2 and 12. The complete support of K5(d, r) would require to add
an half-infinite diagonal and an half-infinite horizontal line filled with the value 14. The
coefficients 1, 4, 7, 10, 13, 14, 14, . . . along the diagonal starting at r−1d5 also appears along
the bottom horizontal row starting at the same r−1d5. This property also appears for
the next pairs of diagonals and horizontal rows. In the right part of the same Figure 3,

the electronic journal of combinatorics 23(1) (2016), #P1.31 21

the change of variable (degree, rank) → (rank + 1,
(
n−1

2

)
− degree + rank) lay the values

out so that the symmetry is the more explicit symmetry along the main diagonal. This
motivates the definition of the two parameters xpara(u) := rank(u) + 1 and ypara(u) :=(
n−1

2

)
− degree(u) + rank(u) on a configuration u and the definition of the generating

function
Mn(x, y) :=

∑
u

xxpara(u)yypara(u)

where u runs overs sorted parking configurations on Kn.
This generating function is a power series in x and y since by definition rank(u) > −1

so xpara(u) > 0 and ypara(u) > 0 will be deduced from the proof of the conjectural
symmetry Mn(x, y) = Mn(x, y). This symmetry will be proven by the involution of
Riemann-Roch theorem detailed in Subsection 4.1. We will interpret this involution in
terms of cut skew cylinders. This interpretation will provide in Subsection 4.2 an alterna-
tive definition of the parameters xpara and ypara in terms of the traversal computing the
rank. Moreover,in Subsection 4.3 geometric sums will appear along these computations
and their summations will lead to an expression for

M(x, y; z) =
∑
n>1

Mn(x, y)zn

as a rather simple rational function involving two copies of a classical generating
function on Dyck words.

4.1 On the involution in Riemann-Roch theorem

For the graph G, the Riemann-Roch theorem relates the ranks of configurations u and
KG−u on G. The map u→ KG−u is an involution. For the complete graph G = Kn, we
have KG = (n−3;n−3). In this case, this involution combines nicely with the equivalence
by toppling and permutation: if u and v are toppling and permuting equivalent then also
are KG− u and KG− v. This leads to the involution on sorted parking configurations on
Kn,

ξ.u := sort ◦ park(KG − u).

Proposition 15. Let u be a sorted parking configuration on Kn, we have

(xpara(ξ.u), ypara(ξ.u)) = (ypara(u), xpara(u)).

Proof. The proof is similar for any configuration u on Kn. The Riemann-Roch theorem
applied to u implies that

xpara(KG − u) = rank(KG − u) + 1 = rank(u)− degree(u) +

(
n

2

)
− n+ 1 = ypara(u).

Applying the same proof to KG − u, we obtain ypara(KG − u) = xpara(u).

Corollary 16. For any n > 1, we have Mn(x, y) = Mn(y, x).

the electronic journal of combinatorics 23(1) (2016), #P1.31 22

This involution ξ corresponds to an natural involution on cut skew cylinders. Roughly
speaking, the involution on cut skew cylinders consists in reversing the order in which the
cells are visited along the spiral traversal.

For a word w = w1w2 . . . wk the reverse word is w̃ = wkwk−1 . . . w1. For any Dyck
word w, let w = fabg be the last maximum factorization where |fa|a−|fa|b is the longest
prefix p of w where the maximal value |p|a − |p|b is reached. We define the map

ξ(w) := af̃bg̃.

This map is an involution since in the last maximum factorization f ′abg′ of ξ(w) we have
f ′a = af̃ and bg′ = g̃b. A restriction of this involution ξ appears in previous work of one
of the authors [27].

In terms of cut skew cylinder, the involution ξ on sorted parking configurations will
map the cell of spiral coordinate to a cell of spiral coordinate C(w)−s where by definition

C(w) := maxR[0 	 w]−minL[0 	 w].

Proposition 17. Let u = scompact[0 ⇒ 0 	 wb; s] be a sorted parking configuration on
Kn and w = fabg the last maximum factorization of w. We have

ξ.u = scompact[0⇒ 0 	 ξ(w)b;C(w)− s− 1].

28

28

36

36

44

44

52

52

60

60

68

68

76

76

21

21

29

29

37

37

45

45

53

53

61

61

69

69

14

14

22

22

30

30

38

38

46

46

54

54

62

62

7

7

15

15

23

23

31

31

39

39

47

47

55

55

0

0

8

8

16

16

24

24

32

32

40

40

48

48

1

1

9

9

17

17

25

25

33

33

41

41

2

2

10

10

18

18

26

26

34

34

3

3

11

11

19

19

27

27

4

4

12

12

20

20

5

5

13

13

6

6

7

7

14

14

6

6

21

21

13

13

5

5

28

28

20

20

12

12

4

4

35

35

27

27

19

19

11

11

3

3

42

42

34

34

26

26

18

18

10

10

2

2

49

49

41

41

33

33

25

25

17

17

9

9

1

1

56

56

48

48

40

40

32

32

24

24

16

16

8

8

63

63

55

55

47

47

39

39

31

31

23

23

15

15

a21↑1

a62↑1

a21↑2

a62↑2

a21↑3

a62↑3

a21↑4 a62↑4

a21↑5

a62↑5

a21↑6

a62↑6

a21↑7

a62↑7

Figure 4: Example of the superimposition principle

From the briefly postponed proof of this proposition, we extract in a lemma the fol-
lowing superimposition principle for u = scompact[k ⇒ m 	 w; s] based on the involution
which maps the cell k ∈ Z to the cell −k ∈ Z reversing the spiral ordering of cells.

the electronic journal of combinatorics 23(1) (2016), #P1.31 23

Lemma 18. (Superimposition principle) Let u = scompact[k ⇒ m 	 w; s] be a sorted
and compact configuration on Kn.

u′ := (−un−i;un) = scompact[k′ ⇒ m′ 	 w′; s′]

where k′ = n(1− n) + (2n− 1)− k, m′ = (2n− 1)−m, w′ = w̃ and s = s′.

Proof. The configuration scompact[k ⇒ m 	 w; s] is defined by a cut skew cylinder
cylinder[m 	 w] and an oriented segment k ↑. The claim is the consequence of the
following symmetries: reverse the orientation of the segment k ↑, reverse the order in which
the cells are visited, the cell k becoming the cell −k, and change the corner related to a cell
from south-east to north-west. This leads to a new cut skew cylinder cylinder[m′ 	 w′]
and a new oriented segment k′ ↑ (toward south). This data defines the new configuration
u′ = scompact[k′ ⇒ m′ 	 w′; s] as the image via the central symmetry with respect to
the origin exchanging left and right and also top and bottom. An example is provided
in Figure 4 where in red are the initial data and in green the new data. In this case,
the green oriented segment 21 ↑ is reversed to become the red oriented segment 62 ↑.
Inspection shows that k′ = −n2 + 3n− 1−k, m′ = 2n− 1−m, and w′ = w̃. We also have

u′ := (u′i;u
′
n) = (−un−i;un)

since the differences of abscissa are opposite and the order of steps in the oriented segment
k′ ↑ reversed compared to k ↑.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

41

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3323

Figure 5: Superimposition principle for the traversals related to the computation
of the rank of scompact[0 ⇒ 0 	 aabaaabbabbabbb; 10] and scompact[0 ⇒ 0 	
aaabaabbbabbabb; 7].

We then use this superimposition principle in the proof of Proposition 17.

Proof. By definition, we have

sort(KG − u) = (n− 3− un−i;n− 3− un) = (−un−i;−un)− (n− 3)∆(n) + n(n− 3)ε(n).

the electronic journal of combinatorics 23(1) (2016), #P1.31 24

We factorize w in w = fabgb where v = fabg is the factorization at last maximal
height of the Dyck word v defined by w = vb. Using the superimposition principle of
Lemma 18 and changing the value of un to its opposite, we have

(−un−i;−un) = scompact[−n2 + 3n− 1⇒ 2n− 1 	 bg̃baf̃ ;−s].

It appears that af̃bg̃b = ξ(v)b is a cyclic conjugate of bg̃baf̃ . According to 2. in Proposi-
tion 9, we change the start of the cut to make appear this cyclic conjugate:

(−un−i;−un) = scompact[−n2 + 3n− 1⇒ 2n− 1 + n|bg̃b|a − (n− 1)|bg̃b|b 	 ξ(v)b;−s].

On one hand w is a cut, so we have n|w|a+(n−1)|w|b = 0, hence n|bg̃b|a− (n−1)|bg̃b|b =
−n|fa|a+(n−1)|fa|b. On another hand, since m = 0 = minL[0 	 w], C(w) = maxR[0 	
fabg] is also the spiral label of the cell whose west vertical side is related to the explicit
occurence of a in w = fabgb, hence C(w) = n|fa|a − (n− 1)|fa|b − (2n− 1). These two
observations leads to

(−un−i;−un) = scompact[−n2 + 3n− 1⇒ −C(w) 	 ξ(v)b;−s].

