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Bogotá, Colombia

ja.olarte1299@uniandes.edu.co

Submitted: Sep 8, 2014; Accepted: Feb 14, 2015; Published: Mar 6, 2015

Mathematics Subject Classifications: 05B35, 05C89

Abstract

We introduce the concept of flatness degree for matroids, as a generalization of
submodularity. This represents weaker variations of the concept of flatness which
characterize strict gammoids for finite matroids. We prove that having flatness
degree 3, which is the smallest non-trivial flatness degree, implies pseudomodularity
on the lattice of flats of the matroid. We show however an example of a gammoid
for which the converse is not true. We also show examples of gammoids with each
possible flatness degree. All of this examples show that pseudomodular gammoids
are not necessarily strict.

1 Introduction

Hrushovski introduces the concept of a matroid being flat in [8] in order to prove the
existence of a non trivial strongly minimal set that does not interpret an infinite field. In
[5], Evans shows that for finite matroids the notion of flatness characterizes the matroids
known as strict gammoids, a class of matroids that arises from directed graphs. Strict
gammoids are also known as cotransversal matroids, as Ingleton and Piff showed that
they are precisely the duals of transversal matroids [11]. Actually, in [12] Mason gives the
exact dual analog of flatness as a characterization of transversal matroids. The restrictions
of a strict gammoid, are known as simply gammoids and they form a complete class of
matroids that has been widely studied [3, 5, 9, 11, 12, 13, 14].

In [5], Evans shows that strict gammoids have a pseudomodular lattice of flats. The
notion of pseudomodularity was first studied by Dress and Lovász in [4] as a necessary
condition for full algebraic matroids and was formally defined in [1] by Björner and Lovász.
Evans asks whether a gammoid which is pseudomodular is necessarily a strict gammoid.
We answer negatively by showing that a strictly weaker condition than flatness, having
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flatness degree at least 3 is enough for pseudomodularity. We then construct a gammoid
showing that the converse is not true, that is being pseudomodular and having flatness
degree 2. We construct of each possible flatness degree. All of these are counter-examples
to Evans’ question. We get an infinite chain of increasingly stronger properties, from
pseudomodularity to flatness, all of them in terms of the lattice of flats.

We review basic results about matroids and the gammoid class in Section 2. We define
and discuss pseudomodularity in Section 3 and we connect it with the notion of flatness.
In Section 4 we define the flatness degree and construct examples of gammoids that
attain each of the possible values for flatness degree. Finally we propose some problems
in Section 5.

2 Matroid theory background

In this section we review basic matroid theory in order to fix notation. This can also be
helpful for model theorists who may not be familiar with matroids. Proofs and further
insight can be found in [14] and, for the specific gammoid class, in [2, 3]. Throughout the
paper we consider only finite matroids although most of the results can be extended to
any infinite but finitary (finite rank) combinatorial pregeometry. A matroid M consists
of a (finite) set N and a function r : P(N) → Z called rank that satisfy the following
conditions

(R1) If A ⊆ N then 0 6 r(A) 6 |A|

(R2) If A ⊆ B ⊆ N then r(A) 6 r(B)

(R3) If A ⊆ N and B ⊆ N then r(A) + r(B) > r(A ∪B) + r(A ∩B)

The last condition is called submodularity. The rank of a matroid is r(N). A subset
I of N is called independent if r(I) = |I|. A subset B of N is called a basis if it is
independent and r(B) = r(N). A subset C of N is a circuit if it is a minimal dependent
set. That is, for every e ∈ C, r(C) = r(C − {e}) = |C| − 1. A subset F of N is called a
flat if for every n ∈ N − F we have r(F ∪ {n}) > r(F ). We will write F = F(M) as the
set of flats of the matroid M . A flat of rank r(N) − 1 is called a hyperplane. When the
equality in (R3) is met whenever A and B are flats, we say that M is modular. We can
define the closure operator cl : P(N) → P(N) as cl(A) := min({F ∈ F | A ⊆ F}) or,
equivalently cl(A) = max({A ⊆ F ⊆ N | r(A) = r(F )}).

Note that the rank of A tells us the maximum cardinality of an independent subset of
A. Then the matroid is determined by the set of independent subsets of N . Also, the rank
of a flat F is the length of a maximal chain of flats such that F0 ⊂ F1 ⊂ · · · ⊂ Fr(F ) = F .
As the rank of any set is the rank of its closure, which is a flat, the matroid is also
determined by the set of flats. In fact, matroids can be cryptomorphically defined by
any of the objects defined above. We choose to use the rank function for the definition,
because of the importance of submodularity in this paper. So sometimes we will refer to
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a matroid by giving its set of independent sets or the set of flats rather than giving the
pair (N, r).

