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Abstract

We prove that each maximal partial Latin cube must have more than 29.289%
of its cells filled and show by construction that this is a nearly tight bound. We also
prove upper and lower bounds on the number of cells containing a fixed symbol in
maximal partial Latin cubes and hypercubes, and we use these bounds to determine
for small orders n the numbers k for which there exists a maximal partial Latin cube
of order n with exactly k entries. Finally, we prove that maximal partial Latin cubes
of order n exist of each size from approximately half-full (n3/2 for even n > 10 and
(n3 + n)/2 for odd n > 21) to completely full, except for when either precisely 1 or
2 cells are empty.

1 Introduction

The famous theorem known as the Evans Conjecture, posed by Evans [7] and proved
independently by Anderson and Hilton [1], Häggkvist [9], and Smetaniuk [15], states that
it is possible to complete each partial Latin square of order n with at most n−1 elements.
In contrast, simple examples such as

1
2

show that it is not always possible to complete such squares if they contain n or more
elements. A partial Latin square like the one above is maximal if none of its empty cells
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can be filled. A natural question arises: how many elements may there be in a maximal
partial Latin square? This question was answered almost completely in [11].

In the present paper, we investigate an analoguous question, namely that of determin-
ing the possible numbers of elements in maximal partial Latin cubes.

We prove that each maximal partial Latin cube of order n must have more than
(1−1/

√
2)n3 > 0.29289n3 of its n3 cells filled (cf. Theorem 4) and we show by construction

that this is close to being a tight bound (cf. Theorem 15). We further prove upper and
lower bounds on the number of entries of a fixed symbol, or in a fixed layer, in maximal
partial Latin cubes, and we generalise these bounds with respect to maximal partial Latin
hypercubes (cf. Theorem 10). Using these bounds, we determine for orders 2, 3 (and almost
for order 4), which numbers k there exists a maximal partial Latin cube with exactly k
entries (cf. Theorem 11). We also prove that maximal partial Latin cubes of order n
with each size from approximately half-full (n3/2 for even n and (n3 + n)/2 for odd n) to
completely full exist (for n > 21), except for when either precisely 1 or 2 cells are empty
(cf. Theorems 28 and 30).

2 Preliminaries

Let [n] = {1, 2, . . . , n}. A partial Latin square of order n is a set L of ordered triples
from [n]3 such that if (r, c, s) and (r′, c′, s′) are distinct elements of L, at most one of the
following is true: r = r′; c = c′; s′ = s. We typically represent a Latin square as an n× n
array, with symbol s in row r and column c if and only if (r, c, s) ∈ L. Each symbol then
occurs at most once per row and at most once per column. A partial Latin square with
n2 elements is a Latin square.

We may extend Latin squares by an extra dimension in the following manner. A
partial Latin cube L of order n is a subset of [n]4 such that if (ℓ, r, c, s) and (ℓ′, r′, c′, s′) are
distinct elements of L, then at most two of the following are true: ℓ = ℓ′; r = r′; c = c′;
s = s′. Here, ℓ is the layer; r is the row; c is the column; and s is the symbol.

We typically represent a partial Latin cube as a set of partial Latin squares (layers)
such that no symbol occurs in the same row and column of two distinct layers. Thus the
set Lℓ := {(r, c, s) | (ℓ, r, c, s) ∈ L} is a partial Latin square for each ℓ ∈ [n]; these partial
Latin squares form the layers of L. If (ℓ, r, c, s) ∈ L, then we may say that symbol s is
in cell (ℓ, r, c) of L or that symbol s is in cell (r, c) of layer ℓ of L. In either case, we say
that this cell is filled; conversely, if (ℓ, r, c, s) /∈ L for all symbols s, then the cell (ℓ, r, c) is
empty.

The lines of a partial Latin cube are obtained by fixing any two of the first three
coordinates and allowing the remaining coordinate to vary. The lines obtained by fixing
the second and third coordinates will be known as stacks. If the layers of the partial Latin
cube are stacked directly on top of each other, then the stacks are the vertical columns
formed.

Thus, a partial Latin cube can be seen as a 3-dimensional array with symbols occurring
at most once in each line. A partial Latin cube of order n with size n3 is a Latin cube.

A partial Latin square (cube) L of order n is said to be maximal if L = L′ whenever
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L′ is a partial Latin square (cube) of the same order n and L ⊆ L′. In other words, L
is maximal if it is impossible to add any new elements to L. Here is a maximal partial
Latin cube of order 2, represented by its two layers:

1
2

2
1

In [11], the spectrum of sizes of maximal partial Latin squares is studied and determined
with only a small range of possible exceptions. In this paper, we investigate the spectrum
of sizes of maximal partial Latin cubes. However, we begin by summarizing results on
maximal partial Latin squares, some of which we will use in later sections. First, we
emphasize the values which are not in the spectrum.

Let ML(n) be the set of integers t for which there exists a maximal partial Latin
square of order n with size t (i.e. exactly t filled cells).

Theorem 1. [11] Let t be an integer such that either:

1. t < 1
2
n2; or

2. t = 1
2
n2 + k, 1 6 k 6

1
2
n where k is odd and n is even; or

3. t = ⌈1
2
n2⌉+ k, 1 6 k < 1

2
(n− 1) where k is odd and n is odd; or

4. t = n2 − 1.

Then t 6∈ ML(n).

Next we describe values which are known to be in the spectrum:

Theorem 2. [11] Let t be an integer such that 1
2
n2 6 t < n2−1 and t 6= ⌈1

2
n2⌉+k, where

k is odd and 1 6 k 6 n− 1. Then t ∈ ML(n).

This leaves the following open problem.

Open problem [11] Determine whether t ∈ ML(n), where:

1. t = 1
2
n2 + k, n even, k odd, 1

2
n < k 6 n− 1;

2. t = 1
2
(n2 + 1) + k, n odd, k odd, 1

2
(n− 1) 6 k 6 n− 1.

It is conjectured in [11] that the above values of t do not belong to the spectrum of possible
sizes of maximal partial Latin squares.