Using 3. of Proposition 9, we increment the labeling of cells by C(w) so that the cut starts
in cell 0:

(−un−i;−un) = scompact[−n2 + 3n− 1 + C(w)⇒ 0 	 ξ(v)b;−s].

Adding n(n− 3)ε(n) modifies only the value on the sink n and the n− 3 topplings of this
sink n are equivalent to T (1−n)(n−3) hence using 5. of Proposition 9 we obtain

sort(KKn + (−un−i;−un)) = scompact[3(1− n) + C(w)⇒ 0 	 ξ(v)b;−s+ (n− 3)].

According to 6. (and then 5.) in Proposition 9, we apply T 3(1−n)+C(w) to obtain the
toppling and permuting equivalent parking configuration sort(park(KKn −u)) = ξ.u with
the claimed expression in the proposition.

4.2 Interpretation of (xpara, ypara) on cut skew cylinders

Let u = scompact[0⇒ 0 	 vb; s] be a sorted parking configuration on Kn. Let w a cyclic
conjugate of vb and m ∈ Z be such that cylinder[m 	 w] = cylinder[0 	 vb] proven
by a change of the start for the cut. The parameters xpara(u) and ypara(u) admits a
description in terms of cylinder[m 	 w] and s. The crossed left cells of u = scompact[k ⇒
m 	 w; s] are

CL[m 	 w; s] := {k|k 6 s and k ∈ L[m 	 w]}.
We also consider the uncrossed right cells defined by

UR[m 	 w; s] := {k|k > s and k ∈ R[m 	 w]}.

We denote the cardinalities of these sets by

left[m 	 w; s] := |CL[m 	 w; s]| and right[m 	 w; s] := |UR[m 	 w; s]|

the electronic journal of combinatorics 23(1) (2016), #P1.31 25

We illustrate these definitions in Figure 5 in the particular case w = vb where v =
aabaaabbabbabb is a Dyck word and so m = 0, and s = 10. This factorization w = vb is also
proven by the dashed green diagonal. The traversal of cells computing rank(scompact[0⇒
0 	 vb; s]) visits the cells of spiral coordinate from 0 to s and those cells are crossed by a
green diagonal arrow in north-west direction. There the cells of CL[0 	 vb; s] = {0, 7, 8, 9}
are marked by a green disk and the cells of UR[0 	 vb; s] = {11, 12, 18} by a red disk.

Proposition 19. Let u = scompact[0 ⇒ 0 	 vb; s] be a sorted parking configuration on
Kn, we have

xpara(u) = left[0 	 vb; s] and ypara(u) = right[0 	 vb; s].

Proof. In this case minL[0 	 vb] = 0, so CL[0 	 vb; s] = {k|0 6 k 6 s and k ∈ L[0 	
vb]} = ∪n−1

i=1 Li[0 	 vb; s]. Hence the identity

|CL[m 	 vb; s]| =
n−1∑
i=1

|Li[m 	 vb; s]| = rank(u) + 1 = xpara(u)

directly follows from the Proposition 11 describing a proof for the rank of u via the
traversal.

The other identity is deduced from this first identity via an extension of the su-
perimposition principle to the traversals computing the rank of u and ξ.u. An exam-
ple of this superimposition with traversals is given in Figure 5. The green oriented
vertical segment toward north, which defines u, starts from the south-east corner of
spiral green coordinate 0. In red, we describe the same notions as in green but on
ξ.u = scompact[0⇒ 0 	 ξ(w)b;C(w)− s− 1] where C(w) = 18 so that C(w)−s−1 = 7.
The dashed red diagonal (drawn in two parts) matches ξ(w), the red oriented vertical
segment toward south, which defines ξ.u, starts from the north-west corner of red spiral
coordinate 0 and the visited cells during the computation of the rank of ξ.u are crossed
by red diagonal arrows toward the south-west.

First we assume that s > 0 and C(w) − s − 1 > 0 as in Figure 5. It means that
(s+1)+(C(w)−s−1+1) = C(w)+1 cells are crossed. This number corresponds exactly
to the number of cells of spiral between the cell of spiral green coordinate 0 and the cell of
spiral red coordinate 0. Hence the green and red sequences of diagonals both ends in the
black disk which is the south-east corner of the cell of green spiral coordinate s+n(= 18 on
example). Since the involution ξ on skew cylinders exchange left and right components, we
deduce that the cells of spiral green coordinate UR[0 	 wb; s] are also the cells of spiral red
coordinate CL[0 	 ξ(w)b;C(w)− s− 1]. Hence |UR[0 	 wb; s]| = xpara(ξ.u) = ypara(u).

If s < 0, then only red diagonal arrows may exist. Inspection shows that UR[0 	
wb; s] = R[0 	 wb] ∩ {s, . . .maxR[0 	 wb]} = CL[0 	 ξ(w)b;C(w) − s − 1] hence
|UR[0 	 wb; s]| = xpara(ξ.u) = rank(ξ.u) + 1 = ypara(u).

If C(w)− s− 1 < 0, then only green diagonal arrows may exist. We have s > C(w) =
max(R[0 	 wb]s) so UR[0 	 wb; s] is empty. In addition, the value C(w)− s on the sink
of ξ.u implies that this configuration is non-effective so rank(ξ.u) = −1. Hence, it this
case one also has |UR[0 	 wb; s]| = 0 = xpara(ξ.u) = ypara(u).

the electronic journal of combinatorics 23(1) (2016), #P1.31 26

4.3 Enumeration of sorted parking configurations according to (degree, rank)

According 7. in Proposition 9, the bijective decomposition u = scompact[0 ⇒ 0 	 vb; s]
of sorted parking configuration on Kn where v is a Dyck word of size n− 1 implies that

Mn(x, y) =
∑
v

∑
s∈Z

xleft[0	vb;s]yright[0	vb;s]

where v runs over Dyck words of size n − 1. We introduce a partial sum of Mn(x, y)
indexed by a Dyck word v:

Mv(x, y) =
∑
s∈Z

xleft[0	vb;s]yright[0	vb;s].

We also introduce a slightly more general and redundant notation for monomials in these
sums

M[m	w;s] = xleft[m	w;s]yright[m	w;s].

First, we study independently each Mv(x, y) for each Dyck word v defining the sorted
and parking configurations (scompact[0⇒ 0 	 vb; s])s∈Z. The partition (L[0 	 vb], R[0 	
vb]) of cells indexed by their spiral coordinate induces a partition of Z into maximal
intervals totally contained either in L[0 	 vb] or R[0 	 vb]. We describe this partition in
intervals with the maximal elements of each interval, if any. This leads to the sets

LR[0 	 vb] := {s|s ∈ L[0 	 vb], s+ 1 ∈ R[0 	 vb]}

and
RL[0 	 vb] := {s|s ∈ R[0 	 vb], s+ 1 ∈ L[0 	 vb]}.

Lemma 20. Let v be a Dyck word and H(x, y) := 1−xy
(1−x)(1−y)

. We have

Mv(x, y) = H(x, y)

 ∑
s∈RL[0	vb]

M[0	vb;s] −
∑

s∈LR[0	vb]

M[0	vb;s]

 .

The notation of the proof are illustrated in Figure 6.

Proof. If s < 0, then by convention s ∈ R[0 	 vb]. If s > (n + 1)(n − 1), then s ∈
L[0 	 vb] since the greatest possible integer in the right cut appears only in the case
cylinder[0 	 an−1bn] and is n2 − 3n + 1. Hence |RL[0 	 vb]| = |LR[0 	 vb]| + 1 and let
k := |LR[0 	 vb]|. We sort in increasing order the elements of RL[0 	 vb] = {r1, . . . , rk+1}
and LR[0 	 vb] = {l1, . . . , lk}. So the partition of Z in maximal intervals induced by
(L[0 	 vb], R[0 	 vb]) is

]−∞, r1], [r1 + 1, l1], [l1 + 1, r2], . . . [rk + 1, lk], [lk + 1, rk+1], [rk + 1,+∞[.

