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Abstract

A graph of order n is p-factor-critical, where p is an integer of the same parity as
n, if the removal of any set of p vertices results in a graph with a perfect matching.
1-factor-critical graphs and 2-factor-critical graphs are well-known factor-critical
graphs and bicritical graphs, respectively. It is known that if a connected vertex-
transitive graph has odd order, then it is factor-critical, otherwise it is elementary
bipartite or bicritical. In this paper, we show that a connected vertex-transitive
non-bipartite graph of even order at least 6 is 4-factor-critical if and only if its
degree is at least 5. This result implies that each connected non-bipartite Cayley
graph of even order and degree at least 5 is 2-extendable.
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1 Introduction

Only finite and simple graphs are considered in this paper. A matching of a graph is a set
of its mutually nonadjacent edges. A perfect matching of a graph is a matching covering
all its vertices. A graph is called factor-critical if the removal of any one of its vertices
results in a graph with a perfect matching. A graph is called bicritical if the removal of
any pair of its distinct vertices results in a graph with a perfect matching. The concepts
of factor-critical and bicritical graphs were introduced by Gallai [9] and by Lovász [12],
respectively. In matching theory, factor-critical graphs and bicritical graphs are two basic
bricks in matching structures of graphs [17]. Later on, the two concepts were generalized
to the concept of p-factor-critical graphs by Favaron [7] and Yu [21], independently. A
graph of order n is said to be p-factor-critical, where p is an integer of the same parity as
n, if the removal of any p vertices results in a graph with a perfect matching.
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q-extendable graphs was proposed by Plummer [17] in 1980. A connected graph of
even order n is q-extendable, where q is an integer with 0 6 q < n/2, if it has a perfect
matching and every matching of size q is contained in one of its perfect matchings. Favaron
[8] showed that for q even, every connected non-bipartite q-extendable graph is q-factor-
critical. In 1993 Yu [21] introduced an analogous concept for graphs of odd order. A
connected graph of odd order is q 1

2
-extendable, if the removal of any one of its vertices

results in a q-extendable graph.
A graph G is said to be vertex-transitive if for any two vertices x and y in G there is an

automorphism ϕ of G such that y = ϕ(x). A graph with a perfect matching is elementary
if the union of its all perfect matchings forms a connected subgraphs. In [13], there is
a following classic result about the factor-criticality and bicriticality of vertex-transitive
graphs.

Theorem 1 ([13]). Let G be a connected vertex-transitive graph of order n. Then
(a) G is factor-critical if n is odd;
(b) G is either elementary bipartite or bicritical if n is even.

A question arises naturally: Does a vertex-transitive non-bipartite graph has larger
p-factor-criticality?

In fact, the q-extendability and q 1
2
-extendability of Cayley graphs, an important class

of vertex-transitive graphs, have been investigated in literature. It was proved in papers
[3, 4, 16] that a connected Cayley graph of even order on an abelian group, a dihedral
group or a generalized dihedral group is 2-extendable except for several circulant graphs
of degree at most 4. Miklavič and Šparl [16] also showed that a connected Cayley graph
on an abelian group of odd order n > 3 either is a cycle or is 11

2
-extendable. Chan et al.

[3] raised the problem of characterizing 2-extendable Cayley graphs.
In [22], we showed that a connected vertex-transitive graph of odd order n > 3 is

3-factor-critical if and only if it is not a cycle. This general result is stronger than 11
2
-

extendability of Cayley graphs. In this paper, we obtain the following main result which
gives a simple characterization of 4-factor-critical vertex-transitive non-bipartite graphs.

Theorem 2. Let G be a connected vertex-transitive non-bipartite graph of degree k and
of even order at least 6. Then G is 4-factor-critical if and only if k > 5.

By Theorem 2, we know that all connected non-bipartite Cayley graphs of even order
and of degree at least 5 is 2-extendable.

The necessity of Theorem 2 is clear. Our main task is to show the sufficiency of
Theorem 2 by contradiction. Suppose thatG is a connected non-bipartite vertex-transitive
graph G of even order at least 6 and of degree at least 5 but G is not 4-factor-critical.
By the s-restricted edge-connectivity of G, we find that in most cases a suitable integer s
can be chosen such that every λs-atom of G is an imprimitive block. Then we can deduce
contradictions. Some preliminary results are presented in Section 2 and some properties
of λs-atoms of G which are used to show their imprimitivity are proved in Section 3.
Finally, we complete the proof of Theorem 2 in Section 4.
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2 Preliminaries

In this section, we introduce some notations and results needed in this paper.
Let G = (V (G), E(G)) be a graph. For X ⊆ V (G), let X = V (G)\X. For Y ⊆ X,

denote by [X, Y ] the set of edges of G with one end in X and the other in Y . In particular,
we denote [X,X] by ∇(X) and denote |∇(X)| by dG(X). Denote by NG(X) the set of
vertices in X which are ends of some edges in∇(X). If X = {v}, then X is usually written
to v. Vertices in NG(v) are called the neighbors of v. If no confusion exists, the subscript
G are usually omitted. Denote by G[X] the subgraph induced by X and denote by G−X
the subgraph induced by X. The set of edges in G[X] is denoted by E(X). Denote by
c0(G) the number of the components of G which have odd order. For a subgraph H of G,
we denote dG(V (Hi)) and ∇(V (Hi)) by dG(Hi) and ∇(Hi), respectively.

For a connected graph G, a subset F ⊆ E(G) is said to be an edge-cut of G if G−F is
disconnected, where G−F is the graph with vertex-set V (G) and edge-set E(G)\F . The
edge-connectivity of G is the minimum cardinality over all the edge-cuts of G, denoted
by λ(G). A subset X ⊆ V (G) is called a vertex-cut of G if G −X is disconnected. The
vertex-connectivity of G of order n, denoted by κ(G), is n− 1 if G is the complete graph
Kn and is the minimum cardinality over all the vertex-cuts of G otherwise. It is well
known that κ(G) 6 λ(G) 6 δ(G), where δ(G) is the minimum vertex-degree of G.

There are two properties of p-factor-critical graphs.

Theorem 3 ([7, 21]). A graph G is p-factor-critical if and only if c0(G −X) 6 |X| − p
for all X ⊆ V (G) with |X| > p.

Theorem 4 ([7]). If a graph G is p-factor-critical with 1 6 p < |V (G)|, then κ(G) > p
and λ(G) > p+ 1.

Let X be a subset of V (G). Denoted by CG−X the set of the components of G −X.
X is called to be matchable to CG−X if the bipartite graph GX , which arises from G by
contracting the components in CG−X to single vertices and deleting all the edges in E(X),
contains a matching covering X. The following general result will be used.

Theorem 5 ([5]). Every graph G contains a set X of vertices with the following properties:
(a) X is matchable to CG−X ;
(b) Every component of G−X is factor-critical.
Given any such set X, the graph G contains a perfect matching if and only if |X| = |CG−X |.

The girth of a graph G with a cycle is the length of a shortest cycle in G and the odd
girth of a non-bipartite graph G is the length of a shortest odd cycle in G. The girth
and odd girth of G are denoted by g(G) and g0(G), respectively. l-cycle means a cycle of
length l. We present two useful lemmas as follows.

Lemma 6 ([15]). Let G be a graph with g0(G) > 3. Then |E(G)| 6 1
4
|V (G)|2.

Lemma 7 ([1]). Let G be a k-regular graph. If g0(G) > 3, then |V (G)| > kg0(G)/2.

Now we list some useful properties of vertex-transitive graphs as follows.
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Theorem 8 ([14]). Let G be a connected vertex-transitive k-regular graph. Then λ(G) =
k.

Theorem 9 ([19]). Let G be a connected vertex-transitive k-regular graph. Then κ(G) >
2
3
k.

Lemma 10 ([19]). Let G be a connected vertex-transitive k-regular graph. If κ(G) < k,
then κ(G) = mτ(G) for some integer m > 2, where

τ(G) = min{min{|V (P )| : P is a component of G−X}: X is a minimum vertex-cut of
G}.

Lemma 11 ([19]). Let G be a connected vertex-transitive k-regular graph with k = 4 or
6. Then κ(G) = k.

An imprimitive block of G is a proper non-empty subset X of V (G) such that for any
automorphism ϕ of G, either ϕ(X) = X or ϕ(X) ∩X = ∅.

Lemma 12 ([18]). Let G be a vertex-transitive graph and X be an imprimitive block of
G. Then G[X] is also vertex-transitive.

Theorem 13 ([10]). Let G be a connected vertex-transitive k-regular graph of order n.
Let S be a subset of V (G) chosen such that 1

3
(k + 1) 6 |S| 6 1

2
n, d(S) is as small as

possible, and, subject to these conditions, |S| is as small as possible. If d(S) < 2
9
(k + 1)2,

then S is an imprimitive block of G.

Corollary 14 ([10]). Let G be a connected vertex-transitive k-regular graph of order n.
Let S be a subset of V (G) chosen such that 1 < |S| 6 1

2
n, dG(S) is as small as possible,

and, subject to these conditions, |S| is as small as possible. If dG(S) < 2(k − 1), then
dG(S) = |S| > k and dG[S](v) = k − 1 for all v ∈ S.

Corollary 15. Let G be a connected vertex-transitive k-regular graph. Suppose g(G) > 3
or |V (G)| < 2k. Then dG(X) > 2k − 2 for every X ⊆ V (G) with 2 6 |X| 6 |V (G)| − 2.

Proof. If k = 2, then it is trivial. Now suppose k > 3 and that there is a subset X ⊆ V (G)
with 2 6 |X| 6 |V (G)| − 2 such that dG(X) < 2k − 2. Let S be a subset of V (G)
chosen such that 1 < |S| 6 1

2
|V (G)|, dG(S) is as small as possible, and, subject to these

conditions, |S| is as small as possible. Then dG(S) 6 dG(X) < 2k − 2. By Corollary 14,
dG(S) = |S| > k and dG[S](v) = k − 1 for all v ∈ S. As 2k − 3 < 2

9
(k + 1)2, S is an

imprimitive block of G by Theorem 13. Then |S| is a divisor of |V (G)|, which implies
|V (G)| > 2|S| > 2k. Thus g(G) > 3. Noting that |E(S)| = 1

2
(k − 1)|S| 6 1

4
|S|2 by

Lemma 6, we have dG(S) = |S| > 2k − 2, a contradiction.

A subset X of V (G) is called an independent set of G if any two vertices in X are not
adjacent. The maximum cardinality of independent sets of G is the independent number
of G, denoted by α(G).
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Lemma 16. Let G be a non-bipartite vertex-transitive k-regular graph. Then α(G) 6
1
2
|V (G)| − k

4
if g0(G) > 3, and α(G) 6 1

3
|V (G)| if g0(G) = 3.

Proof. Let X be a maximum independent set of G and set g0 := g0(G). Noting that G
is regular and non-bipartite, we have |X| < |X|. Set t = |X| − |X|. Since G is vertex-
transitive, the number of g0-cycles of G containing any given vertex in G is constant. Let q
be this constant number and let m be the number of all the g0-cycles of G. Note that each
g0-cycle of G contains at most (g0−1)/2 vertices in X and at least (g0+1)/2 vertices in X.
We have q|X| 6 1

2
m(g0−1) and q|X| > 1

2
m(g0 +1), which implies qt = q(|X|− |X|) > m.

We know q|V (G)| = mg0 by the vertex-transitivity of G. Then qt > m = q
g0
|V (G)|,

implying t > |V (G)|
g0

. If g0 = 3, then α(G) = 1
2
(|V (G)| − t) 6 1

3
|V (G)|. If g0 > 3, then

|V (G)| > kg0/2 by Lemma 7, which implies α(G) = 1
2
(|V (G)| − t) 6 1

2
|V (G)| − k

4
.

A graph G is called trivial if |V (G)| = 1.

Lemma 17. Let G be a connected vertex-transitive non-bipartite graph. Let X be an
independent set of G. Suppose that G − X has |X| − t trivial components, where t is a

positive integer. Then g0(G) > 2|X|
t

+ 1.

Proof. Let Y be the set of vertices in the trivial components of G−X and set g0 := g0(G).
Let ni,j be the number of g0-cycles of G which contain exactly i vertices in X and j vertices
in Y . Set s = 1

2
(g0 − 1). Since X and Y are independent sets of G, each g0-cycle of G

contains at most s vertices in X and contains less vertices in Y than in X. Let q be the
number of g0-cycles of G containing any given vertex in G. We have

∑
06j<i6s ini,j = q|X|

and
∑

06j<i6s jni,j = q|Y | = q(|X| − t). Then q|X| =
∑

06j<i6s ini,j 6
∑

06j<i6s s(i −
j)ni,j = s(

∑
06j<i6s ini,j −

∑
06j<i6s jni,j) = sqt = 1

2
(g0 − 1)qt, which implies g0 >

2|X|
t

+ 1.

Lemma 18. Let G be a vertex-transitive graph with a triangle. Then the number of trivial
components of G−X is not larger than |E(X)| for each subset X ⊆ V (G).

Proof. Let Y be the set of vertices in the trivial components of G − X. Suppose |Y | >
|E(X)|. Let q be the number of triangles of G containing any given vertex in G. Note
that there are q|Y | triangles of G containing vertices in Y . As |Y | > |E(X)|, it implies
that G[X] has an edge e which is contained in more than q triangles. This means that
more than q triangles containing both ends of e, a contradiction.

Lemma 19. Let G be a connected triangle-free vertex-transitive 6-regular graph of even
order. Suppose that there are 3 distinct vertices with the same neighbors. Then G is
bipartite.

Proof. Suppose, to the contrary, that G is non-bipartite. Then g0 := g0(G) > 5. Let
C = u0u1 . . . ug0−1u0 be a g0-cycle of G. For any pair of vertices u and v in V (C),
we know N(u) 6= N(v). So for each ui ∈ V (C) there are two distinct vertices u′i and
u′′i in V (C) such that N(ui) = N(u′i) = N(u′′i ) by the vertex-transitivity of G. Set
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Ui = {ui, u′i, u′′i }. Then Ui is an independent set of G and Ui ∩ Uj = ∅ for j 6= i. Noting
that ui and ui+1 are adjacent, we have that every vertex in Ui is adjacent to every vertex
in Ui+1, where i+ 1 is an arithmetic on modular g0. Since G is 6-regular and connected,
|V (G)| = |

⋃g0−1
i=0 Ui| = 3g0, which implies that |V (G)| is odd, a contradiction.

3 λs-atoms of vertex-transitive graphs

In this section, we will introduce some properties of the λs-atoms of vertex-transitive
graphs. The concept of λs-atoms [11, 20] of graphs is used in investigating the s-restricted
edge-connectivity of graphs. The s-restricted edge-connectivity of graphs was proposed
by Fàbrega and Fiol [6].

For a connected graphG and some positive integer s, an edge-cut F ofG is said to be an
s-restricted edge-cut ofG if every component ofG−F has at least s vertices. The minimum
cardinality of s-restricted edge-cuts of G is the s-restricted edge-connectivity of G, denoted
by λs(G). By the definition of λs(G), we can see that λ(G) = λ1(G) 6 λ2(G) 6 λ3(G) · · ·
as long as these parameters exists.

