Between 2- and 3-colorability

Alan Frieze* and Wesley Pegden ${ }^{\dagger}$
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh PA 15213, U.S.A
alan@random.math.cmu.edu, wes@math.cmu.edu

Submitted: Sep 10, 2014; Accepted: Jan 14, 2015; Published: Feb 16, 2015
Mathematics Subject Classifications: 05C80; 05C15

Abstract

We consider the question of the existence of homomorphisms between $G_{n, p}$ and odd cycles when $p=c / n, 1<c \leqslant 4$. We show that for any positive integer ℓ, there exists $\varepsilon=\varepsilon(\ell)$ such that if $c=1+\varepsilon$ then w.h.p. $G_{n, p}$ has a homomorphism from $G_{n, p}$ to $C_{2 \ell+1}$ so long as its odd-girth is at least $2 \ell+1$. On the other hand, we show that if $c=4$ then w.h.p. there is no homomorphism from $G_{n, p}$ to C_{5}. Note that in our range of interest, $\chi\left(G_{n, p}\right)=3$ w.h.p., implying that there is a homomorphism from $G_{n, p}$ to C_{3}. These results imply the existence of random graphs with circular chromatic numbers χ_{c} satisfying $2<\chi_{c}(G)<2+\delta$ for arbitrarily small δ, and also that $2.5 \leqslant \chi_{c}\left(G_{n, \frac{4}{n}}\right)<3$ w.h.p.

1 Introduction

The determination of the chromatic number of $G_{n, p}$, where $p=\frac{c}{n}$ for constant c, is a central topic in the theory of random graphs. For $0<c<1$, such graphs contain, in expectation, a bounded number of cycles, and are almost-surely 3 -colorable. The chromatic number of such a graph may be 2 or 3 with positive probability, according as to whether or not any odd cycles appear.

For $c \geqslant 1$, we find that the chromatic number $\chi\left(G_{n, \frac{c}{n}}\right) \geqslant 3$ with high probability, see for example Bollobás [6] or Janson, Luczak and Ruciński [9]. Letting $c_{k}:=\sup _{c} \chi\left(G_{n, \frac{c}{n}}\right) \leqslant k$,

[^0]it is known for all k and $c \in\left(c_{k}, c_{k+1}\right)$ that $\chi\left(G_{n, \frac{c}{n}}\right) \in\{k, k+1\}$, see Łuczak [10] and Achlioptas and Naor [3]; for $k>2$, the chromatic number may well be concentrated on the single value k, see Friedgut [7] and Achlioptas and Friedgut [1].

In this paper, we consider finer notions of colorability for the graphs $G_{n, \frac{c}{n}}$ for $c \in\left(1, c_{3}\right)$, by considering homomorphisms from $G_{n, \frac{c}{n}}$ to odd cycles $C_{2 \ell+1}$. Recall that a graph homomorphism from G to H is a function $f: V(G) \rightarrow V(H)$ such that $u \sim v$ implies $f(u) \sim f(v)^{1}$. In particular, the existence of a homomorphism from a graph G to $C_{2 \ell+1}$ implies the existence of homomorphisms to $C_{2 k+1}$ for all $k<\ell$. As the 3-colorability of a graph G corresponds to the existence of a homomorphism from G to K_{3}, the existence of a homomorphism to $C_{2 \ell+1}$ implies 3 -colorability. Thus considering homomorphisms to odd cycles $C_{2 \ell+1}$ gives a hierarchy of 3 -colorable graphs amenable to increasingly stronger constraint satisfaction problems. Note that a fixed graph having a homomorphism to all odd-cycles is bipartite.

Our main result is the following:
Theorem 1. For any integer $\ell>1$, there is an $\varepsilon>0$ such that with high probability, $G_{n, \frac{1+\varepsilon}{n}}$ either has odd-girth $<2 \ell+1$ or has a homomorphism to $C_{2 \ell+1}$.

Conversely, we expect the following:
Conjecture 1. For any $c>1$, there is an ℓ_{c} such that with high probability, there is no homomorphism from $G_{n, \frac{c}{n}}$ to $C_{2 \ell+1}$ for $\ell \geqslant \ell_{c}$.

As c_{3} is known to be at least 4.03 [2], the following confirms Conjecture 1 for a significant portion of the interval $\left(1, c_{3}\right)$.

Theorem 2. For any $c>2.774$, there is an ℓ_{c} such that with high probability, there is no homomorphism from $G_{n, \frac{c}{n}}$ to to $C_{2 \ell+1}$ for $\ell \geqslant \ell_{c}$.

We also have that $\ell_{4}=2$:
Theorem 3. With high probability, $G_{n, \frac{4}{n}}$ has no homomorphism to C_{5}.
Note that as $c_{3}>4.03>4$, see Achlioptas and Moore [2], we see that there are trianglefree 3 -colorable random graphs without homomorphisms to C_{5}. Our proof of Theorem 3 involves computer assisted numerical computations. The same calculations which rigorously demonstrate that $\ell_{4}=2$ suggest actually that $\ell_{3.75}=2$ as well.

Our results can be reformulated in terms of the circular chromatic number of a random graph. Recall that the circular chromatic number $\chi_{\mathrm{c}}(G)$ of G is the infimum r of circumferences of circles C for which there is an assignment of open unit intervals of C

[^1]to the vertices of G such that adjacent vertices are assigned disjoint intervals. (Note that if circles C of circumference r were replaced in this definition with line segments S of length r, then this would give the ordinary chromatic number $\chi(G)$.) It is known that $\chi(G)-1<\chi_{\mathrm{c}}(G) \leqslant \chi(G)$, that $\chi_{\mathrm{c}}(G)$ is always rational, and moreover, that $\chi_{\mathrm{c}}(G) \leqslant \frac{p}{q}$ if and only if G has a homomorphism to the circulant graph $C_{p, q}$ with vertex set $\{0,1, \ldots, q-1\}$, with $v \sim u$ whenever $\operatorname{dist}(v, u):=\min \{|v-u|, v+q-u, u+q-v\} \geqslant q$. (See [12].) Since $C_{2 \ell+1, \ell}$ is the odd cycle $C_{2 \ell+1}$ our results can be restated as follows:

Theorem 4. In the following, inequalities for the circular chromatic number hold with high probability.

