4-Factor-criticality of vertex-transitive graphs

Wuyang Sun*
Center for Discrete Mathematics Fuzhou University
Fuzhou, Fujian 350108, China
swywuyang@163.com

Heping Zhang
School of Mathematics and Statistics
Lanzhou University
Lanzhou, Gansu 730000, China
zhanghp@lzu.edu.cn

Submitted: Nov 3, 2014; Accepted: Jun 18, 2016; Published: Jul 8, 2016
Mathematics Subject Classifications: 05C70

Abstract

A graph of order n is p-factor-critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1 -factor-critical graphs and 2 -factor-critical graphs are well-known factor-critical graphs and bicritical graphs, respectively. It is known that if a connected vertextransitive graph has odd order, then it is factor-critical, otherwise it is elementary bipartite or bicritical. In this paper, we show that a connected vertex-transitive non-bipartite graph of even order at least 6 is 4 -factor-critical if and only if its degree is at least 5 . This result implies that each connected non-bipartite Cayley graph of even order and degree at least 5 is 2 -extendable.

Keywords: Vertex-transitive graph; 4-Factor-criticality; Matching; Connectivity

1 Introduction

Only finite and simple graphs are considered in this paper. A matching of a graph is a set of its mutually nonadjacent edges. A perfect matching of a graph is a matching covering all its vertices. A graph is called factor-critical if the removal of any one of its vertices results in a graph with a perfect matching. A graph is called bicritical if the removal of any pair of its distinct vertices results in a graph with a perfect matching. The concepts of factor-critical and bicritical graphs were introduced by Gallai [9] and by Lovász [12], respectively. In matching theory, factor-critical graphs and bicritical graphs are two basic bricks in matching structures of graphs [17]. Later on, the two concepts were generalized to the concept of p-factor-critical graphs by Favaron [7] and Yu [21], independently. A graph of order n is said to be p-factor-critical, where p is an integer of the same parity as n, if the removal of any p vertices results in a graph with a perfect matching.

[^0]q-extendable graphs was proposed by Plummer [17] in 1980. A connected graph of even order n is q-extendable, where q is an integer with $0 \leqslant q<n / 2$, if it has a perfect matching and every matching of size q is contained in one of its perfect matchings. Favaron [8] showed that for q even, every connected non-bipartite q-extendable graph is q-factorcritical. In 1993 Yu [21] introduced an analogous concept for graphs of odd order. A connected graph of odd order is $q \frac{1}{2}$-extendable, if the removal of any one of its vertices results in a q-extendable graph.

A graph G is said to be vertex-transitive if for any two vertices x and y in G there is an automorphism φ of G such that $y=\varphi(x)$. A graph with a perfect matching is elementary if the union of its all perfect matchings forms a connected subgraphs. In [13], there is a following classic result about the factor-criticality and bicriticality of vertex-transitive graphs.

Theorem 1 ([13]). Let G be a connected vertex-transitive graph of order n. Then
(a) G is factor-critical if n is odd;
(b) G is either elementary bipartite or bicritical if n is even.

A question arises naturally: Does a vertex-transitive non-bipartite graph has larger p-factor-criticality?

In fact, the q-extendability and $q \frac{1}{2}$-extendability of Cayley graphs, an important class of vertex-transitive graphs, have been investigated in literature. It was proved in papers [3, 4, 16] that a connected Cayley graph of even order on an abelian group, a dihedral group or a generalized dihedral group is 2-extendable except for several circulant graphs of degree at most 4. Miklavič and Šparl [16] also showed that a connected Cayley graph on an abelian group of odd order $n \geqslant 3$ either is a cycle or is $1 \frac{1}{2}$-extendable. Chan et al. [3] raised the problem of characterizing 2 -extendable Cayley graphs.

In [22], we showed that a connected vertex-transitive graph of odd order $n \geqslant 3$ is 3 -factor-critical if and only if it is not a cycle. This general result is stronger than $1 \frac{1}{2}$ extendability of Cayley graphs. In this paper, we obtain the following main result which gives a simple characterization of 4-factor-critical vertex-transitive non-bipartite graphs.

Theorem 2. Let G be a connected vertex-transitive non-bipartite graph of degree k and of even order at least 6 . Then G is 4 -factor-critical if and only if $k \geqslant 5$.

By Theorem 2, we know that all connected non-bipartite Cayley graphs of even order and of degree at least 5 is 2 -extendable.

The necessity of Theorem 2 is clear. Our main task is to show the sufficiency of Theorem 2 by contradiction. Suppose that G is a connected non-bipartite vertex-transitive graph G of even order at least 6 and of degree at least 5 but G is not 4 -factor-critical. By the s-restricted edge-connectivity of G, we find that in most cases a suitable integer s can be chosen such that every λ_{s}-atom of G is an imprimitive block. Then we can deduce contradictions. Some preliminary results are presented in Section 2 and some properties of λ_{s}-atoms of G which are used to show their imprimitivity are proved in Section 3. Finally, we complete the proof of Theorem 2 in Section 4.

2 Preliminaries

In this section, we introduce some notations and results needed in this paper.
Let $G=(V(G), E(G))$ be a graph. For $X \subseteq V(G)$, let $\bar{X}=V(G) \backslash X$. For $Y \subseteq \bar{X}$, denote by $[X, Y]$ the set of edges of G with one end in X and the other in Y. In particular, we denote $[X, \bar{X}]$ by $\nabla(X)$ and denote $|\nabla(X)|$ by $d_{G}(X)$. Denote by $N_{G}(X)$ the set of vertices in \bar{X} which are ends of some edges in $\nabla(X)$. If $X=\{v\}$, then X is usually written to v. Vertices in $N_{G}(v)$ are called the neighbors of v. If no confusion exists, the subscript G are usually omitted. Denote by $G[X]$ the subgraph induced by X and denote by $G-X$ the subgraph induced by \bar{X}. The set of edges in $G[X]$ is denoted by $E(X)$. Denote by $c_{0}(G)$ the number of the components of G which have odd order. For a subgraph H of G, we denote $d_{G}\left(V\left(H_{i}\right)\right)$ and $\nabla\left(V\left(H_{i}\right)\right)$ by $d_{G}\left(H_{i}\right)$ and $\nabla\left(H_{i}\right)$, respectively.

For a connected graph G, a subset $F \subseteq E(G)$ is said to be an edge-cut of G if $G-F$ is disconnected, where $G-F$ is the graph with vertex-set $V(G)$ and edge-set $E(G) \backslash F$. The edge-connectivity of G is the minimum cardinality over all the edge-cuts of G, denoted by $\lambda(G)$. A subset $X \subseteq V(G)$ is called a vertex-cut of G if $G-X$ is disconnected. The vertex-connectivity of G of order n, denoted by $\kappa(G)$, is $n-1$ if G is the complete graph K_{n} and is the minimum cardinality over all the vertex-cuts of G otherwise. It is well known that $\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$, where $\delta(G)$ is the minimum vertex-degree of G.

There are two properties of p-factor-critical graphs.
Theorem 3 ([7, 21]). A graph G is p-factor-critical if and only if $c_{0}(G-X) \leqslant|X|-p$ for all $X \subseteq V(G)$ with $|X| \geqslant p$.

Theorem 4 ([7]). If a graph G is p-factor-critical with $1 \leqslant p<|V(G)|$, then $\kappa(G) \geqslant p$ and $\lambda(G) \geqslant p+1$.

Let X be a subset of $V(G)$. Denoted by \mathscr{C}_{G-X} the set of the components of $G-X$. X is called to be matchable to \mathscr{C}_{G-X} if the bipartite graph G_{X}, which arises from G by contracting the components in \mathscr{C}_{G-X} to single vertices and deleting all the edges in $E(X)$, contains a matching covering X. The following general result will be used.

Theorem 5 ([5]). Every graph G contains a set X of vertices with the following properties: (a) X is matchable to \mathscr{C}_{G-X};
(b) Every component of $G-X$ is factor-critical.

Given any such set X, the graph G contains a perfect matching if and only if $|X|=\left|\mathscr{C}_{G-X}\right|$.
The girth of a graph G with a cycle is the length of a shortest cycle in G and the odd girth of a non-bipartite graph G is the length of a shortest odd cycle in G. The girth and odd girth of G are denoted by $g(G)$ and $g_{0}(G)$, respectively. l-cycle means a cycle of length l. We present two useful lemmas as follows.

Lemma 6 ([15]). Let G be a graph with $g_{0}(G)>3$. Then $|E(G)| \leqslant \frac{1}{4}|V(G)|^{2}$.
Lemma 7 ([1]). Let G be a k-regular graph. If $g_{0}(G)>3$, then $|V(G)| \geqslant k g_{0}(G) / 2$.
Now we list some useful properties of vertex-transitive graphs as follows.

Theorem 8 ([14]). Let G be a connected vertex-transitive k-regular graph. Then $\lambda(G)=$ k.

Theorem 9 ([19]). Let G be a connected vertex-transitive k-regular graph. Then $\kappa(G)>$ $\frac{2}{3} k$.

Lemma 10 ([19]). Let G be a connected vertex-transitive k-regular graph. If $\kappa(G)<k$, then $\kappa(G)=m \tau(G)$ for some integer $m \geqslant 2$, where
$\tau(G)=\min \{\min \{|V(P)|: P$ is a component of $G-X\}: X$ is a minimum vertex-cut of $G\}$.

Lemma 11 ([19]). Let G be a connected vertex-transitive k-regular graph with $k=4$ or 6. Then $\kappa(G)=k$.

An imprimitive block of G is a proper non-empty subset X of $V(G)$ such that for any automorphism φ of G, either $\varphi(X)=X$ or $\varphi(X) \cap X=\emptyset$.

Lemma 12 ([18]). Let G be a vertex-transitive graph and X be an imprimitive block of G. Then $G[X]$ is also vertex-transitive.

Theorem 13 ([10]). Let G be a connected vertex-transitive k-regular graph of order n. Let S be a subset of $V(G)$ chosen such that $\frac{1}{3}(k+1) \leqslant|S| \leqslant \frac{1}{2} n, d(S)$ is as small as possible, and, subject to these conditions, $|S|$ is as small as possible. If $d(S)<\frac{2}{9}(k+1)^{2}$, then S is an imprimitive block of G.

Corollary 14 ([10]). Let G be a connected vertex-transitive k-regular graph of order n. Let S be a subset of $V(G)$ chosen such that $1<|S| \leqslant \frac{1}{2} n, d_{G}(S)$ is as small as possible, and, subject to these conditions, $|S|$ is as small as possible. If $d_{G}(S)<2(k-1)$, then $d_{G}(S)=|S| \geqslant k$ and $d_{G[S]}(v)=k-1$ for all $v \in S$.

Corollary 15. Let G be a connected vertex-transitive k-regular graph. Suppose $g(G)>3$ or $|V(G)|<2 k$. Then $d_{G}(X) \geqslant 2 k-2$ for every $X \subseteq V(G)$ with $2 \leqslant|X| \leqslant|V(G)|-2$.

Proof. If $k=2$, then it is trivial. Now suppose $k \geqslant 3$ and that there is a subset $X \subseteq V(G)$ with $2 \leqslant|X| \leqslant|V(G)|-2$ such that $d_{G}(X)<2 k-2$. Let S be a subset of $V(G)$ chosen such that $1<|S| \leqslant \frac{1}{2}|V(G)|, d_{G}(S)$ is as small as possible, and, subject to these conditions, $|S|$ is as small as possible. Then $d_{G}(S) \leqslant d_{G}(X)<2 k-2$. By Corollary 14, $d_{G}(S)=|S| \geqslant k$ and $d_{G[S]}(v)=k-1$ for all $v \in S$. As $2 k-3<\frac{2}{9}(k+1)^{2}, S$ is an imprimitive block of G by Theorem 13. Then $|S|$ is a divisor of $|V(G)|$, which implies $|V(G)| \geqslant 2|S| \geqslant 2 k$. Thus $g(G)>3$. Noting that $|E(S)|=\frac{1}{2}(k-1)|S| \leqslant \frac{1}{4}|S|^{2}$ by Lemma 6, we have $d_{G}(S)=|S| \geqslant 2 k-2$, a contradiction.

A subset X of $V(G)$ is called an independent set of G if any two vertices in X are not adjacent. The maximum cardinality of independent sets of G is the independent number of G, denoted by $\alpha(G)$.

Lemma 16. Let G be a non-bipartite vertex-transitive k-regular graph. Then $\alpha(G) \leqslant$ $\frac{1}{2}|V(G)|-\frac{k}{4}$ if $g_{0}(G)>3$, and $\alpha(G) \leqslant \frac{1}{3}|V(G)|$ if $g_{0}(G)=3$.

Proof. Let X be a maximum independent set of G and set $g_{0}:=g_{0}(G)$. Noting that G is regular and non-bipartite, we have $|X|<|\bar{X}|$. Set $t=|\bar{X}|-|X|$. Since G is vertextransitive, the number of g_{0}-cycles of G containing any given vertex in G is constant. Let q be this constant number and let m be the number of all the g_{0}-cycles of G. Note that each g_{0}-cycle of G contains at most $\left(g_{0}-1\right) / 2$ vertices in X and at least $\left(g_{0}+1\right) / 2$ vertices in \bar{X}. We have $q|X| \leqslant \frac{1}{2} m\left(g_{0}-1\right)$ and $q|\bar{X}| \geqslant \frac{1}{2} m\left(g_{0}+1\right)$, which implies $q t=q(|\bar{X}|-|X|) \geqslant m$.

We know $q|V(G)|=m g_{0}$ by the vertex-transitivity of G. Then $q t \geqslant m=\frac{q}{g_{0}}|V(G)|$, implying $t \geqslant \frac{|V(G)|}{g_{0}}$. If $g_{0}=3$, then $\alpha(G)=\frac{1}{2}(|V(G)|-t) \leqslant \frac{1}{3}|V(G)|$. If $g_{0}>3$, then $|V(G)| \geqslant k g_{0} / 2$ by Lemma 7, which implies $\alpha(G)=\frac{1}{2}(|V(G)|-t) \leqslant \frac{1}{2}|V(G)|-\frac{k}{4}$.

A graph G is called trivial if $|V(G)|=1$.
Lemma 17. Let G be a connected vertex-transitive non-bipartite graph. Let X be an independent set of G. Suppose that $G-X$ has $|X|-t$ trivial components, where t is a positive integer. Then $g_{0}(G) \geqslant \frac{2|X|}{t}+1$.