A proper subset X of V (G) is called a λs-fragment of G if ∇(X) is an s-restricted
edge-cut of G with minimum cardinality. We can see that for every λs-fragment X of
G, G[X] and G[X] are connected graphs of order at least s. A λs-fragment of G with
minimum cardinality is called a λs-atom of G.

Lemma 20. Let G be a connected triangle-free vertex-transitive graph of degree k > 5.
For an integer s with 4 6 s 6 8, suppose λs(G) 6 3k. Let S be a λs-atom of G.
(a) For X ⊆ V (G) with |X| > s and |X| > s, we have dG(X) > λs(G). Furthermore,
dG(X) > λs(G) if G[X] or G[X] is disconnected.
(b) For A ⊆ S with 1 6 |A| 6 |S| − s, we have dG[S](A) > 1

2
dG(A).

(c) For each λs-atom T of G with S 6= T and S∩T 6= ∅, we have dG(S∩T )+dG(S∪T ) 6
2λs(G), dG(S\T ) + dG(T\S) 6 2λs(G), |S ∩ T | 6 s− 1 and |S\T | 6 s− 1.

Proof. (a) If G[X] and G[X] are connected, then ∇(X) is an s-restricted edge-cut of G
and hence dG(X) > λs(G). Thus it only needs to show dG(X) > λs(G) if G[X] or G[X]
is disconnected.

Suppose that G[X] is disconnected. If each component of G[X] has less than 4 vertices,
then dG(X) = k|X| − 2|E(X)| > k|X| − 2(|X| − 2) > (k − 2)s + 4 > 3k > λs(G). Then
we assume that G[X] has a component H1 with at least 4 vertices. If each component of
G[V (H1)] has less than 4 vertices, then dG(X) > dG(H1) = dG(V (H1)) > λs(G). Then
we assume further that G[V (H1)] has a component H2 with at least 4 vertices. Noting
that both G and H1 are connected, we have that G[V (H2)] is connected, which implies
that ∇(H2) is a 4-restricted edge-cut of G. Noting that λ(G) = k by Theorem 8, we have
dG(X) > λ(G) + dG(H1) > k + d(V (H2)) > k + λ4(G).

So d(X) > λ4(G). Next we consider the case that 5 6 s 6 8. Set τs(G) = min{d(A) :
A ⊆ V (G), 4 6 |A| 6 s − 1}. Then λ4(G) > min{λs(G), τs(G)}. For each subset
A ⊆ V (G) with 4 6 |A| 6 7, noting that |E(A)| 6 1

4
|A|2 by Lemma 6, we have d(A) =

k|A| − 2|E(A)| > k|A| − 1
2
|A|2 > 2k. Hence τs(G) > 2k. If λs(G) > 2k, then d(X) >
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k + λ4(G) > k + 2k > λs(G). If λs(G) 6 2k, then, noting min{λs(G), τs(G)} 6 λ4(G) 6
λs(G), we have d(X) > k + λ4(G) = k + λs(G) > λs(G).

(b) To the contrary, suppose dG[S](A) 6 1
2
dG(A). Then dG(S\A) = dG(S)− (dG(A)−

2dG[S](A)) 6 dG(S) = λs(G). By (a), G[S\A] and G[S ∪ A] are connected. Hence
∇(S\A) is an s-restricted edge-cut of G. By the minimality of λs-atoms of G, we have
dG(S\A) > λs(G), a contradiction.

(c) By the well-known submodular inequality (see [2] for example), we have that
dG(S∩T )+dG(S∪T ) 6 dG(S)+dG(T ) = 2λs(G) and dG(S\T )+dG(T\S) = dG(S∩T )+
dG(S ∪ T ) 6 dG(S) + dG(T ) = 2λs(G). Next we show |S ∩ T | 6 s− 1 and |S\T | 6 s− 1.
Clearly, they hold if |S| = s. So we may assume |S| > s.

Suppose |S ∩ T | > s. Then dG(S ∩ T ) = dG(S) + 2dG[S](S\T )− dG(S\T ) > dG(S) =
λs(G) by (b). Noting |S ∪ T | > |V (G)|−|S|−|T |+|S∩T | > s, we have dG(S∪T ) > λs(G)
by (a). Hence dG(S ∩ T ) + dG(S ∪ T ) > 2λs(G), a contradiction. Thus |S ∩ T | 6 s− 1.

If |S\T | = |T\S| > s, then we can similarly obtain dG(S\T ) > λs(G) and dG(T\S) >
λs(G) by (b), which implies dG(S\T )+dG(T\S) > 2λs(G), a contradiction. Thus |S\T | 6
s− 1.

Lemma 21. Let G be a connected triangle-free vertex-transitive 5-regular graph of even
order. For s = 5 or 6, suppose λs(G) = s+ 9. Then |S| > s+ 5 for a λs-atom S of G.

Proof. Suppose, to the contrary, that |S| < s + 5. As s + 9 = dG(S) = 5|S| − 2|E(S)|,
|S| and s have different parities. Hence |S| > s + 1. By Lemma 20(b), δ(G[S]) > 3. If
|S| = s + 1, then 2|E(S)| > δ(G[S])|S| > 3|S|, which implies dG(S) = 5|S| − 2|E(S)| 6
2|S| = 2s + 2 < s + 9, a contradiction. Thus |S| = s + 3. Let R be the set of vertices u
in S with dG[S](u) = 3. By Lemma 20(b), E(R) = ∅. Noting 3s + 9 6

∑
u∈S dG[S](u) =

2|E(S)| = 5|S| − λs(G) = 4s+ 6, we have |R| > |S| − (4s+ 6− 3s− 9) = 6. Since s = 5
or 6, dG[S](R) = 3|R| > 18 > 5(s− 3) > dG[S](S\R), a contradiction.

Lemma 22. Let G be a bicritical graph. If G is not 4-factor-critical, then there is a
subset X ⊆ V (G) with |X| > 4 such that c0(G − X) = |X| − 2 and every component of
G−X is factor-critical.

Proof. Since G is not 4-factor-critical, there is a set X1 of four vertices of G such that
G−X1 has no perfect matchings. By Theorem 5, G−X1 has a vertex set X2 such that
X2 is matchable to CG−X1−X2 and every component of G−X1−X2 is factor-critical. Set
X = X1 ∪X2. Then c0(G−X) = |CG−X | > |X2| = |X| − 4. Since G is bicritical, we have
c0(G−X) 6 |X| − 2 by Theorem 3. Hence |X| − 4 < c0(G−X) 6 |X| − 2. Noting that
c0(G−X) and |X| have the same parity, we have c0(G−X) = |X| − 2.

In the rest of this section, we always suppose that G is a connected non-bipartite
vertex-transitive graph of degree k > 5 and even order, but G is not 4-factor-critical.
Also we always use the following notation. Let X be a subset of V (G) with |X| > 4 such
that c0(G−X) = |X| − 2 and every component of G−X is factor-critical. By Theorem
1 and Lemma 22, such subset X exists. Let H = H1, H2, . . . , Hp be the nontrivial
components of G−X. For a positive integer m, let [m] denote the set {1, 2, . . . ,m}.
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Lemma 23. We have p > 1. Furthermore, if g(G) > 3, then
(a) p = 1 if λ5(G) > 2k,
(b) |X| > 7 and |V (H)| > 9 if λ5(G) > 4k − 8 and 5 6 k 6 6, and
(c) |X| > 10 and |V (H)| > 15 if λ6(G) > 14 and k = 5.

Proof. If p = 0, then |V (G)| = 2|X| − 2 > 2k − 2 > 8 and α(G) > |X| = 1
2
|V (G)| − 1 >

max{1
3
|V (G)|, 1

2
|V (G)| − k

4
}, which contradicts Lemma 16. Thus p > 1.

Next we suppose g(G) > 3. For each i ∈ [p], we have |V (Hi)| > 5 as Hi is triangle-free
and factor-critical.

Suppose λ5(G) > 2k. By Lemma 20(a), d(Hi) > λ5(G) for each i ∈ [p]. We have
2pk < pλ5(G) 6

∑p
i=1 d(Hi) = d(X)− k(c0(G−X)− p) 6 k(p+ 2), which implies p < 2.

Thus p = 1. (a) is proved.
Suppose λ5(G) > 4k−8 and 5 6 k 6 6. We know p = 1 by (a). Assume k = 6. Notice

that G is non-bipartite. It follows from Lemma 19 that |X| > 7. As d(H) 6 3k and H
is triangle-free and factor-critical, we have |V (H)| > 9. Assume next k = 5. Notice that
|V (G)| = |V (H)|+ 2|X| − 3 > 12. By Lemma 20(a), d(A) > λ5(G) > 12 for every subset
A ⊆ V (G) with |A| = 6, which implies that G has no subgraphs which are isomorphic to
the complete bipartite graph K3,3. By the vertex-transitivity of G, it follows that G has
also no subgraphs which are isomorphic to K2,5. So |X| > 7. If E(X) = ∅, then g0(G) > 7
by Lemma 17, which implies |V (H)| > 13. If E(X) 6= ∅, then d(H) = 13, which implies
|V (H)| > 9. Hence the statement (b) holds.

Now we suppose λ6(G) > 14 and k = 5. Then λ5(G) >min{λ6(G), 5k− 12} = 13. We
know p = 1 by (a). By the above argument, we know |X| > 7, |V (H)| > 9 and that G
has no subgraphs which are isomorphic to K2,5 or K3,3. By Lemma 20(a), d(V (H)∪A) >
λ6(G) and d(V (H)\A) > λ6(G) for every subset A ⊆ V (G) with |A| 6 2. It implies that
E(X) = ∅, |∇(u) ∩ ∇(H)| 6 3 for each u ∈ V (G) and each of X and V (H) has at most
one vertex v with |∇(v) ∩∇(H)| = 3. Set Y = V (H) ∪X.

Suppose |X| = 7. Then X has one vertex u1 with 3 neighbors in V (H) and other
vertices in X has exactly two neighbors in V (H). Choose a vertex u2 ∈ X\{u1} and a
vertex u3 ∈ Y \N(u1). Since G is vertex-transitive, there is an automorphism ϕ1 of G such
that ϕ1(u3) = u2. Noting that |N(v) ∩ N(u3)| > 3 for each v ∈ Y , we have ϕ1(Y ) ⊆ X,
which implies |∇(v) ∩∇(H)| = 3 for each v ∈ N(u2) ∩ V (H), a contradiction.

Suppose 8 6 |X| 6 9. Then there are two vertices u4 and u5 in X with |N(u4) ∩
V (H)| = 2 and |N(u5)∩V (H)| 6 1. Since G is vertex-transitive, there is an automorphism
ϕ2 of G such that ϕ2(u5) = u4. Then ϕ2(Y ) ∩ V (H) 6= ∅ and |ϕ2(Y ) ∩ Y | > 2. As G
has no subgraphs which are isomorphic to K2,5 or K3,3, it follows that |ϕ2(X) ∩X| > 6.
Hence ϕ2(Y ) ⊆ V (H) ∪ Y and ϕ2(X) ⊆ V (H) ∪ X. Noting that |∇(u) ∩ ∇(H)| 6 3
and N(u) ⊆ ϕ2(X) for each u ∈ ϕ2(Y ) ∩ V (H), we have |ϕ2(X) ∩ V (H)| > 2. Notice
that each of X and V (H) has at most one vertex v with |∇(v) ∩ ∇(H)| = 3. We know
dG[ϕ2(X∪Y )](ϕ2(X) ∩ V (H)) > 3, which implies |ϕ2(Y ) ∩ V (H)| > 3. It follows that
NH(ϕ2(Y ) ∩ V (H)) > 3. Now we have |ϕ2(X) ∩ X| = 6 and |ϕ2(X) ∩ V (H)| = 3 as
|ϕ2(X)| = |X| 6 9. It follows that G[ϕ2(X ∪ Y )∩ V (H)] contains a subgraph isomorphic
to K3,3 if |ϕ2(Y ) ∩ V (H)| > 4 and G[ϕ2(X ∪ Y )\V (H)] contains a subgraph isomorphic
to K3,3 otherwise, a contradiction.
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Thus |X| > 10. Then g0(G) > 9 by Lemma 17. Let C be a g0(H)-cycle of H.
Then g0(H) > g0(G) > 9 and |NH(v) ∩ V (C)| 6 2 for each v ∈ V (H)\V (C). Noting
15 = d(V (H)) = 5|V (H)| − 2|E(H)|, we can easily verify |V (H)| > 15. (c) is proved.

Lemma 24. Suppose k = 5, λ6(G) = λ7(G) = 12 and g(G) > 3. For a λ7-atom S of G,
we have that S is an imprimitive block of G.

Proof. Suppose, to the contrary, that S is not an imprimitive block of G. Then there
is an automorphism ϕ1 of G such that ϕ1(S) 6= S and ϕ1(S) ∩ S 6= ∅. Set T = ϕ1(S).
By Lemma 20(c), we have |S ∩ T | 6 6 and |S\T | 6 6, which implies |S| 6 12. As
12 = d(S) = 5|S| − 2|E(S)|, |S| is an even integer. By Lemma 20(b), δ(G[S]) > 3. For
each u ∈ S, we have dG(S∪{u}) > λ6(G) by Lemma 20(a), which implies |NG(u)∩S| 6 2.
Noting that λ6(G) > λ5(G) > λ4(G) > min{4k−8, 5k−12, λ6(G)} = 12, we have λ5(G) =
λ4(G) = 12. By Lemma 23, p = 1. By Lemma 20(a), we have dG(H) > λ5(G) = 12.
Then either dG(H) = 13 and |E(X)| = 1, or dG(H) = 15 and E(X) = ∅.
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Figure 1. Some possible cases of G[S]. In each Gi, 2 6 i 6 5, the two graphs in the virtual

boxes correspond to G[S ∩ T ] and G[S\T ].

Case 1. |S| = 8.
We have |E(S)| = 1

2
(5|S| − λ6(G)) = 14. It is easy to verify that G[S] is isomorphic

to G1 in Figure 1. Label G[S] as in G1 and set W = {w1, w2, w3, w4}. As |NG(u)∩S| 6 2
for each u ∈ S, G has no vertex v different from w1 such that NG(v) = NG(w1). Hence G
has no subgraphs isomorphic to K2,5 by the vertex-transitivity of G.

Claim 1. Each edge in G is contained in a 4-cycle of G.

Suppose that G has an edge contained in no 4-cycles of G. Since G is vertex-transitive,
each vertex in G is incident with an edge contained in no 4-cycles of G and there is an
automorphism ϕ2 of G such that ϕ2(w1) = w2. As each edge in G[S] is contained in a
4-cycle, we have ϕ2(NG[S](w1)) ⊆ NG[S](w2) and NG[S](ϕ2(zi)) ⊆ ϕ2(S) for each i ∈ {2, 3}.
It implies |S∩ϕ2(S)| > 7. On the other hand, noting ϕ2(S) 6= S, we have |S∩ϕ2(S)| 6 6
by Lemma 20(c), a contradiction. Thus Claim 1 holds.

