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Abstract

When two patterns occur equally often in a set of permutations, we say that these
patterns are equipopular. Using both structural and analytic tools, we classify the
equipopular patterns in the set of separable permutations. In particular, we show
that the number of equipopularity classes for length n patterns in the separable
permutations is equal to the number of partitions of the integer n− 1.

Keywords: permutation patterns; pattern popularity; Gegenbauer polynomials;
separable permutations

1 Introduction

Two sequences α1, α2, . . . , αn and β1, β2, . . . , βn are said to be order isomorphic if they
share the same relative order, i.e., αr < αs if and only if βr < βs. The permutation π is
said to contain the permutation σ of length k as a pattern (denoted σ ≺ π) if there is some
increasing subsequence i1, i2, . . . , ik such that the sequence π(i1), π(i2), . . . , π(ik) is order
isomorphic to σ(1), σ(2), . . . , σ(k). If π does not contain σ, we say that π avoids σ. For
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example, the permutation π = 24153 (written in one-line notation) contains the pattern
σ = 312, because the second, third, and fifth entries (4, 1, and 3) share the same relative
order as the entries of σ. The set of all permutations equipped with this containment
order forms a partially ordered set.

For permutations σ and τ of lengths n and m respectively, the direct sum (σ⊕ τ) and
skew sum (σ 	 τ) are defined as follows :

(σ⊕ τ)(i) =

{
σ(i) 1 6 i 6 n

τ(i− n) + n n < i 6 n+m
, (σ	 τ)(i) =

{
σ(i) +m 1 6 i 6 n

τ(i− n) n < i 6 n+m
.

These operations are more naturally understood graphically: the graph of σ⊕τ (resp., σ	
τ) is obtained by stacking the graph of τ above (resp., below) and to the right of that of
σ. Both operations are noncommutative and are individually, but not jointly, associative.

This paper is concerned with separable permutations which are defined as the class
of all permutations that can be formed from the length one permutation, 1, by iterated
applications of direct and skew sums. For instance, π = 543612 is separable, as:

π = 543612 = ((1	 1	 1)⊕ 1)	 (1⊕ 1).

A permutation class is a set of permutations that forms a downset in the pattern
ordering, i.e., a set C for which π ∈ C and σ ≺ π implies σ ∈ C. The class of all
permutations is denoted S. Enumerating and describing permutation classes has led to
a variety of productive research and deep results relying on the combination of analytic,
algebraic, and structural methods. Since classes are closed downward, if β 6∈ C then every
permutation in C must avoid β. In fact, any class can be defined as the set of permutations
avoiding all the minimal (with respect to ≺) elements of its complement. These minimal
elements are called the basis of the class.

Since every pattern occurring in a separable permutation is itself separable, the set
of all separable permutations forms a permutation class; its basis is easily shown to be
{2413, 3142}. Denote the set of separable permutations by S and for any class, C, denote
by Cn the set of permutations of length n within the class.

A statistic on a set of permutations is simply a function from the set to N. This paper
is concerned primarily with the statistic of pattern occurrences, that is, the number of
times a pattern occurs in a permutation. We formalize this notion below.

Definition 1.1. Let σ be a (permutation) pattern, and let π be any permutation. Define
the statistic νσ on S by defining νσ(π) to be the number of times the pattern σ occurs in
the permutation π.

For example, the number of inversions of π is given by ν21(π).
When considering a statistic it is a common first step to ask about its mean value, or

equivalently, its sum. To that end, for a set X of permutations we define νσ(X ) to be the
total number of occurrences of σ in the set X , that is:

νσ(X ) =
∑
π∈X

νσ(π).
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In the set of all permutations, the total number of occurrences of a specified pattern
depends only on the length of the pattern. To see this, let σ and τ be two permutations
of length k and observe that for n > k and any subset X ⊆ {1, 2, . . . , n} of cardinality k
we can define a bijection between the set of permutations whose pattern at the indices X
is σ and those whose pattern is τ (namely, leave the other elements fixed and rearrange
the pattern of the elements on indices X, retaining the set of values). So, if σ has length
k and we choose π uniformly at random in Sn, then the probability that the pattern of π
in any particular set of k indices is equal to σ is just 1/k!. Linearity of expectation then
implies that

νσ(Sn) =
n!

k!

(
n

k

)
.