Proof. Let Y be the set of vertices in the trivial components of $G-X$ and set $g_{0}:=g_{0}(G)$. Let $n_{i, j}$ be the number of g_{0}-cycles of G which contain exactly i vertices in X and j vertices in Y. Set $s=\frac{1}{2}\left(g_{0}-1\right)$. Since X and Y are independent sets of G, each g_{0}-cycle of G contains at most s vertices in X and contains less vertices in Y than in X. Let q be the number of g_{0}-cycles of G containing any given vertex in G. We have $\sum_{0 \leqslant j<i \leqslant s} i n_{i, j}=q|X|$ and $\sum_{0 \leqslant j<i \leqslant s} j n_{i, j}=q|Y|=q(|X|-t)$. Then $q|X|=\sum_{0 \leqslant j<i \leqslant s} i n_{i, j} \leqslant \sum_{0 \leqslant j<i \leqslant s} s(i-$ j) $n_{i, j}=s\left(\sum_{0 \leqslant j<i \leqslant s} i n_{i, j}-\sum_{0 \leqslant j<i \leqslant s} j n_{i, j}\right)=s q t=\frac{1}{2}\left(g_{0}-1\right) q t$, which implies $g_{0} \geqslant$ $\frac{2|X|}{t}+1$.

Lemma 18. Let G be a vertex-transitive graph with a triangle. Then the number of trivial components of $G-X$ is not larger than $|E(X)|$ for each subset $X \subseteq V(G)$.

Proof. Let Y be the set of vertices in the trivial components of $G-X$. Suppose $|Y|>$ $|E(X)|$. Let q be the number of triangles of G containing any given vertex in G. Note that there are $q|Y|$ triangles of G containing vertices in Y. As $|Y|>|E(X)|$, it implies that $G[X]$ has an edge e which is contained in more than q triangles. This means that more than q triangles containing both ends of e, a contradiction.

Lemma 19. Let G be a connected triangle-free vertex-transitive 6 -regular graph of even order. Suppose that there are 3 distinct vertices with the same neighbors. Then G is bipartite.

Proof. Suppose, to the contrary, that G is non-bipartite. Then $g_{0}:=g_{0}(G) \geqslant 5$. Let $C=u_{0} u_{1} \ldots u_{g_{0}-1} u_{0}$ be a g_{0}-cycle of G. For any pair of vertices u and v in $V(C)$, we know $N(u) \neq N(v)$. So for each $u_{i} \in V(C)$ there are two distinct vertices u_{i}^{\prime} and $u_{i}^{\prime \prime}$ in $\overline{V(C)}$ such that $N\left(u_{i}\right)=N\left(u_{i}^{\prime}\right)=N\left(u_{i}^{\prime \prime}\right)$ by the vertex-transitivity of G. Set
$U_{i}=\left\{u_{i}, u_{i}^{\prime}, u_{i}^{\prime \prime}\right\}$. Then U_{i} is an independent set of G and $U_{i} \cap U_{j}=\emptyset$ for $j \neq i$. Noting that u_{i} and u_{i+1} are adjacent, we have that every vertex in U_{i} is adjacent to every vertex in U_{i+1}, where $i+1$ is an arithmetic on modular g_{0}. Since G is 6 -regular and connected, $|V(G)|=\left|\bigcup_{i=0}^{g_{0}-1} U_{i}\right|=3 g_{0}$, which implies that $|V(G)|$ is odd, a contradiction.

$3 \quad \lambda_{s}$-atoms of vertex-transitive graphs

In this section, we will introduce some properties of the λ_{s}-atoms of vertex-transitive graphs. The concept of λ_{s}-atoms [11, 20] of graphs is used in investigating the s-restricted edge-connectivity of graphs. The s-restricted edge-connectivity of graphs was proposed by Fàbrega and Fiol [6].

For a connected graph G and some positive integer s, an edge-cut F of G is said to be an s-restricted edge-cut of G if every component of $G-F$ has at least s vertices. The minimum cardinality of s-restricted edge-cuts of G is the s-restricted edge-connectivity of G, denoted by $\lambda_{s}(G)$. By the definition of $\lambda_{s}(G)$, we can see that $\lambda(G)=\lambda_{1}(G) \leqslant \lambda_{2}(G) \leqslant \lambda_{3}(G) \cdots$ as long as these parameters exists.

A proper subset X of $V(G)$ is called a λ_{s}-fragment of G if $\nabla(X)$ is an s-restricted edge-cut of G with minimum cardinality. We can see that for every λ_{s}-fragment X of $G, G[X]$ and $G[\bar{X}]$ are connected graphs of order at least s. A λ_{s}-fragment of G with minimum cardinality is called a λ_{s}-atom of G.

Lemma 20. Let G be a connected triangle-free vertex-transitive graph of degree $k \geqslant 5$. For an integer s with $4 \leqslant s \leqslant 8$, suppose $\lambda_{s}(G) \leqslant 3 k$. Let S be a λ_{s}-atom of G.
(a) For $X \subseteq V(G)$ with $|X| \geqslant s$ and $|\bar{X}| \geqslant s$, we have $d_{G}(X) \geqslant \lambda_{s}(G)$. Furthermore, $d_{G}(X)>\lambda_{s}(G)$ if $G[X]$ or $G[\bar{X}]$ is disconnected.
(b) For $A \subseteq S$ with $1 \leqslant|A| \leqslant|S|-s$, we have $d_{G[S]}(A)>\frac{1}{2} d_{G}(A)$.
(c) For each λ_{s}-atom T of G with $S \neq T$ and $S \cap T \neq \emptyset$, we have $d_{G}(S \cap T)+d_{G}(S \cup T) \leqslant$ $2 \lambda_{s}(G), d_{G}(S \backslash T)+d_{G}(T \backslash S) \leqslant 2 \lambda_{s}(G),|S \cap T| \leqslant s-1$ and $|S \backslash T| \leqslant s-1$.

Proof. (a) If $G[X]$ and $G[\bar{X}]$ are connected, then $\nabla(X)$ is an s-restricted edge-cut of G and hence $d_{G}(X) \geqslant \lambda_{s}(G)$. Thus it only needs to show $d_{G}(X)>\lambda_{s}(G)$ if $G[X]$ or $G[\bar{X}]$ is disconnected.

Suppose that $G[X]$ is disconnected. If each component of $G[X]$ has less than 4 vertices, then $d_{G}(X)=k|X|-2|E(X)| \geqslant k|X|-2(|X|-2) \geqslant(k-2) s+4>3 k \geqslant \lambda_{s}(G)$. Then we assume that $G[X]$ has a component H_{1} with at least 4 vertices. If each component of $G\left[\overline{V\left(H_{1}\right)}\right]$ has less than 4 vertices, then $d_{G}(X)>d_{G}\left(H_{1}\right)=d_{G}\left(\overline{V\left(H_{1}\right)}\right)>\lambda_{s}(G)$. Then we assume further that $G\left[\overline{V\left(H_{1}\right)}\right]$ has a component H_{2} with at least 4 vertices. Noting that both G and H_{1} are connected, we have that $G\left[\overline{V\left(H_{2}\right)}\right]$ is connected, which implies that $\nabla\left(H_{2}\right)$ is a 4 -restricted edge-cut of G. Noting that $\lambda(G)=k$ by Theorem 8 , we have $d_{G}(X) \geqslant \lambda(G)+d_{G}\left(H_{1}\right) \geqslant k+d\left(V\left(H_{2}\right)\right) \geqslant k+\lambda_{4}(G)$.

So $d(X)>\lambda_{4}(G)$. Next we consider the case that $5 \leqslant s \leqslant 8$. Set $\tau_{s}(G)=\min \{d(A)$: $A \subseteq V(G), 4 \leqslant|A| \leqslant s-1\}$. Then $\lambda_{4}(G) \geqslant \min \left\{\lambda_{s}(G), \tau_{s}(G)\right\}$. For each subset $A \subseteq V(G)$ with $4 \leqslant|A| \leqslant 7$, noting that $|E(A)| \leqslant \frac{1}{4}|A|^{2}$ by Lemma 6 , we have $d(A)=$ $k|A|-2|E(A)| \geqslant k|A|-\frac{1}{2}|A|^{2}>2 k$. Hence $\tau_{s}(G)>2 k$. If $\lambda_{s}(G)>2 k$, then $d(X) \geqslant$
$k+\lambda_{4}(G)>k+2 k \geqslant \lambda_{s}(G)$. If $\lambda_{s}(G) \leqslant 2 k$, then, noting $\min \left\{\lambda_{s}(G), \tau_{s}(G)\right\} \leqslant \lambda_{4}(G) \leqslant$ $\lambda_{s}(G)$, we have $d(X) \geqslant k+\lambda_{4}(G)=k+\lambda_{s}(G)>\lambda_{s}(G)$.
(b) To the contrary, suppose $d_{G[S]}(A) \leqslant \frac{1}{2} d_{G}(A)$. Then $d_{G}(S \backslash A)=d_{G}(S)-\left(d_{G}(A)-\right.$ $\left.2 d_{G[S]}(A)\right) \leqslant d_{G}(S)=\lambda_{s}(G)$. By (a), $G[S \backslash A]$ and $G[\bar{S} \cup A]$ are connected. Hence $\nabla(S \backslash A)$ is an s-restricted edge-cut of G. By the minimality of λ_{s}-atoms of G, we have $d_{G}(S \backslash A)>\lambda_{s}(G)$, a contradiction.
(c) By the well-known submodular inequality (see [2] for example), we have that $d_{G}(S \cap T)+d_{G}(S \cup T) \leqslant d_{G}(S)+d_{G}(T)=2 \lambda_{s}(G)$ and $d_{G}(S \backslash T)+d_{G}(T \backslash S)=d_{G}(S \cap \bar{T})+$ $d_{G}(S \cup \bar{T}) \leqslant d_{G}(S)+d_{G}(\bar{T})=2 \lambda_{s}(G)$. Next we show $|S \cap T| \leqslant s-1$ and $|S \backslash T| \leqslant s-1$. Clearly, they hold if $|S|=s$. So we may assume $|S|>s$.

Suppose $|S \cap T| \geqslant s$. Then $d_{G}(S \cap T)=d_{G}(S)+2 d_{G[S]}(S \backslash T)-d_{G}(S \backslash T)>d_{G}(S)=$ $\lambda_{s}(G)$ by (b). Noting $|\overline{S \cup T}| \geqslant|V(G)|-|S|-|T|+|S \cap T| \geqslant s$, we have $d_{G}(S \cup T) \geqslant \lambda_{s}(G)$ by (a). Hence $d_{G}(S \cap T)+d_{G}(S \cup T)>2 \lambda_{s}(G)$, a contradiction. Thus $|S \cap T| \leqslant s-1$.

If $|S \backslash T|=|T \backslash S| \geqslant s$, then we can similarly obtain $d_{G}(S \backslash T)>\lambda_{s}(G)$ and $d_{G}(T \backslash S)>$ $\lambda_{s}(G)$ by (b), which implies $d_{G}(S \backslash T)+d_{G}(T \backslash S)>2 \lambda_{s}(G)$, a contradiction. Thus $|S \backslash T| \leqslant$ $s-1$.

Lemma 21. Let G be a connected triangle-free vertex-transitive 5 -regular graph of even order. For $s=5$ or 6 , suppose $\lambda_{s}(G)=s+9$. Then $|S| \geqslant s+5$ for a λ_{s}-atom S of G.

Proof. Suppose, to the contrary, that $|S|<s+5$. As $s+9=d_{G}(S)=5|S|-2|E(S)|$, $|S|$ and s have different parities. Hence $|S| \geqslant s+1$. By Lemma 20(b), $\delta(G[S]) \geqslant 3$. If $|S|=s+1$, then $2|E(S)| \geqslant \delta(G[S])|S| \geqslant 3|S|$, which implies $d_{G}(S)=5|S|-2|E(S)| \leqslant$ $2|S|=2 s+2<s+9$, a contradiction. Thus $|S|=s+3$. Let R be the set of vertices u in S with $d_{G[S]}(u)=3$. By Lemma 20(b), $E(R)=\emptyset$. Noting $3 s+9 \leqslant \sum_{u \in S} d_{G[S]}(u)=$ $2|E(S)|=5|S|-\lambda_{s}(G)=4 s+6$, we have $|R| \geqslant|S|-(4 s+6-3 s-9)=6$. Since $s=5$ or $6, d_{G[S]}(R)=3|R| \geqslant 18>5(s-3) \geqslant d_{G[S]}(S \backslash R)$, a contradiction.

Lemma 22. Let G be a bicritical graph. If G is not 4 -factor-critical, then there is a subset $X \subseteq V(G)$ with $|X| \geqslant 4$ such that $c_{0}(G-X)=|X|-2$ and every component of $G-X$ is factor-critical.

Proof. Since G is not 4-factor-critical, there is a set X_{1} of four vertices of G such that $G-X_{1}$ has no perfect matchings. By Theorem 5, $G-X_{1}$ has a vertex set X_{2} such that X_{2} is matchable to $\mathscr{C}_{G-X_{1}-X_{2}}$ and every component of $G-X_{1}-X_{2}$ is factor-critical. Set $X=X_{1} \cup X_{2}$. Then $c_{0}(G-X)=\left|\mathscr{C}_{G-X}\right|>\left|X_{2}\right|=|X|-4$. Since G is bicritical, we have $c_{0}(G-X) \leqslant|X|-2$ by Theorem 3. Hence $|X|-4<c_{0}(G-X) \leqslant|X|-2$. Noting that $c_{0}(G-X)$ and $|X|$ have the same parity, we have $c_{0}(G-X)=|X|-2$.

In the rest of this section, we always suppose that G is a connected non-bipartite vertex-transitive graph of degree $k \geqslant 5$ and even order, but G is not 4 -factor-critical. Also we always use the following notation. Let X be a subset of $V(G)$ with $|X| \geqslant 4$ such that $c_{0}(G-X)=|X|-2$ and every component of $G-X$ is factor-critical. By Theorem 1 and Lemma 22, such subset X exists. Let $H=H_{1}, H_{2}, \ldots, H_{p}$ be the nontrivial components of $G-X$. For a positive integer m, let $[m]$ denote the set $\{1,2, \ldots, m\}$.

Lemma 23. We have $p \geqslant 1$. Furthermore, if $g(G)>3$, then
(a) $p=1$ if $\lambda_{5}(G)>2 k$,
(b) $|X| \geqslant 7$ and $|V(H)| \geqslant 9$ if $\lambda_{5}(G)>4 k-8$ and $5 \leqslant k \leqslant 6$, and
(c) $|X| \geqslant 10$ and $|V(H)| \geqslant 15$ if $\lambda_{6}(G) \geqslant 14$ and $k=5$.

Proof. If $p=0$, then $|V(G)|=2|X|-2 \geqslant 2 k-2 \geqslant 8$ and $\alpha(G) \geqslant|\bar{X}|=\frac{1}{2}|V(G)|-1>$ $\max \left\{\frac{1}{3}|V(G)|, \frac{1}{2}|V(G)|-\frac{k}{4}\right\}$, which contradicts Lemma 16. Thus $p \geqslant 1$.

Next we suppose $g(G)>3$. For each $i \in[p]$, we have $\left|V\left(H_{i}\right)\right| \geqslant 5$ as H_{i} is triangle-free and factor-critical.