Claim 2. For any vertex x ∈ V (G) with 2 6 |∇(x)∩∇(H)| 6 3 such that dG[X](u) = 0
for each u ∈ ({x}∪NG(x))∩X, there is a subset A ⊆ NG(x) with |A| > |∇(x)∩∇(H)|−1
and a vertex y ∈ V (G)\{x} such that {xu, yu} ⊆ ∇(H) and |∇(u) ∩∇(H)| > 3 for each
u ∈ A.

Since G is vertex-transitive, there is an automorphism ϕ3 of G such that ϕ3(w2) = x.
Let T1 be one of X and V (H) such that x ∈ T1, and let T2 be the other of X and V (H).
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Then ϕ3(w3) ∈ T1 and |ϕ3(NG[S](w2))∩T2| > |∇(x)∩∇(H)|−1. If |ϕ3(NG[S](w2))∩T2| 6 2
or ϕ3(W ) ⊆ T1, then we choose A to be ϕ3(NG[S](w2)) ∩ T2. If |ϕ3(NG[S](w2)) ∩ T2| = 3
and ϕ3(W )\T1 6= ∅, then |ϕ3(W )∩T1| = 3 and {ϕ3(z2), ϕ3(z3)} ⊆ T2. In the second case,
we choose A to be {ϕ3(z2), ϕ3(z3)}. Then A and ϕ3(w3) are a subset and a vertex which
satisfy the condition. Thus Claim 2 holds.

Subcase 1.1. dG(H) = 13.
Let x1x2 be the edge in E(X). We know |X| > 6 and |V (H)| > 7. By Lemma

20(a), dG(V (H) ∪A) > λ4(G) and dG(V (H)\A) > λ4(G) for each subset A ⊆ V (G) with
|A| 6 2, which implies that |∇(u) ∩ ∇(H)| 6 3 for each u ∈ V (G) and each of X and
V (H) has at most one vertex v with |∇(v) ∩ ∇(H)| = 3. Hence it follows from Claim
2 that |∇(u) ∩ ∇(H)| 6 2 for each u ∈ X\{x1, x2}. This together with Claim 2 implies
that |∇(u) ∩∇(H)| 6 1 for each u ∈ V (H)\NG({x1, x2}).

We claim |∇(u) ∩ ∇(H)| 6 2 for each u ∈ NG({x1, x2}) ∩ V (H). Otherwise, suppose
that there is a vertex u0 ∈ NG({x1, x2}) ∩ V (H) with |∇(u0) ∩ ∇(H)| = 3. Since G is
vertex-transitive, there is an automorphism ϕ4 of G such that ϕ4(w2) = u0. It implies
that there is a vertex u1 ∈ ϕ4(NG[S](w2) ∩ (X\{x1, x2}) such that |∇(u1) ∩∇(H)| = 3, a
contradiction.

Thus it follows from Claim 2 that |∇(u)∩∇(H)| 6 1 for each u ∈ X\{x1, x2}. Noting
|NG({x1, x2})∩V (H)| 6 5, we have |∇(NG({x1, x2})∩V (H))∩∇(H)| 6 10 by the claim in
the previous paragraph. Hence there is an edge x3x4 ∈ ∇(H) such that x3 ∈ X\{x1, x2}
and |∇(x3) ∩ ∇(H)| = |∇(x4) ∩ ∇(H)| = 1. Then x3x4 is contained in no 4-cycles of G,
contradicting Claim 1. Hence Subcase 1.1 cannot occur.

Subcase 1.2. dG(H) = 15.
Notice that G has no subgraphs which are isomorphic to K2,5. We know |X| > 6.

Next we show |V (H)| > 9. Let Oi be the set of vertices u in G with |∇(u) ∩ ∇(H)| = i
for 1 6 i 6 5. If |X| > 7, then g0(G) > 7 by Lemma 17, which implies |V (H)| > 13.
Then we assume |X| = 6. As G has no subgraphs which are isomorphic to K2,5, we have
|O3 ∩X| = 3 and |O2 ∩X| = 3. Noting g(G) > 3, we can obtain |V (H)| 6= 5. By Claim
2, |O3 ∩ V (H)| > 2, which implies |V (H)| 6= 7. Hence |V (H)| > 9.

By Lemma 20(a), dG(V (H) ∪ A) > λ4(G) and dG(V (H)\A) > λ4(G) for each subset
A ⊆ V (G) with |A| 6 4. It implies O5 = ∅, |O4 ∩X| 6 1, |O3 ∩X| 6 3, |O3 ∩ V (H)| 6 3
and |O4 ∩X| · |O3 ∩X| = 0.

We claim O4 = ∅. Otherwise, suppose O4 6= ∅. Noting that δ(H) > 2 as H is factor-
critical, we have O4 ⊆ X. Now we know |O4| = 1 and O3 ∩ X = ∅. It follows from
Claim 2 that O3 ∩ V (H) = ∅ and O2 ⊆ NG(O4). As |∇(NG(O4) ∩ V (H))| 6 8, there is
an edge x5x6 ∈ ∇(H) with {x5, x6} ⊆ O1. Then x5x6 is contained in no 4-cycles of G,
contradicting Claim 1.

Let F1 be the subgraph of G with vertex set
⋃3
i=1Oi and edge set ∇(H) and let F2

be the subgraph of F1 which is induced by O3. By Claim 2, δ(F2) > 2. Hence F2 is
connected. Then F1 is connected by Claims 1 and 2. Let t be the number of vertices u in
F2 with dF2(u) = 2. We have 15 = |E(F1)| 6 |E(F2)| + 2t = 6|O3| − 3|E(F2)| by Claim
2. It follows that |O3| = 6 and 6 6 |E(F2)| 6 7.

Assume |E(F2)| = 6. Then F2 is a 6-cycle. For each u ∈ O3 ∩ X, there is a vertex

the electronic journal of combinatorics 23(3) (2016), #P3.1 10



yu ∈ X\O3 such that NF2(u) ⊆ NG(yu) by Claim 2. It implies that there is a vertex
y ∈ X\O3 such that O3 ∩ V (H) ⊆ NG(y), which contradicts |O3 ∩X| 6 3.

Assume |E(F2)| = 7. As |E(F1)\E(F2)| = 8, it follows from Claim 2 that there
is a vertex u2 ∈ V (F1)\O3 with dF1(u2) = 2 and we know |NF1(u2) ∩ O3| = 1 and
dF1(NF1(u2)\O3) = 1. It is easy to see that there is no vertex u′ in G such that |NG(u′)∩
NG(u2)| = 4. Noting |NG(w2) ∩ NG(w3)| = 4, we have that there is no automorphism ϕ
of G such that ϕ(w2) = u2, which contradicts the vertex-transitivity of G.

Case 2. |S| = 10 or 12.

Claim 3. For any given two distinct λ7-atoms S1 and S2 of G with S1 ∩ S2 6= ∅,
G[S1 ∩ S2] and G[S1\S2] are isomorphic to K3,3 or K2,2.

By Lemma 20(c), we have dG(S1∩S2)+dG(S1∪S2) 6 2λ7(G), dG(S1\S2)+dG(S2\S1) 6
2λ7(G), |S1 ∩ S2| 6 6 and |S1\S2| 6 6. Then |S1 ∩ S2| > 4 and |S1\S2| > 4. By Lemma
20(a), each of dG(S1 ∩ S2), dG(S1 ∪ S2), dG(S1\S2) and dG(S2\S1) is not less than λ4(G).
Noting λ4(G) = λ7(G) = 12, we have dG(S1 ∩ S2) = dG(S1\S2) = 12. Then G[S1 ∩ S2]
and G[S1\S2] are isomorphic to K3,3 or K2,2. So Claim 3 holds.

Let Ri be the set of vertices u in S with dG[S](u) = i for 3 6 i 6 5. By Lemma 20(b),
E(G[R3]) = ∅.

Claim 4. R5 = ∅, or G[R5] is a 6-cycle and |S| = 12.

Suppose R5 6= ∅. It only needs to show that |S| = 12 and G[R5] is a 6-cycle. Assume
R4 6= ∅. Choose a vertex u ∈ R4 and a vertex v ∈ R5. Let ϕ5 be an automorphism of G
such that ϕ5(u) = v. Then ϕ5(NG[S](u)) ⊆ NG[S](v), which contradicts that G[ϕ5(S)∩ S]
is isomorphic to K3,3 or K2,2 by Claim 3. Thus R4 = ∅. Noting |R3| + |R5| = |S| and
3|R3|+ 5|R5| = 2|E(S)| = 5|S| − 12, we have |R3| = 6. For any two vertices u′, u′′ ∈ R5,
it follows from Claim 3 that ϕ(S) = S for every automorphism ϕ of G with ϕ(u′) = u′′.
Hence G[R5] is r-regular, for some integer r. Then 18 = 3|R3| = dG[S](R3) = dG[S](R5) =
(5− r)(|S| − 6), which implies |S| = 12 and r = 2. Hence G[R5] is a 6-cycle and Claim 4
is proved.

By Claim 3, G[S∩T ] and G[S\T ] are isomorphic to K3,3 or K2,2. Noting E(G[R3]) = ∅,
we have by Claim 4 that G[S] is isomorphic to G2, G3, G4 or G5 in Figure 1.

Claim 5. Each vertex in G is contained in exactly two distinct λ7-atoms of G.

By the vertex-transitivity of G, it only needs to show that S ′ = S or S ′ = T for
a λ7-atom S ′ of G with S ′ ∩ S ∩ T 6= ∅. Suppose S ′ 6= S and S ′ 6= T . From Figure
1, we can see that S has no subset A different from S ∩ T and S\T such that G[A] is
isomorphic to K3,3. Hence it follows from Claim 3 that S ′ ∩ S = S ∩ T = S ′ ∩ T . Then
12 = dG(S ∩ T ) > dG[S](S ∩ T ) + dG[T ](S ∩ T ) + dG[S′](S ∩ T ) = 18, a contradiction. So
Claim 5 holds.

Suppose |S| = 10. Then G[S] is isomorphic to G2. By Claims 3 and 5, there is a
λ7-atom S ′′ of G such that S ′′ ∩ S = S\T . Choose a vertex u3 ∈ S\T and a vertex
u4 ∈ S ∩ T . Noting that G[S\T ] is not isomorphic to G[S ∩ T ], we know by Claim 5 that
there is no automorphism ϕ of G such that ϕ(u3) = u4, a contradiction.
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Suppose next |S| = 12. Then G[S] is isomorphic to G3, G4 or G5. Let V1, V2, . . . ,
Vm be all subsets of V (G) which induce subgraphs of G isomorphic to K3,3. Noting that
G[S ∩ T ] and G[S\T ] are isomorphic to K3,3, we can obtain by Claims 3 and 5 that
V1, V2, . . . , Vm form a partition of V (G) and for each Vi there are exactly two elements
j1, j2 ∈ {1, 2, . . . ,m}\{i} such that G[Vi∪Vj1 ] and G[Vi∪Vj2 ] are isomorphic to G[S]. We
denote Vi ∼ Vj if G[Vi ∪ Vj] is isomorphic to G[S], and assume V1 ∼ V2 ∼ · · · ∼ Vm ∼ V1.
If G[S] is isomorphic to G3, then it is easy to verify that G is bipartite, a contradiction.
Thus G[S] is isomorphic to G4 or G5.

Assume that there is some Vq ⊆ V (H). If G[S] is isomorphic to G4, then |Vq ∩X| = 3
and NG(Vq\X)∩Vq−1 ⊆ X, which implies |E(X)| > |E(Vq−1)∩E(X)| > 2, a contradiction.
Thus G[S] is isomorphic to G5. Let Vj be chosen such that Vj ∩ V (H) 6= ∅ and |j − q|
is as small as possible. Then |Vj ∩X| = 3 and |N(u) ∩X| > 4 for each u ∈ Vj ∩ V (H),
which contradicts that δ(H) > 2.

We now assume that Vi ∩ V (H) 6= ∅ for 1 6 i 6 m. Then |Vi ∩X| > |Vi\(V (H)∪X)|
if Vi ∩ X 6= ∅. Choose some Vq′ which contains vertices in V (G)\(V (H) ∪ X). Then
Vq′−1 ∩X 6= ∅ and Vq′+1 ∩ X 6= ∅. Noting c0(G −X) = |X| − 2, we can obtain that for
each i ∈ [m], |Vi ∩ X| = |Vi\(V (H) ∪ X)| + 1 if i ∈ {q′ − 1, q′, q′ + 1} and |Vi ∩ X| = ∅
otherwise. Then |Vq′\(V (H) ∪X)| = 2. Hence |Vq′−1 ∩X)| = |Vq′+1 ∩X)| = 3. Now we
have Vq′−1 ∼ Vq′ ∼ Vq′+1 ∼ Vq′−1, which implies V (G) = Vq′−1∪Vq′∪Vq′+1 and |V (H)| = 3.
It follows that g(G) = 3, a contradiction.

Lemma 25. Suppose k = 5, λ5(G) = λ6(G) = 13 and g(G) > 3. For a λ6-atom S of G,
we have |S| > 11.

Proof. To the contrary, suppose |S| < 11. As 13 = d(S) = 5|S| − 2|E(S)|, |S| is odd.
Then |S| > 7. By Lemma 20(b), δ(G[S]) > 3. By Lemma 23, we have p = 1, |X| > 7 and
|V (H)| > 9. Hence |V (G)| > 20.

Assume |S| = 7. Then |E(S)| = 1
2
(5|S| − 13) = 11. If G[S] is bipartite, then

|E(S)| > 1
2
(|S| + 1)δ(G[S]) > 12, a contradiction. Thus G[S] is non-bipartite. Let

C be a shortest cycle of odd length in G[S]. Then 5 6 |V (C)| 6 7. Noting that
|NG[S](u) ∩ V (C)| 6 2 for each u ∈ S\V (C), we have |E(S)| 6 10, a contradiction.

So |S| = 9. Let Ri be the set of vertices u in S with dG[S](u) = i for 3 6 i 6 5.

Claim 1. For any automorphism ϕ of G with ϕ(R4 ∪ R5) ∩ (R4 ∪ R5) 6= ∅, either
ϕ(S) = S or G[S ∩ ϕ(S)] is isomorphic to K2,3.

Suppose ϕ(S) 6= S. By Lemma 20(c), |S ∩ϕ(S)| 6 5, |S\ϕ(S)| 6 5 and d(S ∩ϕ(S)) +
d(S ∪ ϕ(S)) 6 2λ6(G). Then 4 6 |S ∩ ϕ(S)| 6 5 and |S ∪ ϕ(S)| = |S| + |ϕ(S)| − |S ∩
ϕ(S)| 6 14. As |V (G)| > 20, we have d(S ∪ ϕ(S)) > λ6(G) by Lemma 20(a). Hence
d(S ∩ ϕ(S)) 6 λ6(G) = 13. This, together with the fact that |NG[ϕ(S)](u) ∩NG[S](u)| > 3
for each u ∈ ϕ(R4 ∪ R5) ∩ (R4 ∪ R5), implies that G[S ∩ ϕ(S)] is isomorphic to K2,3. So
Claim 1 holds.