Given a matroid M on the set N , we can naturally define matroids on subsets of N .
More precisely, for A ⊆ N , we define the restriction of A as the matroid M\A on the set
N −A with rank function rM\A defined as the rank function restricted to P(N −A). We
can also define the contraction of A as the matroid M/A which also has ground set N−A
but with rank function rM/A(B) := r(B ∪A)− r(A) for any B ⊆ N −A. The operations
of restricting and contracting a matroid commute, that is (M\A)/B = (M/B)−A. Any
matroid constructed this way is called a minor of M .

Finally we can define the dual M∗ of M , acting on the same set N but with rank
function r∗(A) := |A| + r(N − A)− r(N). It can be easily verified that the bases of M∗

are precisely the complements of the bases of M . Thus, (M∗)∗ = M and hence the term
dual. It can be shown that if A ⊆ N then (M\A)∗ = M∗/A. Note that this implies
M∗\A = (M/A)∗. So in this sense we can say that the restriction and the contraction are
dual. There are many more objects that can be said to be dual in some sense. An element
n ∈ N is said to be a loop if r(n) = 0. An element n ∈ N is a coloop if it is a loop in M∗

or, equivalently, if for all A ⊆ N A is independent if and only if A ∪ {n} is independent.
A subset S of N is called cyclic if it satisfies that for every e ∈ S, r(S − {e}) = r(S). In
other words, S is cyclic if M\(N − S) does not have coloops. Note that all circuits are
cyclic. It is easy to verify that S is cyclic if and only if N − S is a flat.

We now turn our attention to the class of gammoids, starting with transversal ma-
troids. Given A = (A1, . . . , Ak) subsets of a set N , and a subset I of N , a matching of
I is an injective function from I to A such that for every n ∈ I, we have n ∈ f(n). The
set of subsets of N that have a matching form the independent sets of a matroid M . The
set A is called a presentation of M . A matroid that can be constructed this way is called
transversal. Different presentations may produce the same matroid. It is obvious from
the definition that the rank of M is at most k, however, one can always give presentations
such that k is exactly the rank of M .

Now let Γ = (N,E) be a directed graph where N is the set of vertices and E is the set
of edges. Given u, v ∈ N , a path P from u to v is a sequence of vertices (n1, . . . , nt) such
that n1 = u, nt = v and for every i 6 t − 1, (ni, ni+1) ∈ E. Given two sets A,B ⊆ E, a
linking Θ from A to B is a collection of paths such that

• |Θ| = |A|

• The paths are pairwise disjoint

• Each path starts in a vertex belonging to A and ends in a vertex of B

Fixing a sets N1, N2 ⊆ N , the sets I ⊆ N1 such that there is a linking from I to N2 are
the independent sets of a matroid M on the set N1. A matroid that can be constructed
this way is called a gammoid. If N1 = N we say it is a strict gammoid. A gammoid can
have different directed graphs representing it.

The gammoid class is closed under minors and duals. Strict gammoids and transversal
matroids are known to be dual [11]. It is clear from the definition that transversal matroids
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are closed under restriction, however they are not closed under contraction. Dually, strict
gammoids are closed under contraction but not closed under restriction. Every gammoid is
the restriction of a strict gammoid. Then every gammoid is the contraction of a transversal
matroid.

Example 1. Let Γ be the graph shown in Figure 1. By letting N1 = {1, 2, 3, 4, 5, 6} and
N2 = {2, 4, 6, x} we get a gammoid M of rank 4. This gammoid is also a transversal
matroid, as {{1, 2}, {3, 4}, {5, 6}, {1, 3, 5}}. is a presentation of M . However it will be
shown in Section 3 that M is not a strict gammoid (this does not follow from the fact
that x /∈ N1, as there may be a different directed graph representing M with all of its
vertices).

Figure 1:
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3 3-Flatness and Pseudomodularity

There have been many characterizations for transversal matroids and strict gammoids,
most of them in terms of flats and specially cyclic flats. However, the characterization for
strict gammoids which is more appropriate for our purposes is Theorem 3.2. Mason first
showed the analogue for transversal matroids in [12]. However, it is specifically stated
and shown by Evans in [5].