In this paper, we examine the analogous question for partial Latin cubes and define
ML(3, n) to be the set of integers t such that there exists a maximal partial Latin cube
of order n with exactly t filled cells. It turns out that, in contrast to maximal partial
Latin squares, there exist maximal partial Latin cubes with much less than half of the
cells filled (cf. Theorem 15). Conversely, ML(3, n) contains all values between n3/2 and
n− 3 when n is even and n > 10 and all values between (n3 + n)/2 and n− 3 when n is
even and n > 21 (cf. Theorems 28 and 30).
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Related to the problem of constructing maximal partial Latin cubes is the question
of whether a partial Latin cube is completable. We briefly summarize the literature in
this area. A Latin cuboid is a partial Latin cube with each layer either completely full
or empty. Clearly a Latin cuboid cannot be maximal unless it is a Latin cube. In the
1980s, several authors [8, 10, 12] considered the problem of constructing non-completable
n × n × (n − 2) Latin cuboids. Subsequently, Kochol [13] proved that for any k and n
satisfying 1

2
n < k 6 n − 2, there is a non-completable n × n × k Latin cuboid. In [2],

constructions for non-completable n×n×k Latin cuboids are given in which k = ⌊n/2⌋, for
any n not congruent to 1 mod 4 and greater than 6. Little is known about the embedding
of a partial Latin cube into a complete Latin cube of higher order. Cruse [5] showed that
any n × n × r Latin cuboid with r 6 n can be embedded in a Latin cube of order n3.
Denley and Öhman [6] prove sufficient conditions for when a m× ℓ× k Latin box, i.e., a
partial Latin cube whose filled cells form a m × ℓ × k rectangular box, can be extended
to a n× ℓ× k Latin box and when it can be extended to a n× n× k Latin cuboid. They
also proved a cube analogue of Evan’s Conjecture by proving that any partial Latin cube
of order n with at most n − 1 filled cells is completable under certain conditions on the
relative positions of the filled cells.

3 Lower bounds

We begin with an elementary bound.

Proposition 3. If t ∈ ML(3, n), then t > n4/(4n− 3).

Proof. If L is a maximal partial Latin cube with t elements, then [n]4 is the union of the
t following unions of lines associated to each (ℓ, r, c, s) ∈ L:

{(ℓ′, r, c, s) |ℓ′∈ [n]} ∪ {(ℓ, r′, c, s) |r′∈ [n]} ∪ {(ℓ, r, c′, s) |c′∈ [n]} ∪ {(ℓ, r, c, s′) |s′∈ [n]}.

Each of these line unions contains 4n− 3 elements, so t(4n− 3) > n4.

The above bound is achieved exactly when n = 3. In larger orders where, for example,
symbols may appear twice within a layer, the bound cannot be achieved. The following
theorem offers an improvement for sufficiently large values of n.

Theorem 4. If t ∈ ML(3, n), then t > (1− 1/
√
2)n3 > 0.29289n3.

Proof. Let L be a maximal partial Latin cube with t filled cells. Let m be the least
number of filled cells in a layer; then t > nm. Let ℓ be a fixed layer of L with exactly
m filled cells and note that m > n since each layer must trivially contain at least n filled
cells. Let ri (resp., ci) be the number of filled cells in row i (resp., column i) of layer ℓ.
Observe that

∑n

i=1 ri =
∑n

i=1 ci = m.
For each i ∈ [n], let Ci be the set of columns c such that cell (ℓ, i, c) is empty. Then

|Ci| = n− ri. For each i, define αi to be the number of filled cells in the columns [n] \ Ci
of layer ℓ.
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For each c ∈ Ci, the maximality of L implies that there must be at least n − ri filled
cells in the union of column c of layer ℓ and the stack with row i and column c. Thus,
there are at least (n − ri)

2 filled cells which occur in some column c ∈ Ci either within
layer ℓ or within row i in some layer ℓ′ 6= ℓ.

Since ℓ has m filled cells, exactly m − αi filled cells are in the former category, so at
least (n− ri)

2 − (m− αi) are in the latter category. Thus there are at least
n

∑

i=1

[(n− ri)
2 − (m− αi)] =

n
∑

i=1

[n2 − 2nri + r2i −m+ αi] = n3 − 3nm+
n

∑

i=1

r2i +
n

∑

i=1

αi

filled cells not in layer ℓ, so

t > n3 − 3nm+
n

∑

i=1

r2i +
n

∑

i=1

αi +m.

Now consider the term
∑n

i=1 αi in the above expression. Within layer ℓ a fixed column j
intersects a row i for exactly cj choices of i. Each time such an intersection occurs, there
is a contribution of cj towards the sum

∑n

i=1 αi due to filled cells within column j. Thus
each column j contributes c2j to the sum

∑n

i=1 αi, so

t > n3 − 3nm+
n

∑

i=1

r2i +
n

∑

j=1

c2j +m.

Since
∑n

i=1 ri =
∑n

j=1 cj = m, by the Cauchy-Schwarz inequality,

t > n3 − 3nm+ 2m2/n+m. (1)

In particular,
t > n3 − 3nm+ 2m2/n . (2)

Suppose, for the sake of contradiction, that t < n3(1 − 1/
√
2). Since nm 6 t, we must

have m < n2(1− 1/
√
2). By rearranging terms, we see that

n2

(

1√
2
− 1

4

)

<
3n2

4
−m

and squaring each side yields the inequality

n4

(

9

16
− 1

2
√
2

)

<

(

3n2

4
−m

)2

=
9

16
n4 − 3

2
n2m+m2 .

By subtracting n4/16 and doubling each side, we see that

nt < n4(1− 1/
√
2) < n4 − 3n2m+ 2m2 .

This contradicts (2).

Note that it is possible to sharpen the bound in Theorem 4 just slightly, by applying
a Taylor series to the inequality (1) instead of (2) as in the proof:

t > n3(1− 1/
√
2) + n2(

√
2− 1)/4 + n/(16

√
2) + 1/(32

√
2) .

This does not however provide any asymptotic improvement.
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4 Bounds on the number of cells of a given symbol

We can also find a lower bound on the number of cells filled with a given symbol. Consider
a maximal partial Latin cube L of order n and let χ1, . . . , χn denote the number of cells
in L filled with symbols 1, . . . , n, respectively, and assume without loss of generality that
χ1 > · · · > χn.

Proposition 5. If t ∈ ML(3, n) and j :=
⌈ n3 − t

3(n− 1)

⌉

, then for each i ∈ [n],

max{j, n} 6 χi 6 n2 .

Proof. Let i ∈ [n] and consider a maximal partial Latin cube L of order n. No symbol
can appear more than n times in any given cube layer, so χi 6 n2. Also, χi > n, since if
this were not true, then there would be some row and some column that did not contain
symbol i; but then their intersecting stack would contain at least one empty cell that
could be filled with this symbol, thus contradicting the maximality of L.

Finally, each of the n3 cells is either filled with one of the symbols 1, . . . , i−1, i+1, . . . , n
or is in the same line as some cell that is filled by symbol i. Since each cell shares lines
with 3n− 2 cells,

(3n− 2)χi +
∑

i′ 6=i

χi′ > n3 .