When we restrict to proper permutation classes the situation becomes less trivial, as
the bijections used above are not generally available. Given a permutation class C, we
say that two patterns σ and τ are equipopular in C (denoted σ ∼C τ , or just σ ∼ τ when
C is clear from context) if the class contains the same number of occurrences of σ and τ
at each length. That is:

σ ∼C τ if and only if νσ(Cn) = ντ (Cn) for all n > 1.

Obviously, ∼C is an equivalence relation. All permutations not belonging to C are equipop-
ular (since the number of occurrences of any such pattern in permutations of C is 0) and
thus we generally restrict its domain to C. We refer to the equivalence classes of C as
equipopularity classes. Note that all permutations belonging to an equipopularity class
are of the same length, since the least n for which νσ(Cn) > 0 is n = |σ|.

Motivated by a question of Cooper, Bóna [2, 3] showed that, in the class of per-
mutations avoiding the pattern 132, the patterns 213, 231, and 312 are equipopular.
Homberger [5] extended this symmetry to show that the number of occurrences of the
pattern 231 is identical among the permutations avoiding 123 and those avoiding 132.
Rudolph [6] presented a surjection from integer partitions to equipopularity classes, and
Chua and Sankar [4] showed that this map is actually a bijection. The class of 132 avoiding
permutations is a proper subset of the separable permutations studied here.

This paper enumerates and classifies the equipopularity classes of the separable per-
mutations. In Section 3 we use the structural decomposition of the separables to build
a surjection from integer partitions classes onto equipopularity classes, generalizing the
results of Rudolph. In Section 4 we show that this surjection is a bijection, generaliz-
ing the results of Chua and Sankar and proving that there are exactly partition-many
equipopularity classes in the separable permutations.

2 The Separable Permutations

The separable permutations exhibit numerous symmetries, and their recursive structure
will be a fundamental tool used in this investigation. Since every permutation π ∈ S can
be written as a sequence of direct and skew sums of the permutation 1, it follows that π
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has a (not necessarily unique) decomposition into smaller separable permutations σ and
τ in one of two different ways:

π = σ ⊕ τ or π = σ 	 τ.

Definition 2.1. A permutation is said to be sum decomposable if it can be written as
a direct sum of two non-trivial permutations, and sum indecomposable otherwise. Skew
(in)decomposability is defined analogously.

Since it is clearly impossible for a permutation to be both sum and skew decompos-
able, it follows then that every sum decomposable separable permutation can be written
uniquely as a direct sum of its sum indecomposable parts. That is, for every sum decom-
posable permutation π, there exists a unique integer k > 2 and a unique sequence of sum
indecomposable permutations σi, for 1 6 i 6 k such that

π = σ1 ⊕ σ2 ⊕ · · · ⊕ σk.

A similar decomposition holds for skew decomposable permutations.
The only separable permutation that is both sum and skew indecomposable is 1, so

given a separable permutation π which is, say, sum decomposable, its sum indecomposable
summands, if not 1, must be skew sums of skew indecomposable permutations. This
provides a recursive decomposition of π, and this decomposition can be thought of as
being represented by a particular sort of tree.

Definition 2.2. A decomposition tree is a rooted plane tree in which each non-leaf node
is labelled with either ⊕ or 	, and has at least two children. The non-leaf children of a
node labelled ⊕ are labelled with 	, and vice versa.

There is then a bijection Γ between S and the set of decomposition trees defined as
follows:

• Γ(1) is the tree consisting of a single node;

• if π ∈ S is sum-decomposable, and π = σ1 ⊕ σ2 ⊕ · · · ⊕ σk where each σi is sum
indecomposable, then Γ(π) has a root node labelled ⊕, having k children and the
subtrees rooted at its children are Γ(σ1),Γ(σ2), . . . ,Γ(σk) in that order;

• if π is skew decomposable, Γ(π) is defined similarly to the preceding case, with the
root node labelled 	.

For example, the tree Γ(π) for π = 215643798 is shown in Figure 2.1, and the full
decomposition of π is as follows:

215643798 = (21)⊕ (3421)⊕ 1⊕ (21)

=
(
1	 1

)
⊕
(
12	 1	 1

)
⊕ 1⊕

(
1	 1

)
=
(
1	 1

)
⊕
(
(1⊕ 1)	 1	 1

)
⊕ 1⊕

(
1	 1

)
.
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⊕

	 	 	

⊕

Figure 2.1: The decomposition tree Γ(π) of π = 215643798.