Let M be a matroid. Recall that we write F for the set of flats of M . Let C = {Fi ∈
F | i ∈ I} be a collection of flats. If ∅ 6= S ⊆ I let FS =

⋂
i∈S Fi and F∅ =

⋃
i∈I
Fi. We

define the ∆ function as
∆(C) =

∑
S⊆I

(−1)|S|r(Fs)

For such C we want to admit repetitions even though they are trivial for calculating
∆(C), thus letting C be a multiset. We want to do this, because we are going to manipulate
the elements in C and want to maintain the cardinality of C constant. The ∆ function
will help us define the concept of flatness given by Hrushovski in [8].

Definition 3.1. We say M is totally flat if ∀C ⊆ F finite, ∆(C) 6 0
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Theorem 3.2. A finite matroid M is a strict gammoid if and only if it is totally flat.

Consider Example 1. Let C = {{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}} we have

∆(C) = r({1, 2, 3, 4, 5, 6})− r({1, 2, 3, 4})− r({1, 2, 5, 6})− r({3, 4, 5, 6})
+ r({1, 2}) + r({3, 4}) + r({5, 6})
= 4− 3− 3− 3 + 2 + 2 + 2 = 1,

so M is not totally flat. Hence, it is not a strict gammoid. It is actually the minimal
gammoid that is not strict gammoid, in terms of rank and size.

Definition 3.3. A matroid M is n-flat, if and only if ∀C ⊆ F such that|C| 6 n, ∆(C) 6 0.

We used the term n-flat for |C| 6 n instead of |C| = n because once ∆(C) > 0 it is
easy to generate collections of sets of larger cardinality than C by adding any subflat of
elements of C (see Proposition 4.2). Note that 2-flat is equivalent to submodularity, so all
matroids are trivially 2-flat. The first non-trivial property would be 3-flat, and it happens
to imply several important properties.

Now let A,B ∈ F . We write r(A/B) := r(A ∪ B) − r(B), which is the rank of A
when contracting B. Suppose there exists B0 ∈ F such that for every flat B1 ⊆ B,
r(A/B1) = r(A/B) if and only if B0 ⊆ B1. B0 is called the pseudointersection of A and
B. Note that the pseudointersection is not symmetric, that is, the pseudointersection of
A and B can be different from the pseudointersection of B and A. Further, not even the
existence of pseudointersection is symmetric. Example of these may be seen in [1]. If
the pseudointersection of A and B exists, we write A J B. If it does not exist, we write
A 6J B.

Definition 3.4. A matroid M is pseudomodular if for every A,B ∈ F we have A J B

The concepts of pseudointersection and pseudomodularity are phrased in terms of the
lattice of flats of a matroid and can be extended for any lattice as originally defined in
[1]. It is not difficult to see that pseudomodularity may be restated as follows: for every
A,B,C ∈ F if r(A/B) = r(A/C) = r(A/B ∪ C) then r(A/B ∩ C) = r(A/B). Consider
again Example 1. If A = {1, 2}, B = {3, 4, 5, 6}, B1 = {3, 4} and B2 = {5, 6} we have
r(A/B) = r(A/B1) = r(A/B2) = 1. But B1 ∩ B2 = ∅, so r(A/∅) = r(A) = 2. Then
A 6J B and so M is not pseudomodular. If we consider the strict gammoid generated
by Γ, say M0, X would be in the closure of B, B1 and B2, so B1 ∩ B2 = {X} and we
would have r(A/{X}) = 1. M0 is actually modular, as Evans shows in [5] that strict
gammoids are pseudomodular. We show Theorem 3.6 as a generalization of that result.
Before proving Theorem 3.6 we need the following lemma

Lemma 3.5. Let M be a matroid which is not pseudomodular. Then there exists B ∈ F
and A ⊆ E such that r(A/B) = 1 and A 6J B.