To observe that on a given interval I of this partition, the sum
∑

s∈IM[0	vb;s] is a geometric
sum of reason x or 1/y, the following key discussion comes directly from the definition of
CL[0 	 vb; s] and UR[0 	 vb; s]:

the electronic journal of combinatorics 23(1) (2016), #P1.31 27

24

31

38

45

52

59

66

18

25

32

39

46

53

60

12

19

26

33

40

47

54

6

13

20

27

34

41

48

0

7

14

21

28

35

42

1

8

15

22

29

36

2

9

16

23

30

3

10

17

24

4

11

18

5

12 6 0

6 12

5

18

11

4

24

17

10

3

30

23

16

9

2

36

29

22

15

8

1

42

35

28

21

14

7

48

41

34

27

20

13

6⊕⊕

⊕⊕

	

	

	

r1

r2

r3

r4

l1

l2

l3

1234 0 1 2 3 4 5 6 7 8 9 10 11 12
r1⊕ r2⊕ r3⊕ r4⊕l1 	 l2 	 l3

Figure 6: Example of decomposition of Mv(x, y) into an alternation of geometric sums.

• either s + 1 ∈ L[0 	 vb], then CL[0 	 vb; s + 1] = CL[0 	 vb; s] ∪ {s + 1} and
UR[0 	 vb; s+ 1] = UR[0 	 vb; s].

• or s+ 1 ∈ R[0 	 vb], then CL[0 	 vb; s+ 1] = CL[0 	 vb; s] and UR[0 	 vb; s+ 1] =
UR[0 	 vb; s]− {s+ 1}.

Hence for i = 1, . . . k, for any j in the interval [ri + 1, li] we have M[0	vb;j] = xM[0	vb;j−1]

using previous discussion for s = j − 1. This leads to the geometric sum of reason x

li∑
j=ri+1

M[0	vb;j] =
xM[0	vb;ri] − xM[0	vb;li]

1− x
.

Similarly, for i = 1, . . . k and the intervals [li+1, ri+1], we obtain geometric sums of reason
1/y leading to

ri+1∑
j=li+1

M[0	vb;j] =
(1/y)M[0	vb;li] − (1/y)M[0	vb;ri+1]

1− 1/y
=
−M[0	vb;li] +M[0	vb;ri+1]

1− y
.

For the two remaining infinite intervals]−∞, r1] and [rk+1+1,+∞[we obtain respectively,
after an inversion of summation order over first interval,

r1∑
j=−∞

M[0	vb;j] =
M[0	vb;r1]

1− y
and

+∞∑
j=rk+1+1

M[0	vb;j] =
xM[0	vb;rk+1]

1− x
.

In the sum Mv(x, y) =
∑+∞

j=−∞M[0	vb;j] decomposed into geometric sum on these

intervals, each term M[0	vb;ri] appears twice for a total factor of H(x, y) = x
1−x + 1

1−y and

each term M[0	vb;li] also twice for a total factor −H(x, y) as expected.

the electronic journal of combinatorics 23(1) (2016), #P1.31 28

1

8

15

22

29

36

2

9

16

23

30

3

10

17

24

4

11

18

5

12 6

6 12

5

18

11

4

24

17

10

3

30

23

16

9

2

36

29

22

15

8

1

q

q

q

q

q

q

q

q

q

q

q

q

q

q q

z

z

z

z

z

z

Figure 7: A Dyck path of size 6, area 5 and augmented area 11

Our final expression for M(x, y; z) =
∑

n>1Mn(x, y)zn uses the generating function
of Dyck words/path according to the size and the area. Figure 7 contains in blue an
embedding of the Dyck word aababbaaabbb as a Dyck path. Graphically, the area of the
blue Dyck path is the number of cells completely included between the Dyck path and
the dashed diagonal. We use the equivalent following definition in terms of words. The
area of a Dyck word v is

area(v) :=
∑
fa

(|f |a − |f |b)

where fa runs over all prefixes of v ending by an occurrence of letter a. The size of the
Dyck word v is denoted by size(v) := |v|a. The Carlitz q-analogue of Catalan numbers is

C(q; z) :=
∑
v

qarea(v)zsize(v)

where v runs over all possibly empty Dyck words. The augmented area of a Dyck path
consists in adding to the area the cells crossed by the dashed diagonal in Figure 7. These
cells also contain the variable z to suggest that its are counted by the size of the path.
Hence the augmented area of v is area(v) + size(v) and the generating function of Dyck
words according to augmented area and size is C(q; qz). This generating function will
appear in our proof via its interpretation as the cells between the blue and orange paths
in Figure 7 or the symmetric picture according to the main dashed diagonal.

Let Y be the language/set of possibly empty Dyck words and ε the empty word. So
Y−ε denotes the language of non-empty Dyck words. Let κ the morphism on words defined
on letters by κ(a) := b and κ(b) := a. Let X := κ(Y). For example, v = aababb ∈ Y and
κ(v) = κ(a)κ(a)κ(b)κ(a)κ(b)κ(b) = bbabaa = ˜aababb. An alternative definition of X is the
set of reverses of Dyck words in Y. For a language L, we recall a classical notion of formal
languages: L∗ := ∪n>0Ln where Ln is formed by the concatenations of n words in L.

Theorem 21.

M(x, y; z) =
1− xy

(1− x)(1− y)

C(x;xz) + C(y; yz)− C(x;xz)C(y; yz)

1− C(x;xz)zC(y; yz)
.

the electronic journal of combinatorics 23(1) (2016), #P1.31 29

Proof. The assumption n > 3 is comfortable in our generic proof that may degenerate for
n = 1 or n = 2.

Hence, we first consider that n = 1 and then n = 2. If n = 1, the sorted park-
ing configurations are the ((; s))s∈Z and degree((; s)) = s and rank((; s)) = max(−1, s).
So K1(r, d) =

∑
s∈Z d

srmax(−1,s) and after the change of variable, we have L1(x, y) =
1−xy

(1−x)(1−y)
= H(x, y). If n = 2, the sorted parking configurations are the ((0; s))s∈Z and

degree((0; s)) = s and rank((0; s)) = max(−1, s). So K2(r, d) = K1(r, d) and after the
change of variable one obtain L2(x, y) = L1(x, y).

1

8

15

22

29

36

2

9

16

23

30

3

10

17

24

4

11

18

5

12 6

6 12

5

18

11

4

24

17

10

3

30

23

16

9

2

36

29

22

15

8

1

7
ri

7
ri

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y y

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

1

8

15

22

29

36

2

9

16

23

30

3

10

17

24

4

11

18

5

12 6 0

6 12

5

18

11

4

24

17

10

3

30

23

16

9

2

36

29

22

15

8

1

42

35

28

21

14

7

7
li

7

x li

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y y

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Figure 8: ri leads to bfb ∈ bXaY(bXaY)∗b and li leads to afa ∈ (Y− ε)b(XaYb)∗(X− ε)

We assume that n > 3. Starting from the expression of Mv(x, y) in Lemma 20, we
provide alternative descriptions of M[0	vb;ri] where ri ∈ RL[0 	 vb] and of M[0	vb;li] where
li ∈ LR[0 	 vb].

The sequence of cells (ri + k)k=1...n−1 contains the minimal cell in each row of spi-
ral coordinate strictly greater than ri. In Figure 8 at left, it corresponds to the cells
crossed by the dashed blue diagonal. This observation proves that L[ri + n 	 (ba)n−1b] =
{k|k > ri} and R[ri + n 	 (ba)n−1b] = {k|k 6 ri}. In Figure 8, the cut skew cylinder
cylinder[ri + n 	 (ba)n−1b] corresponds to the orange path.

By choice, ri ∈ R[0 	 vb] and ri + 1 ∈ L[0 	 vb] so the vertex in south-east corner
of cell ri + n belongs to the cut of cylinder[0 	 vb] and is preceded and followed by east
steps. Changing the start of the cut to ri +n, we obtain a cyclic conjugate bfb of vb such
that cylinder[0 	 vb] = cylinder[ri + n 	 bfb].

Intersecting the two preceding observations, we have

CL[0 	 vb; ri] = R[ri + n 	 (ba)n−1b] ∩ L[ri + n 	 bfb]

and
UR[0 	 vb; ri] = L[ri + n 	 (ba)n−1b] ∩R[ri + n 	 bfb].

The embedding of (ba)n−1b and bfb both starts at the same vertex ri+n. We factorize
bfb at its steps which are common with those of (ba)n−1b. In Figure 8 at left, the steps of

the electronic journal of combinatorics 23(1) (2016), #P1.31 30

bfb are magenta if forced and otherwise blue while the steps of (ba)n−1b are orange. Hence
we factorize bfb at the blue (or magenta) and orange steps. This example should help to
convince the reader that bfb = b(ba)a(aabb)b(ba)a()b is in general factorized as a word of
bXaY(bXaY)∗b. This factorization in non-ambiguous since the word (ba)n−1b is constant
and the factors in X and Y are well defined. Conversely, any word w ∈ bXaY(bXaY)∗b
such that |w|a > 2 is almost balanced and may be written bfb and is a cyclic conjugate
of some word vb where v is a Dyck word.