Subtracting t = χ1 + · · ·+ χn gives 3(n− 1)χi > n3 − t. Hence, χi > j.

Although Proposition 3 and Theorem 4 provide better overall lower bounds on the
numbers of filled cells than does Proposition 5, the latter provides more precise information
on the required number of filled cells of each symbol. Proposition 5 can also be used to
provide upper bounds on the number of cells filled with a particular symbol.

Theorem 6. If t ∈ ML(3, n) and j :=
⌈ n3 − t

3(n− 1)

⌉

, then for each i ∈ [n],

χi 6 min{⌊(t− (n− i)max{j, n})/i⌋, n2} .

In particular, no symbol can appear in more than t− (n− 1)max{j, n} cells.

Proof. By Proposition 5, χi′ > max{j, n} for all i′ ∈ [n], so

χ1 + · · ·+ χi = t− (χi+1 + · · ·+ χn) 6 t− (n− i)max{j, n} .

The first part of the theorem follows from the inequalities χ1 > · · · > χi and from
Proposition 5. The second part is obtained by setting i = 1.

The lower bounds in Proposition 5 may be tightened considerably by applying aver-
aging arguments to the upper bounds in Theorem 6.
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Theorem 7. If t ∈ ML(3, n) and j :=
⌈ n3 − t

3(n− 1)

⌉

, then for each i ∈ [n],

χi > max
{

max
I⊆[n] : i=min I

⌈(

t−
∑

i′∈[n]−I

min{⌊(t− (n− i′)max{j, n})/i′⌋, n2}
)

/|I|
⌉

, j, n
}

.

Proof. For each set I ⊆ [n],
∑

i′′∈I

χi′′ = t−
∑

i′∈[n]−I

χi′

and if i = min I, then χi = max{χi′′ : i′′ ∈ I}, so

χi >

⌈(

t−
∑

i′∈[n]−I

χi′

)

/|I|
⌉

.

Applying Theorem 6 to χi′ , and Proposition 5, concludes the proof.

Example 8. In maximal partial Latin cubes of order n = 4, the least number of cells
that each of the n symbols must fill is given by Proposition 5, illustrated as the lower
black line in the grid below, where t is the number of filled cells. Theorem 7 generally
gives far better individual lower bounds on χ1, . . . , χ4. Meanwhile, Theorem 6 offers good
individual uppers bounds thereon. These individual upper and lower bounds are given by
pairs of lines drawn in black (χ1), dashed (χ2), dotted (χ3), and dash-dotted (χ4).

19202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

universal lower bound

19 28 40 52 64
0
2

5

16

t

χ1 χ2 χ3 χ4

It is immediately visible from the bounds above that 19 /∈ ML(3, 4) since the lower
bound is higher than one of the upper bounds at t = 19. Similarly, the bounds for t = 20
dictate that χ1 = · · · = χ4 = 5, and a simple counting argument shows that this is not
possible; this shows that 20 /∈ ML(3, 4).

Example 8 also illustrates the following open problem.

Open Problem. Are the true minimal values for χi non-decreasing for fixed i and
increasing values of t ∈ ML(3, n)?
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It does not appear to be possible to improve the upper or lower bounds on χi further
by the methods that we have used above. However, let λi, ρi, and γi denote the number
of filled cells in layer i, row i, and column i, respectively, and assume without loss of
generality that λ1 > · · · > λn, ρ1 > · · · > ρn, and γ1 > · · · > γn. Since the maximality
of a partial Latin square is invariant under permutations of the layer, row, column, and
symbol coordinates of the 4-tuples (x, y, z, c) ∈ [n]4, we can significantly generalise the
bounds from Theorems 6 and 7.

Theorem 9. If t ∈ ML(3, n) and j :=
⌈ n3 − t

3(n− 1)

⌉

, then for each i ∈ [n],

f(i) > λi, ρi, γi, χi > max
{

j, n, max
I⊆[n] : i=min I

⌈(

t−
∑

i′∈[n]−I

f(i′)
)

/|I|
⌉}

where f(i) := min{⌊(t− (n− i)max{j, n})/i⌋, n2}.

We may generalise these results and their proofs further. Define a partial Latin hy-
percube L of dimension d and order n to be a set of (d+1)-tuples from [n]d+1 such that if
(v1, . . . , vd+1) and (v′1, . . . , v

′
d+1) are distinct elements of L, then vi = v′i for at most d− 1

values of i. Let ML(d, n) denote the set of numbers t for which some maximal partial
Latin hypercube of dimension d and order n contains exactly t elements. Let L be such
a maximal partial Latin hypercube and let χℓ

i denote the number of elements of L whose
ℓth coordinate has value i. Also, assume that χℓ

1 > · · · > χℓ
n. The following result is a

hypercube generalisation of (most of) Theorem 9.

Theorem 10. If t ∈ ML(d, n) for d > 2 and j :=
⌈ nd − t

d(n− 1)

⌉

, then for each ℓ ∈ [d + 1]

and each i ∈ [n],

f(i) > χℓ
i > max

{

j, max
I⊆[n] : i=min I

⌈(

t−
∑

i′∈[n]−I

f(i′)
)

/|I|
⌉}

where f(i) := ⌊(t− (n− i)j)/i⌋.

5 Spectra for small values of n

By inspection and by extensive computer search, we found the following (partial) spectra
for the number of filled entries in maximal partial Latin cubes of orders n = 2, 3, 4,
respectively.

Theorem 11.

ML(3, 2) = {4, 5, 8}
ML(3, 3) = {9, 12, 14, . . . , 24, 27}
ML(3, 4) = {31, . . . , 61, 64} ∪ S where S ⊆ {28, 29, 30} .
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The Appendix presents examples of maximal partial Latin cubes for each of the spec-
trum values given in Theorem 11 above. The parallelised computer search used the results
of Section 4, most particularly Theorem 9 and Example 8, to harshly prune the search
tree. The cube of order 4 lent itself nicely to fast 64 bit representation, and precalculated
permutation groups and subgroups were used together with shortcuts and optimisations
to further prune the search tree and speed up the search.

We leave it as a challenging computational problem to determine whether each of the
values 28, 29 and 30 is a member of ML(3, 4).

6 Constructions with less than half of cells filled

In this section we show the existence of maximal partial Latin cubes with a small number
of filled cells for any order n. Small in this case will be n3/3 +O(n2).