These tree representations will be used in Section 3 to investigate and describe the
relationships between equipopular patterns. This recursive structure will be used to de-
velop functional relationships between the generating functions for pattern popularity,
especially in Section 4. As an illustrative example, we rederive the enumeration of the
separable permutations.

Theorem 2.3 ([7, 10]). The number of separable permutations of length n is equal to
the nth (large) Schröder number.

Proof. Let sn be the number of separable permutations of length n (with s0 = 1), and let

S =
∑
n>0

snt
n.

Let S⊕ and S	 be the generating functions for the sum and skew decomposable separable
permutations, respectively. Since every separable permutation of length at least two is
either sum or skew decomposable, and since no permutation can be both, we have that

S = S⊕ + S	 + t+ 1. (2.1)

Every sum decomposable separable permutation π can be written as σ ⊕ τ , where τ
is separable and σ is sum indecomposable (and hence either skew decomposable or has
length one). This leads to the following relationship:

S⊕ = (S	 + t)(S − 1). (2.2)

Finally, the reverse of a sum decomposable permutation is skew decomposable and
vice versa, which implies:

S⊕ = S	. (2.3)

Combining equations 2.1-2.3 leads to a functional equation that can then be solved
algebraically to obtain the generating function for the Schröder numbers:

S =
3− t−

√
1− 6t− t2
2

.
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3 Equipopular Patterns

In this section we show that the number of equipopularity classes for patterns of length
n is at most the number of partitions of the integer n. By the the decomposition of
separable patterns, we determine sufficient conditions for two patterns to be equipopular
(these conditions will be shown to be necessary in the next section). Our primary tool
will be the decomposition trees introduced in the previous section. That is, we think of
separable permutations and their decomposition trees interchangeably.

Recall that two patterns of a different length can never be equipopular, and that we
are only interested in equipopularity for separable patterns (since no other patterns occur
at all). Therefore, within the set of all decomposition trees of a fixed size, our goal is to
classify those which correspond to equipopular patterns. This classification is obtained
by describing structural transformations on trees which lead to equipopular patterns.

3.1 Preserving Equipopularity

For a specified pattern σ, define a σ-marked permutation to be a permutation π for which
a subset of entries forming a σ pattern have been marked. Note that, for a set X of
permutations, the total number of occurrences of a pattern σ in X , i.e., νσ(X ), is equal
to the number of distinct σ-marked permutations π′, where the unmarked permutation π
lies in X .

Definition 3.1. For a permutation π ∈ Sn, the reverse, complement, and inverse of π,
denoted πr, πc, and π−1 respectively, are defined as follows:

(πr)(i) = π(n− i+ 1),

(πc)(i) = n− π(n) + 1, and

(π−1)(π(i)) = i.

These three operations respect pattern containment, in the sense that, for each i ∈
{r, c,−1}, we have

σ ≺ π if and only if σi ≺ πi. (3.1)

These three symmetries generate a group of automorphisms of (S,≺) isomorphic to
the dihedral group of order eight, and Smith [9] showed that this is the full group of
automorphisms of the pattern poset. The symmetries of a permutation π are the images
of π under the action of this group.

Note that if π is separable, then the symmetries of π are also separable. Further, if we
apply one of these symmetries f to a σ-marked permutation, we obtain an f(σ)-marked
permutation. It follows then that if two patterns are related by a symmetry, then they
are equipopular. Considering separable permutations as their decomposition trees, each
symmetry corresponds to a tree transformation: complementation equates to inverting
the signs at each internal node, reversal to inverting the signs and reversing the order of
the children of every node, and inversion reverses the order of the children of each 	-node.
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Pattern containment can be reconsidered entirely in terms of trees, though the analo-
gous relationship is a bit more technical and requires a few additional definitions.

Definition 3.2. For a decomposition tree T and a set L of leaves, the least common
parent of L is the unique node which is furthest from the root and lies above each leaf in
L. The skeleton of L is the tree whose vertices are the leaves L together with the least
common parents of each subset of L, and the ordering is induced from T by transitivity.
The reduced skeleton of L is obtained by contracting any two same-sign adjacent nodes
of the skeleton into a single node (with the same sign).

An example of the skeleton and reduced skeleton of a set of leaves is shown in Fig-
ure 3.1.