By Claim 1, it follows that G has no automorphism ϕ such that ϕ(R4) ∩ R5 6= ∅. It
implies R4 = ∅ or R5 = ∅. Noting

∑5
i=3 i|Ri| = 2|E(S)| = 32 and

∑5
i=3 |Ri| = |S| = 9, we

have |R3| = 4, |R4| = 5 and R5 = ∅. By Lemma 20(b), E(R3) = ∅. Hence |E(R4)| = 4.
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As g(G[S]) > g(G) > 3, it is easy to verify that either G[R4] has a 4-cycle or G[R4] is
isomorphic to K1,4. Let u1 and u2 be two vertices in R4 with dG[R4](u1) < dG[R4](u2). Since
G is vertex-transitive, there is an automorphism ψ of G such that ψ(u2) = u1. By Claim
1, G[ψ(S) ∩ S] is isomorphic to K2,3. As u1, u2 ∈ R4, we know dG[ψ(S)∩S](u1) = 3. Notice
that |NG[S](u) ∩ NG[S](u1)| 6 2 for each u ∈ S\{u1} if G[R4] has a 4-cycle. It follows
that G[R4] is isomorphic to K1,4. Since dG[ψ(S)∩S](v) = 2 for each v ∈ NG[ψ(S)∩S](u1), it
follows that NG[ψ(S)∩S](u1) ⊆ R3. It implies that the vertex in R3\NG[S](u1) has only two
neighbors in S, which contradicts δ(G[S]) > 3.

Lemma 26. Suppose k = 5, λ6(G) = λ7(G) = 14 and g(G) > 3. For a λ7-atom S of G,
we have |S| > 14.

Proof. By Lemma 23, we have p = 1, |X| > 10 and |V (H)| > 15. Hence |V (G)| > 32.
For 1 6 i 6 5, let Oi be the set of vertices u in G with |∇(u) ∩ (V (H))| = i, and set
mi = |Oi ∩ X| and ni = |Oi ∩ V (H)|. By Lemma 20(a), dG(V (H) ∪ A) > λ6(G) and
dG(V (H)\A) > λ6(G) for each subset A of V (G) with |A| 6 2. This, together with the
fact that dG(H) is odd, implies that dG(H) = 15, O4∪O5 = ∅, m3 6 1 and n3 6 1. Hence
E(X) = ∅. Then g0(G) > 9 by Lemma 17.

Suppose |S| < 14. As 5|S|−2|E(G[S])| = 14, |S| is an even integer with 8 6 |S| 6 12.
By Lemma 20(b), δ(G[S]) > 3. As g0(G) > 9, it follows that G[S] is bipartite. By Lemma
20(a), dG(S ∪{u}) > λ6(G) for each u ∈ S and dG(A) > λ6(G) for each subset A ⊆ V (G)
with |A| = 6. Hence |NG(u) ∩ S| 6 2 for each u ∈ S and G has no subgraphs which are
isomorphic to K3,3.

Claim 1. For any two distinct λ7-atoms S1 and S2 of G with S1 ∩ S2 6= ∅, we have
dG(S1 ∩ S2) 6 14 and furthermore, G[S1 ∩ S2] and G[S1\S2] are isomorphic to K2,4 or
K3,3 − e if |S| = 12, where K3,3 − e is a subgraph of K3,3 obtained by deleting an edge e
from K3,3.

By Lemma 20(c), we have |S1∩S2| 6 6, |S1\S2| 6 6, dG(S1∩S2)+dG(S1∪S2) 6 2λ7(G)
and dG(S1\S2) + dG(S2\S1) 6 2λ7(G). Noting |V (G)| > 32, we have dG(S1∪S2) > λ7(G)
by Lemma 20(a). Hence dG(S1 ∩ S2) 6 λ7(G) = 14. Next assume |S| = 12. Then
|S1 ∩ S2| = |S1\S2| = 6. By Lemma 20(a), each of dG(S1 ∩ S2), dG(S1\S2) and dG(S2\S1)
is not less than λ6(G). Hence dG(S1 ∩ S2) = dG(S1\S2) = 14. It implies that G[S1 ∩ S2]
and G[S1\S2] are isomorphic to K2,4 or K3,3 − e. So Claim 1 holds.
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Figure 2. The illustration in the proof of Lemma 26.

Case 1. |S| = 8.
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As G[S] is a bipartite graph with |E(S)| = 13 and δ(G[S]) > 3, G[S] is isomorphic
to G6 in Figure 2. Let v1, v2 be the two vertices in S with dG[S](v1) = dG[S](v2) = 4 and
choose a vertex v3 ∈ NG[S](v1)\{v2}.

We claim that each edge in G is contained in a 4-cycle of G. Otherwise, suppose that
G has an edge contained in no 4-cycles of G. Since G is vertex-transitive, each vertex in
G is incident with an edge contained in no 4-cycles of G and there is an automorphism
ϕ1 of G such that ϕ1(v3) = v2. Clearly, ϕ1(S) 6= S. Noting that each edge in G[S] is
contained in a 4-cycle of G[S], we have dG[ϕ1(S)∪S](u) 6 4 for each u ∈ ϕ1(S) ∪ S. Then
ϕ1(NG[S](v3) ⊆ NG[S](v2) and NG[S](ϕ1(v1)) ⊆ ϕ1(NG[S](v1)). Noting that |ϕ1(S)∩ S| 6 6
by Lemma 20(c) and dG(ϕ1(S)∩S) 6 14 by Claim 1, G[S∩ϕ1(S)] is isomorphic to K3,3−e.
As dG(S∪ϕ1(S)) > λ6(G) = 14 by Lemma 20(a), it follows that G[S∪ϕ1(S)] is isomorphic
to G7 in Figure 2, where the graph in the virtual box corresponds to G[S∩ϕ1(S)]. Choose
a vertex v4 ∈ S∩ϕ1(S) with dG[S∩ϕ1(S)](v4) = 2. Let ϕ2 be an automorphism ofG such that
ϕ2(v1) = v4. Then ϕ2(NG[S](v1)) = NG[S∪ϕ1(S)](v4) and ϕ2(NG[S](v2))\(S ∪ ϕ1(S)) 6= ∅.
Then dG(S ∪ ϕ2(S) ∪ ϕ2(NG[S](v2))) < 14 = λ6(G), contradicting Lemma 20(a). So this
claim holds.

For each uv ∈ ∇(H), noting that uv is contained in a 4-cycle of G by the previous
claim, we have |∇(u) ∩ ∇(H)| + |∇(v) ∩ ∇(H)| > 3. For each u ∈ O2 ∪ O3, there is
an automorphism ϕ3 of G such that ϕ3(v1) = u, which implies that there is a vertex
v ∈ ϕ3(NG[S](v1)) such that uv ∈ ∇(H) and |∇(v) ∩ ∇(H)| = 3. Hence m1 6 n2 + 2n3,

m2 6 3n3 and n2 6 3m3. Noting m3 6 1 and n3 6 1, we have 15 =
∑3

i=1 imi 6
n2 + 2n3 + 6n3 + 3m3 6 6m3 + 8n3 6 14, a contradiction.

Case 2. |S| = 10 or 12.
Let Ri be the set of vertices u in S with dG[S](u) = i for 3 6 i 6 5. Then E(R3) = ∅

by Lemma 20(b). Let Z and W be the bipartition of G[S] such that |Z| 6 |W |. Noting
1
2
(5|S| − 14) = |E(S)| > δ(G[S])|W | > 3|W |, we have |W | < 1

2
|S|+ 2.

Claim 2. If R5 6= ∅, then, for each v ∈ R4, there is exactly one vertex w in S\{v}
with NG[S](v) ⊆ NG[S](w).

Suppose R5 6= ∅. Choose a vertex u ∈ R5 and a vertex v ∈ R4. Let ϕ4 be an
automorphism of G such that ϕ4(u) = v. Then NG[S](v) ⊆ ϕ4(NG[S](u)). Noting that
|S ∩ ϕ4(S)| 6 6 by Lemma 20(c) and dG(S ∩ ϕ4(S)) 6 14 by Claim 1, we have that
G[S ∩ϕ4(S)] is isomorphic to K2,4. It implies that S has a vertex w different from v with
NG[S](v) ⊆ NG[S](w). As G has no subgraphs isomorphic to K3,3, such vertex w is unique.
So Claim 2 holds.

Claim 3. |W | = |Z| and R5 = ∅.
Suppose, to the contrary, that |W | > |Z|, or |W | = |Z| and R5 6= ∅. As E(R3) = ∅, it

follows that |W | = 6 if |S| = 10.
Assume |W | = |Z|+ 2 = 7. Noting |E(S)| = 23, there is a vertex v5 ∈ (R4 ∪R5) ∩W

and a vertex v6 ∈ R5 ∩ Z. Let ϕ5 be an automorphism of G such that ϕ5(v5) = v6. Then
ϕ5(S) 6= S and ϕ5(NG[S](v5)) ⊆ NG[S](v6). Hence G[S ∩ ϕ5(S)] is isomorphic to K2,4 by
Claim 1. It implies |ϕ5(W )\S| = 5, contradicting that G[ϕ5(S)\S] is isomorphic to K2,4
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or K3,3 − e by Claim 1.
Assume |W | = 6. If |S| = 10, we know |R4 ∩ Z| = |R5 ∩ Z| = 2 as E(R3) = ∅ and

|E(S)| = 18. If |S| = 12, we know either |R5 ∩ Z| = 2 = |R4 ∩ Z| + 1 or |R5 ∩ Z| = 1 =
|R4∩Z|−2 as |E(S)| = 23. It follows from Claim 2 that there is a vertex v7 ∈ R4∩Z and
a vertex v8 ∈ (R4 ∪ R5)\{v7} such that NG[S](v7) ⊆ NG[S](v8) and (R5 ∩ Z)\{v8} 6= ∅. It
implies that G[S] has a subgraph which is isomorphic to K3,3, a contradiction. So Claim
3 holds.

Subcase 2.1. |S| = 10.
Noting E(R3) = ∅, we have by Claim 3 that G[S] is isomorphic to G8 in Figure 2. We

label G[S] as in G8 and assume x1 ∈ Z and y1 ∈ W .

Claim 4. |NG(u) ∩NG(v)| 6 3 for any two distinct vertices u and v in G.

Suppose that there are two distinct vertices u and v in G with |NG(u) ∩NG(v)| > 4.
Notice that |NG(u) ∩ S| 6 2 for each u ∈ S. By the vertex-transitivity of G, for each
yi ∈ {y1, y2, y3} there is a vertex yj ∈ {y1, y2, y3}\{yi} such that |NG(yi)∩NG(yj)| > 4. It
follows that there is a vertex w ∈ S such that {y1, y2, y3} ⊆ NG(w), a contradiction. So
Claim 4 holds.

Let ϕ6 be an automorphism of G such that ϕ6(y5) = y1. Then ϕ6(S) 6= S and
|ϕ6(NG[S](y5)) ∩ NG[S](y1)| > 2. Then |ϕ6(S) ∩ S| 6 6 by Lemma 20(c) and dG(ϕ6(S) ∩
S) 6 14 by Claim 1. By Claim 4, G[S] has no subgraphs isomorphic to K2,4. It follows
that |ϕ6(S) ∩W | 6 3 and |ϕ6(S) ∩ Z| 6 3.

Assume that ϕ6(NG[S](y5)) ∩ {x1, x2} 6= ∅ and ϕ6(NG[S](y5)) ∩ {x4, x5} 6= ∅. Then
|NG[ϕ6(S)](u) ∩ NG[S](u)| = 3 for each u ∈ ϕ6(NG[S](y5)) ∩ {x1, x2} and |NG[ϕ6(S)](v) ∩
NG[S](v)| > 2 for each v ∈ ϕ6(NG[S](y5)) ∩ {x4, x5}. It follows that |ϕ6(S) ∩W | = 3 and
|ϕ6(S) ∩ {y4, y5}| = 1. Noting 2 6 |ϕ6(S) ∩ Z| 6 3, we can see dG(ϕ6(S) ∩ S) > 14, a
contradiction.

Assume ϕ6(NG[S](y5))∩NG[S](y1) = {x4, x5}. Then ϕ6(y4) ∈ {y2, y3}∪S, which implies
that |NG(y1) ∩NG(ϕ6(y4))| > 4 or |NG(x4) ∩NG(x5)| > 4. It contradicts Claim 4.

Thus ϕ6(NG[S](y5)) ∩ NG[S](y1) = {x1, x2}. By Claim 4, we have ϕ6(y4) ∈ {y4, y5}
and ϕ6({y1, y2, y3})∩W = {y4, y5}\ϕ6(y4). Then {ϕ6(x4), ϕ6(x5)} ⊆ S. Assume ϕ6(y4) =
y4. Set {y6, y7} = ϕ6({y1, y2, y3})\W , {x6} = ϕ6(NG[S](y5))\NG[S](y1) and {x7, x8} =
{ϕ6(x4), ϕ6(x5)}. Then the graph G9 showed in Figure 2 is a subgraph of G.

We can see that each edge incident with x1 is contained in a 4-cycle of G. Then, by
the vertex-transitivity of G, each edge uv ∈ ∇(H) is contained in a 4-cycle of G, which
implies |∇(u) ∩ ∇(H)| > 2 or |∇(v) ∩ ∇(H)| > 2. Hence there is a vertex u′ ∈ G with
2 6 |∇(u′)∩∇(H)| 6 3. Let ϕ7 be an automorphism of G such that ϕ7(y4) = u′. It is easy
to verify that either ϕ7(NG[ϕ6(S)∪S](y4)) has a vertex u with |∇(u) ∩ ∇(H)| > 4 or it has
two vertices v′ and v′′ with {u′v′, u′v′′} ⊆ ∇(H) and |∇(v′)∩∇(H)| = |∇(v′′)∩∇(H)| = 3,
contradicting the fact that O4 ∪O5 = ∅, m3 6 1 and n3 6 1.

Subcase 2.2. |S| = 12.
As |E(G[S])| = 23, G[S] is not regular. Let ϕ8 be an automorphism of G such that

ϕ8(S) 6= S and ϕ8(S) ∩ S 6= ∅. Set T = ϕ8(S). It follows from Claims 1 and 3 that
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dG[S∪T ](u) = 5 for each u ∈ S ∩ T , each of G[S\T ], G[S ∩ T ] and G[T\S] is isomorphic to
K3,3 − e and dG[S](v) = dG[T ](v) = 4 for each v ∈ S ∩ T with dG[S∩T ](v) = 3.

Let v9 and v10 be two vertices in W ∩ T with dG[S∩T ](v9) = 3 = dG[S∩T ](v10) + 1. We
know either dG[S](v10) = 4 or dG[T ](v10) = 4 and assume, without loss of generality, that
dG[S](v10) = 4. Let ϕ9 be an automorphism of G such that ϕ9(v9) = v10. Let Q be one of
ϕ9(S) and ϕ9(T ) such that Q 6= S. Since dG[Q](v10) = 4, we know Q 6= T . By Claims 1
and 3, each of G[Q∩S], G[Q\S], G[Q∩T ] and G[Q\T ] is isomorphic to K3,3− e. Noting
dG[S](v10) = dG[Q](v10) = 4, we have |NG[Q](v10)∩S| = 3, which implies 2 6 |Q∩S∩T | 6 5.

Assume 2 6 |Q∩S ∩ T | 6 3. Noting that G[Q∩ T ] is isomorphic to K3,3− e, we have
dG[Q∩T ](Q ∩ S ∩ T ) > |Q ∩ S ∩ T | > dG[T ](Q ∩ S ∩ T ), a contradiction.