First consider the case in which n is divisible by 3 and write n = 3N . There exists a
maximal partial Latin cube L of order 3 with 9 filled cells (see Theorem 11). Replace each
filled cell of L containing symbols i ∈ {1, 2, 3} by a Latin cube of order N on element set
{iN +1, iN +2, . . . , (i+1)N}. The resultant Latin cube L3N is clearly a maximal partial
Latin cube of order n = 3N with n3/3 = 9N3 filled cells.

Now suppose that n is not divisible by 3. For the sake of brevity, we use an existence
proof to give an upper bound, rather than a completely explicit construction. The idea
is based on the following simple observation.

Lemma 12. Every partial Latin cube of order n is contained in a maximal partial Latin
cube of order n.

Suppose that n = 3N + 1 where N > 1. Take the partial Latin cube L3N from above
and add an empty row, an empty column and an empty layer to create a partial Latin
cube of order n = 3N +1. We then greedily add elements to filled cells until the resultant
partial Latin cube is maximal. Each symbol occurs at most once per line, so the symbol
3N + 1 can be added to at most n2 empty cells, and each symbol s ∈ [3N ] can be added
to fewer than 3n empty cells, each appearing in the final row, column and layer. The
resultant maximal partial Latin cube thus has fewer than 9N3+n2+(3n)(3N) filled cells,
and we therefore obtain the following lemma.

Lemma 13. Let n − 1 be divisible by 3 and n > 4. Then there exists a maximal partial
Latin cube of order n with no more than (n3 + 9n2 − 6n− 4)/3 filled cells.

The argument for the case in which n = 3N +2 is similar, adding an extra empty row,
column and layer. The resultant maximal partial Latin cube has at most 9N3+18nN+2n2

filled cells.

Lemma 14. Let n − 2 be divisible by 3 and n > 5. Then there exists a maximal partial
Latin cube of order n with at most (n3 + 21n2 − 3n− 4)/3 filled cells.

The linear terms above may be improved; for simplicity however, we summarize the
results from this section as follows:
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Theorem 15. For each order n > 3 there exists a maximal partial Latin cube of order n
with n3/3 +O(n2) filled cells.

7 Spectra for at least half-full partial Latin cubes

In this section, we show that maximal partial Latin cubes of any size from approximately
half-full to completely full exist (for orders n > 21) unless either 1 or 2 cells are empty.
We first show that neither n3 − 1 nor n3 − 2 belong to ML(3, n). To this end, we need
the following lemma.

Lemma 16. If L is a maximal partial Latin cube with n3 − t′ filled cells where t′ > 0,
then there are two empty cells (ℓ, r, c), (ℓ′, r′, c′) for which r 6= r′, c 6= c′ and ℓ 6= ℓ′.

Proof. For a contradiction and without loss of generality, suppose that all empty cells in
L belong to a single layer ℓ. Then every other layer of L is a Latin square.

Suppose that cell (ℓ, r, c) is empty. There is precisely one symbol s which does not
occur in the stack defined by (r, c). If (ℓ, r′, c, s) ∈ L for some r 6= r′, then symbol s
occurs n times within the Latin square L′ defined by fixing c but 0 times within row r of
L′, a contradiction. Similarly, (ℓ, r, c′, s) 6∈ L for any c′ 6= c. Thus, we may place symbol
s in cell (ℓ, r, c), contradicting the maximality of L.

Corollary 17. n3 − 1 6∈ ML(3, n).

Lemma 18. n3 − 2 6∈ ML(3, n).

Proof. Suppose for the sake of contradiction that L is a maximal partial Latin cube of
order n with only 2 empty cells; let these be (ℓ, r, c) and (ℓ′, r′, c′). By the previous
lemma, ℓ 6= ℓ′, r 6= r′ and c 6= c′. Thus the partial Latin squares defined by fixing ℓ, r
or c each have exactly one empty cell. By Theorem 1, there is no maximal partial Latin
square of order n with exactly one missing cell. Thus, the three partial Latin squares that
include (ℓ, r, c) are each completable to a Latin square. In particular, there is a unique
symbol s which occurs in none of the lines (ℓ, r), (r, c) and (ℓ, c). Thus L is not maximal,
a contradiction.

Next, we focus on the upper half of the spectrum ML(3, n). We will make use of the
following construction for a partial Latin cube from two partial Latin squares; see, for
example [14, Section 5].

Lemma 19. Let L1 and L2 be two partial Latin squares of order n. Then

L1 ◦ L2 := {(ℓ, r, c, s) | (r, c, x) ∈ L1 , (ℓ, s, x) ∈ L2 for some x}
is a partial Latin cube of order n.

Note that L1 ◦ L2 is a Latin cube whenever L1 and L2 are Latin squares.
If a partial Latin square L of order n has a subset of m rows and m columns such

that the m2 cells defined by these rows and columns form a Latin square of order m, then
these cells are said to form a Latin subsquare of L. We define a Latin subcube similarly.
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Corollary 20. Let L1 and L2 be partial Latin squares sharing the same subsquare M of
order m (on the same set of m2 cells). Then L1 ◦L2 contains a Latin subcube of order m.
Moreover, if L2 is itself a Latin square, then the stacks of L1 ◦ L2 corresponding to the
subsquare M are full.

Lemma 21. Let L1 be a maximal partial Latin square of order n and size t and let L2 be
any Latin square of order n. Then L1 ◦L2 is a maximal partial Latin cube of order n and
size nt.

Proof. Each layer of L1 ◦ L2 is the maximal partial Latin square L1 with the symbols
relabeled. Hence, L1 ◦ L2 is a maximal partial Latin cube.

We can determine certain subintervals of ML(3, n) by modifying the construction in
Lemma 21.

Lemma 22. Suppose that some maximal partial Latin square L of order n and size t
contains a Latin subsquare M of order ⌊n/2⌋ and suppose there exists a set S of β distinct
elements (ri, ci, si), i ∈ [β], each in M and 2β distinct empty cells (ri, c

′
i), (r

′
i, ci), i ∈ [β],

of L such that
(L \ S) ∪ {(ri, c′i, si), (r′i, ci, si) | i ∈ [β]}

is a partial Latin square of order n. Then there exists a maximal partial Latin cube of
order n and any size t′, where tn 6 t′ 6 tn+ β⌊n/2⌋.

Proof. Let N = ⌊n/2⌋. Without loss of generality, M is a subsquare on the first N rows,
columns and symbols. We construct a partial Latin cube L′ of order n as follows. Let
L1 be the partial Latin square L containing the Latin subsquare M . Since M has order
N 6 n/2, Theorem 1.42 of [3] implies that M is contained in some Latin square L2 of
order n. We now set L′ = L1 ◦ L2.