Proof. If M is not pseudomodular, then there exist A,B ∈ F such that A 6J B. This
means there are flats B1, B2 ⊆ B such that r(A/B) = r(A/B1) = r(A/B2) < r(A/B1 ∩
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B2). We now prove the lemma by induction on r(A/B). If r(A/B) = 1 then we have the
desired result. Now let r(A/B) = n and suppose the lemma is true whenever there are
B′ ∈ F , A′ ⊆ E such that A′ 6J B′ and r(A′/B′) = n − 1. Let x ∈ A − B and consider
the set

C = (cl(B1 ∪ {x}) ∩ cl(B1 ∪ {x}))− (B1 ∩B2)

As C ⊆ cl(B1 ∪ {x}), r(C ∪ B1) = r(B1) + 1 and so r(C/B1) = 1. In the same way
r(C/B2) = 1. As x ∈ C −B then r(C/B) > 1 and as B1 ⊆ B then r(C/B) 6 r(C/B1) =
1, so r(C/B) = 1. If r(C/B1 ∩B2) > 1 then C 6J B and we have what we want. Suppose
now r(C/B1 ∩ B2) = 1. Note that C ∪ (B1 ∩ B2) = cl(B1 ∪ {x}) ∩ cl(B2 ∪ {x}). Let
B′ = cl(B ∪ {x}), B′i = cl(Bi ∪ {x}) for i ∈ {1, 2}. As x ∈ A, cl(A ∪ B′) = cl(A ∪ B).
Then

r(A/B′) = r(A ∪B′)− r(B′)
= r(A ∪B)− r(B)− (r(B′)− r(B))

= r(A/B)− r(B′/B) = n− 1.

In the same way r(A/B′1) = r(A/B′2) = n− 1. As B′1 ∩B′2 = C ∪ (B1 ∩B2), we have:

r(A/B′1 ∩B′2) = r(A ∪ (B′1 ∩B′2))− r(B′1 ∩B′2)
= r(A ∪ (B′1 ∩B′2))− r(B1 ∩B2)

− (r(B′1 ∩B′2)− r(B1 ∩B2))

= r(A/B1 ∩B2)− r(B′1 ∩B′2/B1 ∩B2)

= r(A/B1 ∩B2)− r(C/B1 ∩B2)

= r(A/B1 ∩B2)− 1 > n− 1.

Then A 6J B′, r(A/B′) = n− 1 and by the induction hypothesis the lemma is true.

Now we can prove the main result of the section

Theorem 3.6. Let M be a 3-flat matroid. Then M is pseudomodular.

Proof. Suppose M is not pseudomodular. We will prove that it is not 3-flat. By lemma
3.5 there are A,B ∈ F such that A 6J B and r(A/B) = 1. So there are flats B1, B2 ⊆ B
such that r(A/B1) = (A/B2) = 1 < r(A/B1 ∩B2). Let F1 = cl(A ∪B1), F2 = cl(A ∪B2)
and F3 = B and consider C = {F1, F2, F3}. We have

• F∅ ⊆ cl(B ∪ A). Then r(F∅) = r(B ∪ A)

• F{1,2} = cl(A∪B1)∩ cl(A∪B2) ⊇ (B1 ∩B2)∪A. Then r(F{1,2}) > r((B1 ∩B2)∪A)

• F{1,3} = cl(A ∪B1) ∩B = B1 as cl(A ∪B1)−B1 ⊆ E −B. Then r(F{1,3}) = r(B1)

• F{2,3} = cl(A ∪B2) ∩B = B2 as cl(A ∪B2)−B2 ⊆ E −B. Then r(F{2,3}) = r(B2)

• F{1,2,3} = B1 ∩B2. Then F{1,2,3} = r(B1 ∩B2)

the electronic journal of combinatorics 22(1) (2015), #P1.54 6



Then

∆(C) = r(F∅)− r(F1)− r(F2)− r(F3) + r(F{1,2})

+ r(F{1,3}) + r(F{2,3})− r(F{1,2,3})
> r(B ∪ A)− r(B)− r(B1 ∪ A)− r(B2 ∪ A)

+ r((B1 ∩B2) ∪ A) + r(B1) + r(B2)− r(B1 ∩B2)

= (r(B ∪ A)− r(B))− (r(B1 ∪ A)− r(B1))

− (r(B2 ∪ A)− r(B2)) + (r((B1 ∩B2) ∪ A)− r(B1 ∩B2))

= r(A/B)− r(A/B1)− r(A/B2) + r(A/B1 ∩B2)

= 1− 1− 1 + r(A/B1 ∩B2)

= r(A/B1 ∩B2)− 1

> 0.

Note that the lemma was used to ensure F{1,3} = B1 and F{2,3} = B2. If r(A/B1) > 1,
then we may not have cl(A ∪ B1) − B1 ⊆ E − B. We get pseudomodularity of strict
gammoids as a corollary.