Moreover, in the decomposition showing bfb ∈ bXaY(bXaY)∗b, the augmented area
of factors in X counts the cells of CL[0 	 vb; ri] and the augmented area of factors in Y
counts the cells of UR[0 	 vb; ri]. On the example of bfb = b(ba)a(aabb)b(ba)a()b, the
first factor (ba) corresponds to {12} ⊂ CL[0 	 vb; ri], the factor (aabb) corresponds to
{4, 3, 3} = CL[0 	 vb; ri] and the second factor (ba) corresponds to {8} ⊂ CL[0 	 vb; ri]
and the empty factor () in Y adds no cell to UR[0 	 vb; ri]. In terms of generating
function, it leads to∑

v

∑
ri∈RL[0	vb]

M[0	vb;ri] =
C(x;xz)zC(y; yz)

1− C(x;xz)zC(y; yz)
− z

where v runs over Dyck words of size at least 2. More precisely, C(x;xz)zC(y;yz)
1−C(x;xz)zC(y;yz)

is the
generating function of all the almost balanced words written bfb according to the aug-
mented area of factors X, counted by the variable x, and the augmented area of factors
Y, counted by the variable y, and the size |bfb|a > 1 counted by z. The subtracted term
z corresponds to the excluded almost balanced word of size 1, bab.

The proof for a cell li is very similar and illustrated by the right example in Figure 8.
The choice li ∈ L[0 	 vb] and li + 1 ∈ R[0 	 vb] implies that the vertex li + n belongs to
the cut of cylinder[0 	 vb] and is preceded and followed by north steps. Hence when the
vertex li + n is chosen as the start of the cut, it makes appear a cyclic conjugate afa of
vb such that cylinder[0 	 vb] = cylinder[li + n 	 afa]. We have

CL[0 	 vb; li] = R[li + n 	 (ba)n−1b] ∩ L[li + n 	 afa]

and
UR[0 	 vb; li] = L[li + n 	 (ba)n−1b] ∩R[li + n 	 afa].

The factorization of afa at the common steps of the embedding of afa and (ba)n−1b leads
to words in (Y− ε)b(XaYb)∗(X− ε) where the first Y factor and the last X factor are non
empty due to the distinct extreme steps of these two embeded words. Hence we have,∑

v

∑
li∈LR[0	vb]

M[0	vb;li] =
(C(x;xz)− 1)(C(y; yz)− 1)

1− C(x;xz)zC(y; yz)

where v runs over Dyck words of size at least 2.
We conclude the proof by a summation following Lemma 20 to get the expected

expression.

the electronic journal of combinatorics 23(1) (2016), #P1.31 31

5 Enumerative byproducts related to q, t-Catalan numbers

In a Dyck word v we denote by ai the i-th of the occurence of the letter a in the word v.
The height h(ai) of ai is defined by |p|a − |p|b where v = paiq is a decomposition defining
the prefix p. The letter ai and aj in the Dyck word v are in dinv-interaction if either
i < j and h(ai) = h(aj) or j < i and h(aj) = h(ai) + 1. The parameter dinv(v) of the
Dyck word v is the number of dinv-interactions in v. Haiman, quoted by Haglund [23],
devised this statistic to provide a combinatorial interpretation of

Cn(q, t) :=
∑
v

qarea(v)tdinv(v)

where v runs over Dyck words of size n. These polynomials initially appears as Hilbert
series of some space of multivariate polynomials, see again [23] for the context. The alge-
braic definition of these Hilbert series has an obvious symmetry implying that Cn(q, t) =
Cn(t, q). This symmetry has still no elementary explanation in terms of the combinatorial
interpretation, see [24] a recent chapter due to Haglund.

This work is not the first connection between the sandpile model and these q, t-Catalan
numbers. For example, in [19], one of the author with his co-author interprets on sorted
recurrent configurations the pair of statistics (area, bounce) also defining the same q, t-
Catalan numbers. Classicaly the area parameter corresponds to the number of grains
outside the sink. The bounce parameter, not defined in this paper, corresponds to the
cumuled elapsed time on vertices before toppling in the maximally parallel execution of
the Dhar criterion which topples the sink and then once all other vertices.

Hence, the additional results of this section are strengthening the connection between
the sandpile model on Kn and these q, t-Catalan numbers. Subsection 5.1 shows that
the parameter dinv is preserved by the map ξ. Subsection 5.2 details a relation between
ξ and a map ζ due to Haglund which maps the bistatistic (dinv, area) to the bistatistic
(area, bounce). Subsection 5.3 introduces the parameter prerank(w) := area(ξ(w)) which
appear in one of our ealy optimisation of the algorithm for the rank. The bistatistic
(prerank, dinv) is another possible definition of Cn(q, t).

5.1 A dinv statistic on cut skew cylinders.

The involution ξ on Dyck words related to the Riemann-Roch theorem for graphs preserves
the dinv parameter.

Proposition 22. For any Dyck word v, we have dinv(ξ(v)) = dinv(v).

The postponed proof of this proposition is based on a definition of a parameter cdinv
on the cylinder cylinder[m 	 w] such that dinv(v) = cdinv(cylinder[0 	 vb]). Then the
superimposition principle will imply the proposition.

The (left-)contacts (ci)i=1...n−1 in the cut skew cylinder cylinder[m 	 w] are the cells
where ci is the smallest spiral coordinate for a left cell in the row crossed by am↑i. Two
distinct contacts ci and cj in cylinder[m 	 w] are in cdinv-interaction if |ci− cj| < n− 1.

the electronic journal of combinatorics 23(1) (2016), #P1.31 32

The cyclic-dinv parameter cdinv(cylinder[m 	 w]) is the number of pairs of contacts in
cdinv-interaction.

In Figure 5 the green spiral coordinates of contacts for cylinder[0 	 aabaaabbabbabbb]
are (ci)i=1...n−1 = (0, 8, 9, 17, 25, 19, 13) so

cdinv(v) = |{{8, 9}, {8, 13}, {9, 13}, {13, 17}, {13, 19}, {17, 19}, {19, 25}}| = 7
= dinv(v) = |{{a2, a3}, {a2, a7}, {a3, a7}, {a7, a4}, {a7, a6}, {a4, a6}, {a6, a5}}|

Proof. The contacts ci and cj where i < j are in cdinv-interaction in cylinder[0 	 vb] if
and only if either ci < cj and then h(ai) = h(aj) so ai and aj are in the first kind of
dinv-interaction or cj < ci and then h(ai) = h(aj) + 1 so aj and ai are in the second kind
of dinv-interaction. Hence cdinv(cylinder[0 	 vb]) = dinv(v).

Then we consider the superimposition of u = scompact[0 ⇒ 0 	 vb; s] and ξ.u =
scompact[0 ⇒ 0 	 ξ(v)b;C(vb)− s] like in Figure 5. We remind that the spiral green
coordinate k ∈ Z of a cell corresponds to the usual spiral coordinate in cylinder[0 	 vb]
while the red spiral coordinate C(w)−k corresponds to the coordinate in the superimposed
cylinder[0 	 ξ(v).b]. We consider the contact of green spiral coordinate ci in cylinder[0 	
vb]. By definition, the east side of ci belongs to the cut. The other cell at east sharing
this side has green coordinate ci − (n − 1) and red coordinate di′ = C(w) − ci + (n − 1)
and is one of the contacts (di′)i′=1...n in cylinder[0 	 ξ(v)b]. For any other contact cj, a
similar proof leads to the contact dj′ = C(w)− cj + (n− 1) in cylinder[0 	 ξ(v)b]. Since
di′ − dj′ = cj − ci we deduce that ci and cj are in cdinv-interaction if and only if di′ and
dj′ are in cdinv-interaction. Hence cdinv(cylinder[0 	 vb]) = cdinv(cylinder[0 	 ξ(v)b]).

For example, in Figure 5 the red spiral coordinates of contacts for cylinder[0 	
aaabaabbbabbabb] are (dj)j=1...n−1 = (0, 8, 16, 17, 25, 12, 6) and

{C(w)− dj + (n− 1)}j=1...n−1 = {18− dj + 7}j=1...n−1

= {25, 17, 9, 8, 0, 13, 19}
= {ci}i=1...n−1.

5.2 A comparison of the involution ξ in Riemann-Roch and ζ map of Haglund

The involution ξ on Dyck words preserves the dinv statistic. Haglund defined a bijective
map ζ such that for any Dyck word v, dinv(v) = area(ζ(v)) and area(v) = bounce(ζ(v))
where bounce is a statistic still undefined in this paper, see [23]. An anonymous referee
for a conference where this work was presented [12] suggested to study possible relations
between the maps ζ and ξ. We use the notation R(w) := κ(w̃) for a word w to describe
the relation we found between ξ and ζ. In other words, the operator R reverses the letters
of v and then replace each letter a by a letter b and each letter b by a letter a.