1. For any $\delta>0$, there is an $\varepsilon>0$ such that, $G=G_{n, \frac{1+\varepsilon}{n}}$ has $\chi_{\mathrm{c}}(G) \leqslant 2+\delta$ unless it has odd girth $\leqslant \frac{2}{\delta}$.
2. For any $c>2.774$, there exists $r>2$ such that $\chi_{\mathrm{c}}\left(G_{n, \frac{c}{n}}\right)>r$.
3. $2.5 \leqslant \chi_{\mathrm{c}}\left(G_{n, \frac{4}{n}}\right)<3$.

Note that for any c and $\ell>1$, there is positive probability that $G_{n, \frac{c}{n}}$ has odd girth $<2 \ell+1$, and a positive probability that it does not. In particular, as the probability that $G_{n, \frac{c}{n}}$ has small odd-girth can be computed precisely, Theorem 1 gives an exact probability in $(0,1)$ that $G_{n, \frac{1+\varepsilon}{n}}$ has a homomorphism to $C_{2 \ell+1}$. Indeed, Theorem 1 implies that if $c=1+\varepsilon$ and ε is sufficiently small relative to ℓ, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\chi_{c}\left(G_{n, \frac{c}{n}}\right) \in\left(2+\frac{1}{\ell+1}, 2+\frac{1}{\ell}\right]\right)=e^{-\phi_{\ell}(c)}-e^{-\phi_{\ell+1}(c)}, \tag{1}
\end{equation*}
$$

where

$$
\phi_{\ell}(c)=\sum_{i=1}^{\ell-1} \frac{c^{2 i+1}}{2(2 i+1)} .
$$

We close with two more conjectures. The first concerns a sort of pseudo-threshold for having a homomorphism to $C_{2 \ell+1}$:

Conjecture 2. For any ℓ, there is a $c_{\ell}>1$ such that $G_{n, \frac{c}{n}}$ has no homomorphism to $C_{2 \ell+1}$ for $c>c_{\ell}$, and has either odd-girth $<2 \ell+1$ or has a homomorphism to $C_{2 \ell+1}$ for $c<c_{\ell}$.

The second asserts that the circular chromatic numbers of random graphs should be dense.
Conjecture 3. There are no real numbers $2 \leqslant a<b$ with the property that for any value of $c, \operatorname{Pr}\left(\chi_{\mathrm{c}}\left(G_{n, \frac{c}{n}}\right) \in(a, b)\right) \rightarrow 0$.

Note that our Theorem 1 confirms this conjecture for the case $a=2$.

2 Structure of the paper

We prove Theorem 1 in Section 3. We first prove some structural lemmas and then we show, given the properties in these lemmas, that we can algorithmically find a homomorphism. We prove Theorem 2 in Section 4 by the use of a simple first moment argument. We prove Theorem 3 in Section 5. This is again a first moment calculation, but it has required numerical assistance in its proof.

3 Finding homomorphisms

Lemma 1. If $\alpha<1 / 10$ and c is a positive constant where

$$
c<c_{0}=\exp \left\{\frac{1-6 \alpha}{3 \alpha}\right\}
$$

then w.h.p. any two cycles of length less than $\alpha \log n$ in $G_{n, p}, p=\frac{c}{n}$, are at distance more than $\alpha \log n$.

Proof If there are two cycles contradicting the above claim, then there exists a set S of size $s \leqslant 3 \alpha \log n$ that contains at least $s+1$ edges. The expected number of such sets can be bounded as follows:

$$
\left.\begin{array}{rl}
\sum_{s=4}^{3 \alpha \log n}\binom{n}{s}\binom{s}{2} \\
s+1
\end{array}\right)\left(\frac{c}{n}\right)^{s+1} \quad \leqslant \begin{array}{|}
s=4 \\
& \leqslant \frac{3 \alpha \log n}{n}\left(\frac{n e}{s}\right)^{s}\left(\frac{s e}{2}\right)^{s+1}\left(\frac{c}{n}\right)^{s+1} \\
& \sum_{s=4}^{3 \alpha \log n}\left(\frac{c e^{2}}{2}\right)^{s} \\
& <\frac{\left(c e^{2}\right)^{3 \alpha \log n} \log n}{n}
\end{array}
$$

which tends to 0 for our choices of α, c.

Our next lemma is concerned with cycles in K_{2} which is the 2-core of $G_{n, p}$. The 2-core of a graph is the graph induced by the edges that are in at least one cycle. When $c>1$, the 2 -core consists of a linear size sub-graph together with a few vertex disjoint cycles. By few we mean that in expectation, there are $O(1)$ vertices on these cycles.

Let $0<x<1$ be such that $x e^{-x}=c e^{-c}$. Then w.h.p. K_{2} has

$$
\nu \approx(1-x)\left(1-\frac{x}{c}\right) n \text { vertices and } \mu \approx\left(1-\frac{x}{c}\right)^{2} \frac{c n}{2} \text { edges. }
$$

(See for example Pittel [11]).
If $c=1+\varepsilon$ for ε small and positive then $x=1-\eta$ where $\eta=\varepsilon+a_{1} \varepsilon^{2},\left|a_{1}\right| \leqslant 2$ for $\varepsilon<1 / 10$.