Corollary 3.7. Let M be a strict gammoid, then M is pseudomodular.

The converse of Theorem 3.6 is not true. We show the following example of a pseudo-
modular gammoid that is not 3-flat.

Figure 2:

A

B

C

D

1 2
3

4

5

6

7

8

9

10

11

12

the electronic journal of combinatorics 22(1) (2015), #P1.54 7



Example 2. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and let M be the matroid on N
which has as flats any subset of N of size less or equal to 4, {1, 3, 4, 6, 7, 8}, {2, 3, 4, 9, 11,
12}, {5, 7, 8, 10, 11, 12}, any subset of size 5 not contained in any of the previous 3,
F1 = {1, 2, 3, 4, 5, 6, 7, 8}, F2 = {1, 2, 3, 4, 9, 10, 11, 12}, F3 = {5, 6, 7, 8, 9, 10, 11, 12} and
N . Figure 2 shows a strict gammoid, with sinks A,B,C,D, 3, 7, 11 where restricting
{A,B,C,D} gives us the matroid M .

Note that if C = {F1, F2, F3}, we have F{1,2} = {1, 2, 3, 4}, F{1,3} = {5, 6, 7, 8}, F{2,3} =
{9, 10, 11, 12} and F{1,2,3} = ∅. So ∆(C) = 7 − 3 · 6 + 3 · 4 = 1, so M is not 3-flat. Note
that for any flat B which is independent we have A J B for every A ∈ F , as B0 would be
the set of elements in B that are not coloop in B ∪A. So the only flats we need to check
are F1, F2, F3, {1, 3, 4, 6, 7, 8}, {2, 3, 4, 9, 11, 12} and {5, 7, 8, 10, 11, 12}, which are easy to
do using Lemma 3.5. This is our first example of a pseudomodular gammoid which is not
a strict gammoid.

4 Flatness Degree

As we have seen being 3-flat implies many interesting properties such as pseudomodularity.
It may be worth noting that 3-flatness is sufficient for CM-triviality in [8]. This fact got
us interested in studying n-flatness in general. We can begin with the following natural
definition

Definition 4.1. Given a matroid M we say that φ(M) is the flatness degree of M if M
is φ(M)-flat but not (φ(M) + 1)-flat. If such an integer does not exist (i. e. M is totally
flat), φ(M) = ω

As n increases it becomes much harder to study n-flatness. However, we will show that
for each n there is a matroid with flatness degree n, in other words, being n-flat is in fact
different for each n. First we start by presenting some tools that are useful for studying
the ∆ function. Proposition 4.2 was already shown by Holland in [7], which includes a
much deeper study of the ∆ function (there called T function). Let C = {Fi ∈ F | k ∈ I}
be a collection of flats of any matroid.

Proposition 4.2. Suppose that there are Fi, Fj ∈ C such that Fi ⊆ Fj. Then ∆(C) =
∆(C − {Fi})

Proof. Note that
⋃
C =

⋃
(C − {Fi}). Let Ci = {F{i,k} | k ∈ I ∧ i 6= k}. So ∆(C) =

∆(C − {Fi})−∆(Ci). But for each S ⊆ I − {i, j}, FS∪{i} = FS∪{i,j} so ∆(Ci) = 0 and we
have the desired result.

Proposition 4.3. There exists C ′ such that |C ′| = |C|, ∆(C ′) > ∆(C) and all elements of
C ′ are cyclic.

Although this proposition was not previously stated as it is, it is widely regarded
that being transversal (as well as being a strict gammoid and hence by being totally flat)
depends only on the cyclic flats. So the proposition is natural.
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Proof. The proof is done by induction on the sum of the number of isthmuses of the
elements in C. If the sum is 0 we have the desired result. Now suppose Fi ∈ C has an
isthmus e. Let S := {i ∈ I | e ∈ Fi}. First suppose e is also an isthmus in F∅. Then every
subset of F∅ who contains e, has it as an isthmus. Now for every j ∈ S, Fj −{e} is also a
flat different than Fk for every k 6= j. Consider D := {Fj | j /∈ S} ∪ {Fk −{e} | k ∈ S}.
We have |D| = |C|, and ∆(C)−∆(D) =

∑
A⊆S

(−1)|A| = 0. As D has |S| less isthmuses than

C by induction hypothesis there is a collection of cyclic flats C ′ such that |C ′| = |D| = |C|
and ∆(C ′) > ∆(D) = ∆(C)

Now suppose e is not an isthmus in F∅. Let D := {Fj | j 6= i} ∪ {Fi − {e}}. Again
Fi−{e} 6= Fj for i 6= j and |D| = |C|. If |S| > 2, have ∆(C)−∆(D) =

∑
A⊆(S−{i})

(−1)|A|+1 =

0. If S = {i} then ∆(C)−∆(D) = −1. The number of isthmuses in D is one less than in
C so by the induction hypothesis the proposition such C ′ exists.