Proposition 23. For any Dyck word v, we have ζ(ξ(v)) = R(ζ(v)).

The proof of this proposition is based on reformulations of the ζ map in our framework
and leads to another application of the superimposition principle. The height vector of a
Dyck word v of size n is (h(ai))i=1...n where we recall that ai is the i-th occurrence of a
letter a in v.

the electronic journal of combinatorics 23(1) (2016), #P1.31 33

Proof. We reformulate Haglund’s definition of ζ(v) by the following equivalent algorithm
on the height vector:

Haglund’s ζ map via height vector
Input: v of size n− 1
w ← ε;
For h from 0 to n do
ηh ← ε;
For i from 1 to n− 1 do

if h(ai) = h then ηh ← ηha fi;
if h(ai) = h− 1 then ηh ← ηhb fi;od;
w ← wηh;od;

Output: w (=: ζ(v));

Haglund’s ζ map via traversal

Input: A cut skew cylinder cylinder[0 	 vb].
Compute the contacts (ci)i in each row.
For i from 1 to n− 1 do

add a letter a in cell ci
add a letter b in cell ci + n− 1; od;

w ← ε
For k from 0 to maxi(ci + n− 1) do

append letter in cell k to w, if any;od;
Output: w (= ζ(v));

Haglund’s definition is slightly different and a bit more trickier. It distinguishes as
particular the two degenerated loop iterations for h = 0, where no letter b can be read
and for h = 1 + maxi h(ai) where no letter a can be read. Moreover it reads the height
vector and the factors ηh from right to left. It is left to the reader to figure out that our
definition is equivalent.

48

57

66

75

84

93

102

111

120

40

49

58

67

76

85

94

103

112

32

41

50

59

68

77

86

95

104

24

33

42

51

60

69

78

87

96

16

25

34

43

52

61

70

79

88

8

17

26

35

44

53

62

71

80

0

9

18

27

36

45

54

63

72

1

10

19

28

37

46

55

64

2

11

20

29

38

47

56

3

12

21

30

39

48

4

13

22

31

40

5

14

23

32

6

15

24

7

16 8 0

8 16

7

24

15

6

32

23

14

5

40

31

22

13

4

48

39

30

21

12

3

56

47

38

29

20

11

2

64

55

46

37

28

19

10

1

72

63

54

45

36

27

18

9

80

71

62

53

44

35

26

17

8

η0η1η2η3η4

ab a
b

ab a
b

ab a
b

ab a
b

ab a
b

ab a
b

ab a
b

ab a
b

Figure 9: Description of Haglund’s ζ map via traversal of a cut skew cylinder

In Figure 9, we use the same example as Haglund (see page 50 in [23]). We embed our
first algorithm describing the ζ map in a cut skew cylinder. The spiral traversal visit the
cells diagonals by diagonals drawn in orange. Split diagonal by diagonal, this traversal
corresponds to the nested loops on h and i in the algorithm defining ζ via the height
vector. We consider the cells visited during the traversal of the h-th diagonal supposed

the electronic journal of combinatorics 23(1) (2016), #P1.31 34

to define η(h). If a cell is a contact ci in this diagonal, it means that the a step in vb in
the same row is at height h in v. So it exactly corresponds to adding a letter a to η(h).
We mark such a cell by a green letter a in the cell ci. If a cell is cj + (n − 1) where cj
is a contact, it means that the a step in vb in the same row is at height h − 1 in v. So
it exactly corresponds to adding a letter b in η(h). We mark such a cell by a green letter
b in the cell cj + (n − 1). Since the traversal of the diagonal respect the order of the
inner loop on i in the algorithm, we deduce that η(h) is also define by the order in which
the preceding cells ci or cj + (n − 1) are visited. These observation should convince the
reader that the second algorithm entitled “Haglund’s ζ map via traversal” also defines
the ζ map. On the example, collecting the green letters on each orange diagonal leads to
η(0) = a,η(1) = baa, η(2) = baaaba,η(3) = bbbab and η(4) = b.

We reformulated the definition of ζ into a spiral traversal since it is well suited for
the superimposition principle. The proof is similar to the proof of Proposition 22 that
ξ preserves the dinv parameter. We keep only the (green) spiral coordinates here. The
vertical step defining the contact ci in vb shows that ζ(v) add a letter a in cell ci and
a letter b in cell ci + (n − 1). But this vertical step also appears in ξ(v)b and in the
computation of ζ(ξ(v)), we add a (red) letter a in cell ci − (n− 1) and a letter (red) b in
cell ci − 2(n − 1). Moving the red letters two west steps and exchanging the red letters
a and b on each row leads exactly to the position of the green letters. Then inspection
shows that the reversed traversal in the computation of ζ(ξ(v)) leads also to R(ζ(v)).

5.3 A prerank statistic so that (prerank, dinv) defines expected q, t-Catalan

The prerank of a Dyck word v is

prerank(v) := area(ξ(v)).

Proposition 24. For any n > 0, we have

Cn(q, t) :=
∑
v

qdinv(v)tarea(v) =
∑
v

qdinv(v)tprerank(v)

where v runs over Dyck words of size n.

Proof. The involution ξ satisfies prerank(v) = area(ξ(v)) and dinv(v) = dinv(ξ(v)).

We call this parameter prerank because of an early partial optimization of our algo-
rithms computing the rank. A staircase (sorted parking) configuration u on Kn is such
that for i 6= n, ui = i− 1 and there are no restriction on un. Any staircase configuration
may be written u = scompact[m ⇒ m 	 (ab)n−1b; s]. Applying 8. in Proposition 9, we
have sort(park(u − ε(1))) = scompact[m+ 1 ⇒ m+ 1 	 (ab)n−1b; s− 1] which is also a
staircase configuration. By induction, we have

rank(scompact[m⇒ m 	 (ab)n−1b; s] = max(−1, s).

Hence one may accelerate the algorithm computing the rank as soon as we reach a staircase
configuration. It appears that, if s is big enough, the number of loops before we reach
such a staircase configuration is finite and is exactly the prerank of the initial Dyck word
in the cut vb.

the electronic journal of combinatorics 23(1) (2016), #P1.31 35

References

[1] O. Amini and M. Manjunath. Riemann-Roch for sub-lattices of the root lattice an.
Electron. J. Combin., 17:R124, 2010.

[2] Jean-Christophe Aval, Michele D’Adderio, Mark Dukes, Angela Hicks, and Yvan
Le Borgne. Statistics on parallelogram polyominoes and a q, t-analogue of the
Narayana numbers. J. Combin. Theory Ser. A, 123:271–286, 2014.

[3] S. Backman. Riemann-Roch theory for graph orientations. arXiv:1401.3309, 2014.

[4] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of
1/f noise. Phys. Rev Letters, 59:381–384, 1987.

[5] P. Bak, C. Tang, and K. Wiesenfeld. Self-organised criticality. Physical Review A.,
38:364–374, 1988.

[6] M. Baker and S. Norine. Riemann-Roch and Abel-Jacobi theory on a finite graph.
Advances in Mathematics, 215:766–788, 2007.

[7] M. Baker and F. Shokrieh. Chip-firing games, potential theory on graphs, and span-
ning trees. J. Combin. Theory Ser. A, 120:164–182, 2013.

[8] B. Benson, D. Chakrabarty, and P. Tetali. G-parking functions, acyclic orientations
and spanning trees. Discrete Mathematics, 310:1340–1353, 2010.

[9] N. Biggs. Chip-firing and the critical group of a graph. J. Algebraic Combin., 9:25–45,
1999.

[10] A. Björner, L. Lovász, and P.Shor. Chip-firing game on graphs. European J. Combin.,
12:283–291, 1991.

[11] R. Cori and Y. Le Borgne. The sand-pile model and Tutte polynomials. Advances
in App. Math., 30:44–52, 2003.

[12] R. Cori and Y. Le Borgne. On ranks of configurations on the complete graph. DMTCS
Proceedings, 25th International Conference on Formal Power Series and Algebraic
Combinatorics (FPSAC 2013), 2013.

[13] R. Cori and D. Rossin. On the sandpile group of dual graphs. European J. Combin.,
21:447–459, 2000.

[14] D. Dhar. Self-organized critical state of the sandpile automaton models. Phys. Rev.
Lett., 64:1613–1616, 1990.

[15] D. Dhar. Theoretical studies of self-organized criticality. Physica A, 369 (1), 2006.

[16] D. Dhar and S. Majumdar. Equivalence between the Abelian sandpile model and the
q → 0 limit of the Potts model. Physica A, 185:129–135, 1992.

[17] D. Dhar and R. Ramaswamy. Exactly solved model of self-organized critical phe-
nomena. Phys. Rev. Lett., 63:1659–1662, 1989.