The degree sequence of K_{2} can be generated as follows, see for example Aronson, Frieze and Pittel [4]: Let λ be the solution to

$$
\frac{\lambda\left(e^{\lambda}-1\right)}{e^{\lambda}-1-\lambda}=\frac{2 \mu}{\nu} \approx \frac{c-x}{1-x}=\frac{2+a_{1} \varepsilon}{1+a_{1} \varepsilon} .
$$

We deduce from this that

$$
\lambda \leqslant 4\left|a_{1}\right| \varepsilon \leqslant 8 \varepsilon .
$$

We will let Z_{1}, \ldots, Z_{n} denote independent copies of the random variable Z where for $d \geqslant 2$,

$$
\begin{equation*}
\operatorname{Pr}(Z=d)=\frac{\lambda^{d}}{d!\left(e^{\lambda}-1-\lambda\right)} \tag{2}
\end{equation*}
$$

It is shown in [4] that, conditioned on the event that $D_{1}:=\sum d(i)=2 \mu$, we have that the degrees $d(1), d(2), \ldots, d(n)$ of K_{2} are distributed as the $Z_{1}, Z_{2}, \ldots, Z_{n}$'s. Thus we will make use of the factor

$$
\begin{aligned}
\theta_{k} & =\frac{\operatorname{Pr}\left(d(i)=d_{i}, i=1,2, \ldots, k \mid D_{1}=2 \mu\right)}{\operatorname{Pr}\left(Z_{i}=d_{i}, i=1,2, \ldots, k\right)} \\
& =\frac{\operatorname{Pr}\left(Z_{k+1}+\cdots+Z_{n}=2 \mu-\left(Z_{1}+\cdots+Z_{k}\right)\right)}{\operatorname{Pr}\left(Z_{1}+\cdots+Z_{n}=2 \mu\right)} .
\end{aligned}
$$

It is shown in [4] that if $Z_{1}, Z_{2}, \ldots, Z_{N}$ are independent copies of Z then

$$
\begin{equation*}
\operatorname{Pr}\left(Z_{1}+\cdots+Z_{N}=N \mathbf{E}(Z)-t\right)=\frac{1}{\sigma \sqrt{2 \pi N}}\left(1+O\left(\frac{t^{2}+1}{N \sigma^{2}}\right)\right) \tag{3}
\end{equation*}
$$

where $\sigma^{2}=\Theta(1)$ is the variance of Z.
We observe next that the maximum degree in $G_{n, p}$ and hence in K_{2} is q.s. ${ }^{2}$ at most $\log n$. It follows from this and (3) that

$$
\theta_{k}=1+o(1) \text { for } k \leqslant \log ^{2} n \text { and } \theta_{k}=O\left(n^{1 / 2}\right) \text { in general. }
$$

[^2]Lemma 2. For any α, β, there exists $c_{0}>1$ such that w.h.p. any cycle C of length greater than $\alpha \log n$ in the 2-core of $G_{n, p}, p=\frac{c}{n}, 1<c<c_{0}$, has at most $\beta|C|$ vertices of degree $\geqslant 3$.

Proof Suppose that

$$
e^{1+8 \varepsilon}\left(\frac{8 \varepsilon e}{\beta}\right)^{\beta}<1
$$

We will show then that w.h.p. K_{2} does not contain a cycle C where (i) $|C| \geqslant \alpha \log n$ and (ii) C contains $\beta|C|$ vertices of degree greater than two.

We can bound the probability of the existence of a "bad" cycle C as follows: There are $\binom{\nu}{k} \frac{(k-1)!}{2}$ possible cycles in K_{2}. In particular, there are $\binom{\nu}{k} \frac{(k-1)!}{2}\binom{k}{\beta k}$ choices of a cycle of length k, and βk (lexicographically first, say) vertices $v_{1}, \ldots, v_{\beta k}$ on the cycle which have degree at least 3 . We then sum over the choices $d(i), i=1, \ldots, k$ of the degrees of the vertices on the cycle. The probability that $d(i)=d_{i}$ for $k=1, \ldots, k$ is given by $\theta_{k} \prod_{i=1}^{k} \operatorname{Pr}\left(Z_{i}=d_{i}, i=1,2, \ldots, k\right)$. Given this, we switch to the configuration model of Bollobás [5] for a random graph with a fixed degree sequence. In this model, the probability that the edges of the cycle exist is $\prod_{i=1}^{k} \frac{d_{i}\left(d_{i}-1\right)}{2 \mu-2 k+1}$. Using the configuration model, we inflate our estimates by a constant factor C_{0} to handle the problem of loops and multiple edges. Thus the probability of such a bad cycle can be bounded by

$$
\begin{aligned}
\operatorname{Pr}(\exists C) & \leqslant C_{0} \sum_{k=\alpha \log n}^{\nu}\binom{\nu}{k} \frac{(k-1)!}{2}\binom{k}{\beta k} \theta_{k} \sum_{\substack{d_{1}, \ldots, d_{\beta k} \geqslant 3 \\
d_{\beta k+1}, \ldots, d_{k} \geqslant 2}} \prod_{i=1}^{k}\left(\frac{\lambda^{d_{i}}}{d_{i}!\left(e^{\lambda}-1-\lambda\right)} \cdot \frac{d_{i}\left(d_{i}-1\right)}{2 \mu-2 k+1}\right) \\
& \leqslant C_{0} \sum_{k=\alpha \log n}^{\nu} \frac{1}{2 k}\left(\frac{\nu}{(2 \mu-2 k)\left(e^{\lambda}-1-\lambda\right)}\right)^{k} \lambda^{2 k}\binom{k}{\beta k} \theta_{k} \sum_{\substack{d_{1}, \ldots, d_{k k} \geqslant 3 \\
d_{\beta k+1}, \ldots, d_{k} \geqslant 2}} \prod_{i=1}^{k} \frac{1}{\left(d_{i}-2\right)!} \\
& \leqslant C_{0} \sum_{k=\alpha \log n}^{\nu} \frac{e^{k^{2} / \mu}}{2 k}\left(\frac{\nu}{2 \mu\left(e^{\lambda}-1-\lambda\right)}\right)^{k} \lambda^{2 k}\binom{k}{\beta k} \theta_{k}\left(e^{\lambda}-1\right)^{\beta k} e^{(1-\beta) k \lambda} \\
& =C_{0} \sum_{k=\alpha \log n}^{\nu} \frac{e^{k^{2} / \mu}}{2 k}\left(\frac{\lambda}{e^{\lambda}-1}\right)^{k}\binom{k}{\beta k} \theta_{k}\left(e^{\lambda}-1\right)^{\beta k} e^{(1-\beta) k \lambda} \\
& \leqslant C_{0} \sum_{k=\alpha \log n}^{\nu} \frac{\theta_{k}}{2 k}\left(e^{k / \mu} \cdot \frac{\lambda}{\left(e^{\lambda}-1\right)^{1-\beta}} \cdot\left(\frac{e}{\beta}\right)^{\beta} \cdot e^{(1-\beta) \lambda}\right)^{k} \\
& \leqslant C_{0} \sum_{k=\alpha \log n}^{\nu} \frac{\theta_{k}}{2 k}\left(e \cdot \lambda^{\beta} \cdot\left(\frac{e}{\beta}\right)^{\beta} \cdot e^{\lambda}\right)^{k},
\end{aligned}
$$