Suppose $\lambda_{5}(G)>2 k$. By Lemma 20(a), $d\left(H_{i}\right) \geqslant \lambda_{5}(G)$ for each $i \in[p]$. We have $2 p k<p \lambda_{5}(G) \leqslant \sum_{i=1}^{p} d\left(H_{i}\right)=d(X)-k\left(c_{0}(G-X)-p\right) \leqslant k(p+2)$, which implies $p<2$. Thus $p=1$. (a) is proved.

Suppose $\lambda_{5}(G)>4 k-8$ and $5 \leqslant k \leqslant 6$. We know $p=1$ by (a). Assume $k=6$. Notice that G is non-bipartite. It follows from Lemma 19 that $|X| \geqslant 7$. As $d(H) \leqslant 3 k$ and H is triangle-free and factor-critical, we have $|V(H)| \geqslant 9$. Assume next $k=5$. Notice that $|V(G)|=|V(H)|+2|X|-3 \geqslant 12$. By Lemma $20(\mathrm{a}), d(A) \geqslant \lambda_{5}(G)>12$ for every subset $A \subseteq V(G)$ with $|A|=6$, which implies that G has no subgraphs which are isomorphic to the complete bipartite graph $K_{3,3}$. By the vertex-transitivity of G, it follows that G has also no subgraphs which are isomorphic to $K_{2,5}$. So $|X| \geqslant 7$. If $E(X)=\emptyset$, then $g_{0}(G) \geqslant 7$ by Lemma 17 , which implies $|V(H)| \geqslant 13$. If $E(X) \neq \emptyset$, then $d(H)=13$, which implies $|V(H)| \geqslant 9$. Hence the statement (b) holds.

Now we suppose $\lambda_{6}(G) \geqslant 14$ and $k=5$. Then $\lambda_{5}(G) \geqslant \min \left\{\lambda_{6}(G), 5 k-12\right\}=13$. We know $p=1$ by (a). By the above argument, we know $|X| \geqslant 7,|V(H)| \geqslant 9$ and that G has no subgraphs which are isomorphic to $K_{2,5}$ or $K_{3,3}$. By Lemma 20(a), $d(V(H) \cup A) \geqslant$ $\lambda_{6}(G)$ and $d(V(H) \backslash A) \geqslant \lambda_{6}(G)$ for every subset $A \subseteq V(G)$ with $|A| \leqslant 2$. It implies that $E(X)=\emptyset,|\nabla(u) \cap \nabla(H)| \leqslant 3$ for each $u \in V(G)$ and each of X and $V(H)$ has at most one vertex v with $|\nabla(v) \cap \nabla(H)|=3$. Set $Y=\overline{V(H) \cup X}$.

Suppose $|X|=7$. Then X has one vertex u_{1} with 3 neighbors in $V(H)$ and other vertices in X has exactly two neighbors in $V(H)$. Choose a vertex $u_{2} \in X \backslash\left\{u_{1}\right\}$ and a vertex $u_{3} \in Y \backslash N\left(u_{1}\right)$. Since G is vertex-transitive, there is an automorphism φ_{1} of G such that $\varphi_{1}\left(u_{3}\right)=u_{2}$. Noting that $\left|N(v) \cap N\left(u_{3}\right)\right| \geqslant 3$ for each $v \in Y$, we have $\varphi_{1}(Y) \subseteq X$, which implies $|\nabla(v) \cap \nabla(H)|=3$ for each $v \in N\left(u_{2}\right) \cap V(H)$, a contradiction.

Suppose $8 \leqslant|X| \leqslant 9$. Then there are two vertices u_{4} and u_{5} in X with $\mid N\left(u_{4}\right) \cap$ $V(H) \mid=2$ and $\left|N\left(u_{5}\right) \cap V(H)\right| \leqslant 1$. Since G is vertex-transitive, there is an automorphism φ_{2} of G such that $\varphi_{2}\left(u_{5}\right)=u_{4}$. Then $\varphi_{2}(Y) \cap V(H) \neq \emptyset$ and $\left|\varphi_{2}(Y) \cap Y\right| \geqslant 2$. As G has no subgraphs which are isomorphic to $K_{2,5}$ or $K_{3,3}$, it follows that $\left|\varphi_{2}(X) \cap X\right| \geqslant 6$. Hence $\varphi_{2}(Y) \subseteq V(H) \cup Y$ and $\varphi_{2}(X) \subseteq V(H) \cup X$. Noting that $|\nabla(u) \cap \nabla(H)| \leqslant 3$ and $N(u) \subseteq \varphi_{2}(X)$ for each $u \in \varphi_{2}(Y) \cap V(H)$, we have $\left|\varphi_{2}(X) \cap V(H)\right| \geqslant 2$. Notice that each of X and $V(H)$ has at most one vertex v with $|\nabla(v) \cap \nabla(H)|=3$. We know $d_{G\left[\varphi_{2}(X \cup Y)\right]}\left(\varphi_{2}(X) \cap V(H)\right) \geqslant 3$, which implies $\left|\varphi_{2}(Y) \cap V(H)\right| \geqslant 3$. It follows that $N_{H}\left(\varphi_{2}(Y) \cap V(H)\right) \geqslant 3$. Now we have $\left|\varphi_{2}(X) \cap X\right|=6$ and $\left|\varphi_{2}(X) \cap V(H)\right|=3$ as $\left|\varphi_{2}(X)\right|=|X| \leqslant 9$. It follows that $G\left[\varphi_{2}(X \cup Y) \cap V(H)\right]$ contains a subgraph isomorphic to $K_{3,3}$ if $\left|\varphi_{2}(Y) \cap V(H)\right| \geqslant 4$ and $G\left[\varphi_{2}(X \cup Y) \backslash V(H)\right]$ contains a subgraph isomorphic to $K_{3,3}$ otherwise, a contradiction.

Thus $|X| \geqslant 10$. Then $g_{0}(G) \geqslant 9$ by Lemma 17. Let C be a $g_{0}(H)$-cycle of H. Then $g_{0}(H) \geqslant g_{0}(G) \geqslant 9$ and $\left|N_{H}(v) \cap V(C)\right| \leqslant 2$ for each $v \in V(H) \backslash V(C)$. Noting $15=d(V(H))=5|V(H)|-2|E(H)|$, we can easily verify $|V(H)| \geqslant 15$. (c) is proved.

Lemma 24. Suppose $k=5, \lambda_{6}(G)=\lambda_{7}(G)=12$ and $g(G)>3$. For a λ_{7}-atom S of G, we have that S is an imprimitive block of G.

Proof. Suppose, to the contrary, that S is not an imprimitive block of G. Then there is an automorphism φ_{1} of G such that $\varphi_{1}(S) \neq S$ and $\varphi_{1}(S) \cap S \neq \emptyset$. Set $T=\varphi_{1}(S)$. By Lemma 20(c), we have $|S \cap T| \leqslant 6$ and $|S \backslash T| \leqslant 6$, which implies $|S| \leqslant 12$. As $12=d(S)=5|S|-2|E(S)|,|S|$ is an even integer. By Lemma $20(\mathrm{~b}), \delta(G[S]) \geqslant 3$. For each $u \in S$, we have $d_{G}(S \cup\{u\}) \geqslant \lambda_{6}(G)$ by Lemma 20(a), which implies $\left|N_{G}(u) \cap S\right| \leqslant 2$. Noting that $\lambda_{6}(G) \geqslant \lambda_{5}(G) \geqslant \lambda_{4}(G) \geqslant \min \left\{4 k-8,5 k-12, \lambda_{6}(G)\right\}=12$, we have $\lambda_{5}(G)=$ $\lambda_{4}(G)=12$. By Lemma 23, $p=1$. By Lemma 20(a), we have $d_{G}(H) \geqslant \lambda_{5}(G)=12$. Then either $d_{G}(H)=13$ and $|E(X)|=1$, or $d_{G}(H)=15$ and $E(X)=\emptyset$.

Figure 1. Some possible cases of $G[S]$. In each $G_{i}, 2 \leqslant i \leqslant 5$, the two graphs in the virtual boxes correspond to $G[S \cap T]$ and $G[S \backslash T]$.

Case 1. $|S|=8$.
We have $|E(S)|=\frac{1}{2}\left(5|S|-\lambda_{6}(G)\right)=14$. It is easy to verify that $G[S]$ is isomorphic to G_{1} in Figure 1. Label $G[S]$ as in G_{1} and set $W=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. As $\left|N_{G}(u) \cap S\right| \leqslant 2$ for each $u \in \bar{S}, G$ has no vertex v different from w_{1} such that $N_{G}(v)=N_{G}\left(w_{1}\right)$. Hence G has no subgraphs isomorphic to $K_{2,5}$ by the vertex-transitivity of G.

Claim 1. Each edge in G is contained in a 4-cycle of G.
Suppose that G has an edge contained in no 4 -cycles of G. Since G is vertex-transitive, each vertex in G is incident with an edge contained in no 4 -cycles of G and there is an automorphism φ_{2} of G such that $\varphi_{2}\left(w_{1}\right)=w_{2}$. As each edge in $G[S]$ is contained in a 4-cycle, we have $\varphi_{2}\left(N_{G[S]}\left(w_{1}\right)\right) \subseteq N_{G[S]}\left(w_{2}\right)$ and $N_{G[S]}\left(\varphi_{2}\left(z_{i}\right)\right) \subseteq \varphi_{2}(S)$ for each $i \in\{2,3\}$. It implies $\left|S \cap \varphi_{2}(S)\right| \geqslant 7$. On the other hand, noting $\varphi_{2}(S) \neq S$, we have $\left|S \cap \varphi_{2}(S)\right| \leqslant 6$ by Lemma 20(c), a contradiction. Thus Claim 1 holds.

Claim 2. For any vertex $x \in V(G)$ with $2 \leqslant|\nabla(x) \cap \nabla(H)| \leqslant 3$ such that $d_{G[X]}(u)=0$ for each $u \in\left(\{x\} \cup N_{G}(x)\right) \cap X$, there is a subset $A \subseteq N_{G}(x)$ with $|A| \geqslant|\nabla(x) \cap \nabla(H)|-1$ and a vertex $y \in V(G) \backslash\{x\}$ such that $\{x u, y u\} \subseteq \nabla(H)$ and $|\nabla(u) \cap \nabla(H)| \geqslant 3$ for each $u \in A$.

Since G is vertex-transitive, there is an automorphism φ_{3} of G such that $\varphi_{3}\left(w_{2}\right)=x$. Let T_{1} be one of X and $V(H)$ such that $x \in T_{1}$, and let T_{2} be the other of X and $V(H)$.

Then $\varphi_{3}\left(w_{3}\right) \in T_{1}$ and $\left|\varphi_{3}\left(N_{G[S]}\left(w_{2}\right)\right) \cap T_{2}\right| \geqslant|\nabla(x) \cap \nabla(H)|-1$. If $\left|\varphi_{3}\left(N_{G[S]}\left(w_{2}\right)\right) \cap T_{2}\right| \leqslant 2$ or $\varphi_{3}(W) \subseteq T_{1}$, then we choose A to be $\varphi_{3}\left(N_{G[S]}\left(w_{2}\right)\right) \cap T_{2}$. If $\left|\varphi_{3}\left(N_{G[S]}\left(w_{2}\right)\right) \cap T_{2}\right|=3$ and $\varphi_{3}(W) \backslash T_{1} \neq \emptyset$, then $\left|\varphi_{3}(W) \cap T_{1}\right|=3$ and $\left\{\varphi_{3}\left(z_{2}\right), \varphi_{3}\left(z_{3}\right)\right\} \subseteq T_{2}$. In the second case, we choose A to be $\left\{\varphi_{3}\left(z_{2}\right), \varphi_{3}\left(z_{3}\right)\right\}$. Then A and $\varphi_{3}\left(w_{3}\right)$ are a subset and a vertex which satisfy the condition. Thus Claim 2 holds.

Subcase 1.1. $d_{G}(H)=13$.
Let $x_{1} x_{2}$ be the edge in $E(X)$. We know $|X| \geqslant 6$ and $|V(H)| \geqslant 7$. By Lemma $20(\mathrm{a}), d_{G}(V(H) \cup A) \geqslant \lambda_{4}(G)$ and $d_{G}(V(H) \backslash A) \geqslant \lambda_{4}(G)$ for each subset $A \subseteq V(G)$ with $|A| \leqslant 2$, which implies that $|\nabla(u) \cap \nabla(H)| \leqslant 3$ for each $u \in V(G)$ and each of X and $V(H)$ has at most one vertex v with $|\nabla(v) \cap \nabla(H)|=3$. Hence it follows from Claim 2 that $|\nabla(u) \cap \nabla(H)| \leqslant 2$ for each $u \in X \backslash\left\{x_{1}, x_{2}\right\}$. This together with Claim 2 implies that $|\nabla(u) \cap \nabla(H)| \leqslant 1$ for each $u \in V(H) \backslash N_{G}\left(\left\{x_{1}, x_{2}\right\}\right)$.

We claim $|\nabla(u) \cap \nabla(H)| \leqslant 2$ for each $u \in N_{G}\left(\left\{x_{1}, x_{2}\right\}\right) \cap V(H)$. Otherwise, suppose that there is a vertex $u_{0} \in N_{G}\left(\left\{x_{1}, x_{2}\right\}\right) \cap V(H)$ with $\left|\nabla\left(u_{0}\right) \cap \nabla(H)\right|=3$. Since G is vertex-transitive, there is an automorphism φ_{4} of G such that $\varphi_{4}\left(w_{2}\right)=u_{0}$. It implies that there is a vertex $u_{1} \in \varphi_{4}\left(N_{G[S]}\left(w_{2}\right) \cap\left(X \backslash\left\{x_{1}, x_{2}\right\}\right)\right.$ such that $\left|\nabla\left(u_{1}\right) \cap \nabla(H)\right|=3$, a contradiction.

Thus it follows from Claim 2 that $|\nabla(u) \cap \nabla(H)| \leqslant 1$ for each $u \in X \backslash\left\{x_{1}, x_{2}\right\}$. Noting $\left|N_{G}\left(\left\{x_{1}, x_{2}\right\}\right) \cap V(H)\right| \leqslant 5$, we have $\left|\nabla\left(N_{G}\left(\left\{x_{1}, x_{2}\right\}\right) \cap V(H)\right) \cap \nabla(H)\right| \leqslant 10$ by the claim in the previous paragraph. Hence there is an edge $x_{3} x_{4} \in \nabla(H)$ such that $x_{3} \in X \backslash\left\{x_{1}, x_{2}\right\}$ and $\left|\nabla\left(x_{3}\right) \cap \nabla(H)\right|=\left|\nabla\left(x_{4}\right) \cap \nabla(H)\right|=1$. Then $x_{3} x_{4}$ is contained in no 4-cycles of G, contradicting Claim 1. Hence Subcase 1.1 cannot occur.