By Lemma 21 and Corollary 20, the partial Latin cube L′ is maximal and contains a
Latin subcube of order N . Now, let i ∈ [β] and let (ri, ci, si) be one of the β elements of M
satisfying the conditions of the lemma. Let ℓ ∈ [N ] and suppose that (ℓ, ri, ci, s

′) ∈ L′.
By construction, s′ ∈ [N ].

Next, modify L′ by removing s′ from cell (ℓ, ri, ci) and placing s′ in cells (ℓ, ri, c
′
i) and

(ℓ, r′i, ci) of layer ℓ. The empty cell created cannot be filled with a symbol from [N ] (due
to filled cells within layer ℓ); nor can it be filled with a symbol from [n]\ [N ] (due to filled
cells in layers from [n] \ [N ]). Thus, the resultant partial Latin cube is maximal and has
size one more than L′. Moreover we may repeat this operation for any i ∈ [β] and any
layer ℓ ∈ [N ]. The result follows.

We illustrate the previous lemma in the case n = 5. The partial Latin square L1 is
given below with the elements of S in italics; for each (ri, ci, si) ∈ S, we let r′i = ri + 2
and c′i = ci + 2. The partial Latin square formed by replacing every element of S by two
elements is given by L′

1. By the above lemma, this guarantees the existence of maximal
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partial Latin cubes of order 5 and sizes 65, . . . , 73.

1 2
2 1

3 4 5
4 5 3
5 3 4

L1

1 2
2 1

1 2 3 4 5
2 1 4 5 3

5 3 4

L′
1

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

L2

A maximal partial Latin cube of order 5 and size 70 is now constructed as above.

1 2

2 1

1 2 3 4 5

2 1 4 5 3

5 3 4

1 2

1 2

2 5 3 4

3 4 5

4 5 3

4 5

5 4

1 2 3

2 3 1

3 1 2

5 3

3 5

4 1 2

1 2 4

2 4 1

3 4

4 3

2 5 1

5 1 2

1 2 5

The following lemma uses constructions very similar to those in Lemmas 9 and 10
of [11]. In what follows, an idempotent Latin square of order n contains symbol i in cell
(i, i) for each i ∈ [n].

Lemma 23. If n is even, then there exists a maximal partial Latin square of order n
and size n2/2 + 2k satisfying the conditions of Lemma 22, where 0 6 k 6 n2/4 − β and
β ∈ {3, 4}. If n is odd and n > 9, then there exists a maximal partial Latin square of
order n and size (n2+1)/2+2k satisfying the conditions of Lemma 22, where β = (n−1)/2
and 0 6 k 6 (n− 1)2/4.

Proof. Let N = ⌊n/2⌋. Let Q be a Latin square of order N on symbol set [N ]; this
occupies the first N rows and columns of L. If n is odd, then we furthermore require
that Q is idempotent; such a Latin square exists for N > 3 (see, for example, Lemma 1.2
of [4]).

Let P be a Latin square of order n − N on symbol set [n] \ [N ]. Next, let P ′ be a
partial Latin square of size k which is a subset of P , subject to the following restrictions.
If k is even, then P ′ can be any subset such that 0 6 k 6 n2/4− 4. If k is odd, then P ′

must not include the final row or column of P , so that 0 6 k 6 (n− 1)2/4.
If cell (i, j, s) is in P ′, then place symbol s in cells (i, j +N) and (i +N, j) of L and

place symbol s−N in cell (i+N, j +N) of L. Otherwise if (i, j, s) ∈ P \ P ′, then place
symbol s in cell (i + N, j + N) of L. The resultant partial Latin square has the desired
properties.

In particular, suppose that n is even. Whenever (i, j, s) ∈ P \ P ′, the element (i −
n/2, j − n/2, s− n/2) ∈ Q can be one of the four elements of S chosen as in Lemma 22,
since, by construction, cells (i, j − n/2) and (i− n/2, j) are empty and neither row i nor
column j contain symbol s−n/2. For n odd, the β elements of S may be any (i, i, i) ∈ Q
where i ∈ [N ]; cells (i, n) and (n, i) are always empty and neither row n nor column n
contains symbol i.
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Corollary 24. If n is even and n3/2 6 t 6 n3 − 9n/2, then there exists a maximal
partial Latin cube of order n with t filled cells. If n is odd, n > 9 and n(n2 + 1)/2 6 t 6
n3 − (3n2 − 2n − 1)/4, then there exists a maximal partial Latin cube of order n with t
filled cells.

We now give a maximal partial Latin cube of order n = 6 and size 26× 6 constructed
as in the above proof. The symbols in italics can each be used to increase the size of the
maximal partial Latin cube by 1 as described above, yielding maximal partial Latin cubes
of sizes 26× 6, . . . , 26× 6 + 12 = 28× 6.

1 2 3 4 5 6
2 3 1 5
3 1 2
4 5 6 1 2 3
5 2 6 4

6 4 5

2 3 1 5 6 4
3 1 2 6
1 2 3
5 6 4 2 3 1
6 3 4 5

4 5 6

3 1 2 6 4 5
1 2 3 4
2 3 1
6 4 5 3 1 2
4 1 5 6

5 6 4

4 5 6 1 2 3
5 6 4 2
6 4 5
1 2 3 4 5 6
2 5 3 1

3 1 2

5 6 4 2 3 1
6 4 5 3
4 5 6
2 3 1 5 6 4
3 6 1 2

1 2 3

6 4 5 3 1 2
4 5 6 1
5 6 4
3 1 2 6 4 5
1 4 2 3

2 3 1

Finally, we consider the part of the spectrum ML(3, n) for which there are relatively
few (O(n2)) empty cells. We first focus on even orders. A partial incomplete Latin square
PILS(n; tu1

1 tu2

2 . . . tuk

k ) is a partial Latin square of order n such that there exists a partition
P of [n] of type tu1

1 tu2

2 . . . tuk

k so that for each P ∈ P , the subarray indexed by the rows
and columns of P is empty and each row (column) of P and each column (row) of [n] \P
contain each symbol from [n] \ P exactly once. A PILS can always be completed to a
Latin square of the same order by replacing each empty subarray indexed by P by a Latin
square on the symbol set P .

Lemma 25. If a > 3 and 0 6 b 6 2, then there exists a PILS(3ab1).