which tends to 0 .

Lemma 3. For any $k \in \mathbb{N}$, there exists $\varepsilon_{0}>0$ such that w.h.p. we can decompose the edges of the $G=G_{n, p}, p=\frac{1+\varepsilon}{n}, 0<\varepsilon<\varepsilon_{0}$, as $F \cup M$, where F is a forest, and where the distance in F between any two edges in M is at least k.

Proof We fix some $\alpha<\frac{1}{10}$. By choosing $\beta<\frac{1}{2 k}$ in Lemma 2 we can find, in every cycle of length $>\alpha \log n$ of the 2 -core K_{2} of G (which includes all cycles of G), a path of length at least $2 k+1$ whose interior vertices are all of degree 2 . We can thus choose in each cycle of K_{2} of length $>\alpha \log n$ such a path of maximum length, and let \mathcal{P} denote the set of such paths. (Note that, in general, there will be fewer paths in \mathcal{P} than long cycles in K_{2} due to duplicates, but that the elements of \mathcal{P} are nevertheless disjoint paths in K_{2}.) We now choose from each path in \mathcal{P} an edge from the center of the path to give a set M_{1}. Note that the set of cycles in $G \backslash M_{1}$ is the same as the set of cycles in $G \backslash \bigcup_{P \in \mathcal{P}} P$. (In particular, the only cycles which remain have length $\leqslant \alpha \log n$ and are at distance $\geqslant k$ from M.) Thus, letting M_{2} consist of one edge from each cycle of $G \backslash M_{1}$, Lemma 1 implies that $M=M_{1} \cup M_{2}$ is as desired.

Proof of Theorem 1. Our goal in this section is to give a $C_{2 \ell+1}$-coloring of $G=G_{n, \frac{1+\varepsilon}{n}}$ for $\varepsilon>0$ sufficiently small. By this we will mean an assignment $c: V(G) \rightarrow\{0,1, \ldots, 2 \ell\}$ such that $x \sim y$ in G implies that $c(x) \sim c(y)$ as vertices of $C_{2 \ell+1}$; that is, that $x=y \pm 1$ $(\bmod 2 \ell+1)$.

Consider a decomposition of G as $F \cup M$ as given by Lemma 3, with $k=4 \ell-2$.
We begin by 2 -coloring F. Let $c_{F}: V \rightarrow\{0,1\}$ be such a coloring. Our goal will be to modify this coloring to give a good $C_{2 \ell+1}$ coloring of G.

Let \mathcal{B} be the set of edges $x y \in M$ for which $c_{F}(x)=c_{F}(y)$, and let B be a set of distinct representatives for \mathcal{B}, and for $i=0,1$, let $B^{i}=\left\{v \in B \mid c_{F}(v)=i\right\}$.

We now define a new $C_{2 \ell+1}$ coloring $c: V \rightarrow\{0,1, \ldots, 2 \ell\}$, by

$$
c(v)= \begin{cases}c_{F}(v) & \text { if } \operatorname{dist}_{F}(v, B) \geqslant 2 \ell-1 \tag{4}\\ c_{F}(x)-(-1)^{j}\left(\operatorname{dist}_{F}(x, v)+1\right) & \text { if } \exists x \in B^{j} \text { s.t. } \operatorname{dist}(x, v)_{F}<2 \ell-1 .\end{cases}
$$

(Color addition and subtraction are computed modulo $2 \ell+1$.)
Since edges in M are separated by distances $\geqslant 4 \ell-2$, this coloring is well-defined (i.e., there is at most one choice for x). Moreover, c is certainly a good $C_{2 \ell+1}$-coloring of F. Thus if c is a not a good $C_{2 \ell+1}$-coloring of G, it is bad along some edge $x y \in M$. But if such an edge was already properly colored in the 2 -coloring c_{F}, it is still properly colored by c, since it has distance $\geqslant 4 \ell-2 \geqslant 2 \ell-1$ from other edges in M. On the other hand,
if previously we had $c_{F}(x)=c_{F}(y)=i$, and WLOG $x \in B^{i}$, then the definition of $c(v)$ gives that we now have that $c(x) \in\{i-1, i+1\}$ (modulo $2 \ell-1$). Thus if c is not a good $C_{2 \ell+1}$-coloring of G, then there is an edge $x y \in M$ such that $x \in B^{i}$ and y 's color also changes in the coloring c; but by the distance between edges in M, this can only happen if x and y are at F-distance $<2 \ell-1$. Note also that $c_{F}(x)=c_{F}(y)$ implies that $\operatorname{dist}_{F}(x, y)$ is even. Thus in this case, $F \cup\{x y\}$ contains an odd cycle of length $\leqslant 2 \ell-1$, and so G has odd girth $<2 \ell+1$, as desired.