[18] D. Dhar, P. Ruelle, S. Sen, and D. Verma. Algebraic aspects of abelian sandpile
model. J. Phys. A, A28:805–831, 1995.

the electronic journal of combinatorics 23(1) (2016), #P1.31 36

http://arxiv.org/abs/1401.3309

[19] Mark Dukes and Yvan Le Borgne. Parallelogram polyominoes, the sandpile model
on a complete bipartite graph, and a q, t-Narayana polynomial. J. Combin. Theory
Ser. A, 120(4):816–842, 2013.

[20] A. Dvoretsky and T. Motzkin. A problem of arrangements. Duke Math. J., 14:305–
313, 1947.

[21] H. M. Farkas and I. Kra. Riemann Surfaces. Graduate Texts in Mathematics,
Springer, 1992.

[22] Kramers H. and Wannier C. Statistics of the two-dimensional ferromagnet. part I.
Physical Review, 60:252–262, 1941.

[23] J. Haglund. The q, t-Catalan numbers and the space of diagonal harmonics. AMS
University Lectures Series, 2008.

[24] Jim Haglund. Handbook of Enumerative Combinatorics, chapter Catalan Paths and
q, t-Enumeration. 2015.

[25] V. Kiss and L. Thóthmérész. Chip-firing games on eulerian digraphs and np-hardness
of computing the rank of a divisor on a graph. arXiv:1407.6958, 2014.

[26] D. E. Knuth. The art of Computer Programming, Volume 4 Combinatorial Algo-
rithms, Fasc 4A. Addison Wesley, 2004.

[27] Yvan Le Borgne. Counting upper interactions in Dyck paths. Sém. Lothar. Combin.,
54:Art. B54f, 16 pp. (electronic), 2005/07.

[28] D. Lorenzini. Two-variable zeta-functions on graphs and riemann-roch theorems. Int.
Math. Res. Notices., 2012,22:5100–5131, 2012.

[29] C. Merino-Lopez. Chip firing and Tutte polynomials. Ann. Combin., 3:253–259,
1997.

[30] Grigory Mikhalkin and Ilia Zharkov. Tropical curves, their Jacobians and theta
functions. In Curves and abelian varieties, volume 465 of Contemp. Math., pages
203–230. Amer. Math. Soc., Providence, RI, 2008.

[31] D. Perkinson, J. Perlman, and J. Wilmes. Primer for the algebraic geometry of
sandpiles. arXiv:1112.6163, 2011.

6 Annex: A proof of the Riemann Roch Theorem for graphs

We consider the following solitary game on an undirected (non oriented) connected graph
G = (X,E) without loops: at the beginning integer values fi are attributed to the n
vertices x1, x2, . . . xn of the graph, these values can be positive or negative and define a
configuration f . At each step a toppling can be performed by the player on a vertex xi,
it consists in subtracting di (the number of edges incident to xi) to the amount fi and
for each neighbor xj of xi increase fj by the number of edges between these two vertices.
In this operation the amount of vertex xi may become, or stay negative. The aim of the
player is to find a sequence of toppling operations which will end with a configuration
where all the fi are non negative. Since the sum of the fi is invariant by toppling, a

the electronic journal of combinatorics 23(1) (2016), #P1.31 37

http://arxiv.org/abs/1407.6958
http://arxiv.org/abs/1112.6163

necessary condition to succeed is that in the initial configuration this sum should be non
negative. We will see that this condition is not sufficient.

This game has much to do with the chip firing game (see [10], [9]) and the sandpile
model (see [5], [15], [16]), for which recurrent configurations where defined and proved to
be canonical representatives of the classes of configurations equivalent by a sequence of
topplings (for a more algebraic treatment see also [31]).

The game was introduced and studied in detail by Baker and Norine in [6] who also
introduced a new parameter on graph configurations: the rank. One characteristic of the
rank ρ(f) of a configuration f is that it is non negative if and only if one can get from
f a configuration non-negative on every vertices by performing a sequence of topplings.
For this parameter they obtain a simple formula expressing a symmetry similar to the
Riemann-Roch formula for surfaces and curves (a classical reference to this formula is the
book by H. Farkas and I. Kra [21]).

Our aim here is to give a simple presentation of this Riemann-Roch like theorem for
graphs. It’s wortwhile in this context to mention the independant work of Backman [3]
and the precedings works [30, 1].

6.1 Configurations on a graph

Let G = (X,E) be a multi-graph with n vertices, where X = {x1, x2, . . . , xn} is the vertex
set and E is a symmetric matrix such that ei,j is the number of edges with endpoints xi, xj,
hence ei,j = ej,i. In all this paper n denotes the number of vertices of the graph G and m
the number of its edges. We assume that G is connected and has no loops, so that ei,i = 0
for all i.

We will consider configurations on a graph, these are elements of the discrete lattice
Zn. Each configuration f may be considered as assigning (positive or negative) tokens to
the vertices. The symbol ε(i) will denote the configuration in which the value 1 is assigned
to vertex xi and the value 0 is assigned to all other vertices.

The degree of the configuration f is the sum of the fi’s it is denoted by deg(f).

6.1.1 The Laplacian configurations

These configurations correspond to the rows of the Laplacian matrix of a graph, a classical
tool in Algebraic Graph Theory.

The Laplacian configuration ∆(i) is given by: ∆(i) = diε
(i) −

∑n
i=1 ei,jε

(j), where di =∑n
i=1 ei,j is the degree of the vertex xi. These configurations which degrees are equal to

0 play a central role.
We denote by LG the subgroup of Zn generated by the ∆(i), and two configurations f

and g will be said toppling equivalent if f −g ∈ LG, which will also be written as f ∼LG
g.

In the sandpile model, the transition from configuration f to the configuration f−∆(i)

is allowed only if fi > di and is called a toppling. The same condition is assumed in the
theory of chip firing games, and toppling is called firing; here we omit this condition and
perform topplings even if fi < di.

the electronic journal of combinatorics 23(1) (2016), #P1.31 38

Notice that
∑n

i=1 ∆(i) = 0 and that for a connected graph this is the unique relation
(up to multiplication by a constant) satisfied by the ∆(i), moreover the principal minors
of the Laplacian matrix are all equal to the number of spanning trees of the graph.

6.1.2 Recurrent configurations

We use in this section the notation usually considered in the sandpile model, so that we
will call sandpile configuration a configuration f such that fi > 0 for all i < n. This
corresponds to the fact that in the sandpile model the vertex xn is considered as a sink
collecting tokens, so that the number of tokens of the sink has not taken into account in
this context.

Definition 25. In the sandpile model, a toppling on vertex xi, where i 6= n, may occur in
a sandpile configuration only if fi > di. A sandpile configuration f is stable if no toppling
can occur, that is fi < di for all i < n.

Notice that when a toppling occurs in the sandpile model, the configuration f −∆(i)

is also a sandpile configuration.
The toppling operation for a sandpile configuration will be denoted by f → g. We

also write:
f
∗→ g

if f and g are sandpile configurations and if g is obtained from f by a sequence of toppling
operations meeting only sandpile configurations. Notice that f

∗→ g implies f ∼LG
g.

Sequences of topplings may be performed in any order until a stable configuration is
attained as the following proposition states, the proof of which may be found in [17] or
in [26] pages 42, and 70.

Proposition 26. For any sandpile configuration f there exists a unique stable configura-
tion f ′ such that f

∗→ f ′.

A configuration is recurrent in an evolving system if it could be observed after a long
period of the evolution of the system. In the case of the sandpile model, the system is
considered to evolve by adding a token in any cell at random and then applying topplings
until a stable configuration is reached. This translates into the following notion which is
central :

Definition 27. A configuration f is recurrent if it is stable and there exists a sandpile
configuration g 6= 0 such that f + g

∗−→ f .

The following important result, giving canonical representatives in the classes of the re-
lation ∼LG

is obtained in [14, 9, 13] by different ways.

Theorem 28. For any configuration f there exists a unique recurrent configuration g
such that f ∼LG

g.

In order to characterize the recurrent configurations D. Dhar used the configuration
∆(n) and proposed the following algorithm.

the electronic journal of combinatorics 23(1) (2016), #P1.31 39

Theorem 29. Burning Algorithm. A stable configuration u is recurrent if and only if

f −∆(n) ∗−→ f

Moreover in this sequence of topplings each vertex different from xn topples exactly once.