Assume 4 6 |Q∩S∩T | 6 5. Then |NG[Q](v10)∩S∩T | = 2. If E(Q∩S∩T ) = ∅, then
dG[Q∩S](Q∩S∩T )+dG[Q\T ](Q∩S∩T ) > 4|Q∩S∩T | > |[Q∩S∩T , S∪T ]|, a contradiction.
Thus |Q∩S∩T | = 2 and |E(Q∩S∩T )| = 1. Then dG[Q∩S](Q∩S∩T )+dG[Q\T ](Q∩S∩T ) >
3 + 3 > 5 > |[Q ∩ S ∩ T , S ∪ T ]|, a contradiction.

Lemma 27. Suppose k = 5, λ6(G) > 14, λ8(G) = 15 and g(G) > 3. For a λ8-atom S of
G, we have |S| > 15.

Proof. By Lemma 23, we have p = 1, |X| > 10 and |V (H)| > 15. By Lemma 20(a),
dG(A) > λ6(G) > 14, dG(V (H) ∪ B) > λ8(G) and dG(V (H)\B) > λ8(G) for any two
subsets A and B of V (G) with |A| = 6 and |B| 6 1. It implies that G has no subgraphs
isomorphic to K3,3, dG(H) = 15 and |∇(u) ∩ ∇(H)| 6 2 for each u ∈ V (G). Hence
E(X) = ∅ and there is an edge u1u2 ∈ ∇(H) such that NG(u1) ∩X = {u2}. By Lemma
17, g0(G) > 9.

Suppose |S| < 15. As g0(G) > 9 and 15 = λ8(G) = dG(S) = 5|S| − 2|E(G[S])|, it
follows that |S| is odd and G[S] is bipartite. By Lemma 20(b), δ(G[S]) > 3. Let W and
Z be the bipartition of G[S] such that |W | > |Z|. We have |W | = 1

2
(|S|+ 1) if |S| 6 11,

and 7 6 |W | 6 8 if |S| = 13.
Case 1. There is a vertex v1 in S with dG[S](v1) = 5.
Let R be one of W and Z such that v1 ∈ R. As δ(G[S]) > 3 and |E(S)| = 1

2
(5|S| −

2|E(G[S])|), it follows that NG[S](NG[S](v1)) = R. Since G is vertex-transitive, there is
an automorphism ϕ1 of G such that ϕ1(v1) = u2. Then ϕ1(R) ⊆ X ∪ V (H). Noting that
|∇(u) ∩ ∇(H)| 6 2 for each u ∈ V (G), we have ϕ1(S\R) ∩ X = ∅. Notice that G has
no subgraphs isomorphic to K3,3. We have |ϕ1(R) ∩X| > 4 as |NG(u2)\V (H)| > 3 and
δ(G[S]) > 3. Then |ϕ1(S) ∩ V (H)| 6 6 as |S| 6 13. It follows that dG[ϕ1(S)](u1) = 3.
Then dG[ϕ1(S)](v) > 4 for each v ∈ NG[ϕ1(S)](u1) by Lemma 20(b). Now we know |S| = 13,
|ϕ1(R)∩X| = 4 = |ϕ1(R)∩V (H)|+2 and |ϕ1(S\R)∩V (H)| = 4 = |ϕ1(S\R)\V (H)|+1.
Then R = Z and |NG(u2) ∩ V (H)| = 2.

Noting that |∇(u) ∩ ∇(H)| 6 2 for each u ∈ V (G), we have dG[ϕ1(S)](u) 6 4 for
each u ∈ ϕ1(W ). Since δ(G[S]) > 3 and G has no subgraphs isomorphic to K3,3, two
vertices in ϕ1(W )\V (H) has exactly 3 neighbors in ϕ1(Z) ∩ X. So dG[ϕ1(S)](u) = 4 for
each u ∈ ϕ1(W )\NG(u2) as |E(S)| = 25. Then there is a vertex u3 ∈ ϕ1(Z) ∩ X such
that ϕ1(W )\NG(u2) ⊆ NG(u3).
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Assume ϕ1(Z)∩V (H) = {u4, u5}. Let ϕ2 be an automorphism of G such that ϕ2(u4) =
u2. Then u1 /∈ ϕ2(NG[ϕ1(S)](u4)) and ϕ2({u2, u3, u5}) ⊆ X, which implies |∇(u)∩∇(H)| >
3 for the vertex u ∈ (NG(u2) ∩ V (H))\{u1}, a contradiction.

Case 2. dG[S](u) 6 4 for each u ∈ S.
If |S| = 13, then, noting |E(G[S])| = 25 and 5 6 |Z| 6 6, we have that there is a

vertex u ∈ Z with dG[S](u) = 5, a contradiction. Thus |S| 6 11. There is a vertex w ∈ W
with dG[S](w) = |W | − 2 such that dG[S](u) = 4 for each u ∈ NG[S](w). Choose a vertex
z ∈ NG[S](w).

We claim that the edge u1u2 is contained in a 4-cycle of G. Suppose not. Since G is
vertex-transitive, each vertex in G is incident with an edge contained in no 4-cycles of G
and there is an automorphism ϕ3 of G such that ϕ3(w) = z. We know ϕ3(S) 6= S. Noting
that |NG[S](u)∩NG[S](v)| > 2 for every subset {u, v} ⊆ Z, each edge in G[S] is contained
in a 4-cycle of G[S]. Hence ϕ3(NG[S](w)) ⊆ NG[S](z) and NG[S](u) ⊆ ϕ3(S) for each
u ∈ ϕ3(NG[S](w)). By Lemma 20(c), |S∩ϕ3(S)| 6 7 and dG(S∩ϕ3(S))+dG(S∪ϕ3(S)) 6
2λ8(G). If |S| = 11, then |S ∩ ϕ3(S)| > |ϕ3(NG[S](w)) ∪ NG[S](w)| = 8, a contradiction.
Thus |S| = 9. As δ(G[S]) > 3, we have Z =

⋃
u∈ϕ3(NG[S](w))

NG[S](u) ⊆ ϕ3(S). Hence

|S ∩ ϕ3(S)| = 7 and dG(S ∩ ϕ3(S)) = 17. Noting that dG(S ∪ ϕ3(S)) > λ8(G) by Lemma
20(a), we have dG(S ∩ ϕ3(S)) + dG(S ∪ ϕ3(S)) > 2λ8(G), a contradiction.

Thus |NG(u2) ∩ V (H)| = 2. Let ϕ4 be an automorphism of G such that ϕ4(z) = u2
if |S| = 9, and ϕ4(w) = u2 if |S| = 11. If u1 ∈ ϕ4(S), then |Z| > dG[ϕ4(S)](u1) −
1 + |NG[ϕ4(S)](NG[ϕ4(S)](u2)\V (H))| > 2 + 3 = 5 if |S| = 9, and |W | > 7 if |S| = 11,
a contradiction. Thus u1 /∈ ϕ4(S). Then ϕ5(Z) ⊆ X if |S| = 9 and ϕ5(W ) ⊆ X if
|S| = 11, which implies |∇(u) ∩ ∇(H)| > 3 for the vertex u ∈ (NG(u2) ∩ V (H))\{u1}, a
contradiction.

Lemma 28. Suppose k = 6, λ5(G) = 16 and g(G) > 3. For a λ5-atom S of G, we have
|S| > 9.

Proof. To the contrary, suppose |S| 6 8. As 1
2
(6|S|−λ5(G)) = |E(S)| 6 1

4
|S|2 by Lemma

6, we have |S| > 8. Hence |S| = 8 and G[S] is isomorphic to K4,4.
By Lemma 23, p = 1. Then |X| > 7 by Lemma 19. Noting that d(H) 6 18 and H is

triangle-free and factor-critical, we have |V (H)| > 11. Let Oi be the set of vertices u in G
with |∇(u)∩∇(H)| = i for 4 6 i 6 6. By Lemma 20(a), we have d(V (H)∪A) > λ5(G) and
d(V (H)\A) > λ5(G) for each subset A ⊆ V (G) with |A| 6 3, which implies d(H) > 16,
O5 ∪O6 = ∅, |O4 ∩X| 6 1 and |O4 ∩ V (H)| 6 1.

Suppose that S is an imprimitive block of G. Then the orbits S = S1, S2, . . . , Sm of
S under the automorphism group of G form a partition of V (G). If E(Si)∩E(X) 6= ∅ for
some Si, then d(H) = 16 and |Si∩V (H)| = 6, which implies d(V (H)∪Si) 6 14 < λ5(G),
a contradiction. Thus E(Sj) ∩E(X) = ∅ for each Sj. As c0(G−X) = |X| − 2, it follows
that |O4| > 3, which contradicts the fact that |O4| = |O4 ∩X|+ |O4 ∩ V (H)| 6 2.

Suppose next that S is not an imprimitive block of G. Then there is an automorphism
ϕ1 of G such that ϕ1(S) 6= S and ϕ1(S) ∩ S 6= ∅. Set T = ϕ1(S). As G is 6-regular, we
have δ(G[S ∩ T ]) > 2. By Lemma 20(c), |S ∩ T | 6 4. Hence G[S ∩ T ] is a 4-cycle of G.
Assume S ∩ T = {v1, v2, v3, v4}, where N(v1) = N(v2) and N(v3) = N(v4).
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By the vertex-transitivity of G, for each u ∈ V (G) there is a vertex u′ different from
u such that N(u′) = N(u). Assume E(X) 6= ∅. Then |E(X)| = 1 and let u1u2 be the
edge in E(X). We know that there is a vertex u′1 in V (H) with N(u′1) = N(u1), which
implies |N(u1)∩ V (H)| = 5. Then O5 6= ∅, a contradiction. Thus E(X) = ∅. As for each
u ∈ V (G) there is a vertex u′ different from u such that N(u′) = N(u), it follows that there
is a vertex u3 ∈ X with 2 6 |N(u3) ∩ V (H)| 6 4. Let ϕ2 be an automorphism of G such
that ϕ2(v1) = u3. If ϕ2({v3, v4})\V (H) 6= ∅, then N(u3) ∩ V (H) = ϕ2(N(v1)) ∩ V (H) ⊆⋃6
i=4Oi. If ϕ2({v3, v4}) ⊆ V (H), then ϕ2({v3, v4}) ⊆

⋃6
i=4Oi. So |(

⋃6
i=4Oi)∩V (H)| > 2,

a contradiction.

Lemma 29. Suppose k = 6, λ5(G) = λ8(G) = 18 and g(G) > 3. For a λ8-atom S of G,
we have |S| > 15.

Proof. To the contrary, suppose 8 6 |S| 6 14. By Lemma 23, we have p = 1, |X| > 7 and
|V (H)| > 9. By Lemma 20(a), we have dG(V (H)∪A) > λ5(G) and dG(V (H)\A) > λ5(G)
for each subset A ⊆ V (G) with |A| 6 1, which implies dG(H) = 18 and |∇(u)∩∇(H)| 6 3
for each u ∈ V (G). Then g0(G) > 7 by Lemma 17. It follows that G[A] is bipartite for
each subset A ⊆ V (G) with |A| 6 13 and dG(A) = 18. Hence |V (H)| > 15, and G[S] is
bipartite if |S| 6 13. Then |V (G)| > 26.

Case 1. |S| = 8.
By Lemma 20(a), dG(A) > λ5(G) for every subset A ⊆ V (G) with 7 6 |A| 6 8,

which implies δ(G[S]) > 3 and G has no subgraphs isomorphic to K4,4. As |E(G[S])| =
1
2
(6|S| − 18) = 15 and G[S] is bipartite, there is a vertex u0 ∈ S with dG[S](u0) = 3 and
G[S\{u0}] is isomorphic to K3,4.
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Figure 3. The illustration in the proof of Lemma 29.

Claim 1. There are no two distinct vertices u and v in G with NG(u) = NG(v).

Suppose that u1 and u2 are two distinct vertices in G with NG(u1) = NG(u2). Let
x, y and z be the three vertices in S which have 4 neighbors in S\{u0}. Noting that G
has no subgraphs isomorphic to K4,4, we have, by the definition of the vertex-transitivity
of G, that for each vertex u ∈ {x, y, z} there is a vertex u′ ∈ {x, y, z}\{u} such that
NG(u) = NG(u′). It follows that NG(x) = NG(y) = NG(z). Then G is bipartite by
Lemma 19, a contradiction. So Claim 1 holds.

Claim 2. G has no subgraphs isomorphic to K3,5.

Suppose that u3, u4 and u5 are three distinct vertices in G with |NG(u3) ∩ NG(u4) ∩
NG(u5)| = 5. By Claim 1 and the vertex-transitivity of G, it follows that for each u ∈
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NG(u3)∩NG(u4) there are two distinct vertices u′, u′′ ∈ (NG(u3)∩NG(u4))\{u} such that
|NG(u) ∩NG(u′) ∩NG(u′′)| = 5. It implies that there is a vertex v ∈ V (G)\({u3, u4, u5})
such that |NG(v) ∩ NG(u3) ∩ NG(u4)| > 4. So G has a subgraph isomorphic to K4,4, a
contradiction. Claim 2 is proved.

Claim 3. G has no subgraphs isomorphic to G10 in Figure 3.

Suppose that G10 is a subgraph of G. Let ϕ1 be an automorphism of G such that
ϕ1(a2) = a1. Noting that dG(V (G10) ∪ A) > λ5(G) for each subset A ⊆ V (G) with
|A| 6 1 by Lemma 20(a), we have G10 = G[V (G10)] and |NG(u) ∩ V (G10)| 6 3 for each
u ∈ V (G10). We know ϕ1(a3) ∈ {a2, a3} if |ϕ1(NG10(a2)) ∩ NG10(a1)| = 4. Hence either
each edge in ∇(a1) or each edge in ∇(ϕ1(a3)) is contained in a 4-cycle of G. By the
vertex-transitivity of G, each edge in G is contained in a 4-cycle of G. It follows that
|∇(u) ∩∇(H)|+ |∇(v) ∩∇(H)| > 3 for each edge uv ∈ ∇(H).

We claim that |∇(u)∩∇(H)| 6 2 for each u ∈ V (G). Otherwise, noting that |∇(u)∩
∇(V (H))| 6 3 for each u ∈ V (G), we suppose that there is a vertex u6 in G with |∇(u6)∩
∇(H)| = 3. Let ϕ2 be an automorphism of G such that ϕ2(b2) = u6. By considering
the definition of ϕ2(V (G10)), we can obtain that there is a vertex u ∈ ϕ2(NG10(b2)) with
|∇(u) ∩∇(H)| > 4, a contradiction.

Thus there a vertex u7 ∈ V (G) with |∇(u7)∩∇(H)| = 2. Let ϕ3 be an automorphism of
G such that ϕ3(a2) = u7. Then there is a vertex u ∈ ϕ3(NG10(a2)) with |∇(u)∩∇(H)| > 3,
a contradiction. So Claim 3 holds.