Subcase 1.2. $d_{G}(H)=15$.
Notice that G has no subgraphs which are isomorphic to $K_{2,5}$. We know $|X| \geqslant 6$. Next we show $|V(H)| \geqslant 9$. Let O_{i} be the set of vertices u in G with $|\nabla(u) \cap \nabla(H)|=i$ for $1 \leqslant i \leqslant 5$. If $|X| \geqslant 7$, then $g_{0}(G) \geqslant 7$ by Lemma 17, which implies $|V(H)| \geqslant 13$. Then we assume $|X|=6$. As G has no subgraphs which are isomorphic to $K_{2,5}$, we have $\left|O_{3} \cap X\right|=3$ and $\left|O_{2} \cap X\right|=3$. Noting $g(G)>3$, we can obtain $|V(H)| \neq 5$. By Claim $2,\left|O_{3} \cap V(H)\right| \geqslant 2$, which implies $|V(H)| \neq 7$. Hence $|V(H)| \geqslant 9$.

By Lemma $20(\mathrm{a}), d_{G}(V(H) \cup A) \geqslant \lambda_{4}(G)$ and $d_{G}(V(H) \backslash A) \geqslant \lambda_{4}(G)$ for each subset $A \subseteq V(G)$ with $|A| \leqslant 4$. It implies $O_{5}=\emptyset,\left|O_{4} \cap X\right| \leqslant 1,\left|O_{3} \cap X\right| \leqslant 3,\left|O_{3} \cap V(H)\right| \leqslant 3$ and $\left|O_{4} \cap X\right| \cdot\left|O_{3} \cap X\right|=0$.

We claim $O_{4}=\emptyset$. Otherwise, suppose $O_{4} \neq \emptyset$. Noting that $\delta(H) \geqslant 2$ as H is factorcritical, we have $O_{4} \subseteq X$. Now we know $\left|O_{4}\right|=1$ and $O_{3} \cap X=\emptyset$. It follows from Claim 2 that $O_{3} \cap V(H)=\emptyset$ and $O_{2} \subseteq N_{G}\left(O_{4}\right)$. As $\left|\nabla\left(N_{G}\left(O_{4}\right) \cap V(H)\right)\right| \leqslant 8$, there is an edge $x_{5} x_{6} \in \nabla(H)$ with $\left\{x_{5}, x_{6}\right\} \subseteq O_{1}$. Then $x_{5} x_{6}$ is contained in no 4 -cycles of G, contradicting Claim 1.

Let F_{1} be the subgraph of G with vertex set $\bigcup_{i=1}^{3} O_{i}$ and edge set $\nabla(H)$ and let F_{2} be the subgraph of F_{1} which is induced by O_{3}. By Claim 2, $\delta\left(F_{2}\right) \geqslant 2$. Hence F_{2} is connected. Then F_{1} is connected by Claims 1 and 2. Let t be the number of vertices u in F_{2} with $d_{F_{2}}(u)=2$. We have $15=\left|E\left(F_{1}\right)\right| \leqslant\left|E\left(F_{2}\right)\right|+2 t=6\left|O_{3}\right|-3\left|E\left(F_{2}\right)\right|$ by Claim 2. It follows that $\left|O_{3}\right|=6$ and $6 \leqslant\left|E\left(F_{2}\right)\right| \leqslant 7$.

Assume $\left|E\left(F_{2}\right)\right|=6$. Then F_{2} is a 6 -cycle. For each $u \in O_{3} \cap X$, there is a vertex
$y_{u} \in X \backslash O_{3}$ such that $N_{F_{2}}(u) \subseteq N_{G}\left(y_{u}\right)$ by Claim 2. It implies that there is a vertex $y \in X \backslash O_{3}$ such that $O_{3} \cap V(H) \subseteq N_{G}(y)$, which contradicts $\left|O_{3} \cap X\right| \leqslant 3$.

Assume $\left|E\left(F_{2}\right)\right|=7$. As $\left|E\left(F_{1}\right) \backslash E\left(F_{2}\right)\right|=8$, it follows from Claim 2 that there is a vertex $u_{2} \in V\left(F_{1}\right) \backslash O_{3}$ with $d_{F_{1}}\left(u_{2}\right)=2$ and we know $\left|N_{F_{1}}\left(u_{2}\right) \cap O_{3}\right|=1$ and $d_{F_{1}}\left(N_{F_{1}}\left(u_{2}\right) \backslash O_{3}\right)=1$. It is easy to see that there is no vertex u^{\prime} in G such that $\mid N_{G}\left(u^{\prime}\right) \cap$ $N_{G}\left(u_{2}\right) \mid=4$. Noting $\left|N_{G}\left(w_{2}\right) \cap N_{G}\left(w_{3}\right)\right|=4$, we have that there is no automorphism φ of G such that $\varphi\left(w_{2}\right)=u_{2}$, which contradicts the vertex-transitivity of G.

Case 2. $|S|=10$ or 12 .
Claim 3. For any given two distinct λ_{7}-atoms S_{1} and S_{2} of G with $S_{1} \cap S_{2} \neq \emptyset$, $G\left[S_{1} \cap S_{2}\right]$ and $G\left[S_{1} \backslash S_{2}\right]$ are isomorphic to $K_{3,3}$ or $K_{2,2}$.

By Lemma 20(c), we have $d_{G}\left(S_{1} \cap S_{2}\right)+d_{G}\left(S_{1} \cup S_{2}\right) \leqslant 2 \lambda_{7}(G), d_{G}\left(S_{1} \backslash S_{2}\right)+d_{G}\left(S_{2} \backslash S_{1}\right) \leqslant$ $2 \lambda_{7}(G),\left|S_{1} \cap S_{2}\right| \leqslant 6$ and $\left|S_{1} \backslash S_{2}\right| \leqslant 6$. Then $\left|S_{1} \cap S_{2}\right| \geqslant 4$ and $\left|S_{1} \backslash S_{2}\right| \geqslant 4$. By Lemma 20(a), each of $d_{G}\left(S_{1} \cap S_{2}\right), d_{G}\left(S_{1} \cup S_{2}\right), d_{G}\left(S_{1} \backslash S_{2}\right)$ and $d_{G}\left(S_{2} \backslash S_{1}\right)$ is not less than $\lambda_{4}(G)$. Noting $\lambda_{4}(G)=\lambda_{7}(G)=12$, we have $d_{G}\left(S_{1} \cap S_{2}\right)=d_{G}\left(S_{1} \backslash S_{2}\right)=12$. Then $G\left[S_{1} \cap S_{2}\right]$ and $G\left[S_{1} \backslash S_{2}\right]$ are isomorphic to $K_{3,3}$ or $K_{2,2}$. So Claim 3 holds.

Let R_{i} be the set of vertices u in S with $d_{G[S]}(u)=i$ for $3 \leqslant i \leqslant 5$. By Lemma 20(b), $E\left(G\left[R_{3}\right]\right)=\emptyset$.

Claim 4. $R_{5}=\emptyset$, or $G\left[R_{5}\right]$ is a 6 -cycle and $|S|=12$.
Suppose $R_{5} \neq \emptyset$. It only needs to show that $|S|=12$ and $G\left[R_{5}\right]$ is a 6 -cycle. Assume $R_{4} \neq \emptyset$. Choose a vertex $u \in R_{4}$ and a vertex $v \in R_{5}$. Let φ_{5} be an automorphism of G such that $\varphi_{5}(u)=v$. Then $\varphi_{5}\left(N_{G[S]}(u)\right) \subseteq N_{G[S]}(v)$, which contradicts that $G\left[\varphi_{5}(S) \cap S\right]$ is isomorphic to $K_{3,3}$ or $K_{2,2}$ by Claim 3. Thus $R_{4}=\emptyset$. Noting $\left|R_{3}\right|+\left|R_{5}\right|=|S|$ and $3\left|R_{3}\right|+5\left|R_{5}\right|=2|E(S)|=5|S|-12$, we have $\left|R_{3}\right|=6$. For any two vertices $u^{\prime}, u^{\prime \prime} \in R_{5}$, it follows from Claim 3 that $\varphi(S)=S$ for every automorphism φ of G with $\varphi\left(u^{\prime}\right)=u^{\prime \prime}$. Hence $G\left[R_{5}\right]$ is r-regular, for some integer r. Then $18=3\left|R_{3}\right|=d_{G[S]}\left(R_{3}\right)=d_{G[S]}\left(R_{5}\right)=$ $(5-r)(|S|-6)$, which implies $|S|=12$ and $r=2$. Hence $G\left[R_{5}\right]$ is a 6 -cycle and Claim 4 is proved.

By Claim 3, $G[S \cap T]$ and $G[S \backslash T]$ are isomorphic to $K_{3,3}$ or $K_{2,2}$. Noting $E\left(G\left[R_{3}\right]\right)=\emptyset$, we have by Claim 4 that $G[S]$ is isomorphic to G_{2}, G_{3}, G_{4} or G_{5} in Figure 1.

Claim 5. Each vertex in G is contained in exactly two distinct λ_{7}-atoms of G.
By the vertex-transitivity of G, it only needs to show that $S^{\prime}=S$ or $S^{\prime}=T$ for a λ_{7}-atom S^{\prime} of G with $S^{\prime} \cap S \cap T \neq \emptyset$. Suppose $S^{\prime} \neq S$ and $S^{\prime} \neq T$. From Figure 1, we can see that S has no subset A different from $S \cap T$ and $S \backslash T$ such that $G[A]$ is isomorphic to $K_{3,3}$. Hence it follows from Claim 3 that $S^{\prime} \cap S=S \cap T=S^{\prime} \cap T$. Then $12=d_{G}(S \cap T) \geqslant d_{G[S]}(S \cap T)+d_{G[T]}(S \cap T)+d_{G\left[S^{\prime}\right]}(S \cap T)=18$, a contradiction. So Claim 5 holds.

Suppose $|S|=10$. Then $G[S]$ is isomorphic to G_{2}. By Claims 3 and 5 , there is a λ_{7}-atom $S^{\prime \prime}$ of G such that $S^{\prime \prime} \cap S=S \backslash T$. Choose a vertex $u_{3} \in S \backslash T$ and a vertex $u_{4} \in S \cap T$. Noting that $G[S \backslash T]$ is not isomorphic to $G[S \cap T]$, we know by Claim 5 that there is no automorphism φ of G such that $\varphi\left(u_{3}\right)=u_{4}$, a contradiction.

Suppose next $|S|=12$. Then $G[S]$ is isomorphic to G_{3}, G_{4} or G_{5}. Let V_{1}, V_{2}, \ldots, V_{m} be all subsets of $V(G)$ which induce subgraphs of G isomorphic to $K_{3,3}$. Noting that $G[S \cap T]$ and $G[S \backslash T]$ are isomorphic to $K_{3,3}$, we can obtain by Claims 3 and 5 that $V_{1}, V_{2}, \ldots, V_{m}$ form a partition of $V(G)$ and for each V_{i} there are exactly two elements $j_{1}, j_{2} \in\{1,2, \ldots, m\} \backslash\{i\}$ such that $G\left[V_{i} \cup V_{j_{1}}\right]$ and $G\left[V_{i} \cup V_{j_{2}}\right]$ are isomorphic to $G[S]$. We denote $V_{i} \sim V_{j}$ if $G\left[V_{i} \cup V_{j}\right]$ is isomorphic to $G[S]$, and assume $V_{1} \sim V_{2} \sim \cdots \sim V_{m} \sim V_{1}$. If $G[S]$ is isomorphic to G_{3}, then it is easy to verify that G is bipartite, a contradiction. Thus $G[S]$ is isomorphic to G_{4} or G_{5}.

Assume that there is some $V_{q} \subseteq \overline{V(H)}$. If $G[S]$ is isomorphic to G_{4}, then $\left|V_{q} \cap X\right|=3$ and $N_{G}\left(V_{q} \backslash X\right) \cap V_{q-1} \subseteq X$, which implies $|E(X)| \geqslant\left|E\left(V_{q-1}\right) \cap E(X)\right| \geqslant 2$, a contradiction. Thus $G[S]$ is isomorphic to G_{5}. Let V_{j} be chosen such that $V_{j} \cap V(H) \neq \emptyset$ and $|j-q|$ is as small as possible. Then $\left|V_{j} \cap X\right|=3$ and $|N(u) \cap X| \geqslant 4$ for each $u \in V_{j} \cap V(H)$, which contradicts that $\delta(H) \geqslant 2$.

We now assume that $V_{i} \cap V(H) \neq \emptyset$ for $1 \leqslant i \leqslant m$. Then $\left|V_{i} \cap X\right|>\left|V_{i} \backslash(V(H) \cup X)\right|$ if $V_{i} \cap X \neq \emptyset$. Choose some $V_{q^{\prime}}$ which contains vertices in $V(G) \backslash(V(H) \cup X)$. Then $V_{q^{\prime}-1} \cap X \neq \emptyset$ and $V_{q^{\prime}+1} \cap X \neq \emptyset$. Noting $c_{0}(G-X)=|X|-2$, we can obtain that for each $i \in[m],\left|V_{i} \cap X\right|=\left|V_{i} \backslash(V(H) \cup X)\right|+1$ if $i \in\left\{q^{\prime}-1, q^{\prime}, q^{\prime}+1\right\}$ and $\left|V_{i} \cap X\right|=\emptyset$ otherwise. Then $\left|V_{q^{\prime}} \backslash(V(H) \cup X)\right|=2$. Hence $\left.\left.\mid V_{q^{\prime}-1} \cap X\right)|=| V_{q^{\prime}+1} \cap X\right) \mid=3$. Now we have $V_{q^{\prime}-1} \sim V_{q^{\prime}} \sim V_{q^{\prime}+1} \sim V_{q^{\prime}-1}$, which implies $V(G)=V_{q^{\prime}-1} \cup V_{q^{\prime}} \cup V_{q^{\prime}+1}$ and $|V(H)|=3$. It follows that $g(G)=3$, a contradiction.

Lemma 25. Suppose $k=5, \lambda_{5}(G)=\lambda_{6}(G)=13$ and $g(G)>3$. For a λ_{6}-atom S of G, we have $|S| \geqslant 11$.

Proof. To the contrary, suppose $|S|<11$. As $13=d(S)=5|S|-2|E(S)|,|S|$ is odd. Then $|S| \geqslant 7$. By Lemma $20(\mathrm{~b}), \delta(G[S]) \geqslant 3$. By Lemma 23, we have $p=1,|X| \geqslant 7$ and $|V(H)| \geqslant 9$. Hence $|V(G)| \geqslant 20$.

Assume $|S|=7$. Then $|E(S)|=\frac{1}{2}(5|S|-13)=11$. If $G[S]$ is bipartite, then $|E(S)| \geqslant \frac{1}{2}(|S|+1) \delta(G[S]) \geqslant 12$, a contradiction. Thus $G[S]$ is non-bipartite. Let C be a shortest cycle of odd length in $G[S]$. Then $5 \leqslant|V(C)| \leqslant 7$. Noting that $\left|N_{G[S]}(u) \cap V(C)\right| \leqslant 2$ for each $u \in S \backslash V(C)$, we have $|E(S)| \leqslant 10$, a contradiction.