This algorithm can be translated into another characterization, giving:

Corollary 30. A stable configuration f is recurrent if and only if for any non-empty
subset Y of X \ {xn} there is at least an xk in Y such that its degree in the subgraph
spanned by Y is not greater than fk, more precisely if the following condition is satisfied:

fk >
∑
xi∈Y

ei,k (1)

Proof. Let f be a recurrent configuration, and Y be a subset of X, then by Dhar’s Burning
Algorithm, starting from the configuration f − ∆(n) there is a sequence of topplings of
the vertices in which any vertex topples. We may suppose that the vertices are numbered
in the order in which they topple, x1 just after xn, then x2 and so on until xn−1 then for
allowing a toppling at vertex xi each fi has to satisfies the condition:

di 6 fi +
i−1∑
j=1

ei,j

Now for any subset Y of X, let k be the smallest integer such that xk ∈ Y , then since
there is no xi ∈ Y with i less than k we have:

dk >
k−1∑
j=1

ej,k +
∑
xi∈Y

ei,k

Putting i = k in the first inequality and the two inequalities together gives the result.
Conversely if f is a stable configuration satisfying condition 1 we build a toppling

sequence starting with vertex xn, then taking as x1 the vertex in Y = {x1, x2, . . . , xn−1}
satisfying f1 >

∑n−1
i=2 e1,i, this vertex can topple after xn since in that case f1 + e1,n >∑n

i=2 e1,i = d1. Then at each step, a vertex xj such that fj >
∑n−1

i=j+1 ei,j exists taking
Y = X \ {xn, x1, x2, . . . xj−1}, this vertex can topple at this stage. We have thus built a
sequence of toplings proving that f is recurrent.

6.1.3 Parking configurations

We consider a kind of dual notion to that of recurrent configuration, such configurations
are often called parking configurations since in the case of complete graphs, these are
exactly the parking functions, a central object in combinatorics.

Definition 31. A sandpile configuration f on a graph G is a parking configuration if for
any subset Y of X \ {xn} there is a vertex xk in Y such that fk is less than the number of
edges which are incident to xk and a vertex out of Y . More precisely if the exists xk ∈ Y
such that fk <

∑
xi /∈Y ei,k.

the electronic journal of combinatorics 23(1) (2016), #P1.31 40

In other words a sandpile configuration f is a parking configuration if and only if there
is no toppling of all the vertices in a subset Y of {x1, x2, . . . xn−1} leaving all the fi > 0.
For this reason these configurations are also called superstable (as for instance in [31]).

Proposition 32. Let f be a stable configuration and let δ be the configuration such that
δi = di − 1. Define β(f) = δ − f . Then f is recurrent if and only if β(f) is a parking
configuration.

Proof. It suffices to compare Corollary 30 and Definition 31 and to notice that:

dk =
∑
xj /∈Y

ek,j +
∑
xj∈Y

ek,j

Corollary 33. For any configuration f there exists a unique parking configuration g such
that f ∼LG

g.

Proof. For any configuration f let g be the recurrent configuration such that g ∼LG
δ− f

then β(g) is a parking configuration such that f ∼LG
β(g).

In this paper we will often consider the parking configuration in a class as a representa-
tive of this class. A parking configuration f in a graph with n vertices will be represented
by the subsequence consisting of this first n− 1 terms and an integer s such that:

(f1, f2, . . . , fn−1) s = fn (2)

hence s represents the number of tokens on the distinguished often called ” sink ” vertex
xn.

Parking configurations and acyclic orientations
An orientation of G is a directed graph obtained from G by orienting each edge, so

that one end vertex becomes the head and the other one the tail. A directed path in such
a graph consists of a sequence of edges such that the head of an edge is equal to the tail
of the subsequent one.

The orientation is acyclic if there is no directed circuit, i.e. a directed path starting
and ending at the same vertex. We associate to any parking configuration f an acyclic
orientation by :

Proposition 34. For any parking configuration f on G = (X,E) there exists at least

one acyclic orientation
−→
G such that for any vertex xi, i 6= n, fi is strictly less than its

indegree d−i (i.e. the number of edges with head xi).

Proof. We orient the edges using an algorithm that terminates after n steps. Consider
Y = {x1, x2, . . . , xn−1}. From the definition of parking configurations, there is at least
one vertex xi such that fi < ei,n then orient all these ei,n edges from xn (the tail) to xi
(the head), and remove xi from Y . Repeat the following operation until Y is empty:

• Find xk in Y such that fk <
∑

xj /∈Y ek,j; orient all the edges joining any vertex j
outside Y to xk from xj to xk and remove xk from Y .

In the preceding proof one may recognize a scheduling of topplings related to the
Dhar criterion applied to the recurrent configuration β(f). Notice that more precise
results involving maximal parking configurations are given in [8].

the electronic journal of combinatorics 23(1) (2016), #P1.31 41

6.2 Effective configurations

In this section we define the notion of LG-effective configuration and recall the main
results of [6], the proofs we give in this section are more or less a reformulation in our
terms of the proofs of them given in [6]. The game described in the introduction can be
translated in determining if a configuration is LG-effective with the following definition of
effectiveness:

Definition 35. A configuration f is effective if fi > 0 for all i. A configuration f is
LG-effective if there exists an effective configuration g toppling equivalent to f (recall
that this means f − g ∈ LG).

Since two equivalent configurations by ∼LG
have the same degree, it is clear that

a configuration with negative degree is not LG-effective. However we will prove that
configurations with positive degree are not necessarily LG-effective as these two examples
show:

1

1

2

0

−1 0

1

0

2

1

−1 0

Figure 10: An LG-effective configuration and a non LG-effective one

6.2.1 Configuration associated to an acyclic orientation of G

As already seen in Section 6.1.3 an orientation of G is a directed graph obtained from
G by orienting each edge, that is distinguishing for each edge with end points xi and xj
which one is the head and the other being the tail. The orientation is acyclic if there is no

directed circuit. Let
−→
G be an acyclic orientation of G, we define the configuration C(

−→
G)

by:

(C(
−→
G))i = d−i − 1

Where d−i is the number of edges which have head xi.

Notice that for any acyclic orientation
−→
G we have:

deg(C(
−→
G)) =

n∑
i=1

(di
− − 1) = m− n

the electronic journal of combinatorics 23(1) (2016), #P1.31 42

The configuration represented in the right of Figure 10 is equal to C(
−→
G) for the orientation

of G represented in Figure 11.

1

0

2

1

−1 0

Figure 11: An orientation of G and the corresponding configuration

Proposition 36. The configuration associated to an acyclic orientation of G is not LG-
effective.

Proof. Let
−→
G be an acyclic orientation of G and f = C(

−→
G). We will show that for any

linear combination g =
∑n

i=1 ai∆
(i) the sum h of g and f is not an effective configuration.

Let εi,j denote the number of edges with head xj and tail xi in
−→
G . Then ei,j = εi,j + εj,i

(but notice that since the orientation is acyclic, at least one of the two values in the sum
above is equal to 0).

For any vertex xi of G we have d−i =
∑n

j=1 εj,i so that:

hi = −1 +
n∑
j=1

εj,i + aidi −
n∑
j=1

ajei,j

Using di =
∑n

j=1 ej,i and decomposing each ei,j into εi,j + εj,i gives for any i:

hi = −1 +
n∑
j=1

εj,i + ai

n∑
j=1

(εi,j + εj,i)−
n∑
j=1

aj(εi,j + εj,i) (3)

Separating the edges for which xi is a head in
−→
G form those for which it is a tail, we

get:

hi = −1 +
n∑
j=1

(1 + ai − aj)εj,i +
n∑
j=1

(ai − aj)εi,j (4)

Now take i be such that ai 6 j for all j 6= i, we have ai − aj 6 0 and 1 + ai − aj 6 1. If
there is a unique minimal value in the sequence aj we have 1 + aj − ai 6 0, hence hi < 0.

the electronic journal of combinatorics 23(1) (2016), #P1.31 43

If there are many ai’s attaining the minimal value take k among them such that εj,k = 0
for all the j such that aj = ak. The existence of such a k follows from the acyclicity of
−→
G . Then for this k we have hk < 0.

6.2.2 Characterization of LG-effective configurations

We can see that computing the parking configuration toppling equivalent to a given con-
figuration allows to determine if it is effective since we have

Proposition 37. A configuration f is LG-effective if and only if the parking configuration
g equivalent to f is such that gn > 0.

Proof. If gn > 0 g is effective so that f is LG-effective. If f is LG-effective then there
exists an effective configuration h such that f ∼LG

h. Then g is the unique parking
configuration such that h ∼LG

g, it may be obtained form h performing subset topplings.
These do not decrease the value of hn, hence gn > hn > 0.

The following Theorem is the central result in [6].

Theorem 38. For any configuration f one and only one of the following assertions is
satisfied:

(1) f is LG-effective

(2) There exists an acyclic orientation
−→
G such that C(

−→
G)− f is LG-effective.

Proof. Let f be non LG-effective, consider the parking configuration g equivalent to f

and let
−→
G be the acyclic orientation given by Proposition 34, let h = C(

−→
G) − g. Then

for i 6= n we have
hi = d−i − 1− fi > 0

and since gn < 0:
hn = −1 + gn > 0.