⊕

	 	 	

⊕

⊕

	

Figure 3.1: The skeleton and reduced skeleton of an occurrence of the pattern 12354 in
the permutation 215643798.

Lemma 3.3. Let σ, π ∈ S. Then σ ≺ π if and only if there is some subset L of leaves
of Γ(π) for which the reduced skeleton of L is equal to Γ(σ). Further, the position of the
leaves of L within Γ(π) correspond to the position of the occurrence of σ within π.

Proof. This follows from the fact that the positional relationship between any pair of
entries of π is determined by the left-to-right order of the corresponding leaves of Γ(π)
while the value relationship is determined by the sign of the least common parent of
those leaves. That is, if i < j then the leaf corresponding to πi is to the left of the leaf
corresponding to πj, and if πi < πj then their least common parent is an ⊕-node, while
if πi > πj their least common parent is an 	-node. Further, in the reduced skeleton of
L, while the least common parent of a pair of leaves may correspond to a contraction of
their least common parent in Γ(π) with some ancestral node, all nodes contracted into a
single node share a common label.

Define a σ-marked decomposition tree to be a tree with marked leaves, such that the
reduced skeleton of the marked leaves is equal to Γ(σ). By the first observation of this
section about the correspondence between separable permutations and their decomposi-
tion trees and the result above it follows that the number of occurrences of σ in separable
permutations of length n is equal to the number of distinct σ-marked trees with n leaves.
When we have a σ-marked tree we will consider the nodes belonging to the skeleton of
the marked leaves to be marked as well.
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We now seek to describe some transformations of decomposition trees that preserve
equipopularity. Since the labelling of a decomposition tree is uniquely determined by the
label of its root, we permit some transformations that might require changing labels in
some subtrees to ensure the alternation of ⊕ and 	 labels on internal nodes.

Proposition 1. Let σ be a separable permutation and let v and w be nodes of Γ(σ) such
that neither is an ancestor of the other. Let Γ(τ) be the decomposition tree obtained by
exchanging the subtrees rooted at v and w in Γ(σ). Then σ and τ are equipopular.

Proof. We describe a bijection between σ-marked trees and τ -marked trees which pre-
serves the number of leaves. Note that by the ancestry condition, both v and w must be
internal nodes or leaves, and so have parents v′ and w′ respectively.

Let T be any σ-marked tree. In the marked skeleton of T , v′ may correspond to a set
of nodes, V ′. However, there is a node in V ′ that has a child cv such that all the marked
leaves below cv correspond to leaves of the subtree rooted at v (and all such leaves occur
below cv). Correspondingly, among the set of nodes W ′ corresponding to w′ there is one
that has a child cw such that all the marked leaves below cw correspond to leaves of the
subtree rooted at w. Form a new marked decomposition tree by exchanging the subtrees
rooted at cv and cw in T . This new tree is τ -marked. This process is clearly invertible
and preserves the number of leaves. Therefore, σ and τ are equipopular.

See Figure 3.2 for an example.

Using just this proposition, we can repeatedly exchange the rightmost leaf of a tree
with any internal node not in the rightmost branch producing, from some arbitrary initial
separable permutation σ, a chain of equipopular permutations and culminating in one, τ
where all but the rightmost child of any node are leaves. We will see analytically below that
any two such τ are equipopular provided that the multisets of degrees of their internal
vertices are equal. However, the following result also provides an alternative bijective
proof of this fact – thereby allowing in principal the construction of bijections between
σ-marked and τ -marked permutations whenever σ ∼ τ in the separable permutations.

Definition 3.4. Let a be an internal node of a decomposition tree T , with rightmost
child b that is also internal. Let c be the rightmost child of b. Let Ta, Tb, and Tc denote
the subtrees rooted at a, b and c respectively. Form the tree Tab by attaching Tc to Ta \Tb
at the position b occupied, then attaching this to Tb \ Tc at the position c occupied, and
finally attaching this to T \ Ta at the position a occupied. Then we will call Tab a forest
exchange of T .

An alternative description of Tab (and one that accounts for the name) is that it is
obtained from T by exchanging all but the rightmost tree of the forests below a and b
respectively. See Figure 3.3 for illustration.

Proposition 2. Let σ be a separable pattern, and let a and b be internal nodes of Γ(σ)
for which a forest-exchange is possible. Let τ be the separable pattern such that Γ(τ) is
equal to the tree resulting from the forest-exchange. Then σ and τ are equipopular.
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⊕

	 	

⊕

	 	

(a) The second pattern can be obtained
from the first by interchanging the first
two children of the root.