4 Avoiding homomorphisms to long odd cycles

For large ℓ, one can prove the non-existence of homomorphisms to $C_{2 \ell+1}$ using the following simple observation:

Observation 4. If G has a homomorphism to $C_{2 \ell+1}$, then G has an induced bipartite subgraph with at least $\frac{2 \ell}{2 \ell+1}|V(G)|$ vertices.

Proof. Delete the smallest color class.

Proof of Theorem 2. The probability that $G_{n, \frac{c}{n}}$ has an induced bipartite subgraph on βn vertices is at most

$$
\begin{equation*}
\binom{n}{\beta n} 2^{\beta n}\left(1-\frac{c}{n}\right)^{\beta^{2} n^{2} / 4}<\left(\frac{2^{\beta} e^{-c \beta^{2} / 4}}{\beta^{\beta}(1-\beta)^{1-\beta}}\right)^{n} \tag{5}
\end{equation*}
$$

The expression inside the parentheses is unimodal in β for fixed c, and, for $c>2.774$, is less than 1 for $\beta>.999971$. In particular, for $c>2.774, G_{n, \frac{c}{n}}$ has no homomorphism to $C_{2 \ell+1}$ for $2 \ell+1 \geqslant 1,427,583$.

5 Avoiding homomorphisms to C_{5}

A homomorphism of $G=G_{n, p}, p=\frac{c}{n}$ into C_{5} induces a partition of $[n]$ into sets $V_{i}, i=$ $0,1, \ldots, 4$. As explained momentarily, this partition can be chosen so that the following hold:

P1 The sets $V_{i}, i=0,1, \ldots, 4$ are all independent sets.
P2 There are no edges between V_{i} and $V_{i+2} \cup V_{i-2}$. Here addition and subtraction in an index are taken to be modulo 5 .

P3 Every $v \in V_{i}, i=1,2,3,4$ has a neighbor in V_{i-1}.

P4 Every $v \in V_{2}$ has a neighbor in V_{3}.

Conditions $\mathbf{P} 1, \mathbf{P} 2$ are what is required for a homomorphism to C_{5}. For $\mathbf{P} 3$ we observe that if $v \in V_{i}$ has no neighbor in V_{i-1} then we can move v to V_{i+2} and still maintain P1,P2. As argued in Hatami [8], Lemma 2.1, applying this repeatedly eventually leads to $\mathbf{P} 1, \mathbf{P} 2, \mathbf{P} 3$ holding. Given $\mathbf{P} 1, \mathbf{P} 2, \mathbf{P} 3$, if $v \in V_{2}$ has no neighbors in V_{3} then we can move v from from V_{2} to V_{0} and still have a homomorphism. Furthermore, this move does not upset P1,P2,P3; thus we may assume P4 as well.

We let $\left|V_{i}\right|=n_{i}$ for $i=0,1, \ldots, 4$. For a fixed partition we then have

$$
\begin{gather*}
\operatorname{Pr}(\mathbf{P} 1 \wedge \mathbf{P} 2)=(1-p)^{S} \text { where } S=\binom{n}{2}-\sum_{i=0}^{4} n_{i} n_{i+1} . \tag{6}\\
\operatorname{Pr}(\mathbf{P} 3 \mid \mathbf{P} 1 \wedge \mathbf{P} \mathbf{2})=\prod_{i=1}^{4}\left(1-(1-p)^{n_{i-1}}\right)^{n_{i}} . \tag{7}\\
\operatorname{Pr}(\mathbf{P} 4 \mid \mathbf{P} \mathbf{1} \wedge \mathbf{P} \mathbf{2} \wedge \mathbf{P} 3) \leqslant\left(1-\left(1-\frac{1}{n_{2}}\right)^{n_{3}}(1-p)^{n_{3}}\right)^{n_{2}} \tag{8}
\end{gather*}
$$

Equations (6) and (7) are self evident, but we need to justify (8). Consider the bipartite subgraph Γ of $G_{n, p}$ induced by $V_{2} \cup V_{3}$. P3 tells us that each $v \in V_{3}$ has a neighbor in V_{2}. Denote this event by \mathcal{A}. We will now describe the construction of a random bipartite graph Γ^{\prime} on V_{2}, V_{3} such that we can couple Γ, Γ^{\prime} so that $\Gamma \subseteq \Gamma^{\prime}$. The RHS of (8) is the probability that $\mathbf{P} 4$ holds using Γ^{\prime} and the coupling implies that this bounds the probability of $\mathbf{P} 4$ in Γ. To construct Γ^{\prime} we choose a random mapping ϕ from V_{3} to V_{2}. We then create a bipartite graph Γ^{\prime} with edge set $E_{1} \cup E_{2}$. Here $E_{1}=\left\{\{x, y\}: x \in V_{3}, y=\phi(x)\right\}$ and E_{2} is obtained by independently including each of the $n_{2} n_{3}$ possible edges between V_{2} and V_{3} with probability p. We now prove that we can couple Γ, Γ^{\prime} so that $\Gamma \subseteq \Gamma^{\prime}$.

Event \mathcal{A} can be construed as follows: A vertex in $v \in V_{3}$ chooses B_{v} neighbors in V_{2} where B_{v} is distributed as a binomial $\operatorname{Bin}\left(n_{2}, p\right)$, conditioned to be at least one. The neighbors of v in V_{2} will then be a random B_{v} subset of V_{2}. We only have to prove then that if v chooses B_{v}^{\prime} random neighbors in Γ^{\prime} then B_{v}^{\prime} stochastically dominates B_{v}. Here B_{v}^{\prime} is one plus $\operatorname{Bin}\left(n_{2}-1, p\right)$ and domination is easy to confirm. We have $n_{2}-1$ instead of n_{2}, since we do not wish to count the edge v to $\phi(v)$ twice. Note also, included in the estimate in the RHS of (8) is the fact that the set of events $\{v$ is not chosen as an image of $\phi\}$ for $v \in V_{2}$, are negatively correlated.