By Claim 2, it follows that G[S] is isomorphic to G11 in Figure 3 and we label G[S]
as in G11. Then |NG(u) ∩ S| 6 2 for each u ∈ S by Claims 2 and 3. Let ϕ4 be an
automorphism of G such that ϕ4(z1) = z4. If ϕ4(NG[S](z1)) ⊆ NG[S](z4), then there is a
vertex u ∈ ϕ4(S)\S with |NG(u) ∩ S| > 3, a contradiction. Thus ϕ4(NG[S](z1))\S 6= ∅.

Assume ϕ4(NG[S](z1)) ∩ NG[S](z1) = {wi, wj}. As |NG(u) ∩ S| 6 2 for each u ∈
ϕ4(NG[S](z1)) \S, it follows that |ϕ4({z2, z3, z4})\S| = 2. Then NG(wi) = NG(wj), con-
tradicting Claim 1.

Assume ϕ4(NG[S](z1))∩NG[S](z1) = {wi′}. Then |ϕ4({z2, z3, z4})\S| = 2, which implies
that each edge in ∇(wi′) is contained in a 4-cycle of G. Then each edge in G is contained
in a 4-cycle of G by the vertex-transitivity of G. Thus there is a vertex u8 ∈ V (G) with
2 6 |∇(u8) ∩ ∇(H)| 6 3. Let ϕ5 be an automorphism of G such that ϕ5(z4) = u8. As
|NG(w1) ∩ NG(w2) ∩ NG(w3)| = 4 and |NG(ϕ4(w1)) ∩ NG(ϕ4(w2)) ∩ NG(ϕ4(w3))| = 4,
it follows that there is a vertex u ∈ ϕ5(NG[S∪ϕ4(S)](z4)) with |∇(u) ∩ ∇(H)| > 4, a
contradiction.

Thus ϕ4(NG[S](z1)) ∩ NG[S](z1) = ∅. By Claim 1, it follows that ϕ4({z2, z3, z4}) =
NG(w4)\S. Let ϕ6 be an automorphism of G such that ϕ6(z1) = z3. Similarly, we
have ϕ6(NG[S](z1)) ∩ NG[S](z1) = ∅ and ϕ6({z2, z3, z4}) = NG(w4)\S. It implies that
G[NG(w4) ∪ ϕ4(NG[S](z1)) ∪ ϕ6(NG[S](z1)) has a subgraph isomorphic to K3,5 or G10,
contradicting Claim 2 or Claim 3.

Case 2. 9 6 |S| 6 14.
By Lemma 20(b), δ(G[S]) > 4. If |S| = 9, then 18 = 1

2
(6|S| − λ8(G)) = |E(S)| >

1
2
(|S| + 1)δ(G[S]) > 20, a contradiction. Thus |S| > 10. If |S| 6 13, then let W and Z
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be the bipartition of G[S] with |Z| 6 |W | and we have |W | = |Z|+ 1
2
(1− (−1)|S|).

Subcase 2.1. 10 6 |S| 6 12.
We claim that dG[S](u) 6 5 for each u ∈ S. Otherwise, suppose that there is a vertex

v1 ∈ S with dG[S](v1) = 6. Choose a vertex u9 ∈ X with ∇(u9) ∩ ∇(H) 6= ∅. Let
ϕ7 be an automorphism of G such that ϕ7(v1) = u9. As δ(G[S]) > 4, it follows that
ϕ7(S\NG(v1)) ⊆ X, which implies that |∇(u)∩∇(V (H))| > 4 for each u ∈ ϕ7(NG(v1))∩
V (H), a contradiction.

Noting that 4 6 dG[S](u) 6 5 for each u ∈ S, and recalling |E(S)| = 3|S| − 9 and
|W | = |Z|+ 1

2
(1− (−1)|S|), we know that there is a vertex v2 ∈ Z and v3 ∈ NG[S](v2) such

that dG[S](v2) = dG[S](v3) + 1 = 5.
Now we claim that each edge in G is contained in a 4-cycle of G. Otherwise, suppose

that G has an edge contained in no 4-cycles. By the definition of the vertex-transitivity
of G, each vertex in G is incident with an edge contained in no 4-cycles of G. Let ϕ8

be an automorphism of G such that ϕ8(v3) = v2. Then ϕ8(S) 6= S. Notice that each
edge in G[S] is contained in a 4-cycle of G[S]. We have ϕ8(NG[S](v3)) ⊆ NG[S](v2) and
NG[S](ϕ8(v2)) ⊆ ϕ8(NG[S](v2)). It implies |ϕ8(S) ∩ S| > 8, contradicting Lemma 20(c).

Thus |∇(u) ∩ ∇(H)|+ |∇(v) ∩ ∇(H)| > 3 for each edge uv ∈ ∇(H). Then there is a
vertex u10 ∈ V (G) with |∇(u10) ∩∇(H)| > 2.

Suppose |S| = 10. Then |W | = |Z| = 5. Let ϕ9 be an automorphism of G such
that ϕ9(v2) = u10. Then there is a vertex u ∈ ϕ9(NG[S](v2)) with |∇(u) ∩ ∇(H)| > 4, a
contradiction.

Thus 11 6 |S| 6 12. Let Ri be the set of vertices u in S with dG[S](u) = i for i = 4, 5.
Then |R5| = |R5 ∩ Z| = 4 if |S| = 11, and |R5 ∩W | = |R5 ∩ Z| = 3 if |S| = 12.

Suppose that there is a vertex u11 ∈ V (G) with |∇(u11) ∩ ∇(H)| = 3. For a vertex
v ∈ S, let ψ be an automorphism of G such that ψ(v) = u11. Then ψ(S)∩ V (H) 6= ∅ and
ψ(S)\V (H) 6= ∅. As δ(G[S]) > 4 and |∇(u) ∩ ∇(H)| 6 3 for each u ∈ V (G), it follows
that |ψ(S) ∩ X| = 4 and G[ψ(S) ∩ V (H)] and G[ψ(S)\V (H)] is isomorphic to K1,4 or

K2,4. It implies |NG[S](v) ∩ R4| > b |S|6 c and that there are two vertices v′, v′′ ∈ R4 with
NG[S](v

′) = NG[S](v
′′). If |S| = 11, then NG[S](u)∩R4 = ∅ for each u ∈ W\NG[S](R4∩Z), a

contradiction. Thus |S| = 12. Then |NG[S](u)∩R4| > 2 for each u ∈ S. So δ(G[R4]) > 2.
Noting |R4| = |R5| = 6, we have 12 > 4|R4| − δ(G[R4])|R4| > 4|R4| − 2|E(R4)| =
|[R4, R5]| = 5|R5| − 2|E(R5)| > 30 − 18, which implies dG[R4](u) = 2 for each u ∈ R4.
Then G[R4] is a 6-cycle of G, which contradicts that R4 has two vertices v′ and v′′ with
NG[S](v

′) = NG[S](v
′′).

So |∇(u) ∩ ∇(H)| 6 2 for each u ∈ V (G). Then |∇(u10) ∩ ∇(H)| = 2. We can see
that there is no automorphism ϕ of G such that ϕ(v2) = u10, contradicting that G is
vertex-transitive.

Subcase 2.2. 13 6 |S| 6 14.

Claim 4. For two distinct λ8-atoms S1 and S2 of G with S1 ∩ S2 6= ∅, G[S1\S2] and
G[S1 ∩ S2] are isomorphic to K3,3 or K3,4.

By Lemma 20(c), we have |S1\S2| 6 7, |S1∩S2| 6 7, dG(S1\S2)+dG(S2\S1) 6 2λ8(G)
and dG(S1∩S2) + dG(S1∪S2) 6 2λ8(G). Then |S1\S2| > 6 and |S1∩S2| > 6. By Lemma
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20(a), each of dG(S1\S2), dG(S2\S1), dG(S1 ∩ S2) and dG(S1 ∪ S2) is not less than λ5(G).
Noting λ5(G) = λ8(G) = 18, we have dG(S1\S2) = dG(S1 ∩ S2) = 18. Hence G[S1\S2]
and G[S1 ∩ S2] are isomorphic to K3,3 or K3,4. So Claim 4 holds.

Since G[S] is not a regular graph, there is an automorphism ϕ10 of G such that
ϕ10(S) 6= S and ϕ10(S) ∩ S 6= ∅. Then G[S\ϕ10(S)] and G[S ∩ ϕ10(S)] are isomorphic to
K3,3 or K3,4 by Claim 4. Set B = S ∩ ϕ10(S).

Claim 5. S has no subset A different from S\B and B such that G[A] is isomorphic
to K3,4 and G[S\A] is isomorphic to K3,3 or K3,4.

Suppose, to the contrary, that S has a subset A satisfying the above condition. Assume
|S| = 13. As |W | = |Z| + 1 = 7, we know |A ∩ W | = 4. It follows that there is a
vertex v4 ∈ S with dG[S](v4) = 6. Choose a vertex v5 ∈ S such that dG[S](v5) > 5
and |{v4, v5} ∩W | = 1. Let ϕ11 be an automorphism of G such that ϕ11(v5) = v4. Then
ϕ11(S) 6= S and ϕ11(NG[S](v5)) ⊆ NG[S](v4), contradicting that G[S∩ϕ11(S)] is isomorphic
to K3,3 or K3,4 by Claim 4. Assume next |S| = 14. Then each of G[S\B], G[B], G[A] and
G[S\A] is isomorphic to K3,4. As |E(S)| = 33, we know dG[S](B) = 9. If |A ∩ B| = 1,
then dG[S](B\A) = 9 = 1

2
dG(B\A), contradicting Lemma 20(b). If |A ∩ B| = 6, then

dG[S](S\(A∪B)) = 9 = 1
2
dG(S\(A∪B)), contradicting Lemma 20(b). If 2 6 |A∩B| 6 5,

then 9 = dG[S](B) > dG[A](A ∩ B) + dG[S\A](B\A) > 5 + 5, a contradiction. Thus Claim
5 holds.

Claim 6. Each vertex in G is contained in exactly two distinct λ8-atoms of G.

By the vertex-transitivity of G, it only needs to show that S ′ = S or ϕ10(S) for a λ8-
atom S ′ of G with S ′ ∩ B 6= ∅. Suppose S ′ 6= S and S ′ 6= ϕ10(S). By Claims 4 and 5, we
have S ′∩S = B = S ′∩ϕ10(S). Then 18 = dG(B) > dG[S](B) +dG[ϕ10(S)](B) +dG[S′](B) >
3× 9, a contradiction. Thus Claim 6 holds.

Let D be one of S\B and B such that G[D] is isomorphic to K3,4. Choose two vertices
v6 and v7 in D such that dG[D](v6) = dG[D](v7) − 1 = 3. By Claim 6, there is only one
λ8-atom T of G which is different from S and contains v6. By Claims 4 and 5, we have
S ∩ T = D. By Claim 6, S and T are also the only λ8-atoms of G which contain v7. It
implies that there is no automorphism ϕ of G such that ϕ(v6) = v7, a contradiction.

4 Proof of Theorem 2

In this section we complete the proof of Theorem 2.

Proof of Theorem 2. If G is 4-factor-critical, then by Theorem 8 and Theorem 4 we have
k = λ(G) > 5. So we consider the sufficiency. Suppose k > 5. We will prove that G is
4-factor-critical.

Suppose, to the contrary, that G is not 4-factor-critical. We know by Theorem 1 that
G is bicritical. By Lemma 22, there is a subset X ⊆ V (G) with |X| > 4 such that
c0(G −X) = |X| − 2 and every component of G −X is factor-critical. Let H1, H2, . . . ,
Hp, Hp+1, . . . , Ht be the components of G −X, where t = |X| − 2 and H1, H2, . . . , Hp
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are the nontrivial components of G−X. We know p > 1 by Lemma 23. For each i ∈ [p],
since Hi is factor-critical, δ(Hi) > 2. For every subset J ⊆ [t], we have

∑
i∈J

dG(Hi) + λ(G)(t− |J |) 6
t∑
i=1

dG(Hi) 6 dG(X) = k(t+ 2)− 2|E(X)|,

which implies ∑
i∈J

dG(Hi) + 2|E(X)| 6 k(|J |+ 2). (1)

Hence |E(X)| 6 k. Set Y =
⋃t
j=p+1 V (Hj).

Case 1. g(G) = 3.
By Lemma 18, |E(X)| > t− p = |X| − 2− p.
Subcase 1.1. dG(A) > 2k − 2 for all A ⊆ V (G) with 2 6 |A| 6 |V (G)| − 2.
For each i ∈ [p], we have dG(Hi) > 2k − 2. If k is odd, then dG(Hi) is odd and hence

dG(Hi) > 2k − 1. So dG(Hi) > 2k − 1
2
(3 + (−1)k) for each i ∈ [p]. Now we have

(2k − 1

2
(3 + (−1)k))p+ 2(|X| − 2− p) 6

p∑
i=1

dG(Hi) + 2|E(X)| 6 k(p+ 2), (2)

which implies (k − 2− 1
2
(3 + (−1)k))p+ 2(|X| − 2− k) 6 0. Hence |X| 6 k + 1.

Suppose |X| < k. Then p = t = |X| − 2. By Theorem 9, |X| > κ(G) > 2
3
k. Hence

we know from (2) that 2k > (k − 1
2
(3 + (−1)k))p > (k − 1

2
(3 + (−1)k))(2

3
k − 2). That

is, k2 − 7k + 3 < 0 if k is odd and k2 − 8k + 6 < 0 otherwise. It follows that k 6 6.
If k = 6, then |X| > κ(G) = k by Lemma 11, a contradiction. Thus k = 5. Then
κ(G) = |X| = 4. By Lemma 10, τ(G) = 2. It implies that there is an edge x0y0 ∈ E(G)
such that |NG(x0) ∩NG(y0)| = 4.

Noting k = 5, we know from (2) that |E(X)| 6 1. Choose a vertex u ∈ X with
dG[X](u) = 0. Since G is vertex-transitive, there is an automorphism ϕ1 of G such that
ϕ1(x0) = u. Assume, without loss of generality, that ϕ1(y0) ∈ V (H1). Noting |NG(x0) ∩
NG(y0)| = 4, we have NG(u) ⊆ V (H1). Then dG(V (H1) ∪ {u}) = dG(X)− dG(H2)− 5 6
20− 9− 5 < 2k − 2, a contradiction.

Thus k 6 |X| 6 k + 1. Noting (k − 2− 1
2
(3 + (−1)k))p+ 2(|X| − 2− k) 6 0, we have

p 6 2 and k 6 8. Then |Y | = |X| − 2 − p > k − 4 > 1. For any given vertex v, let q be
the number of triangles containing v in G. By the vertex-transitivity of G, each vertex in
G is contained in q triangles of G, which implies that each edge in G is contained in at
most q triangles of G.

Claim 1. E(X) is a matching of G.

Assume p = 2 or |X| = k+1. Then we know from (2) that |E(X)| = |X|−2−p = |Y |.
Since there are q|Y | triangles of G containing one vertex in Y , each edge in E(X) is
contained in q triangles of G. It implies that E(X) is a matching of G. Next we assume
p = 1 and |X| = k. If two edges in E(X) are adjacent, then |E(X)| = q > 2|Y | = 2(k−3)
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and hence dG(H1) + 2|E(X)| > 2k − 2 + 4(k − 3) > 3k, which contradicts the inequality
(1). So Claim 1 holds.