Proof. We give a rough sketch of the construction. For b = 0, take an idempotent Latin
square of order 3, replace each entry with a Latin square of order a and remove the Latin
squares on the main diagonal. For b ∈ {1, 2}, take the construction for b = 0, making
sure that the Latin squares of order a each possess at least two disjoint transversals.
(Such Latin squares exist even for a = 6; see for example Latin square 6.2 from III.1.3
in [3].) Choose a set of transversals from the subsquares of order a so that each row or
column contains b entries from a transversal. Add b extra rows and columns. Replace the
transversals with entries 3a + 1 (and 3a + 2 if b = 2), shifting the original entries to the
final b rows and columns.
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Let L1 be a PILS(3
ab1) (with the one holes of size b filled in) and let L2 be a completion

of L1 to a Latin square. Observe that the partial Latin cube L1 ◦ L2 contains a empty
3 × 3 × 3 subarrays which may be replaced by any a partial Latin cubes of order 3 (on
prescribed symbol sets). Moreover, if each of the inserted partial Latin cubes are maximal,
then the overall partial Latin cube will also be maximal. These observations yield the
following corollary to Lemma 25.

Corollary 26. Let 27−k1, 27−k2, . . . , 27−ka ∈ ML(3, 3) for a > 3, and let b ∈ {0, 1, 2}.
Then there exists a maximal partial Latin cube of order 3a+b with exactly k1+k2+· · ·+ka
empty cells.

Theorem 27. Let n and t be integers such that n = 10 or n > 12, 3 6 t 6 9n/2. Then
there exists a maximal partial Latin cube of order n and exactly n3 − t filled cells.

Proof. Let a = ⌊n/3⌋ and b = n − 3a. Now, ML(3, 3) = {9, 12, 14, . . . , 24, 27} by Theo-
rem 11 (see Section 5). The theorem holds for t = 18(a − 1) + 13 which can be seen by
setting k1 = k2 = · · · = ka−1 = 18 and ka = 13; for lower values of t, ka can be replaced
by 12 or 11 and each other ki can be replaced by 15 and so forth. Thus by the previous
corollary, it suffices to show that 18(a− 1) + 13 > 9n/2. This is clearly true for n = 10;
also 18(n− 2)/3− 5 = 6n− 17 > 9n/2 for n > 12.

From Corollary 24 and the previous theorem we obtain the following.

Theorem 28. Let n and t be integers such that n is even, n > 10 and 3 6 t 6 n3/2.
Then there exists a maximal partial Latin cube of order n and exactly n3 − t filled cells.

We next focus on the case in which n is odd. It is well known that there exists a Latin
square L1 of order n with a subsquare of order m for any n and m such that m 6 ⌊n/2⌋.
Let L′

1 be the partial Latin square created by removing this subsquare from L1. Then
L′
1 ◦ L1 is a partial Latin cube with every entry filled except for a three-dimensional

subarray of dimensions m × m × m. Moreover, we may insert a maximal partial Latin
cube of order m into this “hole” to create a maximal partial Latin cube of order n. This
implies the following lemma.

Lemma 29. If n > 2m and some maximal partial Latin cube of order m has t empty
cells, then there is a maximal partial Latin cube of order n with t empty cells.

Theorem 30. Let n and t be integers such that n is odd, n > 21 and 3 6 t 6 n(n2−1)/2.
Then there exists a maximal partial Latin cube of order n and exactly n3 − t filled cells.

Proof. LetM = ⌊n/4⌋. By Theorem 28, there exists a maximal partial Latin cube of order
2M with t empty cells, for any t with 3 6 t 6 4M3. Thus by the previous lemma, there
exists a maximal partial Latin cube of order n with t empty cells. Since M > (n− 3)/4,
Corollary 24 implies that it suffices to show that

4

(

n− 3

4

)3

>
3n2 − 2n− 1

4

which is certainly true for n > 21.
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Appendix

Below are examples of maximal partial Latin cubes for each of the spectrum values given
in Theorem 11.