⊕

	

⊕

	 	

⊕

	

⊕

	

	

(b) Any tree with the first pattern marked can be trans-
formed into one with the second pattern marked. The set
of nodes in the dotted box correspond to the root node
of the pattern.

Figure 3.2: Interchanging of children of a node within a pattern can be extended to the
transformation of a marked pattern within a larger tree.

a

b

c

F

G

Figure 3.3: When exchanging across ab,
the forests denoted by F and G are in-
terchanged.

⊕

	. . .

λ1
⊕. . .

λ2

◦. . .

λk−1
. . .

λk + 1

Figure 3.4: The tree t(λ), where λ =
λ1, λ2, . . . , λk. The numbers indicate the
number of leaf children, and the sign of
the lowest internal node is determined
by the parity of its height.

Proof. The proof is analogous to that of the preceding proposition. Let a σ-marked tree
T be given. Among the nodes A of T which correspond to node a of Γ(σ) there is an
eldest a′. Similarly define nodes b′ and c′. Now perform the analog of the ab-exchange in
T , but attaching, e.g., Tc′ to Ta′ \ Tb′ as the rightmost child of the rightmost vertex in A
(and similarly for the other parts of the exchange). The resulting tree is τ -marked and
the operation is invertible, proving the result.
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3.2 Identifying Equipopular Permutations

The remainder of this section develops a method of identifying the equipopularity classes,
and constructing a canonical representative from each. We first build a correspondence
between partitions and classes.

Definition 3.5. Let T be a decomposition tree, and let i1, i2, . . . , ir be the internal nodes
of T . The signature of T is the multiset {d(ij) − 1}rj=1, where d(ij) denotes the down
degree (the number of immediate children) of the node ij.

For every partition λ of an integer n, there exists a decomposition tree with n + 1
leaves having signature λ, as shown in Figure 3.4. Denote this tree by T (λ), and let ω(λ)
be the permutation for which Γ(ω(λ)) = T (λ).

This family of trees provides a canonical element for each equipopularity class. Indeed,
the following theorem shows that every decomposition tree can be transformed into such
a λ-tree through the use of the equipopularity-preserving operations introduced in the
previous section.

Theorem 3.6. Let σ be a permutation, and suppose that Γ(σ) has signature λ. Then σ
is equipopular to ω(λ).

Proof. As noted previously, we can first use Proposition 1 to find a tree equipopular to
Γ(σ) with the property that only the rightmost child of any node can be internal. The
resulting tree is similar to t(λ) except that the order of the degrees of the internal nodes
may differ (the multiset of degrees is the same). But now we can arbitrarily permute these
internal nodes (since they all lie in the rightmost branch) using a series of forest-exchanges
and Proposition 2.

Translating back into the language of permutations, we have shown that every sep-
arable permutation of length n is equipopular to one in a particular family, and that
this family is in bijection with the set of partitions of the integer n − 1. For a partition
λ = λ1, λ2, . . . , λk, using the definition of the decomposition trees and letting I(n) denote
the identity permutation of length n, we have

ω(λ) =

{
I(λ1)⊕ ω(λ2, . . . , λk)

c if k > 1

I(λ1 + 1) if k = 1

The permutations w(λ) are referred to as the wedge permutations, due to the shape of
their plots. See Figure 3.5 for an illustration.

4 Non-Equipopular Patterns

In the previous section we proved that if two patterns correspond to the same integer
partition, they are equipopular. Here we show that if two patterns correspond to different
partitions, they do in fact have different enumerations, showing that the equipopularity
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λ1

λ2

λ3

λ4

λ5
. . .

Figure 3.5: The plot of the wedge permutation w(λ), where λ = λ1, λ2, . . . , λk. Recall
that the size of the final monotone segment is λk + 1.

classes are in bijection with integer partitions. The methods used here contrast sharply
with those used previously: we utilize a variety of analytic techniques to prove this result.

This section is split into two parts. Given the popularity generating function of a
wedge permutation, we first show that we can factor it into generating functions for the
popularity of the monotone runs in the pattern (along with some other terms). Next,
we show that given the product of several such generating functions, we can identify the
lengths of the monotone runs. Together this will show that each popularity generating
function is unique to a specific wedge permutation.