So $|S|=9$. Let R_{i} be the set of vertices u in S with $d_{G[S]}(u)=i$ for $3 \leqslant i \leqslant 5$.
Claim 1. For any automorphism φ of G with $\varphi\left(R_{4} \cup R_{5}\right) \cap\left(R_{4} \cup R_{5}\right) \neq \emptyset$, either $\varphi(S)=S$ or $G[S \cap \varphi(S)]$ is isomorphic to $K_{2,3}$.

Suppose $\varphi(S) \neq S$. By Lemma 20(c), $|S \cap \varphi(S)| \leqslant 5,|S \backslash \varphi(S)| \leqslant 5$ and $d(S \cap \varphi(S))+$ $d(S \cup \varphi(S)) \leqslant 2 \lambda_{6}(G)$. Then $4 \leqslant|S \cap \varphi(S)| \leqslant 5$ and $|S \cup \varphi(S)|=|S|+|\varphi(S)|-\mid S \cap$ $\varphi(S) \mid \leqslant 14$. As $|V(G)| \geqslant 20$, we have $d(S \cup \varphi(S)) \geqslant \lambda_{6}(G)$ by Lemma 20(a). Hence $d(S \cap \varphi(S)) \leqslant \lambda_{6}(G)=13$. This, together with the fact that $\left|N_{G[\varphi(S)]}(u) \cap N_{G[S]}(u)\right| \geqslant 3$ for each $u \in \varphi\left(R_{4} \cup R_{5}\right) \cap\left(R_{4} \cup R_{5}\right)$, implies that $G[S \cap \varphi(S)]$ is isomorphic to $K_{2,3}$. So Claim 1 holds.

By Claim 1, it follows that G has no automorphism φ such that $\varphi\left(R_{4}\right) \cap R_{5} \neq \emptyset$. It implies $R_{4}=\emptyset$ or $R_{5}=\emptyset$. Noting $\sum_{i=3}^{5} i\left|R_{i}\right|=2|E(S)|=32$ and $\sum_{i=3}^{5}\left|R_{i}\right|=|S|=9$, we have $\left|R_{3}\right|=4,\left|R_{4}\right|=5$ and $R_{5}=\emptyset$. By Lemma $20(\mathrm{~b}), E\left(R_{3}\right)=\emptyset$. Hence $\left|E\left(R_{4}\right)\right|=4$.

As $g(G[S]) \geqslant g(G)>3$, it is easy to verify that either $G\left[R_{4}\right]$ has a 4-cycle or $G\left[R_{4}\right]$ is isomorphic to $K_{1,4}$. Let u_{1} and u_{2} be two vertices in R_{4} with $d_{G\left[R_{4}\right]}\left(u_{1}\right)<d_{G\left[R_{4}\right]}\left(u_{2}\right)$. Since G is vertex-transitive, there is an automorphism ψ of G such that $\psi\left(u_{2}\right)=u_{1}$. By Claim $1, G[\psi(S) \cap S]$ is isomorphic to $K_{2,3}$. As $u_{1}, u_{2} \in R_{4}$, we know $d_{G[\psi(S) \cap S]}\left(u_{1}\right)=3$. Notice that $\left|N_{G[S]}(u) \cap N_{G[S]}\left(u_{1}\right)\right| \leqslant 2$ for each $u \in S \backslash\left\{u_{1}\right\}$ if $G\left[R_{4}\right]$ has a 4-cycle. It follows that $G\left[R_{4}\right]$ is isomorphic to $K_{1,4}$. Since $d_{G[\psi(S) \cap S]}(v)=2$ for each $v \in N_{G[\psi(S) \cap S]}\left(u_{1}\right)$, it follows that $N_{G[\psi(S) \cap S]}\left(u_{1}\right) \subseteq R_{3}$. It implies that the vertex in $R_{3} \backslash N_{G[S]}\left(u_{1}\right)$ has only two neighbors in S, which contradicts $\delta(G[S]) \geqslant 3$.

Lemma 26. Suppose $k=5, \lambda_{6}(G)=\lambda_{7}(G)=14$ and $g(G)>3$. For a λ_{7}-atom S of G, we have $|S| \geqslant 14$.

Proof. By Lemma 23, we have $p=1,|X| \geqslant 10$ and $|V(H)| \geqslant 15$. Hence $|V(G)| \geqslant 32$. For $1 \leqslant i \leqslant 5$, let O_{i} be the set of vertices u in G with $|\nabla(u) \cap(V(H))|=i$, and set $m_{i}=\left|O_{i} \cap X\right|$ and $n_{i}=\left|O_{i} \cap V(H)\right|$. By Lemma 20(a), $d_{G}(V(H) \cup A) \geqslant \lambda_{6}(G)$ and $d_{G}(V(H) \backslash A) \geqslant \lambda_{6}(G)$ for each subset A of $V(G)$ with $|A| \leqslant 2$. This, together with the fact that $d_{G}(H)$ is odd, implies that $d_{G}(H)=15, O_{4} \cup O_{5}=\emptyset, m_{3} \leqslant 1$ and $n_{3} \leqslant 1$. Hence $E(X)=\emptyset$. Then $g_{0}(G) \geqslant 9$ by Lemma 17 .

Suppose $|S|<14$. As $5|S|-2|E(G[S])|=14,|S|$ is an even integer with $8 \leqslant|S| \leqslant 12$. By Lemma $20(\mathrm{~b}), \delta(G[S]) \geqslant 3$. As $g_{0}(G) \geqslant 9$, it follows that $G[S]$ is bipartite. By Lemma 20(a), $d_{G}(S \cup\{u\}) \geqslant \lambda_{6}(G)$ for each $u \in \bar{S}$ and $d_{G}(A) \geqslant \lambda_{6}(G)$ for each subset $A \subseteq V(G)$ with $|A|=6$. Hence $\left|N_{G}(u) \cap S\right| \leqslant 2$ for each $u \in \bar{S}$ and G has no subgraphs which are isomorphic to $K_{3,3}$.

Claim 1. For any two distinct λ_{7}-atoms S_{1} and S_{2} of G with $S_{1} \cap S_{2} \neq \emptyset$, we have $d_{G}\left(S_{1} \cap S_{2}\right) \leqslant 14$ and furthermore, $G\left[S_{1} \cap S_{2}\right]$ and $G\left[S_{1} \backslash S_{2}\right]$ are isomorphic to $K_{2,4}$ or $K_{3,3}-e$ if $|S|=12$, where $K_{3,3}-e$ is a subgraph of $K_{3,3}$ obtained by deleting an edge e from $K_{3,3}$.

By Lemma 20(c), we have $\left|S_{1} \cap S_{2}\right| \leqslant 6,\left|S_{1} \backslash S_{2}\right| \leqslant 6, d_{G}\left(S_{1} \cap S_{2}\right)+d_{G}\left(S_{1} \cup S_{2}\right) \leqslant 2 \lambda_{7}(G)$ and $d_{G}\left(S_{1} \backslash S_{2}\right)+d_{G}\left(S_{2} \backslash S_{1}\right) \leqslant 2 \lambda_{7}(G)$. Noting $|V(G)| \geqslant 32$, we have $d_{G}\left(S_{1} \cup S_{2}\right) \geqslant \lambda_{7}(G)$ by Lemma 20(a). Hence $d_{G}\left(S_{1} \cap S_{2}\right) \leqslant \lambda_{7}(G)=14$. Next assume $|S|=12$. Then $\left|S_{1} \cap S_{2}\right|=\left|S_{1} \backslash S_{2}\right|=6$. By Lemma 20(a), each of $d_{G}\left(S_{1} \cap S_{2}\right), d_{G}\left(S_{1} \backslash S_{2}\right)$ and $d_{G}\left(S_{2} \backslash S_{1}\right)$ is not less than $\lambda_{6}(G)$. Hence $d_{G}\left(S_{1} \cap S_{2}\right)=d_{G}\left(S_{1} \backslash S_{2}\right)=14$. It implies that $G\left[S_{1} \cap S_{2}\right]$ and $G\left[S_{1} \backslash S_{2}\right]$ are isomorphic to $K_{2,4}$ or $K_{3,3}-e$. So Claim 1 holds.

Figure 2. The illustration in the proof of Lemma 26.

Case 1. $|S|=8$.

As $G[S]$ is a bipartite graph with $|E(S)|=13$ and $\delta(G[S]) \geqslant 3, G[S]$ is isomorphic to G_{6} in Figure 2. Let v_{1}, v_{2} be the two vertices in S with $d_{G[S]}\left(v_{1}\right)=d_{G[S]}\left(v_{2}\right)=4$ and choose a vertex $v_{3} \in N_{G[S]}\left(v_{1}\right) \backslash\left\{v_{2}\right\}$.

We claim that each edge in G is contained in a 4-cycle of G. Otherwise, suppose that G has an edge contained in no 4 -cycles of G. Since G is vertex-transitive, each vertex in G is incident with an edge contained in no 4 -cycles of G and there is an automorphism φ_{1} of G such that $\varphi_{1}\left(v_{3}\right)=v_{2}$. Clearly, $\varphi_{1}(S) \neq S$. Noting that each edge in $G[S]$ is contained in a 4 -cycle of $G[S]$, we have $d_{G\left[\varphi_{1}(S) \cup S\right]}(u) \leqslant 4$ for each $u \in \varphi_{1}(S) \cup S$. Then $\varphi_{1}\left(N_{G[S]}\left(v_{3}\right) \subseteq N_{G[S]}\left(v_{2}\right)\right.$ and $N_{G[S]}\left(\varphi_{1}\left(v_{1}\right)\right) \subseteq \varphi_{1}\left(N_{G[S]}\left(v_{1}\right)\right)$. Noting that $\left|\varphi_{1}(S) \cap S\right| \leqslant 6$ by Lemma 20 (c) and $d_{G}\left(\varphi_{1}(S) \cap S\right) \leqslant 14$ by Claim $1, G\left[S \cap \varphi_{1}(S)\right]$ is isomorphic to $K_{3,3}-e$. As $d_{G}\left(S \cup \varphi_{1}(S)\right) \geqslant \lambda_{6}(G)=14$ by Lemma 20(a), it follows that $G\left[S \cup \varphi_{1}(S)\right]$ is isomorphic to G_{7} in Figure 2, where the graph in the virtual box corresponds to $G\left[S \cap \varphi_{1}(S)\right]$. Choose a vertex $v_{4} \in S \cap \varphi_{1}(S)$ with $d_{G\left[S \cap \varphi_{1}(S)\right]}\left(v_{4}\right)=2$. Let φ_{2} be an automorphism of G such that $\varphi_{2}\left(v_{1}\right)=v_{4}$. Then $\varphi_{2}\left(N_{G[S]}\left(v_{1}\right)\right)=N_{G\left[S \cup \varphi_{1}(S)\right]}\left(v_{4}\right)$ and $\varphi_{2}\left(N_{G[S]}\left(v_{2}\right)\right) \backslash\left(S \cup \varphi_{1}(S)\right) \neq \emptyset$. Then $d_{G}\left(S \cup \varphi_{2}(S) \cup \varphi_{2}\left(N_{G[S]}\left(v_{2}\right)\right)\right)<14=\lambda_{6}(G)$, contradicting Lemma 20(a). So this claim holds.

For each $u v \in \nabla(H)$, noting that $u v$ is contained in a 4 -cycle of G by the previous claim, we have $|\nabla(u) \cap \nabla(H)|+|\nabla(v) \cap \nabla(H)| \geqslant 3$. For each $u \in O_{2} \cup O_{3}$, there is an automorphism φ_{3} of G such that $\varphi_{3}\left(v_{1}\right)=u$, which implies that there is a vertex $v \in \varphi_{3}\left(N_{G[S]}\left(v_{1}\right)\right)$ such that $u v \in \nabla(H)$ and $|\nabla(v) \cap \nabla(H)|=3$. Hence $m_{1} \leqslant n_{2}+2 n_{3}$, $m_{2} \leqslant 3 n_{3}$ and $n_{2} \leqslant 3 m_{3}$. Noting $m_{3} \leqslant 1$ and $n_{3} \leqslant 1$, we have $15=\sum_{i=1}^{3} i m_{i} \leqslant$ $n_{2}+2 n_{3}+6 n_{3}+3 m_{3} \leqslant 6 m_{3}+8 n_{3} \leqslant 14$, a contradiction.

Case 2. $|S|=10$ or 12 .
Let R_{i} be the set of vertices u in S with $d_{G[S]}(u)=i$ for $3 \leqslant i \leqslant 5$. Then $E\left(R_{3}\right)=\emptyset$ by Lemma 20 (b). Let Z and W be the bipartition of $G[S]$ such that $|Z| \leqslant|W|$. Noting $\frac{1}{2}(5|S|-14)=|E(S)| \geqslant \delta(G[S])|W| \geqslant 3|W|$, we have $|W|<\frac{1}{2}|S|+2$.

Claim 2. If $R_{5} \neq \emptyset$, then, for each $v \in R_{4}$, there is exactly one vertex w in $S \backslash\{v\}$ with $N_{G[S]}(v) \subseteq N_{G[S]}(w)$.

Suppose $R_{5} \neq \emptyset$. Choose a vertex $u \in R_{5}$ and a vertex $v \in R_{4}$. Let φ_{4} be an automorphism of G such that $\varphi_{4}(u)=v$. Then $N_{G[S]}(v) \subseteq \varphi_{4}\left(N_{G[S]}(u)\right)$. Noting that $\left|S \cap \varphi_{4}(S)\right| \leqslant 6$ by Lemma 20(c) and $d_{G}\left(S \cap \varphi_{4}(S)\right) \leqslant 14$ by Claim 1, we have that $G\left[S \cap \varphi_{4}(S)\right]$ is isomorphic to $K_{2,4}$. It implies that S has a vertex w different from v with $N_{G[S]}(v) \subseteq N_{G[S]}(w)$. As G has no subgraphs isomorphic to $K_{3,3}$, such vertex w is unique. So Claim 2 holds.

Claim 3. $|W|=|Z|$ and $R_{5}=\emptyset$.
Suppose, to the contrary, that $|W|>|Z|$, or $|W|=|Z|$ and $R_{5} \neq \emptyset$. As $E\left(R_{3}\right)=\emptyset$, it follows that $|W|=6$ if $|S|=10$.