1
2

0 1 2
0
1
2

2
1
0 1 2

0
1
2

1
2

0 1 2
0
1
2

2 1
1
0 1 2

0
1
2

1 2
2 1
0 1 2

0
1
2

2 1
1 2
0 1 2

0
1
2

1
2
3

0 1 2 3
0
1
2
3

3
1

2
0 1 2 3

0
1
2
3

2
3
1

0 1 2 3
0
1
2
3

1 2
3 1

2
0 1 2 3

0
1
2
3

2 1
1

3
0 1 2 3

0
1
2
3

3
2

1
0 1 2 3

0
1
2
3

1 2 3
2 1

0 1 2 3
0
1
2
3

2
1 2
3 1

0 1 2 3
0
1
2
3

1
3

3 2
0 1 2 3

0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3
2

1 3
0 1 2 3

0
1
2
3

1
3
2

0 1 2 3
0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3
1

1
0 1 2 3

0
1
2
3

1
3 2
2 3
0 1 2 3

0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3 1
1 2

3
0 1 2 3

0
1
2
3

3 2
2 1
0 1 2 3

0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3 1
1 2 3

0 1 2 3
0
1
2
3

3 2
2 1 3
0 1 2 3

0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3 1
1 2 3
1

0 1 2 3
0
1
2
3

3 1
2

1 3
0 1 2 3

0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3 1
1 2 3
1

0 1 2 3
0
1
2
3

3 1 2
3

2 1
0 1 2 3

0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3 1
1 2 3
1

0 1 2 3
0
1
2
3

3 1 2
3 1

2 3
0 1 2 3

0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3 1
1 2 3
1

0 1 2 3
0
1
2
3

3 1 2
3 1

1 2 3
0 1 2 3

0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3 1
3 2
1 3

0 1 2 3
0
1
2
3

3 1 2
1 2 3
2 3 1
0 1 2 3

0
1
2
3

1 2 3
2 1
3 2
0 1 2 3

0
1
2
3

2 3 1
3 2
1 2 3
0 1 2 3

0
1
2
3

3 1 2
1 2 3
2 3 1
0 1 2 3

0
1
2
3

1 2 3
2 3 1
3 1 2
0 1 2 3

0
1
2
3

2 3 1
3 1 2
1 2 3
0 1 2 3

0
1
2
3

3 1 2
1 2 3
2 3 1
0 1 2 3

0
1
2
3
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1 2 3
4

1 2
3 1

0 1 2 3 4
0
1
2
3
4

1 2
4

3 2 1
2 3

0 1 2 3 4
0
1
2
3
4

3 1
4

2 3
3 1 2

0 1 2 3 4
0
1
2
3
4

4
1 2 3 4
4
4

0 1 2 3 4
0
1
2
3
4

4 3 1
1 2
4

3 4

0 1 2 3 4
0
1
2
3
4

1 2
4 3

1 3
2 1

0 1 2 3 4
0
1
2
3
4

4
2 3

2 3 1
1 2

0 1 2 3 4
0
1
2
3
4

3 4
2 1

1 2
2 3

0 1 2 3 4
0
1
2
3
4

2 1 3
1 4

2 1
3 2

0 1 2 3 4
0
1
2
3
4

4 2
1 3
3 2
4 1

0 1 2 3 4
0
1
2
3
4

3 1
4 2
1 4

2 3

0 1 2 3 4
0
1
2
3
4

2 1 3
3 2

4
3 1

0 1 2 3 4
0
1
2
3
4

3 4 2
4 3
1 2
2 1

0 1 2 3 4
0
1
2
3
4

1 3 2
2 3 1
4 3

4

0 1 2 3 4
0
1
2
3
4

4 1
1 2
2 1

3 1

0 1 2 3 4
0
1
2
3
4

2 1
4

3 4
1 2 3

0 1 2 3 4
0
1
2
3
4

3 4 1
1 3 2
2 1

4 1

0 1 2 3 4
0
1
2
3
4

4 3 2
3 4
1 2
2 1

0 1 2 3 4
0
1
2
3
4

2 1
4

3 4
1 2 3

0 1 2 3 4
0
1
2
3
4

1 2
2 1
4 3
3 4

0 1 2 3 4
0
1
2
3
4

4 2 1
1 4 3
3 1

2 1

0 1 2 3 4
0
1
2
3
4

4 2 3
4 2
1 3
3 1

0 1 2 3 4
0
1
2
3
4

1 3
3 2 1
2 4
4 2

0 1 2 3 4
0
1
2
3
4

3 1
2

4 2
1 3 4

0 1 2 3 4
0
1
2
3
4

3 2 1
4 1 2
1 3
2 4 3

0 1 2 3 4
0
1
2
3
4

2 4 1
1 3
2 4
1 2 3

0 1 2 3 4
0
1
2
3
4

1 3
3 1 4

4 2
4 2

0 1 2 3 4
0
1
2
3
4

4 2
3 2

3 1
1

0 1 2 3 4
0
1
2
3
4

2 4
4 3 1
1 2 3
3 1 2

0 1 2 3 4
0
1
2
3
4

4 1 3
1 4
3 2 1

1 2

0 1 2 3 4
0
1
2
3
4

1 3 2
3 2

4 1
2 4

0 1 2 3 4
0
1
2
3
4

3 1
2 3
4 2

1 3

0 1 2 3 4
0
1
2
3
4

2 3 1
3 1 4
4 3
1 4 2

0 1 2 3 4
0
1
2
3
4

3 1 2
2 4 1
1 2

1 4

0 1 2 3 4
0
1
2
3
4

1 2 4
4 3
3 4 2

2 1

0 1 2 3 4
0
1
2
3
4

4 3
1 2
2 1 3
3

0 1 2 3 4
0
1
2
3
4

3 2 1
2 1 4
1 4 2
4 3

0 1 2 3 4
0
1
2
3
4

2 1 3
1 3 2
3 2 4

2 1

0 1 2 3 4
0
1
2
3
4

1 3 4
3 2
2 1
1 3

0 1 2 3 4
0
1
2
3
4

4 2
4 1

3 2
3 4 1

0 1 2 3 4
0
1
2
3
4

3 2 1
2 1 4
1 4 2
4 3

0 1 2 3 4
0
1
2
3
4

2 1 3 4
1 3 2
3 4
2 1

0 1 2 3 4
0
1
2
3
4

1 3 4
3 2
2 1
1 2 3

0 1 2 3 4
0
1
2
3
4

4 2
4 2 1
3 4

3 1

0 1 2 3 4
0
1
2
3
4

3 1 2
1 2 4
2 4 1
4 3

0 1 2 3 4
0
1
2
3
4

1 2 3 4
2 3 1
3 1

4 2

0 1 2 3 4
0
1
2
3
4

2 3 4
3 1
1 2
2 1 3

0 1 2 3 4
0
1
2
3
4

4 1
4 1 2
3 4

3 1 2

0 1 2 3 4
0
1
2
3
4

3 1 4 2
1 2 4
2 4 1
4 3

0 1 2 3 4
0
1
2
3
4

1 2 3
2 3 4 1
3 1
4 2

0 1 2 3 4
0
1
2
3
4

2 3 4
3 1
1 2
2 1 3

0 1 2 3 4
0
1
2
3
4

4 1
4 1 2
3 4

3 1 2

0 1 2 3 4
0
1
2
3
4

3 2 4 1
2 3 1
1 4 3 2
1 2 4

0 1 2 3 4
0
1
2