4.1 Factoring Popularity Generating Functions

For σ ∈ S, let Pσ(t) be the generating function for the popularity of the pattern σ. That
is, let

Pσ(t) =
∑
n>0

νσ (Sn) tn.

Recall that we use I(n) to denote the pattern 12 · · ·n.

Lemma 4.1. There exists a family of functions {Fm}∞m=0 such that if π is an arbitrary
sum indecomposable separable permutation, and m > 0. Then PI(m)⊕π = FmPπ.

Proof. Let P⊕I(m)⊕π and P	I(m)⊕π denote the popularity generating functions of the pattern

I(m)⊕π within the sum and skew decomposable separable permutations, and let P⊕,•I(m)⊕π
denote the popularity generating function within skew indecomposable permutations. Let
S denote the generating function for the separable permutations including the empty
permutation, i.e., with constant term one.

We proceed by induction on m, noting that for the base case m = 0 the result is trivial
(F0 = 1).

Suppose that m > 1. Since the length of I(m)⊕ π is at least two, the permutation of
length one does not contain I(m) ⊕ π. Then, since every permutation of S of length at
least two is either sum or skew decomposable, we have

PI(m)⊕π = P⊕I(m)⊕π + P	I(m)⊕π. (4.1)
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Suppose that α is an I(m) ⊕ π-marked skew decomposable permutation. Any skew
decomposable permutation can be decomposed uniquely into skew indecomposable parts
(see Figures 4.1 and 4.2). Since the pattern I(m) ⊕ π is sum decomposable, if a skew
decomposable permutation is I(m) ⊕ π marked, then all the marks must occur within
a single one of these components (Figure 4.1). Such components are enumerated by
P⊕I(m)⊕π. The remainder of the permutation is therefore unmarked. The portions of the
permutation to the left and to the right of the marked component are arbitrary, and are
each counted by S. If the permutation itself is skew decomposable, either the left or the
right part must be nonempty. This leads to the following relationships

P	I(m)⊕π = (S2 − 1)P⊕I(m)⊕π. (4.2)

The case for marked instances of I(m) ⊕ π in sum decomposable permutations is
more complicated. As above, suppose that α is an I(m) ⊕ π-marked sum decomposable
permutation. Such a permutation can be decomposed into sum indecomposable parts, and
marks can occur in multiple such parts (Figure 4.2). Consider the components from left to
right. There may be an arbitrary number of unmarked parts before the first marked one;
this segment is counted by S. The first marked part may have i marked entries, where
1 6 i 6 m, or might contain all the marked entries (since π is sum-indecomposable, if any
mark of π occurs in a sum indecomposable part, then all the marks must). The remainder
of the permutation is then counted by PI(m−i)⊕π, in the first case, or S in the second case.
This leads to the following relationship:

P⊕I(m)⊕π = (S2 − 1)P	I(m)⊕π + S
m∑
i=1

P	,•I(i)PI(m−i)⊕π. (4.3)

By our inductive hypothesis, we have that PI(m−i)⊕π = Fm−iPπ. Combining equa-
tions 4.2 and 4.3 yields

P⊕I(m)⊕π = (S2 − 1)2P⊕I(m)⊕π + SPπ

m∑
i=1

P	,•I(i)Fm−i. (4.4)

Rearranging and combining with equation 4.2 gives

PI(m)⊕π =

(
S3
∑m

i=1 P
	,•
I(i)Fm−i

1− (S2 − 1)2

)
Pπ. (4.5)

Noting that the first factor in equation 4.5 is independent of π completes the proof.

The functions Fm in Lemma 4.1 can be found easily. Considering the pattern I(m)⊕1,
the popularity generating function can be computed as PI(m)⊕1 = FmP1, or equivalently,

Fm =
PI(m+1)

P1

.
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Figure 4.1: A sum decomposable pat-
tern must lie entirely within a single
component of a skew decomposable per-
mutation.

Figure 4.2: A sum decomposable pat-
tern may be spread across several com-
ponents of a sum decomposable permu-
tation.