Assume $|W|=|Z|+2=7$. Noting $|E(S)|=23$, there is a vertex $v_{5} \in\left(R_{4} \cup R_{5}\right) \cap W$ and a vertex $v_{6} \in R_{5} \cap Z$. Let φ_{5} be an automorphism of G such that $\varphi_{5}\left(v_{5}\right)=v_{6}$. Then $\varphi_{5}(S) \neq S$ and $\varphi_{5}\left(N_{G[S]}\left(v_{5}\right)\right) \subseteq N_{G[S]}\left(v_{6}\right)$. Hence $G\left[S \cap \varphi_{5}(S)\right]$ is isomorphic to $K_{2,4}$ by Claim 1. It implies $\left|\varphi_{5}(W) \backslash S\right|=5$, contradicting that $G\left[\varphi_{5}(S) \backslash S\right]$ is isomorphic to $K_{2,4}$
or $K_{3,3}-e$ by Claim 1 .
Assume $|W|=6$. If $|S|=10$, we know $\left|R_{4} \cap Z\right|=\left|R_{5} \cap Z\right|=2$ as $E\left(R_{3}\right)=\emptyset$ and $|E(S)|=18$. If $|S|=12$, we know either $\left|R_{5} \cap Z\right|=2=\left|R_{4} \cap Z\right|+1$ or $\left|R_{5} \cap Z\right|=1=$ $\left|R_{4} \cap Z\right|-2$ as $|E(S)|=23$. It follows from Claim 2 that there is a vertex $v_{7} \in R_{4} \cap Z$ and a vertex $v_{8} \in\left(R_{4} \cup R_{5}\right) \backslash\left\{v_{7}\right\}$ such that $N_{G[S]}\left(v_{7}\right) \subseteq N_{G[S]}\left(v_{8}\right)$ and $\left(R_{5} \cap Z\right) \backslash\left\{v_{8}\right\} \neq \emptyset$. It implies that $G[S]$ has a subgraph which is isomorphic to $K_{3,3}$, a contradiction. So Claim 3 holds.

Subcase 2.1. $|S|=10$.
Noting $E\left(R_{3}\right)=\emptyset$, we have by Claim 3 that $G[S]$ is isomorphic to G_{8} in Figure 2. We label $G[S]$ as in G_{8} and assume $x_{1} \in Z$ and $y_{1} \in W$.

Claim 4. $\left|N_{G}(u) \cap N_{G}(v)\right| \leqslant 3$ for any two distinct vertices u and v in G.
Suppose that there are two distinct vertices u and v in G with $\left|N_{G}(u) \cap N_{G}(v)\right| \geqslant 4$. Notice that $\left|N_{G}(u) \cap S\right| \leqslant 2$ for each $u \in \bar{S}$. By the vertex-transitivity of G, for each $y_{i} \in\left\{y_{1}, y_{2}, y_{3}\right\}$ there is a vertex $y_{j} \in\left\{y_{1}, y_{2}, y_{3}\right\} \backslash\left\{y_{i}\right\}$ such that $\left|N_{G}\left(y_{i}\right) \cap N_{G}\left(y_{j}\right)\right| \geqslant 4$. It follows that there is a vertex $w \in \bar{S}$ such that $\left\{y_{1}, y_{2}, y_{3}\right\} \subseteq N_{G}(w)$, a contradiction. So Claim 4 holds.

Let φ_{6} be an automorphism of G such that $\varphi_{6}\left(y_{5}\right)=y_{1}$. Then $\varphi_{6}(S) \neq S$ and $\left|\varphi_{6}\left(N_{G[S]}\left(y_{5}\right)\right) \cap N_{G[S]}\left(y_{1}\right)\right| \geqslant 2$. Then $\left|\varphi_{6}(S) \cap S\right| \leqslant 6$ by Lemma 20(c) and $d_{G}\left(\varphi_{6}(S) \cap\right.$ $S) \leqslant 14$ by Claim 1. By Claim $4, G[S]$ has no subgraphs isomorphic to $K_{2,4}$. It follows that $\left|\varphi_{6}(S) \cap W\right| \leqslant 3$ and $\left|\varphi_{6}(S) \cap Z\right| \leqslant 3$.

Assume that $\varphi_{6}\left(N_{G[S]}\left(y_{5}\right)\right) \cap\left\{x_{1}, x_{2}\right\} \neq \emptyset$ and $\varphi_{6}\left(N_{G[S]}\left(y_{5}\right)\right) \cap\left\{x_{4}, x_{5}\right\} \neq \emptyset$. Then $\left|N_{G\left[\varphi_{6}(S)\right]}(u) \cap N_{G[S]}(u)\right|=3$ for each $u \in \varphi_{6}\left(N_{G[S]}\left(y_{5}\right)\right) \cap\left\{x_{1}, x_{2}\right\}$ and $\mid N_{G\left[\varphi_{6}(S)\right]}(v) \cap$ $N_{G[S]}(v) \mid \geqslant 2$ for each $v \in \varphi_{6}\left(N_{G[S]}\left(y_{5}\right)\right) \cap\left\{x_{4}, x_{5}\right\}$. It follows that $\left|\varphi_{6}(S) \cap W\right|=3$ and $\left|\varphi_{6}(S) \cap\left\{y_{4}, y_{5}\right\}\right|=1$. Noting $2 \leqslant\left|\varphi_{6}(S) \cap Z\right| \leqslant 3$, we can see $d_{G}\left(\varphi_{6}(S) \cap S\right)>14$, a contradiction.

Assume $\varphi_{6}\left(N_{G[S]}\left(y_{5}\right)\right) \cap N_{G[S]}\left(y_{1}\right)=\left\{x_{4}, x_{5}\right\}$. Then $\varphi_{6}\left(y_{4}\right) \in\left\{y_{2}, y_{3}\right\} \cup \bar{S}$, which implies that $\left|N_{G}\left(y_{1}\right) \cap N_{G}\left(\varphi_{6}\left(y_{4}\right)\right)\right| \geqslant 4$ or $\left|N_{G}\left(x_{4}\right) \cap N_{G}\left(x_{5}\right)\right| \geqslant 4$. It contradicts Claim 4.

Thus $\varphi_{6}\left(N_{G[S]}\left(y_{5}\right)\right) \cap N_{G[S]}\left(y_{1}\right)=\left\{x_{1}, x_{2}\right\}$. By Claim 4, we have $\varphi_{6}\left(y_{4}\right) \in\left\{y_{4}, y_{5}\right\}$ and $\varphi_{6}\left(\left\{y_{1}, y_{2}, y_{3}\right\}\right) \cap W=\left\{y_{4}, y_{5}\right\} \backslash \varphi_{6}\left(y_{4}\right)$. Then $\left\{\varphi_{6}\left(x_{4}\right), \varphi_{6}\left(x_{5}\right)\right\} \subseteq \bar{S}$. Assume $\varphi_{6}\left(y_{4}\right)=$ y_{4}. Set $\left\{y_{6}, y_{7}\right\}=\varphi_{6}\left(\left\{y_{1}, y_{2}, y_{3}\right\}\right) \backslash W,\left\{x_{6}\right\}=\varphi_{6}\left(N_{G[S]}\left(y_{5}\right)\right) \backslash N_{G[S]}\left(y_{1}\right)$ and $\left\{x_{7}, x_{8}\right\}=$ $\left\{\varphi_{6}\left(x_{4}\right), \varphi_{6}\left(x_{5}\right)\right\}$. Then the graph G_{9} showed in Figure 2 is a subgraph of G.

We can see that each edge incident with x_{1} is contained in a 4 -cycle of G. Then, by the vertex-transitivity of G, each edge $u v \in \nabla(H)$ is contained in a 4-cycle of G, which implies $|\nabla(u) \cap \nabla(H)| \geqslant 2$ or $|\nabla(v) \cap \nabla(H)| \geqslant 2$. Hence there is a vertex $u^{\prime} \in G$ with $2 \leqslant\left|\nabla\left(u^{\prime}\right) \cap \nabla(H)\right| \leqslant 3$. Let φ_{7} be an automorphism of G such that $\varphi_{7}\left(y_{4}\right)=u^{\prime}$. It is easy to verify that either $\varphi_{7}\left(N_{G\left[\varphi_{6}(S) \cup S\right]}\left(y_{4}\right)\right)$ has a vertex u with $|\nabla(u) \cap \nabla(H)| \geqslant 4$ or it has two vertices v^{\prime} and $v^{\prime \prime}$ with $\left\{u^{\prime} v^{\prime}, u^{\prime} v^{\prime \prime}\right\} \subseteq \nabla(H)$ and $\left|\nabla\left(v^{\prime}\right) \cap \nabla(H)\right|=\left|\nabla\left(v^{\prime \prime}\right) \cap \nabla(H)\right|=3$, contradicting the fact that $O_{4} \cup O_{5}=\emptyset, m_{3} \leqslant 1$ and $n_{3} \leqslant 1$.

Subcase 2.2. $|S|=12$.
As $|E(G[S])|=23, G[S]$ is not regular. Let φ_{8} be an automorphism of G such that $\varphi_{8}(S) \neq S$ and $\varphi_{8}(S) \cap S \neq \emptyset$. Set $T=\varphi_{8}(S)$. It follows from Claims 1 and 3 that
$d_{G[S \cup T]}(u)=5$ for each $u \in S \cap T$, each of $G[S \backslash T], G[S \cap T]$ and $G[T \backslash S]$ is isomorphic to $K_{3,3}-e$ and $d_{G[S]}(v)=d_{G[T]}(v)=4$ for each $v \in S \cap T$ with $d_{G[S \cap T]}(v)=3$.

Let v_{9} and v_{10} be two vertices in $W \cap T$ with $d_{G[S \cap T]}\left(v_{9}\right)=3=d_{G[S \cap T]}\left(v_{10}\right)+1$. We know either $d_{G[S]}\left(v_{10}\right)=4$ or $d_{G[T]}\left(v_{10}\right)=4$ and assume, without loss of generality, that $d_{G[S]}\left(v_{10}\right)=4$. Let φ_{9} be an automorphism of G such that $\varphi_{9}\left(v_{9}\right)=v_{10}$. Let Q be one of $\varphi_{9}(S)$ and $\varphi_{9}(T)$ such that $Q \neq S$. Since $d_{G[Q]}\left(v_{10}\right)=4$, we know $Q \neq T$. By Claims 1 and 3, each of $G[Q \cap S], G[Q \backslash S], G[Q \cap T]$ and $G[Q \backslash T]$ is isomorphic to $K_{3,3}-e$. Noting $d_{G[S]}\left(v_{10}\right)=d_{G[Q]}\left(v_{10}\right)=4$, we have $\left|N_{G[Q]}\left(v_{10}\right) \cap S\right|=3$, which implies $2 \leqslant|Q \cap S \cap T| \leqslant 5$.

Assume $2 \leqslant|Q \cap S \cap T| \leqslant 3$. Noting that $G[Q \cap T]$ is isomorphic to $K_{3,3}-e$, we have $d_{G[Q \cap T]}(Q \cap S \cap T)>|Q \cap S \cap T| \geqslant d_{G[T]}(Q \cap S \cap T)$, a contradiction.

Assume $4 \leqslant|Q \cap S \cap T| \leqslant 5$. Then $\left|N_{G[Q]}\left(v_{10}\right) \cap S \cap T\right|=2$. If $E(Q \cap S \cap \bar{T})=\emptyset$, then $d_{G[Q \cap S]}(Q \cap S \cap \bar{T})+d_{G[Q \backslash T]}(Q \cap S \cap \bar{T}) \geqslant 4|Q \cap S \cap \bar{T}|>|[Q \cap S \cap \bar{T}, \bar{S} \cup T]|$, a contradiction. Thus $|Q \cap S \cap \bar{T}|=2$ and $|E(Q \cap S \cap \bar{T})|=1$. Then $d_{G[Q \cap S]}(Q \cap S \cap \bar{T})+d_{G[Q \backslash T]}(Q \cap S \cap \bar{T}) \geqslant$ $3+3>5 \geqslant|[Q \cap S \cap \bar{T}, \bar{S} \cup T]|$, a contradiction.

Lemma 27. Suppose $k=5, \lambda_{6}(G) \geqslant 14, \lambda_{8}(G)=15$ and $g(G)>3$. For a λ_{8}-atom S of G, we have $|S| \geqslant 15$.

Proof. By Lemma 23, we have $p=1,|X| \geqslant 10$ and $|V(H)| \geqslant 15$. By Lemma 20(a), $d_{G}(A) \geqslant \lambda_{6}(G) \geqslant 14, d_{G}(V(H) \cup B) \geqslant \lambda_{8}(G)$ and $d_{G}(V(H) \backslash B) \geqslant \lambda_{8}(G)$ for any two subsets A and B of $V(G)$ with $|A|=6$ and $|B| \leqslant 1$. It implies that G has no subgraphs isomorphic to $K_{3,3}, d_{G}(H)=15$ and $|\nabla(u) \cap \nabla(H)| \leqslant 2$ for each $u \in V(G)$. Hence $E(X)=\emptyset$ and there is an edge $u_{1} u_{2} \in \nabla(H)$ such that $N_{G}\left(u_{1}\right) \cap X=\left\{u_{2}\right\}$. By Lemma $17, g_{0}(G) \geqslant 9$.

Suppose $|S|<15$. As $g_{0}(G) \geqslant 9$ and $15=\lambda_{8}(G)=d_{G}(S)=5|S|-2|E(G[S])|$, it follows that $|S|$ is odd and $G[S]$ is bipartite. By Lemma $20(\mathrm{~b}), \delta(G[S]) \geqslant 3$. Let W and Z be the bipartition of $G[S]$ such that $|W|>|Z|$. We have $|W|=\frac{1}{2}(|S|+1)$ if $|S| \leqslant 11$, and $7 \leqslant|W| \leqslant 8$ if $|S|=13$.

Case 1. There is a vertex v_{1} in S with $d_{G[S]}\left(v_{1}\right)=5$.
Let R be one of W and Z such that $v_{1} \in R$. As $\delta(G[S]) \geqslant 3$ and $|E(S)|=\frac{1}{2}(5|S|-$ $2|E(G[S])|)$, it follows that $N_{G[S]}\left(N_{G[S]}\left(v_{1}\right)\right)=R$. Since G is vertex-transitive, there is an automorphism φ_{1} of G such that $\varphi_{1}\left(v_{1}\right)=u_{2}$. Then $\varphi_{1}(R) \subseteq X \cup V(H)$. Noting that $|\nabla(u) \cap \nabla(H)| \leqslant 2$ for each $u \in V(G)$, we have $\varphi_{1}(S \backslash R) \cap X=\emptyset$. Notice that G has no subgraphs isomorphic to $K_{3,3}$. We have $\left|\varphi_{1}(R) \cap X\right| \geqslant 4$ as $\left|N_{G}\left(u_{2}\right) \backslash V(H)\right| \geqslant 3$ and $\delta(G[S]) \geqslant 3$. Then $\left|\varphi_{1}(S) \cap V(H)\right| \leqslant 6$ as $|S| \leqslant 13$. It follows that $d_{G\left[\varphi_{1}(S)\right]}\left(u_{1}\right)=3$. Then $d_{G\left[\varphi_{1}(S)\right]}(v) \geqslant 4$ for each $v \in N_{G\left[\varphi_{1}(S)\right]}\left(u_{1}\right)$ by Lemma $20(\mathrm{~b})$. Now we know $|S|=13$, $\left|\varphi_{1}(R) \cap X\right|=4=\left|\varphi_{1}(R) \cap V(H)\right|+2$ and $\left|\varphi_{1}(S \backslash R) \cap V(H)\right|=4=\left|\varphi_{1}(S \backslash R) \backslash V(H)\right|+1$. Then $R=Z$ and $\left|N_{G}\left(u_{2}\right) \cap V(H)\right|=2$.