We now write $n_{i}=\alpha_{i} n$ for $i=0, \ldots, 4$. We are particularly interested in the case where $c=4$. Now (5) implies that $G_{n, \frac{4}{n}}$ has no induced bipartite subgraph of size βn for $\beta>0.94$. Thus we may assume that $\alpha_{i} \geqslant 0.06$ for $i=0, \ldots, 4$. In which case we can
write

$$
\begin{aligned}
& \operatorname{Pr}(\mathbf{P} 1 \wedge \mathbf{P} 2 \wedge \mathbf{P} 3 \wedge \mathbf{P} 4) \leqslant \\
& \quad e^{o(n)} \times \exp \left\{-c\left(\frac{1}{2}-\sum_{i=0}^{4} \alpha_{i} \alpha_{i+1}\right) n\right\} \times\left(\prod_{i=1}^{4}\left(1-e^{-c \alpha_{i-1}}\right)^{\alpha_{i}}\right)^{n} \times \\
& \left(1-e^{-\alpha_{3} / \alpha_{2}} e^{-c \alpha_{3}}\right)^{\alpha_{2} n}
\end{aligned}
$$

The number of choices for V_{0}, \ldots, V_{4} with these sizes is

$$
\binom{n}{n_{0}, n_{1}, n_{2}, n_{3}, n_{4}}=e^{o(n)} \times\left(\frac{1}{\prod_{i=0}^{4} \alpha_{i}^{\alpha_{i}}}\right)^{n} \leqslant 5^{n} .
$$

Putting $\alpha_{4}=1-\alpha_{0}-\alpha_{1}-\alpha_{2}-\alpha_{3}$ and

$$
\begin{aligned}
& b=b\left(c, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\frac{1}{\alpha_{0}^{\alpha_{0}} \alpha_{1}^{\alpha_{1}} \alpha_{2}^{\alpha_{2}} \alpha_{3}^{\alpha_{3}} \alpha_{4}^{\alpha_{4}}} \\
& \quad e^{c\left(\alpha_{0} \alpha_{4}-\frac{1}{2}\right)}\left(e^{c \alpha_{0}}-1\right)^{\alpha_{1}}\left(e^{c \alpha_{1}}-1\right)^{\alpha_{2}}\left(e^{c \alpha_{2}}-1\right)^{\alpha_{3}}\left(e^{c \alpha_{3}}-1\right)^{\alpha_{4}}\left(1-e^{-\alpha_{3} / \alpha_{2}} e^{-c \alpha_{3}}\right)^{\alpha_{2}}
\end{aligned}
$$

we see that since there are $O\left(n^{4}\right)$ choices for n_{0}, \ldots, n_{4} we have

$$
\begin{equation*}
\operatorname{Pr}\left(\exists \text { a homomorphism from } G_{n, \frac{4}{n}} \text { to } C_{5}\right) \leqslant e^{o(n)}\left(\max _{\substack{\alpha_{0}+\cdots+\alpha_{3} \leq 0.94 \\ \alpha_{0}, \ldots, \alpha_{3} \leq 0.06}} b\left(4, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right)^{n} . \tag{9}
\end{equation*}
$$

In the next section, we describe a numerical procedure for verifying that the maximum in (9) is less than 1 . This will complete the proof of Theorem 3.

6 Bounding the function.

Our aim now is to bound the partial derivatives of $b\left(4.0, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, to translate numerical computations of the function on a grid to a rigorous upper bound.

Before doing this we verify that w.h.p. $G_{n, p=\frac{4}{n}}$ has no independent set S of size $s=3 n / 5$ or more. Indeed,

$$
\operatorname{Pr}(\exists S) \leqslant 2^{n}(1-p)^{\left(\frac{s}{2}\right)} \leqslant 2^{n} e^{-18 n / 25} e^{12 / 5}=o(1)
$$

In the calculations below we will make use of the following bounds: They assume that $0.06 \leqslant \alpha_{i} \leqslant 0.6$ for $i \geqslant 0$.

$$
\log \left(\alpha_{i}\right)>-2.82 ; \quad-1.31<\log \left(e^{4 \alpha_{i}}-1\right)<2.31 ; \quad \frac{e^{4 \alpha_{i}}}{e^{4 \alpha_{i}}-1}<4.69
$$

$$
\frac{1}{e^{4 \alpha_{i}}-1}<3.69 ; \quad \log \left(e^{\alpha_{3} / \alpha_{2}+4 \alpha_{3}}-1\right)>-0.91 ; \quad \frac{1+4 \alpha_{2}}{e^{\alpha_{3} / \alpha_{2}} e^{4 \alpha_{3}}-1}<8.40
$$

We now use these estimates to bound the absolute values of the $\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{i}}$. Our target value for these is 30 . We will be well within these bounds except for $i=2$

Taking logarithms to differentiate with respect to α_{0}, we find

$$
\begin{align*}
& \frac{\partial b}{\partial \alpha_{0}}=b\left(c, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \times \\
&\left(c\left(-\alpha_{0}+\alpha_{1}+\frac{\alpha_{1}}{e^{\alpha_{0} c}-1}+\alpha_{4}\right)-\log \left(\alpha_{0}\right)+\log \left(\alpha_{4}\right)-\log \left(e^{\alpha_{3} c}-1\right)\right) . \tag{10}
\end{align*}
$$

In particular, for $c=4$,

$$
\begin{aligned}
& \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{0}} \geqslant-4 \alpha_{0}+\log \left(\alpha_{4}\right)-\log \left(e^{4 \alpha_{3}}-1\right)>-2.4-2.82-2.31 \\
& \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{0}} \leqslant 4\left(\alpha_{1}+\frac{\alpha_{1}}{e^{\alpha_{0} c}-1}+\alpha_{4}\right)-\log \left(\alpha_{0}\right)-\log \left(e^{4 \alpha_{3}}-1\right)<4 \times 4.69+2.82+1.31
\end{aligned}
$$