By Claim 1, it follows that each edge incident with a vertex in Y is contained in at
most one triangle of G. Then, by the vertex-transitivity of G, each edge in E(X) is
contained in at most one triangle of G.

Suppose |X| = k + 1. From (2), we know k 6 6, p = 1 and |E(X)| = |Y | = k − 2.
Since G has q|Y | triangles containing one vertex in Y , each edge in E(X) is contained
in q triangles of G. Noting that each edge in E(X) is contained in at most one triangle
of G, we have q = 1. Then |E(NG(u))| = 1 for each u ∈ Y , which implies |X| >
2|E(X)|+ (k − |E(X)| − 1) = 2k − 3 > k + 1, a contradiction.

Thus |X| = k. Then for each e ∈ E(X) and each u ∈ Y , G has a triangle containing
e and u. As each edge in E(X) is contained in at most one triangle of G, it follows that
|Y | = 1, which implies p = 2 and k = 5. From (2), we know dG(H1) = dG(H2) = 9
and |E(X)| = 1. Assume |V (H1)| 6 |V (H2)|. Let u1 be the vertex in Y . For a vertex
u2 ∈ V (H1) with NG(u2) ∩ X 6= ∅, we have |NG(u2) ∩ X| 6 3 as δ(H1) > 2. As H2

is a component of G − NG(u1) with maximum cardinality, we have, by the definition of
the vertex-transitivity of G, that H2 also is a component of G − NG(u2) with maximum
cardinality. Then NG(X\NG(u2)) ∩ V (H2) = ∅. It implies dG(V (H1) ∪ (X\NG(u2))) <
8 = 2k − 2, a contradiction. Hence Subcase 1.1 cannot occur.

Subcase 1.2. There is a subset A ⊆ V (G) with 2 6 |A| 6 |V (G)| − 2 such that
dG(A) < 2k − 2.

We choose a subset S of V (G) such that 1 < |S| 6 1
2
|V (G)|, d(S) is as small as possible,

and, subject to these conditions, |S| is as small as possible. Then dG(S) 6 dG(A) 6 2k−3.
By Corollary 14, dG(S) = |S| > k and G[S] is (k− 1)-regular. As 2k− 3 < 2

9
(k+ 1)2, S is

an imprimitive block of G by Theorem 13. Thus G[S] is vertex-transitive by Lemma 12.
We also know that the orbits S = S1, S2, . . . , Sm1 of S under the automorphism group
of G form a partition of V (G) and each G[Si] is (k − 1)-regular.

Set Ii = {j ∈ {1, 2, . . . ,m1} : Sj ∩V (Hi) 6= ∅} for each i ∈ [t] and set M = {
⋃
j∈Ii Sj :

i ∈ [t]}. If any two sets in M are disjoint, then 2|X| > 2|
⋃
U∈M ∇(U)| >

∑
U∈M dG(U) >

|M |dG(S).
Suppose |S| = k. Then each G[Si] is isomorphic to Kk and hence G[Si] has common

vertices with at most one component of G − X. Hence |M | = c0(G − X) = |X| − 2
and any two sets in M are disjoint. Then 2|X| > |M |dG(S) = (|X| − 2)k > 2|X|, a
contradiction.

Suppose |S| = k + 1. As δ(Hj) > 2 for each j ∈ [p], we have that for each Si,
|Si\X| = |Si ∩ Y | = 2 or Si\X ⊆ V (Hi′) for some i′ ∈ [t]. Hence |M | > p + 1

2
(t −

p) = 1
2
(t + p) > 1

2
(t + 1) = 1

2
(|X| − 1) and any two sets in M are disjoint. Then

2|X| > |M |dG(S) > 1
2
(|X| − 1)(k + 1) > 2|X|, a contradiction.

Thus |S| > k + 2. Noting that (k − 1)|S| is even and k + 2 6 |S| 6 2k − 3, we have
|S| = k + 2 if 5 6 k 6 6. For each i ∈ [p], if V (Hi) ∩ Sj 6= ∅, then |V (Hi) ∩ Sj| > 2 as
δ(Hi) > 2.

Claim 2. For each Si, there is an element ai ∈ [p] such that V (Hai) ∩ Si 6= ∅.
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Suppose Si ⊆ X ∪ Y . By Lemma 16, |Si ∩ Y | 6 1
3
|Si|. If k > 6, then |E(X)| >

|E(Si ∩ X)| = 1
2
(k − 1)(|Si ∩ X| − |Si ∩ Y |) > 1

6
(k − 1)|Si| > 1

6
(k − 1)(k + 2) > k,

a contradiction. Thus k = 5. Then |S| = k + 2 and |Si ∩ Y | 6 b13 |Si|c = 2. Hence
|E(X)| > |E(Si ∩ X)| > 1

2
(k − 1)(|Si| − 4) = 1

2
(k − 1)(k − 2) > k, a contradiction. So

Claim 2 holds.

Claim 3. X\Si 6= ∅ for each Si.

Suppose X ⊆ Si. Choose a component Hj of G − X such that Hj 6= Hai . Then
|V (Hj) ∩ Si| = |NG(V (Hj) ∩ Si)\Si| 6 |V (Hj)\Si|. Hence V (Hj)\Si 6= ∅. Then there is
some Si′ ⊆ V (Hj)\Si. Now we know dG(V (Hj)\Si) > dG(S) = |Si|. On the other hand,
we have dG(V (Hj)\Si) 6 |Si\V (Hai)| < |Si|, a contradiction. So Claim 3 holds.

Claim 4. For each i ∈ [p], we have dG(Hi) > 2k − 2 if there is some Sj such that
Sj ∩ V (Hi) 6= ∅ and Sj\V (Hi) 6= ∅.

Suppose Sj ∩ V (Hi) 6= ∅ and Sj\V (Hi) 6= ∅. By Claim 3, X\Sj 6= ∅. Suppose

|V (Hi) ∪ Sj| = 1. Then V (Hi) ∪ Sj = X\Sj, which implies |V (Hi) ∪X| = 1. Hence t = 2

and p = 1, implying t = |X| − 2 > k − 2 > 2, a contradiction. Thus |V (Hi) ∪ Sj| > 2.

Then |Sj| = dG(S) 6 dG(V (Hi)∪Sj) 6 |[V (Hi), V (Hi) ∪ Sj]|+ |Sj\V (Hi)|, which implies

|[V (Hi), V (Hi) ∪ Sj]| > |Sj∩V (Hi)|. Hence dG(Hi) > dG[Sj ](Sj∩V (Hi))+|[V (Hi), V (Hi)∩
Sj]| > dG[Sj ](Sj∩V (Hi))+|Sj∩V (Hi)|. If |Sj\V (Hi)| > 2, then dG[Sj ](Sj∩V (Hi)) > 2k−4
by Corollary 15, which implies dG(Hi) > 2k−4+ |Sj∩V (Hi)| > 2k−2. If |Sj\V (Hi)| = 1,
then dG(Hi) > k − 1 + |Sj ∩ V (Hi)| > 2k. Claim 4 holds.

Claim 5. Si ⊆ V (Hai) ∪X for each Si.

Suppose, to the contrary, that G−X has a component Hb with V (Hb)∩(Si\V (Hai)) 6=
∅. Let θ be an integer such that θ = 1 if |V (Hb) = 1 and θ = 0 otherwise. As X\Si 6= ∅ by
Claim 2, there is some Sj with Sj∩(X\Si) 6= ∅. Set J = {ai, b}∪{aj}. For each i′ ∈ [p], we
have dG(Hi′) > dG(S) > k+2 and furthermore dG(Hi′) > 2k−2 by Claim 4 if i′ ∈ [p]∩J . If
|J | = 2, then, noting that dG[Si](V (Haj)∩Si) > 2k−4 by Corollary 15 and λ(G[Sj]) = k−1
by Theorem 8, we have dG(Haj) > dG[Si](V (Haj)∩Si)+dG[Sj ](V (Haj)∩Sj) > 2k−4+k−1 =
3k − 5.

Assume 5 6 k 6 6. We know that |S| = k + 2 and G[Si ∩ V (Hi′)] is isomorphic
to K2 for each i′ ∈ {ai, b} ∩ [p]. Hence Si ⊆ V (Haj) ∪ V (Hb) ∪ X. If θ = 1, then
|E(G[Si ∩X])| = 1

2
((k − 1)|Si ∩X| − (k − 1)− (2k − 4)) = 1

2
(k2 − 5k + 6) > 3. If θ = 0,

then k = 6 as G[Si] is vertex-transitive, which implies |E(Si ∩X)| = 2. Now we have∑
i′∈J

dG(Hi′) + 2|E(X)|

>(3k − 5)(3− |J |) + 2(2k − 2)(|J | − 2) + θk + (1− θ)(2k − 2) + 2|E(Si ∩X)|
=k(|J |+ 2) + |J |+ k − 9− θ(k − 2) + 2|E(Si ∩X)| > k(|J |+ 2),

which contradicts the inequality (1).
Assume k > 7. If θ = 1, then t = |X| − 2 > k − 2 > 5. If θ = 0, then t = |X| − 2 >
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d2k
3
e − 2 > 3 by Theorem 9. Now we have∑

i′∈[t]

dG(Hi′) + 2|E(X)|

>(3k − 5)(3− |J |) + 2(2k − 2)(|J | − 2) + θ(p− |J |+ 1)(k + 2)+

(1− θ)(2k − 2 + (p− |J |)(k + 2)) + (t− p)k + 2(t− p)
=k(t+ 2) + 2t+ θ(k + 2) + (1− θ)(2k − 2)− |J | − k − 7 > k(t+ 2),

which contradicts the inequality (1). So Claim 5 holds.

By Claims 2 and 5, it follows that |M | = p = t and any two sets in M are disjoint.
Then 2|X| > |M |dG(S) > (|X| − 2)(k + 2) > 2|X|, a contradiction.

Case 2. g(G) > 4.
For each j ∈ [p], we know from (1) that dG(Hj) 6 3k. Let Fj be a component of

G[V (Hj)] which contains a vertex in V (G)\(V (Hj) ∪X). Then ∇(Fj) is a 5-restricted
edge-cut of G. Hence λ5(G) 6 dG(Fj) 6 dG(Hj) 6 3k. As it follows from Corollary 15
that λ4(G) > 2k − 2, we have 2k − 2 6 λ4(G) 6 λ5(G) 6 3k.

Claim 6. If λ5(G) > 4k − 8 and k 6 6, then p = 1, |V (H1)| > 7, λ7(G) 6 3k and
furthermore, λ8(G) 6 3k if λ5(G) > 4k − 8.

Suppose λ5(G) > 4k − 8 and k 6 6. Then p = 1 by Lemma 23. We claim that
G[V (H1)] is connected. Otherwise, dG(H1) > λ(G) + dG(F1) > k + λ5(G) > 3k, a
contradiction. Suppose |V (H1)| = 5. As g(G) > 4 and H1 is factor-critical, H1 is a
5-cycle of G. It follows that k = 5, E(X) = ∅ and |X| > 8. Then g0(G) > 7 by Lemma
17, a contradiction. Thus |V (H1)| > 7. Then ∇(H1) is a 7-restricted edge-cut of G and
λ7(G) 6 dG(V (H1)) 6 3k. If λ5(G) > 4k − 8, then |X| > 7 and |V (H1)| > 9 by Lemma
23, which implies λ8(G) 6 dG(H1) 6 3k. So Claim 6 holds.

By Claim 6, we can discuss Case 2 in the following two subcases.
Subcase 2.1. k = 5, λ5(G) = 12 and λ7(G) > 13.
We have λ4(G) = 12. As λ7(G) exists, |V (G)| > 14. Then, by Lemma 20(a), dG(A) >

λ7(G) for each subset A ⊆ V (G) with |A| = 7, which implies that G has no subgraphs
isomorphic to K3,4. By the definition of the vertex-transitivity of G, we can obtain that G
has no subgraphs isomorphic to K2,5. By Claim 6, p = 1 and |V (H1)| > 7. Hence |X| > 6
and |V (G)| > 16. By Lemma 20(a), dG(V (H1)∪A) > λ7(G) for each subset A ⊆ X with
|A| 6 1, which implies dG(H1) > 13 and |NG(u) ∩ V (H1)| 6 3 for each u ∈ X. Noting
δ(H1) > 2, we have |∇(u) ∩∇(H1)| 6 3 for each u ∈ V (G).

Claim 7. There is no subset A ⊆ V (G) with |A| 6 3 such that A ∩ V (H1) 6= ∅,
|∇(A) ∩∇(H1)| = 3|A| and dG((V (H1) ∪ A)\(V (H1) ∩ A)) 6 12.

Suppose, to the contrary, that such subset A of V (G) exists. Set B = (V (H1) ∪
A)\(V (H1) ∩ A). Then |B| > 4 and |B| > 7. By Lemma 20(a), we have dG(B) > λ4(G)
and furthermore, dG(B) > λ7(G) if |B| > 7. As dG(B) 6 12, we know |B| 6 6 and
dG(B) = 12. It implies that E(V (H1) ∩ A) = ∅ and G[B] is isomorphic to k2,2 or K3,3.
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Hence G[V (H1) ∪ A] is bipartite. Then H1 is bipartite, contradicting the fact that H1 is
factor-critical. So Claim 7 holds.

As λ5(G) = 12 < λ7(G) and k = 5, each λ5-atom of G induces a subgraph which
is isomorphic to K3,3. Let T1, T2, . . . , Tm2 be all the subsets of V (G), which induce
subgraphs isomorphic to K3,3. Let Ri be the set of vertices in X with i neighbors in
V (H1) for 1 6 i 6 3 and let Q be the set of vertices in V (H1) with 3 neighbors in X.

Subcase 2.1.1. There are two distinct Ti and Tj with Ti ∩ Tj 6= ∅.
Noting that G has no subgraphs isomorphic to K3,4 or K2,5, we have |Ti ∩ Tj| = 2 or

4. If |Ti ∩ Tj| = 4, then dG(Ti ∩ Tj) 6 12 < λ7(G), which contradicts Lemma 20(a). Thus
|Ti ∩ Tj| = 2. Assume Ti ∩ Tj = {v1, v2}.

Claim 8. For each u ∈ X with dG[X](u) = 0 and NG(u) ∩ V (H1) 6= ∅, we have
NG(u) ∩ V (H1) ⊆ Q if u ∈ R1 ∪R2, and |NG(u) ∩ V (H1) ∩Q| > 1 if u ∈ R3.

Since G is vertex-transitive, there is an automorphism ϕ2 of G such that ϕ2(v1) = u.
If u ∈ R1∪R2, then ϕ2(NG(v2)) ⊆ X, which implies NG(u)∩V (H1) ⊆ Q. If u ∈ R3, then
|ϕ2(NG(v2)) ∩X| > 3, which implies |NG(u) ∩ V (H1) ∩Q| > 1. So Claim 8 holds.