Noting that $|\nabla(u) \cap \nabla(H)| \leqslant 2$ for each $u \in V(G)$, we have $d_{G\left[\varphi_{1}(S)\right]}(u) \leqslant 4$ for each $u \in \varphi_{1}(W)$. Since $\delta(G[S]) \geqslant 3$ and G has no subgraphs isomorphic to $K_{3,3}$, two vertices in $\varphi_{1}(W) \backslash V(H)$ has exactly 3 neighbors in $\varphi_{1}(Z) \cap X$. So $d_{G\left[\varphi_{1}(S)\right]}(u)=4$ for each $u \in \varphi_{1}(W) \backslash N_{G}\left(u_{2}\right)$ as $|E(S)|=25$. Then there is a vertex $u_{3} \in \varphi_{1}(Z) \cap X$ such that $\varphi_{1}(W) \backslash N_{G}\left(u_{2}\right) \subseteq N_{G}\left(u_{3}\right)$.

Assume $\varphi_{1}(Z) \cap V(H)=\left\{u_{4}, u_{5}\right\}$. Let φ_{2} be an automorphism of G such that $\varphi_{2}\left(u_{4}\right)=$ u_{2}. Then $u_{1} \notin \varphi_{2}\left(N_{G\left[\varphi_{1}(S)\right]}\left(u_{4}\right)\right)$ and $\varphi_{2}\left(\left\{u_{2}, u_{3}, u_{5}\right\}\right) \subseteq X$, which implies $|\nabla(u) \cap \nabla(H)| \geqslant$ 3 for the vertex $u \in\left(N_{G}\left(u_{2}\right) \cap V(H)\right) \backslash\left\{u_{1}\right\}$, a contradiction.

Case 2. $d_{G[S]}(u) \leqslant 4$ for each $u \in S$.
If $|S|=13$, then, noting $|E(G[S])|=25$ and $5 \leqslant|Z| \leqslant 6$, we have that there is a vertex $u \in Z$ with $d_{G[S]}(u)=5$, a contradiction. Thus $|S| \leqslant 11$. There is a vertex $w \in W$ with $d_{G[S]}(w)=|W|-2$ such that $d_{G[S]}(u)=4$ for each $u \in N_{G[S]}(w)$. Choose a vertex $z \in N_{G[S]}(w)$.

We claim that the edge $u_{1} u_{2}$ is contained in a 4 -cycle of G. Suppose not. Since G is vertex-transitive, each vertex in G is incident with an edge contained in no 4-cycles of G and there is an automorphism φ_{3} of G such that $\varphi_{3}(w)=z$. We know $\varphi_{3}(S) \neq S$. Noting that $\left|N_{G[S]}(u) \cap N_{G[S]}(v)\right| \geqslant 2$ for every subset $\{u, v\} \subseteq Z$, each edge in $G[S]$ is contained in a 4-cycle of $G[S]$. Hence $\varphi_{3}\left(N_{G[S]}(w)\right) \subseteq N_{G[S]}(z)$ and $N_{G[S]}(u) \subseteq \varphi_{3}(S)$ for each $u \in \varphi_{3}\left(N_{G[S]}(w)\right)$. By Lemma 20(c), $\left|S \cap \varphi_{3}(S)\right| \leqslant 7$ and $d_{G}\left(S \cap \varphi_{3}(S)\right)+d_{G}\left(S \cup \varphi_{3}(S)\right) \leqslant$ $2 \lambda_{8}(G)$. If $|S|=11$, then $\left|S \cap \varphi_{3}(S)\right| \geqslant\left|\varphi_{3}\left(N_{G[S]}(w)\right) \cup N_{G[S]}(w)\right|=8$, a contradiction. Thus $|S|=9$. As $\delta(G[S]) \geqslant 3$, we have $Z=\bigcup_{u \in \varphi_{3}\left(N_{G[S]}(w)\right)} N_{G[S]}(u) \subseteq \varphi_{3}(S)$. Hence $\left|S \cap \varphi_{3}(S)\right|=7$ and $d_{G}\left(S \cap \varphi_{3}(S)\right)=17$. Noting that $d_{G}\left(S \cup \varphi_{3}(S)\right) \geqslant \lambda_{8}(G)$ by Lemma 20(a), we have $d_{G}\left(S \cap \varphi_{3}(S)\right)+d_{G}\left(S \cup \varphi_{3}(S)\right)>2 \lambda_{8}(G)$, a contradiction.

Thus $\left|N_{G}\left(u_{2}\right) \cap V(H)\right|=2$. Let φ_{4} be an automorphism of G such that $\varphi_{4}(z)=u_{2}$ if $|S|=9$, and $\varphi_{4}(w)=u_{2}$ if $|S|=11$. If $u_{1} \in \varphi_{4}(S)$, then $|Z| \geqslant d_{G\left[\varphi_{4}(S)\right]}\left(u_{1}\right)-$ $1+\left|N_{G\left[\varphi_{4}(S)\right]}\left(N_{G\left[\varphi_{4}(S)\right]}\left(u_{2}\right) \backslash V(H)\right)\right| \geqslant 2+3=5$ if $|S|=9$, and $|W| \geqslant 7$ if $|S|=11$, a contradiction. Thus $u_{1} \notin \varphi_{4}(S)$. Then $\varphi_{5}(Z) \subseteq X$ if $|S|=9$ and $\varphi_{5}(W) \subseteq X$ if $|S|=11$, which implies $|\nabla(u) \cap \nabla(H)| \geqslant 3$ for the vertex $u \in\left(N_{G}\left(u_{2}\right) \cap V(H)\right) \backslash\left\{u_{1}\right\}$, a contradiction.

Lemma 28. Suppose $k=6, \lambda_{5}(G)=16$ and $g(G)>3$. For a λ_{5}-atom S of G, we have $|S| \geqslant 9$.

Proof. To the contrary, suppose $|S| \leqslant 8$. As $\frac{1}{2}\left(6|S|-\lambda_{5}(G)\right)=|E(S)| \leqslant \frac{1}{4}|S|^{2}$ by Lemma 6 , we have $|S| \geqslant 8$. Hence $|S|=8$ and $G[S]$ is isomorphic to $K_{4,4}$.

By Lemma 23, $p=1$. Then $|X| \geqslant 7$ by Lemma 19. Noting that $d(H) \leqslant 18$ and H is triangle-free and factor-critical, we have $|V(H)| \geqslant 11$. Let O_{i} be the set of vertices u in G with $|\nabla(u) \cap \nabla(H)|=i$ for $4 \leqslant i \leqslant 6$. By Lemma 20(a), we have $d(V(H) \cup A) \geqslant \lambda_{5}(G)$ and $d(V(H) \backslash A) \geqslant \lambda_{5}(G)$ for each subset $A \subseteq V(G)$ with $|A| \leqslant 3$, which implies $d(H) \geqslant 16$, $O_{5} \cup O_{6}=\emptyset,\left|O_{4} \cap X\right| \leqslant 1$ and $\left|O_{4} \cap V(H)\right| \leqslant 1$.

Suppose that S is an imprimitive block of G. Then the orbits $S=S_{1}, S_{2}, \ldots, S_{m}$ of S under the automorphism group of G form a partition of $V(G)$. If $E\left(S_{i}\right) \cap E(X) \neq \emptyset$ for some S_{i}, then $d(H)=16$ and $\left|S_{i} \cap V(H)\right|=6$, which implies $d\left(V(H) \cup S_{i}\right) \leqslant 14<\lambda_{5}(G)$, a contradiction. Thus $E\left(S_{j}\right) \cap E(X)=\emptyset$ for each S_{j}. As $c_{0}(G-X)=|X|-2$, it follows that $\left|O_{4}\right| \geqslant 3$, which contradicts the fact that $\left|O_{4}\right|=\left|O_{4} \cap X\right|+\left|O_{4} \cap V(H)\right| \leqslant 2$.

Suppose next that S is not an imprimitive block of G. Then there is an automorphism φ_{1} of G such that $\varphi_{1}(S) \neq S$ and $\varphi_{1}(S) \cap S \neq \emptyset$. Set $T=\varphi_{1}(S)$. As G is 6 -regular, we have $\delta(G[S \cap T]) \geqslant 2$. By Lemma 20(c), $|S \cap T| \leqslant 4$. Hence $G[S \cap T]$ is a 4-cycle of G. Assume $S \cap T=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, where $N\left(v_{1}\right)=N\left(v_{2}\right)$ and $N\left(v_{3}\right)=N\left(v_{4}\right)$.

By the vertex-transitivity of G, for each $u \in V(G)$ there is a vertex u^{\prime} different from u such that $N\left(u^{\prime}\right)=N(u)$. Assume $E(X) \neq \emptyset$. Then $|E(X)|=1$ and let $u_{1} u_{2}$ be the edge in $E(X)$. We know that there is a vertex u_{1}^{\prime} in $V(H)$ with $N\left(u_{1}^{\prime}\right)=N\left(u_{1}\right)$, which implies $\left|N\left(u_{1}\right) \cap V(H)\right|=5$. Then $O_{5} \neq \emptyset$, a contradiction. Thus $E(X)=\emptyset$. As for each $u \in V(G)$ there is a vertex u^{\prime} different from u such that $N\left(u^{\prime}\right)=N(u)$, it follows that there is a vertex $u_{3} \in X$ with $2 \leqslant\left|N\left(u_{3}\right) \cap V(H)\right| \leqslant 4$. Let φ_{2} be an automorphism of G such that $\varphi_{2}\left(v_{1}\right)=u_{3}$. If $\varphi_{2}\left(\left\{v_{3}, v_{4}\right\}\right) \backslash V(H) \neq \emptyset$, then $N\left(u_{3}\right) \cap V(H)=\varphi_{2}\left(N\left(v_{1}\right)\right) \cap V(H) \subseteq$ $\bigcup_{i=4}^{6} O_{i}$. If $\varphi_{2}\left(\left\{v_{3}, v_{4}\right\}\right) \subseteq V(H)$, then $\varphi_{2}\left(\left\{v_{3}, v_{4}\right\}\right) \subseteq \bigcup_{i=4}^{6} O_{i}$. So $\left|\left(\bigcup_{i=4}^{6} O_{i}\right) \cap V(H)\right| \geqslant 2$, a contradiction.

Lemma 29. Suppose $k=6, \lambda_{5}(G)=\lambda_{8}(G)=18$ and $g(G)>3$. For a λ_{8}-atom S of G, we have $|S| \geqslant 15$.

Proof. To the contrary, suppose $8 \leqslant|S| \leqslant 14$. By Lemma 23, we have $p=1,|X| \geqslant 7$ and $|V(H)| \geqslant 9$. By Lemma 20(a), we have $d_{G}(V(H) \cup A) \geqslant \lambda_{5}(G)$ and $d_{G}(V(H) \backslash A) \geqslant \lambda_{5}(G)$ for each subset $A \subseteq V(G)$ with $|A| \leqslant 1$, which implies $d_{G}(H)=18$ and $|\nabla(u) \cap \nabla(H)| \leqslant 3$ for each $u \in V(G)$. Then $g_{0}(G) \geqslant 7$ by Lemma 17. It follows that $G[A]$ is bipartite for each subset $A \subseteq V(G)$ with $|A| \leqslant 13$ and $d_{G}(A)=18$. Hence $|V(H)| \geqslant 15$, and $G[S]$ is bipartite if $|S| \leqslant 13$. Then $|V(G)| \geqslant 26$.

Case 1. $|S|=8$.
By Lemma $20(\mathrm{a}), d_{G}(A) \geqslant \lambda_{5}(G)$ for every subset $A \subseteq V(G)$ with $7 \leqslant|A| \leqslant 8$, which implies $\delta(G[S]) \geqslant 3$ and G has no subgraphs isomorphic to $K_{4,4}$. As $|E(G[S])|=$ $\frac{1}{2}(6|S|-18)=15$ and $G[S]$ is bipartite, there is a vertex $u_{0} \in S$ with $d_{G[S]}\left(u_{0}\right)=3$ and $G\left[S \backslash\left\{u_{0}\right\}\right]$ is isomorphic to $K_{3,4}$.

Figure 3. The illustration in the proof of Lemma 29.

Claim 1. There are no two distinct vertices u and v in G with $N_{G}(u)=N_{G}(v)$.
Suppose that u_{1} and u_{2} are two distinct vertices in G with $N_{G}\left(u_{1}\right)=N_{G}\left(u_{2}\right)$. Let x, y and z be the three vertices in S which have 4 neighbors in $S \backslash\left\{u_{0}\right\}$. Noting that G has no subgraphs isomorphic to $K_{4,4}$, we have, by the definition of the vertex-transitivity of G, that for each vertex $u \in\{x, y, z\}$ there is a vertex $u^{\prime} \in\{x, y, z\} \backslash\{u\}$ such that $N_{G}(u)=N_{G}\left(u^{\prime}\right)$. It follows that $N_{G}(x)=N_{G}(y)=N_{G}(z)$. Then G is bipartite by Lemma 19, a contradiction. So Claim 1 holds.

Claim 2. G has no subgraphs isomorphic to $K_{3,5}$.
Suppose that u_{3}, u_{4} and u_{5} are three distinct vertices in G with $\mid N_{G}\left(u_{3}\right) \cap N_{G}\left(u_{4}\right) \cap$ $N_{G}\left(u_{5}\right) \mid=5$. By Claim 1 and the vertex-transitivity of G, it follows that for each $u \in$
$N_{G}\left(u_{3}\right) \cap N_{G}\left(u_{4}\right)$ there are two distinct vertices $u^{\prime}, u^{\prime \prime} \in\left(N_{G}\left(u_{3}\right) \cap N_{G}\left(u_{4}\right)\right) \backslash\{u\}$ such that $\left|N_{G}(u) \cap N_{G}\left(u^{\prime}\right) \cap N_{G}\left(u^{\prime \prime}\right)\right|=5$. It implies that there is a vertex $v \in V(G) \backslash\left(\left\{u_{3}, u_{4}, u_{5}\right\}\right)$ such that $\left|N_{G}(v) \cap N_{G}\left(u_{3}\right) \cap N_{G}\left(u_{4}\right)\right| \geqslant 4$. So G has a subgraph isomorphic to $K_{4,4}$, a contradiction. Claim 2 is proved.