In particular, for the wedge permutation w(λ) with λ = λ1, λ2, . . . , λk, we can apply
Lemma 4.1 iteratively, using the inductive definition of the permutations w(λ) given at
the end of Section 3 and the fact that complements are equipopular, to obtain

Pw(λ) =
PI(λ1+1)PI(λ2+1) · · ·PI(λk+1)

P k−1
1

. (4.6)

It follows that, given the popularity generating function for an unknown pattern, if we
can identify the factors of the form Fm, we can identify the pattern. We investigate this
in the next section. Note also that this means that Proposition 2 is not actually needed
to confirm equipopularity of two different decomposition trees having the same internal
degrees – but as noted previously it does provide a mechanism for creating explicit bijec-
tions between the marked permutations of two different types within an equipopularity
class.

4.2 Identifying the Partition

This section focuses on the popularity generating functions for the monotone patterns.
Our goal is to show that, given an arbitrary product of such functions, the individual
factors can always be identified. To this end, we define a bivariate generating function

P (u, t) =
∑
n>0

PI(n)(t)u
n.

Note that P (u, t) can be thought of as the generating function for marked separable
permutations where the marks form an increasing sequence, counted by the number of
marks (u) and the length of the permutation (t). As such, we can explicitly compute it
using the structure of the separable permutations:
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Lemma 4.2. The function P (u, t) is given by

P =

((
(u+ 1)t2 − 3(u+ 2)t+ 3

)
r − (3u− 17)t− 3(2u+ 3)t2

+ (u+ 1)t3 +
(
r(t− 3)− 6t+ t2 − 3

)
s+ 3

)
/(24t− 4t2),

where s =
√

1 + (ur − 3u− 6)t+ (u2 + u+ 1)t2,

and r =
√

1− 6t+ t2.

Proof. Let P⊕ and P	 denote the bivariate generating functions corresponding to P
but restricted to the sum and skew decomposable separable permutations respectively.
Since the empty permutation cannot be marked, and the permutation of length one can
either carry a mark or not, and any longer separable permutation is either sum or skew
decomposable, we have:

P = 1 + (u+ 1)t+ P⊕ + P	. (4.7)

A sum decomposable separable permutation can be expressed as the sum of a sum
indecomposable separable and any other separable permutation (both of length at least
one). Further, a marking of length r in the first part and a marking of length s in
the second combine to form a marking of length r + s. Since the generating function for
increasing markings within the sum indecomposable separable permutations is P−P⊕−1,
we have

P⊕ = (P − P⊕ − 1)(P − 1). (4.8)

In a skew decomposable separable permutation, the markings (if any) must lie entirely
in one component (since they mark an increasing pattern). Such a permutation must
either be entirely free of marks, or consist of a marked skew indecomposable component
together with a mark-free separable permutation on either side, at least one of which is
nonempty. This leads to the following relationship.

P	 =
1

2
(S − t− 1) +

(
P − P	 − 1

2
(S − t− 1)− 1

)
(S2 − 1), (4.9)

where the first term accounts for the unmarked case, and the first factor in the second
term accounts for non-skew decomposable separable permutations containing at least one
mark.

Solving the equations 4.7–4.9 yields the explicit generating function.

We can derive this bivariate generating function in a different way, which will yield a
connection to the Gegenbauer polynomials, and will ultimately help to prove our main
theorem. The Narayana numbers will be useful here.
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Definition 4.3. The Narayana numbers are a two variable refinement of the Catalan
numbers. The (n, k)th Narayana number is defined as

Nn,k =
1

n

(
n

k

)(
n

k − 1

)
.

Conventionally, we set N0,0 = 1.

The generating function for these numbers is given by

N(u, t) =
∑
n,k>0

Nn,kt
nuk =

1− t− tu−
√

(1− t− tu)2 − 4t2u

2t
.

Now consider a sequence of polynomials qn defined as follows:

qn(x) =
n∑
k=0

Nn,kx
k−1(1− x)n−k.

Note that q0(x) = 1/x. These polynomials are described in the OEIS [8] under sequence
A174128 and can be expressed in terms of the ordinary hypergeometric function as

qn(x) =
(1− x)n 2F1

(
1− n,−n; 2; x

1−x

)
1− x

. (4.10)

Lemma 4.4. Let

Q(u, t) = S +
∞∑
n=1

S3n−3tn qn−1(S
−2)

(2− S2)2n−1
un.

Then P = Q. Equivalently, for all n > 1,

PI(n)(t) =
S3n−3tn qn−1 (S−2)

(2− S2)2n−1
.

Proof. By the definition of the polynomials qn we have that

qn−1(x) =
[un−1]N

(
u(1− x), x

1−x

)
x

.