Assume E(X) 6= ∅. Then |E(X)| = 1 and
∑3

i=1 i|Ri| = dG(H1) = 13, which implies∑3
i=1 |Ri| > 5. By Claim 8, Q 6= ∅. We have dG(V (H1)\{u}) 6 12 for each u ∈ Q,

contradicting Claim 7.
Thus E(X) = ∅. As dG(V (H1) ∪ A) > λ4(G) for each subset A ⊆ X with |A| = 4 by

Lemma 20(a), we have |R3| 6 3. By Claim 8, |∇(Q) ∩ ∇(H1)| > |R3| + 2|R2| + |R1| =
15 − 2|R3| > 9, which implies |Q| > 3. Choose a subset Q′ ⊆ Q with |Q′| = 3. Then
dG(V (H1)\Q′) 6 12, contradicting Claim 7. Hence Subcase 2.1.1 cannot occur.

Subcase 2.1.2. Any two distinct Ti and Tj are disjoint.
By the vertex-transitivity of G, each vertex in G is contained in a λ5-atom of G. Hence

T1, T2, . . . , Tm2 form a partition of V (G).
Assume E(X) 6= ∅. As c0(G−X) = |X| − 2 and |E(X)| = 1, it follows that there is

some Ti such that Ti∩X 6= ∅, Ti∩V (H1) 6= ∅ and E(Ti)∩E(X) = ∅. Then there is a vertex
u1 ∈ Ti ∩ (R3 ∪ Q). By Claim 7, it follows that u1 ∈ X. We have dG(V (H1) ∪ {u1}) =
12 < λ7(G), contradicting Lemma 20(a).

Thus E(X) = ∅. Set B1 = {Tj : |Tj ∩X| = 3, j ∈ [m2]} and B2 = {Tj : |Tj ∩X| <
3, j ∈ [m2]}. Let D = (

⋃
A∈B1

A ∩ V (H1)) ∪ (
⋃
A∈B2

A ∩ X). Noting c0(G − X) =
|X| − 2 and p = 1, we have |D| = 3. By Claim 7, we have D ⊆ X. If |X| > 7, then
dG(H1 +D) = 12 < λ7(G), which contradicts Lemma 20(a). Thus |X| = 6. As G has no
subgraphs isomorphic to K2,5, we know that |R2| = |R3| = 3 and G[Y ∪R2] is isomorphic
to K3,3. Choose a vertex u3 ∈ R3 and a vertex u4 ∈ Y . Let ϕ3 be an automorphism
of G such that ϕ3(u4) = u3. Noting ϕ3(Y ∪ R2) ∩ (Y ∪ R2) = ∅, we have ϕ3(Y ) = R3

and ϕ3(R2) ⊆ V (H1). It implies D ⊆ V (H1) by the choice of D, a contradiction. Hence
Subcase 2.1 cannot occur.

Subcase 2.2. k 6= 5, λ5(G) 6= 12 or λ5(G) = λ7(G) = 12.
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Let S ′ be a λs-atom of G, where

s =



4, if k 6 6 and λ5(G) < 4k − 8;

7, if k = 5 and λ5(G) = λ7(G) = 12;

6, if k = 5 and λ5(G) = λ6(G) = 13;

7, if k = 5, λ5(G) = 13 and λ6(G) = λ7(G) = 14;

8, if k = 5, λ5(G) = 13, λ6(G) > 14 and λ8(G) = 15;

5, if k = 5 and λ5(G) = 14;

6, if k = 5 and λ5(G) = λ6(G) = 15;

5, if k = 6 and λ5(G) = 4k − 8;

8, if k = 6 and λ5(G) = 18;

5, if k > 7.

Claim 9. S ′ is an imprimitive block of G such that |S ′| > 1
2
λs(G) if k 6 6 and

|S ′| > 1
3
λs(G) otherwise.

If k = 5 and λ5(G) = λ7(G) = 12, then, by Lemma 24, Claim 9 holds. So we assume
k > 5 or λ5(G) 6= 12. By Lemma 6, 1

2
|S ′|2 > 2|E(S ′)| = k|S| − λs(G). If 5 6 k 6 6

and λ5(G) < 4k − 8, then 1
2
|S ′|2 > k|S ′| − λs(G) > k|S ′| − 4k + 8, which implies |S ′| >

2k−4 > max{2(s−1), 1
2
λs(G)}. If 5 6 k 6 6 and λ5(G) > 4k−8, then |S ′| > 2(s−1) and

2|S ′| > λs(G) by Lemmas 21 and 25-29. If k > 7, then 1
2
|S ′|2 > k|S ′|−λs(G) > k|S ′|−3k

and hence |S ′| > k + 2 > max{2(s− 1), 1
3
λs(G)}. Suppose S ′ is not an imprimitive block

of G. Then there is an automorphism ϕ of G such that ϕ(S ′) 6= S ′ and ϕ(S ′) ∩ S ′ 6= ∅.
By Lemma 20(c), |S ′| = |S ′ ∩ ϕ(S ′)|+ |S ′\ϕ(S ′)| 6 2(s− 1), a contradiction. So Claim 9
holds.

By Claim 9 and Lemma 12, G[S ′] is vertex-transitive and hence it is (k − 1)-regular
if k 6 6 and is (k − 1)-regular or (k − 2)-regular otherwise. From Claim 9, we also know
that the orbits S ′ = S ′1, S

′
2, . . . , S

′
m3

of S ′ under the automorphism group of G form a
partition of V (G).

Claim 10. G[S ′] is (k − 1)-regular.

Suppose that G[S ′] is (k − 2)-regular. Then k > 7, s = 5 and 2|S ′| = λs(G) 6 3k,
which implies |S ′| 6 3

2
k. By Lemma 6, 1

4
|S ′|2 > |E(S ′)| = 1

2
(k − 2)|S ′|, which implies

|S ′| > 2(k−2). Now 2(k−2) 6 |S ′| 6 3
2
k, which implies k 6 8 and |S ′| = 2(k−2). Hence

G[S ′] is isomorphic to Kk−2,k−2. For each i ∈ [p], noting 3k > dG(Hi) > λs(G) = 4(k− 2)
and that dG(Hi) has the same parity with k, we have dG(Hi) = 3k. Hence p = 1,
E(X) = ∅, |V (H1)| > 5 and |X| > k. As c0(G − X) = |X| − 2, there is some S ′i with
S ′i∩X 6= ∅ and S ′i∩V (H1) 6= ∅. Then there is a vertex u ∈ S ′i with |∇(u)∩∇(H1)| > k−2.
Then dG(V (H1) ∪ {u}) 6 dG(H1) − (k − 4) = 2k + 4 < 4(k − 2) = λs(G) if u ∈ X and
dG(V (H1)\{u}) < λs(G) otherwise, contradicting Lemma 20(a). So Claim 10 holds.

As δ(Hi) > 2 for each i ∈ [p], it follows from Claim 10 that δ(G[V (Hj) ∩ S ′i]) > 1 if
V (Hj) ∩ S ′i 6= ∅.
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Claim 11. For each S ′i, S
′
i\(X ∪ Y ) 6= ∅ or |S ′i ∩X| = |S ′i ∩ Y |.

Suppose |S ′i∩X| > |S ′i∩Y | for some S ′i ⊆ X ∪Y . If G[S ′i] is bipartite, then |S ′i ∩Y | 6
|S ′i ∩X| − 2. If G[S ′i] is non-bipartite, then |S ′i ∩ Y | 6 α(G[S ′i]) 6

1
2
|S ′i| − k−1

4
by Lemma

16, which implies |S ′i ∩ Y | 6 |S ′i ∩ X| − k−1
2

6 |Si ∩ X| − 2. Thus |E(S ′i ∩ X])| =
1
2
(k − 1)(|S ′i ∩ X| − |S ′i ∩ Y |) > k − 1. Noting dG(H1) > λ5(G) > 2k − 2, we have
dG(H1) + 2|E(X)| > 2k − 2 + 2(k − 1) > 3k, a contradiction. So Claim 11 holds.

Subcase 2.2.1. |S ′| 6 2k − 1.

Claim 12. If S ′i ∩ V (Hj) 6= ∅ for some j ∈ [p], then S ′i ⊆ V (Hj) ∪X.

Suppose S ′i∩V (Hj) 6= ∅ for some j ∈ [p] and S ′i∩V (Hj′) 6= ∅ for some j′ ∈ [t]\{j}. As
δ(G[S ′i ∩ V (Hj)]) > 1, there is an edge x1y1 ∈ E(S ′i ∩ V (Hj)). Then |S ′i ∩ (V (Hj)∪X)| >
|NG[S′

i]
(x1) ∪ NG[S′

i]
(y1)| = 2k − 2. It implies |S ′i ∩ V (Hj′)| = 1 and |S ′i| = 2k − 1. Then

|V (Hj′)| = 1 and |X| > |NG(V (Hj′))| = k. Hence |V (Hj) ∪ S ′i| > |NG(V (Hj′))\S ′i| +
(c0(G−X)− 2) > 1 + k − 4 > 2. By Corollary 15, we have

2k − 2 6 dG(V (Hj) ∪ S ′i)
6 dG(Hj)− dG[S′

i]
(S ′i ∩ V (Hj)) + |S ′i\V (Hj)|

= dG(Hj)− ((k − 1)|S ′i ∩X| − 2|E(S ′i ∩X)| − (k − 1)) + |S ′i ∩X|+ 1

= dG(Hj) + 2|E(S ′i ∩X)| − (k − 2)|S ′i ∩X|+ k

6 3k − (k − 2)(k − 1) + k = −k2 + 7k − 2,

which implies k = 5. It is easy to verify that there is no triangle-free non-bipartite 4-
regular graph of order 9, which implies |S ′| 6= 9 = 2k − 1, a contradiction. So Claim 12
holds.

Set I ′i = {j ∈ [m3] : S ′j ∩ V (Hi) 6= ∅} for each i ∈ [t] and M ′ = {
⋃
j∈I′i

S ′j : i ∈ [t]}.
Then any two sets in M ′ are disjoint by Claim 12. By Lemma 20(a), dG(U) > λs(G) for
each U ∈M ′. Then, by Claim 11, we have

2(p+ 2 + (k − 1)(|M ′| − p))

=2|X| > 2|
⋃

U∈M ′

∇(U)| =
∑
U∈M ′

dG(U) > |M ′|λs(G) > |M ′|(2k − 2),

which implies p 6 2
k−2 < 1, a contradiction. Hence Subcase 2.2.1 cannot occur.

Subcase 2.2.2 |S ′| > 2k.
We have λs(G) = |S ′| > 2k. If s = 4, then λ5(G) > λs(G) > 2k. If s > 5, then

λ5(G) > 2k by the choice of s. Then 2kp 6 pλ5(G) 6
∑p

i=1 dG(Hi) + 2|E(X)| 6 k(2 + p),
which implies p 6 2.

Let
N = {S ′i : S ′i ∩X 6= ∅ and S ′i\(X ∪ Y ) 6= ∅, i ∈ [m3]}.

By Claim 11,
∑

A∈N (|A∩X| − |A∩Y |) =
∑m3

i=1(|S ′i ∩X| − |S ′i ∩Y |) = |X| − |Y | = p+ 2.
Noting |A ∩ X| > |A ∩ Y | for each A ∈ N , we have 1 6 |N | 6 p + 2. Choose a set
S ′j1 ∈ N . Without loss of generality, we assume S ′j1 ∩ V (H1) 6= ∅.
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Suppose p = 2. Then E(X) = ∅ and 2k = λ5(G) = dG(H1) = dG(H2). Hence λ4(G) =
λ5(G) = 2k = |S ′|. For each u ∈ V (G) and each i ∈ [p], we have dG(V (Hi)∪{u}) > λ4(G)
and dG(V (Hi)\{u}) > λ4(G) by Lemma 20(a), which implies |∇(u) ∩ ∇(Hi)| 6 k − 3.
Hence |S ′j1\V (H1)| > 2 and δ(G[S ′j1 ∩ V (H1)]) > 2, which implies |S ′j1 ∩ V (H1)| > 4.
Choose an edge x2y2 ∈ E(S ′j1 ∩ V (H1)). Then |S ′j1\(V (H1) ∪ X)| 6 |S ′j1\(NG[S′

j1
](x2) ∪

NG[S′
j1
](y2))| = 2. It follows that S ′j1∩V (H2) = ∅. Noting that dG[S′

j1
](S
′
j1
∩V (H1)) > 2k−4

by Corollary 15, we have |S ′j1 ∩X| > |S
′
j1
∩ Y |+ 2. Now

dG(V (H1) ∪ S ′j1) 6 dG(H1)− dG[S′
j1
](V (H1) ∩ S ′j1) + |S ′j1\V (H1)|

= 2k − (k − 1)(|S ′j1 ∩X| − |S
′
j1
∩ Y |) + |S ′j1\V (H1)|

6 2k − 2(k − 1) + 2k − 4 < 2k = λ4(G),

contradicting Lemma 20(a).
Thus p = 1. Suppose |N | = 1. Then |S ′j1 ∩ X| = |S ′j1 ∩ Y | + 3 and there is some

S ′j ⊆ V (H1) ∪ S ′j1 . We know by Claim 11 that G[S ′] is bipartite. Hence there is some
S ′j′ ⊆ V (H1)\S ′j1 . By Lemma 20(a), we have

|S ′| = λs(G) 6 dG(V (H1) ∪ S ′j1) 6 dG(H1)− dG[S′
j1
](S
′
j1
\V (H1)) + |S ′j1\V (H1)|

= dG(H1) + 2|E(S ′j1 ∩X)| − 3(k − 1) + |S ′j1\V (H1)|
6 3k − 3(k − 1) + |S ′j1\V (H1)|.

Similarly, we can obtain |S ′| 6 dG(H1 − S ′j1) 6 3 + |S ′j1 ∩ V (H1)|. Then 2|S ′| 6 6 + |S ′j1|,
which implies |S ′| 6 6 < 2k, a contradiction.

Thus |N | > 2. For each S ′i ∈ N , noting |S ′i ∩ V (H1)| > 2, if |S ′i\V (H1)| > 2, then,
by Corollary 15, we have dG[S′

i]
(S ′i ∩ V (H1)) > 2k − 4, which implies that |S ′i ∩ X| = 1

if |S ′i ∩ X| = |S ′i ∩ Y | + 1. If |N | = 3, then |S ′i ∩ X| = 1 for each S ′i ∈ N and hence
dG(V (H1) ∪ (

⋃
S′
i∈N S ′i)) 6 dG(H1) − 3(k − 2) 6 6 < λs(G), which contradicts Lemma

20(a). Thus |N | = 2. Assume N = {S ′j1 , S
′
j2
} and |S ′j1 ∩X| = 1. We know that there is

some S ′j ⊆ V (G)\(V (H1) ∪ S ′j1 ∪ S
′
j2

). By Lemma 20(a),

|S| = λs(G) 6 dG(V (H1) ∪ S ′j1 ∪ S
′
j2

)

6 dG(H1)− dG[S′
j2
](S
′
j2
∩ V (H1)) + |S ′j2\V (H1)| − (k − 2)

= dG(H1) + 2|E(S ′j2 ∩X)| − 2(k − 1) + |S ′j2\V (H1)| − (k − 2)

6 3k − 3k + 4 + |S ′j2\V (H1)|.

Similarly, we can obtain |S ′| 6 dG((V (H1) ∪ S ′j1)\S
′
j2

) 6 4 + |S ′j2 ∩ V (H1)|. Then 2|S ′| 6
8 + |S ′j2 |, which implies |S ′| 6 8 < 2k, a contradiction.
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