Similarly, we find

$$
\begin{align*}
& \frac{\partial b}{\partial \alpha_{1}}=b\left(c, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \times \\
& \quad\left(c\left(-\alpha_{0}+\alpha_{2}+\frac{\alpha_{2}}{e^{\alpha_{1} c}-1}\right)-\log \left(\alpha_{1}\right)+\log \left(\alpha_{4}\right)+\log \left(\frac{e^{\alpha_{0} c}-1}{e^{\alpha_{3} c}-1}\right)\right) \tag{11}
\end{align*}
$$

and so for $c=4$,

$$
\begin{aligned}
& \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{1}} \geqslant-4 \alpha_{0}+\log \left(\alpha_{4}\right)+\log \left(e^{4 \alpha_{0}}-1\right)-\log \left(e^{4 \alpha_{3}}-1\right)>-2.4-2.82-3.62 \\
& \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{1}} \leqslant 4\left(\alpha_{2}+\frac{\alpha_{2}}{e^{4 \alpha_{1}}-1}\right)-\log \left(\alpha_{1}\right)-\log \left(e^{4 \alpha_{3}}-1\right)<2.4 \times 4.69+2.82+1.31
\end{aligned}
$$

We next find that

$$
\begin{align*}
& \frac{\partial b}{\partial \alpha_{2}}=b\left(c, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \times \\
& c\left(-\alpha_{0}+\alpha_{3}+\frac{\alpha_{3}}{e^{\alpha_{2} c}-1}\right)-\frac{\alpha_{3} / \alpha_{2}}{e^{\alpha_{3} / \alpha_{2}+c \alpha_{3}}-1}+ \\
& \log \alpha_{4}-\log \alpha_{2}+\log \left(e^{\alpha_{1} c}-1\right)-\log \left(e^{\alpha_{3} c}-1\right)-\frac{\alpha_{3}}{\alpha_{2}}-c \alpha_{3}-\log \left(e^{\alpha_{3} / \alpha_{2}+c \alpha_{3}}-1\right) \tag{12}
\end{align*}
$$

and so for $c=4$,

$$
\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{2}} \geqslant-4 \alpha_{0}-\frac{\alpha_{3}}{\alpha_{2}} \frac{e^{\alpha_{3} / \alpha_{2}+c \alpha_{3}}}{e^{\alpha_{3} / \alpha_{2}+c \alpha_{3}}-1}-\log \left(e^{\alpha_{3} / \alpha_{2}+c \alpha_{3}}-1\right)+\log \left(\alpha_{4}\right)+\log \left(\frac{e^{4 \alpha_{1}}-1}{e^{4 \alpha_{3}}-1}\right)
$$

We need to be a little careful here. Now $\alpha_{3} / \alpha_{2} \leqslant 10$ and if $\alpha_{3} / \alpha_{2} \geqslant 9$ then $\alpha_{3} \geqslant 0.54$ and then $\alpha_{i} \leqslant 0.46-3 \times .06=0.28$ for $i \neq 3$. We bound $-\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{i}}$ for both possibilities. Continuing we get

$$
\begin{aligned}
& \frac{\alpha_{3}}{\alpha_{2}} \geqslant 9: \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{2}}>-1.12-10.01-12.4-2.82-3.62=-29.97 \\
& \frac{\alpha_{3}}{\alpha_{2}} \leqslant 9: \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{2}}>-2.4-9.01-11.4-2.82-3.62 \\
& \frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{2}} \leqslant 4\left(\alpha_{3}+\frac{\alpha_{3}}{e^{4 \alpha_{2}}-1}\right)-\log \left(\alpha_{2}\right)+\log \left(\frac{e^{4 \alpha_{1}}-1}{e^{4 \alpha_{3}}-1}\right)-\log \left(e^{\alpha_{3} / \alpha_{2}+c \alpha_{3}}-1\right) \\
& \quad<2.4 \times 3.69+2.82+3.62+0.91
\end{aligned}
$$

Finally, we find that

$$
\begin{align*}
& \frac{\partial b}{\partial \alpha_{3}}=b\left(c, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \times \\
& \quad c\left(-\alpha_{0}+\alpha_{4} \frac{e^{c \alpha_{3}}}{e^{c \alpha_{3}}-1}\right)+\frac{1+c \alpha_{2}}{e^{\alpha_{3} / \alpha_{2}} e^{c \alpha_{3}}-1}+\log \left(\alpha_{4}\right)-\log \left(\alpha_{3}\right)+\log \left(\frac{e^{\alpha_{2} c}-1}{e^{\alpha_{3} c}-1}\right) \tag{13}
\end{align*}
$$

and so for $c=4$

$$
\begin{aligned}
\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{3}} & \geqslant-4 \alpha_{0}+\log \left(\alpha_{4}\right)+\log \left(e^{4 \alpha_{2}}-1\right)-\log \left(e^{4 \alpha_{3}}-1\right)>-2.4-2.82-3.62 \\
\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{3}} & \leqslant 4 \alpha_{4} \frac{e^{4 \alpha_{3}}}{e^{4 \alpha_{3}}-1}+\frac{1+4 \alpha_{2}}{e^{\alpha_{3} / \alpha_{2}} e^{4 \alpha_{3}}-1}-\log \left(\alpha_{3}\right)+\log \left(\frac{e^{4 \alpha_{2}}-1}{e^{4 \alpha_{3}}-1}\right) \\
& <2.4 \times 4.69+8.40+2.82+3.62
\end{aligned}
$$

We see that $\left|\frac{1}{b} \cdot \frac{\partial b}{\partial \alpha_{i}}\right|<30$ for all $0 \leqslant i \leqslant 3$. Thus, if we know that $b\left(c, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \leqslant$ B for some B, this means that we can bound $b\left(4, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)<\rho$ by checking that $b\left(4, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)<\rho-\varepsilon$ on a grid with step-size $\delta \leqslant \varepsilon /(2 \cdot B \cdot 30)$.