Hence h is effective, moreover since f and g are in the same class, so are C(
−→
G) − f

and C(
−→
G)− g = h showing that C(

−→
G)− f is LG-effective.

Notice that f and C(
−→
G)− f cannot be both LG-effective since their sum C(

−→
G) would

be too, contradicting Proposition 36.

Corollary 39. Any configuration f with degree greater than m− n is LG-effective.

Proof. If f such that deg(f) > m−n is not LG-effective, by the above theorem there exists

an acyclic orientation
−→
G of G such that C(

−→
G)−f is. But the degree of this configuration

is negative, giving a contradiction.

6.3 The rank of configurations

From now on it will be convenient to denote effective configurations using greek letters
λ, µ and configurations with no particular assumptions on them by letters f, g, h.

the electronic journal of combinatorics 23(1) (2016), #P1.31 44

6.3.1 Definition of the rank

Definition 40. The rank ρ(f) of a configuration f is the integer equal to:

• −1, if f is non LG-effective,

• or, if f is LG-effective, the largest integer r such that for any effective configuration
λ of degree r the configuration f − λ is LG-effective.

Denoting P the set of effective configurations and E the set of LG-effective configura-
tions this definition can be given by the following compact formula which is valid in both
cases:

ρ(f) + 1 = min
λ ∈ P, f − λ /∈ E

deg(λ)

In other words let f be a configuration of rank ρ(f) and λ be an effective configuration
such that deg(λ) 6 ρ(f) then f − λ is LG-effective; moreover there exists an effective
configuration µ of degree ρ(f) + 1 such that f − µ is not LG-effective.

An immediate consequence of this definition is that if deg(f) < 0 or if f = C(
−→
G) for

an acyclic orientation
−→
G then the rank of f is −1. Moreover if two configurations f and

g are such that fi 6 gi for all i then ρ(f) 6 ρ(g).
The following notion will be useful do prove properties of the rank:

Definition 41. An effective configuration µ is a proof for the rank ρ(f) of an LG-effective
configuration f if f − µ is not LG-effective and f − λ is LG-effective for any effective
configuration λ such that deg(λ) < deg(µ).

Notice that if λ is a proof for ρ(f) then ρ(f) = deg(λ)− 1.

Proposition 42. A configuration f of degree greater than 2m− 2n has rank

r = deg(f)−m+ n− 1

Proof. We first show that for any effective configuration λ such that deg(λ) = r, the
configuration f−λ is LG-effective. This follows from deg(f−λ) = deg(f)−r = m−n+1
by Corollary 39.

We now build a effective configuration λ of degree r + 1 such that f − λ is not LG-

effective. Consider any acyclic orientation
−→
G of G and let g = f − C(

−→
G) then g is

LG-effective since its degree is equal to deg(f)−m+ n hence greater than m− n. Let λ
be the effective configuration such that g ∼LG

λ, then f − λ is such that

C(
−→
G) ∼LG

f − g ∼LG
f − λ

so that f − λ is not LG-effective by Proposition 36. And the Proposition results from:

deg(λ) = deg(g) = deg(f)− deg(C(
−→
G)) = deg(f)−m+ n = r + 1

the electronic journal of combinatorics 23(1) (2016), #P1.31 45

6.3.2 Riemann-Roch like theorem for graphs

We give here a proof of the following theorem first proved in [6] which we estimate shorter
and simpler than the original one.

Theorem 43. Let κ be the configuration such that κi = di − 2 for all 1 6 i 6 n, so that
deg(κ) = 2(m− n). Any configuration f satisfies:

ρ(f)− ρ(κ− f) = deg(f) + n−m

Proof. The main ingredient for the proof is to use Theorem 38 and remark that for

any acyclic orientation
−→
G the orientation

←−
G of G obtained from

−→
G by reversing the

orientations of all the edges is such that: C(
−→
G) + C(

←−
G) = κ.

Let f be any configuration we first give an upper bound for ρ(κ−f), we define λ to be
a proof for the rank of f if f is LG-effective, and to be equal to 0 if f is not LG-effective.
So that ρ(f) = deg(λ)− 1 in both cases.

Since f − λ is not LG-effective, we have by Theorem 38 that there exists an acyclic

orientation
−→
G of G such that C(

−→
G) − (f − λ) is LG-effective, hence equivalent to an

effective configuration µ. This may be written as:

C(
−→
G)− (f − λ) ∼LG

µ (5)

Now consider the orientation
←−
G of G obtained from

−→
G by reversing the orientations

of all the arrows, clearly C(
−→
G) +C(

←−
G) = κ. Hence adding C(

←−
G) to both sides of (5) we

have:
κ− (f − λ) ∼LG

µ+ C(
←−
G) (6)

which may be written as:

(κ− f)− µ ∼LG
C(
←−
G)− λ

Giving that κ− f −µ is not LG-effective since the reverse of an acyclic orientation is also
acyclic. Hence by the definition of the rank we have

ρ(κ− f) < deg(µ) (7)

The degree of µ is obtained from (5) giving:

deg(µ) = deg(C(
−→
G))− deg(f) + deg(λ) = m− n− deg(f) + ρ(f) + 1

and:
ρ(κ− f) < m− n− deg(f) + ρ(f) + 1 (8)

Now to obtain a lower bound for ρ(κ−f) we exchange the roles of f and κ−f giving:

ρ(f) < m− n− deg(κ− u) + ρ(κ− u) + 1 (9)

Since deg(κ− u) = 2(m− n)− deg(f), inequality (9) may be written as:

the electronic journal of combinatorics 23(1) (2016), #P1.31 46

ρ(f) +m− n− deg(f)− 1 < ρ(κ− f) (10)

Comparing inequalities (8) and (10), and noticing that the rank is an integer gives

ρ(f) +m− n− deg(f) = ρ(κ− f)

hence proving the Theorem.

6.4 Enumerating the effective configurations

Proposition 44. Let TG(x, y) be the Tutte polynomial of the graph G, and let ti be the
integer coefficients given by:

TG(1, y) =
m−n+1∑
i=0

tiy
i

Then the number of non equivalent LG-effective configurations of degree d is given by:

m−n+1∑
k=m−n+1−d

tk

Proof. In [29] the level of a recurrent configuration f was defined as

level(f) =
n−1∑
i=0

fi −m+ dn

where dn is the degree of the vertex xn.
It was proved that this level varies from 0 to m−n+1 and that the number of recurrent

configurations of level p and such that xn = q does not depend on q and is equal to the
coefficent tp of yp in the evaluation of the Tutte polynomial TG(x, y) of G for x = 1. A
bijective proof of this result was given in [11].

Using the bijection β defined in Proposition 32 we have that the number of parking
configurations g such that

∑n−1
i=1 gi = j and a given value for gn is equal to the number of

recurrent configurations f such that:

n−1∑
i=1

fi =
n−1∑
i=1

(di − 1− gi) = 2m− dn − (n− 1)− j

and fn = dn − 1 − gn, which is the number of recurrent configurations of level k =
m− n+ 1− j and a given value of fn. This number is equal to tk.

In order that the configuration g of degree d to be LG-effective we must have gn > 0
so that k must be greater or equal to 0 and not greater than m− n+ 1, thus ending the
proof.

The generating function for non-equivalent LG-effective configurations according to
the degree counted by the variable y is ym−n+1

1−y TG(1, y−1).

the electronic journal of combinatorics 23(1) (2016), #P1.31 47

	Introduction
	A first greedy algorithm
	Preliminaries
	A first greedy algorithm computing the rank on complete graphs

	An algorithm of linear arithmetic complexity
	Restriction to compact and sorted configurations
	From sorted and compact configurations to pointed cut skew cylinders
	An explicit formula for the rank of sorted parking configurations on Kn
	Optimizing the search of the equivalent sorted parking configuration

	Enumerative byproducts related to the context
	On the involution in Riemann-Roch theorem
	Interpretation of (xpara,ypara) on cut skew cylinders
	Enumeration of sorted parking configurations according to (degree,rank)

	Enumerative byproducts related to q,t-Catalan numbers
	A dinv statistic on cut skew cylinders.
	A comparison of the involution in Riemann-Roch and map of Haglund
	A prerank statistic so that (prerank,dinv) defines expected q,t-Catalan

	Annex: A proof of the Riemann Roch Theorem for graphs
	Configurations on a graph
	The Laplacian configurations
	Recurrent configurations
	Parking configurations

	Effective configurations
	Configuration associated to an acyclic orientation of G
	Characterization of LG-effective configurations

	The rank of configurations
	Definition of the rank
	Riemann-Roch like theorem for graphs

	Enumerating the effective configurations