This allows us to express Q in terms of N :

Q = S +
∞∑
n=1

s3n−3tn qn−1(S
−2)

(2− S2)2n−1
un

= S + u

∞∑
n=1

S3n−1tn
(
[un−1]

(
N
(
u(1− S−2), 1

S2−1

)))
(2− S2)2n−1

un−1

= S + uN

((
S3tu

(2− S2)2

)(
1− S−2

)
,

1

S2 − 1

)
·
(

tS2

2− S2

)
.
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After some prodding and coaxing∗ and using the explicit formulas for N and S, a
computer algebra system will now verify that this expression matches with the result in
Lemma 4.2. Therefore P = Q.

We now turn our attention to the polynomials qn. We show that these polynomials
are related to a family of orthogonal polynomials, which will allow us to uniquely identify
the factors in an arbitrary product.

Definition 4.5. The Gegenbauer polynomials C
(α)
n (x) are a family of orthogonal polyno-

mials on the interval [−1, 1] with respect to the weight function (1− x2)α−1/2. They can
be defined in terms of their generating function:

1

(1− xt+ t2)α
=
∑
n>0

C(α)
n (x)tn.

They can also be defined by the following recurrence:

C
(α)
0 (x) = 1

C
(α)
1 (x) = 2αx

C(α)
n (x) =

1

n

(
2x(n+ α− 1)C

(α)
n−1(x)− (n+ 2α− 2)C

(α)
n−2(x)

)
.

Lemma 4.6. The polynomials qn satisfy

qn(x) =
2(1− 2x)n−1C

(3/2)
n−1

(
x

1−2x

)
n(n+ 1)

.

Proof. This follows from known representations of the Gegenbauer polynomials in terms
of hypergeometric functions and Equation 4.10, and can be verified by a computer algebra
system (Maple, in this case).

Since the Gegenbauer polynomials are orthogonal, it follows that given an arbitrary
product of polynomials from the set {qn(x)}n>0, we can always recover the factors. Com-
bined with Lemma 4.1, Equation 4.6, and suitable rescalings and changes of variable,
this implies that given any popularity generating function of a wedge pattern, we can
always recover the lengths of the monotone segments that make up the wedge. There-
fore, two wedge patterns have the same popularity generating function if and only if they
correspond to the same partition. We summarize in the following theorem.

Theorem 4.7. Two separable patterns are equipopular in the separable permutations if
and only if they have the same signature. Therefore, the set of partitions of the integer
n− 1 is in bijection with the equipopularity classes for separable patterns of length n in
the separable permutations.

∗Sage, Maple, and Mathematica were all initially reluctant to verify the equality, preferring to play it
safe and refuse to simplify multiply-valued complex functions in the interest of maintaining full generality.
However, by manually rewriting the equality without denominators and cancelling by hand several of the
more complicated terms, we were able to convince Mathematica that each side was in fact a power series
with positive integer coefficients, and the ‘FullSimplify’ command verified that P = Q.
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5 Summary and Discussion

As we have seen, the equipopularity classes among separable permutations of length n
are in one-to-one correspondence with partitions of the integer n− 1. This result exactly
parallels the corresponding results for the class Av(132) of 132-avoiding permutations
obtained in [4, 6]. Although Av(132) is a subclass of the separable permutations, neither
result immediately implies the other (since the popularities are computed with respect to
different universes). However, our techniques can be adapted to Av(132) to obtain new,
and arguably more uniform, proofs of those already known results.

There is a wider collection of classes whose permutations correspond to more gen-
eral decomposition trees – these are the substitution closed classes. Aside from trivial
instances, the separable permutations are the smallest of such classes. In the particular
case where a substitution closed class has only finitely many simple permutations (see
[1] for background material) it seems likely that analogous arguments to those used here
could be applied to define invariants which would give upper bounds on the number of
equipopularity classes. However, it seems much less likely that the technical and algebraic
arguments used here in order to obtain matching lower bounds (i.e., in determining that
all classes with differing invariants have differing popularity) would generalize to that
broader context.

Concerning those arguments, it is natural to wonder if there is a combinatorial expla-
nation of the appearance of the Narayana numbers and the Gegenbauer polynomials in
the popularity generating functions for monotone patterns. Of course the Narayana num-
bers are close relatives of the Catalan numbers, which in turn belong to the same family
as the Schröder numbers, so this may be another instance where common sequences arise
just because we are looking at simple problems (see [11]).
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