3
4

1 3 2
3 1 4
2 1
4 1 3

0 1 2 3 4
0
1
2
3
4

2 1 3
1 2
3 4
4 3 1

0 1 2 3 4
0
1
2
3
4

4 1 2
4 3

3 2 4
2

0 1 2 3 4
0
1
2
3
4

2 1 4 3
1 2
3 1 4
4 3 1

0 1 2 3 4
0
1
2
3
4

3 2 1
2 3 1
1 4 2
1 2 4

0 1 2 3 4
0
1
2
3
4

1 3 2
3 1 4
2 3 1
4 1 3

0 1 2 3 4
0
1
2
3
4

4 1 2
4 3
3 2

2 4

0 1 2 3 4
0
1
2
3
4

3 1 2
1 3 2
2 4 1
4 2 1

0 1 2 3 4
0
1
2
3
4

2 3 4 1
3 2 1
1 3
1 3 4

0 1 2 3 4
0
1
2
3
4

1 2 3
2 1 4
3 2 1
4 1 2

0 1 2 3 4
0
1
2
3
4

4 1 3
4 2
1 3 4

3 2

0 1 2 3 4
0
1
2
3
4

2 1 3 4
1 2 4
3 4 1
4 3 1

0 1 2 3 4
0
1
2
3
4

3 2 4 1
2 3 1
1 3 2
1 2

0 1 2 3 4
0
1
2
3
4

1 3 2
3 1 4
2 4 1
4 1 3

0 1 2 3 4
0
1
2
3
4

4 1 2
4 3
1 2

2 3 4

0 1 2 3 4
0
1
2
3
4

1 2 3 4
2 1 4
3 4 1
4 3 2

0 1 2 3 4
0
1
2
3
4

4 3 1
3 4 2
1 2 3
2 1 4

0 1 2 3 4
0
1
2
3
4

2 4 3
4 3 1
1 2 4

1 3 2

0 1 2 3 4
0
1
2
3
4

3 1 2
1 2 3
2 3 4
4 1

0 1 2 3 4
0
1
2
3
4

2 3 4 1
3 2 1 4
4 1 2
1 4 3

0 1 2 3 4
0
1
2
3
4

4 2 3
2 3 4 1
3 4 1
1 2

0 1 2 3 4
0
1
2
3
4

1 4 2
4 1 3
2 3 1
3 2 4

0 1 2 3 4
0
1
2
3
4

3 1 4
1 4 2
2 3

2 1 3

0 1 2 3 4
0
1
2
3
4

3 4 1 2
4 3 2 1
1 2 3
2 1 4

0 1 2 3 4
0
1
2
3
4

1 3 4
3 4 1 2
4 1 2
2 3

0 1 2 3 4
0
1
2
3
4

2 1 3
1 2 4
3 4 1
4 3 2

0 1 2 3 4
0
1
2
3
4

4 2 1
2 1 3
3 4 2

3 1 4

0 1 2 3 4
0
1
2
3
4

3 4 1 2
4 3 2 1
1 2 3
2 1 4

0 1 2 3 4
0
1
2
3
4

2 1 3
1 2 4
3 4 1 2
4 3 2 1

0 1 2 3 4
0
1
2
3
4

1 3 4
3 4 1 2
4 1 2
2 3

0 1 2 3 4
0
1
2
3
4

4 2 1
2 1 3
3 4

3 1 4

0 1 2 3 4
0
1
2
3
4

2 1 3 4
1 2 4 3
3 4 2
4 3 1

0 1 2 3 4
0
1
2
3
4

3 2 4 1
2 1
4 3 1 2
1 4 3

0 1 2 3 4
0
1
2
3
4

1 3 2
3 4 1
2 1 3 4
2 1 3

0 1 2 3 4
0
1
2
3
4

4 1 2
3 2 4

1 2 4 3
2 1

0 1 2 3 4
0
1
2
3
4

2 1 3 4
1 2 4 3
3 4 2
4 3 1

0 1 2 3 4
0
1
2
3
4

3 2 4 1
2 1 4
4 3 1 2
1 4 3

0 1 2 3 4
0
1
2
3
4

1 3 2
3 4 1
2 1 3 4
2 1 3

0 1 2 3 4
0
1
2
3
4

4 1 2
3 2

1 2 4 3
2 1 4

0 1 2 3 4
0
1
2
3
4

3 1 4 2
1 3 2 4
4 2 3
2 4 1

0 1 2 3 4
0
1
2
3
4

4 3 2 1
3 1 2
2 4 1 3
1 2 4

0 1 2 3 4
0
1
2
3
4

1 4 3
4 2 1
3 1 2 4
3 1 2

0 1 2 3 4
0
1
2
3
4

2 1 3
4 3

1 3 4 2
3 1 2 4

0 1 2 3 4
0
1
2
3
4

3 1 4 2
1 3 2
4 2 3 1
2 1 4

0 1 2 3 4
0
1
2
3
4

4 3 2 1
3 1 4
2 4 1 3
1 2 4

0 1 2 3 4
0
1
2
3
4

2 4 1 3
2 3 1

1 3 2 4
3 1 2

0 1 2 3 4
0
1
2
3
4

1 2 3 4
4 1 2
3 1 4
3 2 1

0 1 2 3 4
0
1
2
3
4

1 2 3 4
2 1 4
3 4 2 1
4 3 1 2

0 1 2 3 4
0
1
2
3
4

4 3 2 1
3 4 1
2 1 3 4
1 2 4 3

0 1 2 3 4
0
1
2
3
4

2 1 4 3
1 3 2
4 2 1
3 2 4

0 1 2 3 4
0
1
2
3
4

3 4 1 2
4 2 3
1 3 4
2 1 3

0 1 2 3 4
0
1
2
3
4

2 3 4 1
3 2 1 4
1 4 3 2
4 1 2 3

0 1 2 3 4
0
1
2
3
4

3 2 1
2 1 4 3
4 3 2 1
1 3 4

0 1 2 3 4
0
1
2
3
4

4 1 3 2
1 4 2
3 2 1
2 3 4 1

0 1 2 3 4
0
1
2
3
4

1 4 2 3
4 3 1
2 1 4
3 2 1

0 1 2 3 4
0
1
2
3
4

2 3 4 1
3 2 1 4
1 4 3 2
4 1 2 3

0 1 2 3 4
0
1
2
3
4

4 1 3 2
1 4 2
3 2 1 4
2 3 4 1

0 1 2 3 4
0
1
2
3
4

3 2 1
2 1 4 3
4 3 2 1
1 3 4

0 1 2 3 4
0
1
2
3
4

1 4 2 3
4 3 1
2 1 4
3 2 1

0 1 2 3 4
0
1
2
3
4

4 3 2 1
3 4 1 2
2 1 4
1 2 4 3

0 1 2 3 4
0
1
2
3
4

1 2 3 4
2 1 3
3 4 1 2
4 3 2 1

0 1 2 3 4
0
1
2
3
4

2 1 4 3
4 2 3 1
1 3 2
3 4 1 2

0 1 2 3 4
0
1
2
3
4

3 4 1 2
1 3 4
4 2 3 1
2 1 4

0 1 2 3 4
0
1
2
3
4

2 3 1 4
3 2 4 1
1 4 3 2
4 1 2 3

0 1 2 3 4
0
1
2
3
4

1 4 2 3
4 1 3 2
2 3 1 4
3 2 4 1

0 1 2 3 4
0
1
2
3
4

3 2 4 1
2 3 1
4 1 2 3
1 3 4

0 1 2 3 4
0
1
2
3
4

4 1 3 2
1 2 4
3 2 4 1
2 3 1

0 1 2 3 4
0
1
2
3
4

3 1 2 4
1 3 4 2
2 4 1 3
4 2 3 1

0 1 2 3 4
0
1
2
3
4

2 4 3 1
4 2 1 3
3 1 2 4
1 3 4 2

0 1 2 3 4
0
1
2
3
4

4 2 1 3
2 4 3 1
1 3 4 2
3 1 2

0 1 2 3 4
0
1
2
3
4

1 3 4 2
3 1 2
4 2 3 1
2 1 4

0 1 2 3 4
0
1
2
3
4

1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

0 1 2 3 4
0
1
2
3
4

2 1 4 3
1 2 3 4
4 3 1 2
3 4 2 1

0 1 2 3 4
0
1
2
3
4

3 4 1 2
4 3 2 1
1 2 3 4
2 1 4 3

0 1 2 3 4
0
1
2
3
4

4 3 2 1
3 4 1 2
2 1 4 3
1 2 3 4

0 1 2 3 4
0
1
2
3
4
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