The $\mathrm{C}++$ program in Appendix A checks that $b\left(4, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)<.949$ on a grid with step-size $\delta=.0008$ (it completes in around an hour or less on a standard desktop computer, and is available for download from the authors' websites). Suppose now that $B \geqslant 1$ is the supremum of $b\left(4, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ in the region of interest. For $\varepsilon=60 \delta B=0.048 B$, we must have at some δ-grid point that $b\left(4, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \geqslant B-\varepsilon=.962 B \geqslant .962$. This contradicts the computer-assisted bound of $<.949$ on the grid, completing the proof of Theorem 3.

Acknowledgement

We thank the anonymous referee for a timely and useful pair of reviews.

References

[1] D. Achlioptas and E. Friedgut, A sharp threshold for k-colorability, Random Structures and Algorithms 14 (1999) 63-70.
[2] D. Achlioptas and C. Moore, Almost all Graphs with Average Degree 4 are 3colorable, Journal of Computer and System Science 67 (2003) 441-471.
[3] D. Achlioptas and A. Naor, The two possible values of the chromatic number of a random graph, Annals of Mathematics 162 (2005), 1333-1349.
[4] J. Aronson, A. Frieze and B. Pittel, Maximum matchings in sparse random graphs: Karp-Sipser revisited, Random Structures and Algorithms 12 (1998), 111-178.
[5] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labeled graphs, European Journal on Combinatorics 1(1980) 311-316.
[6] B. Bollobás, Random Graphs, First Edition, Academic Press, London 1985, Second Edition, Cambridge University Press, 2001.
[7] E. Friedgut, Sharp Thresholds of Graph Properties, and the k-sat Problem, Journal of the American Mathematical Society 12 (1999) 1017-1054.
[8] H. Hatami, Random cubic graphs are not homomorphic to the cycle of size 7, Journal of Combinatorial Theory B 93 (2005) 319-325.
[9] S. Janson, M.J. Luczak and A. Ruciński, Random Graphs, John Wiley and Sons, New York, 2000.
[10] T. Łuczak, A note on the sharp concentration of the chromatic number of random graphs, Combinatorica 11 (1991) 295-297.
[11] B. Pittel, On Tree Census and the Giant Component in Sparse Random Graphs, Random Structures and Algorithms 1 (1990) 311-342.
[12] X. Zhu, Circular chromatic number: a survey, Discrete Mathematics 229 (2001) 371410.

A C++ code to check function bound

\#include <iostream>
\#include <math.h>
\#include <stdlib.h>
using namespace std;
int main(int argc, char* argv[])\{
double delta=.0008; //step size
double maxIndSet=.6; //no independent sets larger than this fraction
double minClass=.06; //all color classes larger than this fraction
double val=0;
double maxval=0;
double maxa0, maxa1, maxa2, maxa3; //to record the coordinates of max value $\operatorname{maxa} 0=\operatorname{maxa} 1=\operatorname{maxa} 2=\operatorname{maxa}=0$;
double A23,A,B,C; //For precomputing parts of the function
double $c=4$;
for (double a3=minClass; a3 + 4*minClass<1; a3+=delta) \{
$B=\exp (c * a 3)-1$;
for (double a2=minClass; a3 + a2 + 3*minClass<1; a2+=delta) \{ A23=1/(pow $(\mathrm{a} 2, \mathrm{a} 2) * \operatorname{pow}(\mathrm{a} 3, \mathrm{a} 3)) * \exp (-\mathrm{c} / 2)$

* pow (exp (c*a2)-1, a3) * pow (1-exp (-a3/a2) *exp (-c*a3) , a2) ; for (double a1=minClass;
$\mathrm{a} 3+\mathrm{a} 1<\max$ IndSet \&\& a3 + a2 + a1 + 2*minClass<1; a1+=delta) \{ $\mathrm{A}=\mathrm{A} 23 / \operatorname{pow}(\mathrm{a} 1, \mathrm{a} 1) * \operatorname{pow}(\exp (\mathrm{c} * \mathrm{a} 1)-1, \mathrm{a} 2)$; for (double $a 0=\max (\max (m i n C l a s s, .4-a 2-a 3), .4-a 1-a 3)$; $a 2+a 0<m a x$ IndSet $\& \& ~ a 3+a 0<m a x I n d S e t ~ \& \& ~ a 3+a 2+a 1+a 0+m i n C l a s s<1$; a0+=delta) \{ double a4=1-a0-a1-a2-a3; C=exp (c*a0) ; val=1/pow $(\mathrm{a} 0, \mathrm{a} 0) * \mathrm{~A} * \operatorname{pow}(\mathrm{~B} * \mathrm{C} / \mathrm{a} 4, \mathrm{a} 4) * \operatorname{pow}(\mathrm{C}-1, \mathrm{a} 1)$; if (val>maxval)\{ maxval=val; $\operatorname{maxa} 0=a 0 ; \operatorname{maxa1}=a 1 ; \operatorname{maxa} 2=a 2 ; \operatorname{maxa} 3=a 3$;
\}
\}
\}
\}
\}
cout << "Max is "<<maxval<<", obtained at ("
<<maxa0<<" , "<<maxa1<<" , "<<maxa2<<" , "<<maxa3<<" , "
<<1-maxa0-maxa1-maxa2-maxa3<<")"<<endl;
\}

Program output:

\$./bound
Max is 0.948754 , obtained at ($0.2904,0.2568,0.1704,0.1632,0.1192$)

[^0]: *Research supported in part by NSF grant ccf1013110
 ${ }^{\dagger}$ Research supported in part by NSF grant dms1363136

[^1]: ${ }^{1}$ For a graph $G=(V, E)$ and $a, b \in V$, we write $a \sim b$ to mean that $\{a, b\} \in E$

[^2]: ${ }^{2}$ A sequence of events \mathcal{E}_{n} is said to occur quite surely q.s. if $\operatorname{Pr}\left(\neg \mathcal{E}_{n}\right)=O\left(n^{-C}\right)$ for any constant $C>0$.