Proposition 4.4. Suppose that |C| > 1. Then there exists C ′ such that |C ′| = |C|, ∆(C ′) >
∆(C) and ∀F ∈ C ′ F ⊆ cl(

⋃
(C ′ − {F}))

Proof. Let s(C) =
∑
i∈I
r(Fi − cl(

⋃
j 6=i

Fj)). If s(C) = 0, then clearly ∀i ∈ I Fi ⊆ cl(
⋃
j 6=i

Fj).

Now we will proceed by induction on s(C). Suppose s(C) > 0. Then there exists i ∈ I
such that r(Fi−cl(

⋃
j 6=i

Fj)) > 1. Let x ∈ Fi−cl(
⋃
j 6=i

Fj) non loop, and take any j ∈ I j 6= i.

Consider F ′j = cl(Fj ∪ {x}) and D = {Fk |k ∈ I k 6= j} ∪ {F ′j}. Clearly |C| = |D|. Note
that if A ⊆ I − {i, j} we have F ′j ∩ FA = FA∪{j}. As x ∈ (F ′j ∩ Fi)− (Fj ∩ Fi) we have

∆(D)−∆(C) = −r(F ′j) + r(F ′j ∩ Fi) + r(Fj)− r(Fj ∩ Fi)

= r(F ′j ∩ Fi)− r(Fj ∩ Fi) + 1

> 0.

But now r(Fi − cl(
⋃

k 6=i,j

Fk ∪ {F ′j})) < r(Fi − cl(
⋃
k 6=i

Fk)), so s(D) < s(C). Then by the

induction hypothesis, there is a C ′ such that |C ′| = |D| and ∆(C ′) > ∆(D) > ∆(C) and
∀F ∈ C ′ F ⊆ cl(

⋃
(C ′ − {F})).

It is now easy to verify that one can assume that all elements of C must be of rank at
least 2. So we can focus on studying only the particular class of collections of flats which
are cyclic, with rank at least 2, no flat is contained in another, and every flat is contained
in the closure of the union of the rest of the flats. Before we exhibit matroids with fixed
flatness degree, we prove the following combinatorial lemma.

Lemma 4.5. Let n be a positive integer, and l, m positive integers less than n. Then

m∑
k=0

(−1)k
(
n− k
l

)(
m

k

)
=

(
n−m
l −m

)
.

In particular, when m > l the equation is equal to 0.
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Proof. Note that the

(
n− k
l

)(
m

k

)
is the number of ways of choosing a subset K of [m]

of cardinality k and then choosing a subset L of [n] of cardinality l such that L ∩K = ∅.
The LHS is summing the number of ways to take an arbitrary subset K ⊆ [m] and then
choosing L with an alternating sign depending on |K|. Now if we choose first the set L,
we have now to choose subsets K of [m]− L. So for a fixed set L where j = |[m]− L| we

will have a contribution of
j∑

k=0

(
j

k

)
(−1)j. Now this is 0 for j > 1 and 1 for j = 0. So the

only terms that survive are the ones where [m] ⊆ L. But the number of ways of choosing

L such that [m] ⊆ L ⊆ [n] is precisely

(
n−m
l −m

)
Now we have the tools to prove the following theorem

Theorem 4.6. Let n > 2. Then there exists a matroid M with flatness degree n. More-
over, there exists a gammoid with flatness degree n.

Proof. First we assume n > 5 and we construct a gammoid such that φ(M) = n − 1.

Consider N :=

(
[n]

2

)
, the subsets of [n] := {1, 2, . . . n} of size 2. For i ∈ [n] let Ai = {x ∈

N | i ∈ x}. Consider the transversal matroid M on the set N given by the presentation

(A1, A2, . . . , An, N,N . . . N), where there are

(
n− 1

2

)
− n copies of N in A. Note that

as M is transversal, it is a gammoid.
For i ∈ [n] let Fi := {x ∈ N | i /∈ x}. We claim that these are the only non trivial

cyclic flats in the matroid. Suppose D ⊆ N is dependent. As there are

(
n− 1

2

)
− n

copies of N in the presentation of M , we have that |D| >
(
n− 1

2

)
− n. But now for

n > 5 we have that

(
n− 1

2

)
− n >

(
n− 3

2

)
. So D would have access to Ai for at

least n − 2 different i’s in [n]. But then we would have that |D| >
(
n− 1

2

)
− 1. But(

n− 1

2

)
− 1 >

(
n− 2

2

)
, so a subset this big would necessarily have access to Ai for at

least n− 1 different i’s in [n]. So |D| >
(
n− 1

2

)
and r(D) > r(M)− 1. So the only non

trivial flats that can be cyclic are the hyperplanes which are precisely the sets Fi. We
could have more easily defined M by giving {Fi | i ∈ [n]} as its set of hyperplanes, but
we wanted to show that it is in fact a gammoid.

So to check that M is k-flat for a given k, by proposition 4.3 we need only to focus
on collections of Fi as they are the only non trivial cyclic flats of M . Let A ⊆ [n] of size
m > 2. Consider C := {Fi | i ∈ A}. If B ⊆ A with |B| > 2, then we have that FB =

{x ∈ N | x ∩ B = ∅}. So FB is independent and r(FB) = |FB| =
(
n− |B|

2

)
. As Fi is a
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circuit for every i ∈ [n], we have r(Fi) =

(
n− 1

2

)
− 1. Finally, r(F∅) = r(N) =

(
n− 1

2

)
.

So using lemma 4.5 we have

∆(C) =
m∑
k=2

(−1)k
(
n− k

2

)(
m

k

)
−m

((
n− 1

2

)
− 1

)
+

(
n− 1

2

)
=

m∑
k=0

(−1)k
(
n− k

2

)(
m

k

)
+m+

(
n− 1

2

)
−
(
n

2

)
= m+

(
n− 1

2

)
−
(
n

2

)
= m− n+ 1.

So ∆(C) > 0 if and only if m = n. So φ(M) = n − 1. So we have constructed
gammoids such that φ(M) is any integer greater or equal to 4. Any strict gammoid has
flatness degree w and example 1 shows a gammoid with flatness degree 2. So the only
possible flatness degree which we have not yet exhibited a matroid with said degree is
3. As stated above, the same matroid structure of the last construction can be defined
by its hyperplanes and can be used to construct a matroid of flatness degree 3. However
this construction would be the matroid generated by graph K4, which Mason proved in
[13] not to be a gammoid. However example 2 in [13] is an example of a gammoid with
flatness degree 3.

Having differentiated all of this properties we see now that this is an infinite chain of
successively stronger properties

Pseudomodular ⊃ 3-Flat ⊃ 4-Flat ⊃ · · · ⊃ Totally Flat

All of the inclusions are strict, even in the class of gammoids, with the examples shown
above. Note that all of the properties are conditions on the lattice of flats. Modularity,
which is also a condition on the lattice of flats, implies 3-flatness by Proposition 4.4.
However, it does not imply 4-flatness (take 4 planes in R3 which intersect in different
lines).

5 Problems

A full algebraic matroid consists of an algebraically closed field K where the rank function
is the transcendence degree over a subfield F of K. As algebraically closed fields are
infinite, full algebraic matroids are infinite matroids. However in [4] is proved they are
pseudomodular as generalization from the lemma Ingleton and Main used in [10] when
they first constructed a non-algebraic matroid. As pseudomodularity is the first step
towards 3-flatness, the following becomes a natural question:

Problem 1. What is the minimum possible flatness degree for a full algebraic matroid?
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If a matroid M has flatness degree n for a large finite n, it seems that M must have
necessarily a large rank. On the other hand, for rank 3 matroids flatness degree 3 is
possible (K4) but not flatness degree 2. However, as there are no non strict gammoids of
rank 3 [11], the only possible flatness degree for a gammoid of rank 3 is ω. So the bounds
for flatness degree for gammoids and matroids in general are different.

Problem 2. For a given integer n > 1, what is the minimum possible rank for a matroid
M such that φ(M) = n?. What is the minimum possible rank for a gammoid M such
that φ(M) = n?

The fact that these minimum ranks are different may help the widely known open
problem [5, 14]

Problem 3. Is there an algorithm to determine whether or not a given matroid is a
gammoid?
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