Claim 3. G has no subgraphs isomorphic to G_{10} in Figure 3.
Suppose that G_{10} is a subgraph of G. Let φ_{1} be an automorphism of G such that $\varphi_{1}\left(a_{2}\right)=a_{1}$. Noting that $d_{G}\left(V\left(G_{10}\right) \cup A\right) \geqslant \lambda_{5}(G)$ for each subset $A \subseteq V(G)$ with $|A| \leqslant 1$ by Lemma 20(a), we have $G_{10}=G\left[V\left(G_{10}\right)\right]$ and $\left|N_{G}(u) \cap V\left(G_{10}\right)\right| \leqslant 3$ for each $u \in \overline{V\left(G_{10}\right)}$. We know $\varphi_{1}\left(a_{3}\right) \in\left\{a_{2}, a_{3}\right\}$ if $\left|\varphi_{1}\left(N_{G_{10}}\left(a_{2}\right)\right) \cap N_{G_{10}}\left(a_{1}\right)\right|=4$. Hence either each edge in $\nabla\left(a_{1}\right)$ or each edge in $\nabla\left(\varphi_{1}\left(a_{3}\right)\right)$ is contained in a 4 -cycle of G. By the vertex-transitivity of G, each edge in G is contained in a 4 -cycle of G. It follows that $|\nabla(u) \cap \nabla(H)|+|\nabla(v) \cap \nabla(H)| \geqslant 3$ for each edge $u v \in \nabla(H)$.

We claim that $|\nabla(u) \cap \nabla(H)| \leqslant 2$ for each $u \in V(G)$. Otherwise, noting that $\mid \nabla(u) \cap$ $\nabla(V(H)) \mid \leqslant 3$ for each $u \in V(G)$, we suppose that there is a vertex u_{6} in G with $\mid \nabla\left(u_{6}\right) \cap$ $\nabla(H) \mid=3$. Let φ_{2} be an automorphism of G such that $\varphi_{2}\left(b_{2}\right)=u_{6}$. By considering the definition of $\varphi_{2}\left(V\left(G_{10}\right)\right)$, we can obtain that there is a vertex $u \in \varphi_{2}\left(N_{G_{10}}\left(b_{2}\right)\right)$ with $|\nabla(u) \cap \nabla(H)| \geqslant 4$, a contradiction.

Thus there a vertex $u_{7} \in V(G)$ with $\left|\nabla\left(u_{7}\right) \cap \nabla(H)\right|=2$. Let φ_{3} be an automorphism of G such that $\varphi_{3}\left(a_{2}\right)=u_{7}$. Then there is a vertex $u \in \varphi_{3}\left(N_{G_{10}}\left(a_{2}\right)\right)$ with $|\nabla(u) \cap \nabla(H)| \geqslant 3$, a contradiction. So Claim 3 holds.

By Claim 2, it follows that $G[S]$ is isomorphic to G_{11} in Figure 3 and we label $G[S]$ as in G_{11}. Then $\left|N_{G}(u) \cap S\right| \leqslant 2$ for each $u \in \bar{S}$ by Claims 2 and 3. Let φ_{4} be an automorphism of G such that $\varphi_{4}\left(z_{1}\right)=z_{4}$. If $\varphi_{4}\left(N_{G[S]}\left(z_{1}\right)\right) \subseteq N_{G[S]}\left(z_{4}\right)$, then there is a vertex $u \in \varphi_{4}(S) \backslash S$ with $\left|N_{G}(u) \cap S\right| \geqslant 3$, a contradiction. Thus $\varphi_{4}\left(N_{G[S]}\left(z_{1}\right)\right) \backslash S \neq \emptyset$.

Assume $\varphi_{4}\left(N_{G[S]}\left(z_{1}\right)\right) \cap N_{G[S]}\left(z_{1}\right)=\left\{w_{i}, w_{j}\right\}$. As $\left|N_{G}(u) \cap S\right| \leqslant 2$ for each $u \in$ $\varphi_{4}\left(N_{G[S]}\left(z_{1}\right)\right) \backslash S$, it follows that $\left|\varphi_{4}\left(\left\{z_{2}, z_{3}, z_{4}\right\}\right) \backslash S\right|=2$. Then $N_{G}\left(w_{i}\right)=N_{G}\left(w_{j}\right)$, contradicting Claim 1.

Assume $\varphi_{4}\left(N_{G[S]}\left(z_{1}\right)\right) \cap N_{G[S]}\left(z_{1}\right)=\left\{w_{i^{\prime}}\right\}$. Then $\left|\varphi_{4}\left(\left\{z_{2}, z_{3}, z_{4}\right\}\right) \backslash S\right|=2$, which implies that each edge in $\nabla\left(w_{i^{\prime}}\right)$ is contained in a 4 -cycle of G. Then each edge in G is contained in a 4 -cycle of G by the vertex-transitivity of G. Thus there is a vertex $u_{8} \in V(G)$ with $2 \leqslant\left|\nabla\left(u_{8}\right) \cap \nabla(H)\right| \leqslant 3$. Let φ_{5} be an automorphism of G such that $\varphi_{5}\left(z_{4}\right)=u_{8}$. As $\left|N_{G}\left(w_{1}\right) \cap N_{G}\left(w_{2}\right) \cap N_{G}\left(w_{3}\right)\right|=4$ and $\left|N_{G}\left(\varphi_{4}\left(w_{1}\right)\right) \cap N_{G}\left(\varphi_{4}\left(w_{2}\right)\right) \cap N_{G}\left(\varphi_{4}\left(w_{3}\right)\right)\right|=4$, it follows that there is a vertex $u \in \varphi_{5}\left(N_{G\left[S \cup \varphi_{4}(S)\right]}\left(z_{4}\right)\right)$ with $|\nabla(u) \cap \nabla(H)| \geqslant 4$, a contradiction.

Thus $\varphi_{4}\left(N_{G[S]}\left(z_{1}\right)\right) \cap N_{G[S]}\left(z_{1}\right)=\emptyset$. By Claim 1, it follows that $\varphi_{4}\left(\left\{z_{2}, z_{3}, z_{4}\right\}\right)=$ $N_{G}\left(w_{4}\right) \backslash S$. Let φ_{6} be an automorphism of G such that $\varphi_{6}\left(z_{1}\right)=z_{3}$. Similarly, we have $\varphi_{6}\left(N_{G[S]}\left(z_{1}\right)\right) \cap N_{G[S]}\left(z_{1}\right)=\emptyset$ and $\varphi_{6}\left(\left\{z_{2}, z_{3}, z_{4}\right\}\right)=N_{G}\left(w_{4}\right) \backslash S$. It implies that $G\left[N_{G}\left(w_{4}\right) \cup \varphi_{4}\left(N_{G[S]}\left(z_{1}\right)\right) \cup \varphi_{6}\left(N_{G[S]}\left(z_{1}\right)\right)\right.$ has a subgraph isomorphic to $K_{3,5}$ or G_{10}, contradicting Claim 2 or Claim 3.

Case 2. $9 \leqslant|S| \leqslant 14$.
By Lemma 20(b), $\delta(G[S]) \geqslant 4$. If $|S|=9$, then $18=\frac{1}{2}\left(6|S|-\lambda_{8}(G)\right)=|E(S)| \geqslant$ $\frac{1}{2}(|S|+1) \delta(G[S]) \geqslant 20$, a contradiction. Thus $|S| \geqslant 10$. If $|S| \leqslant 13$, then let W and Z
be the bipartition of $G[S]$ with $|Z| \leqslant|W|$ and we have $|W|=|Z|+\frac{1}{2}\left(1-(-1)^{|S|}\right)$.
Subcase 2.1. $10 \leqslant|S| \leqslant 12$.
We claim that $d_{G[S]}(u) \leqslant 5$ for each $u \in S$. Otherwise, suppose that there is a vertex $v_{1} \in S$ with $d_{G[S]}\left(v_{1}\right)=6$. Choose a vertex $u_{9} \in X$ with $\nabla\left(u_{9}\right) \cap \nabla(H) \neq \emptyset$. Let φ_{7} be an automorphism of G such that $\varphi_{7}\left(v_{1}\right)=u_{9}$. As $\delta(G[S]) \geqslant 4$, it follows that $\varphi_{7}\left(S \backslash N_{G}\left(v_{1}\right)\right) \subseteq X$, which implies that $|\nabla(u) \cap \nabla(V(H))| \geqslant 4$ for each $u \in \varphi_{7}\left(N_{G}\left(v_{1}\right)\right) \cap$ $V(H)$, a contradiction.

Noting that $4 \leqslant d_{G[S]}(u) \leqslant 5$ for each $u \in S$, and recalling $|E(S)|=3|S|-9$ and $|W|=|Z|+\frac{1}{2}\left(1-(-1)^{|S|}\right)$, we know that there is a vertex $v_{2} \in Z$ and $v_{3} \in N_{G[S]}\left(v_{2}\right)$ such that $d_{G[S]}\left(v_{2}\right)=d_{G[S]}\left(v_{3}\right)+1=5$.

Now we claim that each edge in G is contained in a 4-cycle of G. Otherwise, suppose that G has an edge contained in no 4 -cycles. By the definition of the vertex-transitivity of G, each vertex in G is incident with an edge contained in no 4 -cycles of G. Let φ_{8} be an automorphism of G such that $\varphi_{8}\left(v_{3}\right)=v_{2}$. Then $\varphi_{8}(S) \neq S$. Notice that each edge in $G[S]$ is contained in a 4-cycle of $G[S]$. We have $\varphi_{8}\left(N_{G[S]}\left(v_{3}\right)\right) \subseteq N_{G[S]}\left(v_{2}\right)$ and $N_{G[S]}\left(\varphi_{8}\left(v_{2}\right)\right) \subseteq \varphi_{8}\left(N_{G[S]}\left(v_{2}\right)\right)$. It implies $\left|\varphi_{8}(S) \cap S\right| \geqslant 8$, contradicting Lemma 20(c).

Thus $|\nabla(u) \cap \nabla(H)|+|\nabla(v) \cap \nabla(H)| \geqslant 3$ for each edge $u v \in \nabla(H)$. Then there is a vertex $u_{10} \in V(G)$ with $\left|\nabla\left(u_{10}\right) \cap \nabla(H)\right| \geqslant 2$.

Suppose $|S|=10$. Then $|W|=|Z|=5$. Let φ_{9} be an automorphism of G such that $\varphi_{9}\left(v_{2}\right)=u_{10}$. Then there is a vertex $u \in \varphi_{9}\left(N_{G[S]}\left(v_{2}\right)\right)$ with $|\nabla(u) \cap \nabla(H)| \geqslant 4$, a contradiction.

Thus $11 \leqslant|S| \leqslant 12$. Let R_{i} be the set of vertices u in S with $d_{G[S]}(u)=i$ for $i=4,5$. Then $\left|R_{5}\right|=\left|R_{5} \cap Z\right|=4$ if $|S|=11$, and $\left|R_{5} \cap W\right|=\left|R_{5} \cap Z\right|=3$ if $|S|=12$.

Suppose that there is a vertex $u_{11} \in V(G)$ with $\left|\nabla\left(u_{11}\right) \cap \nabla(H)\right|=3$. For a vertex $v \in S$, let ψ be an automorphism of G such that $\psi(v)=u_{11}$. Then $\psi(S) \cap V(H) \neq \emptyset$ and $\psi(S) \backslash V(H) \neq \emptyset$. As $\delta(G[S]) \geqslant 4$ and $|\nabla(u) \cap \nabla(H)| \leqslant 3$ for each $u \in V(G)$, it follows that $|\psi(S) \cap X|=4$ and $G[\psi(S) \cap V(H)]$ and $G[\psi(S) \backslash V(H)]$ is isomorphic to $K_{1,4}$ or $K_{2,4}$. It implies $\left|N_{G[S]}(v) \cap R_{4}\right| \geqslant\left\lfloor\frac{|S|}{6}\right\rfloor$ and that there are two vertices $v^{\prime}, v^{\prime \prime} \in R_{4}$ with $N_{G[S]}\left(v^{\prime}\right)=N_{G[S]}\left(v^{\prime \prime}\right)$. If $|S|=11$, then $N_{G[S]}(u) \cap R_{4}=\emptyset$ for each $u \in W \backslash N_{G[S]}\left(R_{4} \cap Z\right)$, a contradiction. Thus $|S|=12$. Then $\left|N_{G[S]}(u) \cap R_{4}\right| \geqslant 2$ for each $u \in S$. So $\delta\left(G\left[R_{4}\right]\right) \geqslant 2$. Noting $\left|R_{4}\right|=\left|R_{5}\right|=6$, we have $12 \geqslant 4\left|R_{4}\right|-\delta\left(G\left[R_{4}\right]\right)\left|R_{4}\right| \geqslant 4\left|R_{4}\right|-2\left|E\left(R_{4}\right)\right|=$ $\left|\left[R_{4}, R_{5}\right]\right|=5\left|R_{5}\right|-2\left|E\left(R_{5}\right)\right| \geqslant 30-18$, which implies $d_{G\left[R_{4}\right]}(u)=2$ for each $u \in R_{4}$. Then $G\left[R_{4}\right]$ is a 6 -cycle of G, which contradicts that R_{4} has two vertices v^{\prime} and $v^{\prime \prime}$ with $N_{G[S]}\left(v^{\prime}\right)=N_{G[S]}\left(v^{\prime \prime}\right)$.

So $|\nabla(u) \cap \nabla(H)| \leqslant 2$ for each $u \in V(G)$. Then $\left|\nabla\left(u_{10}\right) \cap \nabla(H)\right|=2$. We can see that there is no automorphism φ of G such that $\varphi\left(v_{2}\right)=u_{10}$, contradicting that G is vertex-transitive.

Subcase 2.2. $13 \leqslant|S| \leqslant 14$.
Claim 4. For two distinct λ_{8}-atoms S_{1} and S_{2} of G with $S_{1} \cap S_{2} \neq \emptyset, G\left[S_{1} \backslash S_{2}\right]$ and $G\left[S_{1} \cap S_{2}\right]$ are isomorphic to $K_{3,3}$ or $K_{3,4}$.

By Lemma 20(c), we have $\left|S_{1} \backslash S_{2}\right| \leqslant 7,\left|S_{1} \cap S_{2}\right| \leqslant 7, d_{G}\left(S_{1} \backslash S_{2}\right)+d_{G}\left(S_{2} \backslash S_{1}\right) \leqslant 2 \lambda_{8}(G)$ and $d_{G}\left(S_{1} \cap S_{2}\right)+d_{G}\left(S_{1} \cup S_{2}\right) \leqslant 2 \lambda_{8}(G)$. Then $\left|S_{1} \backslash S_{2}\right| \geqslant 6$ and $\left|S_{1} \cap S_{2}\right| \geqslant 6$. By Lemma

20(a), each of $d_{G}\left(S_{1} \backslash S_{2}\right), d_{G}\left(S_{2} \backslash S_{1}\right), d_{G}\left(S_{1} \cap S_{2}\right)$ and $d_{G}\left(S_{1} \cup S_{2}\right)$ is not less than $\lambda_{5}(G)$. Noting $\lambda_{5}(G)=\lambda_{8}(G)=18$, we have $d_{G}\left(S_{1} \backslash S_{2}\right)=d_{G}\left(S_{1} \cap S_{2}\right)=18$. Hence $G\left[S_{1} \backslash S_{2}\right]$ and $G\left[S_{1} \cap S_{2}\right]$ are isomorphic to $K_{3,3}$ or $K_{3,4}$. So Claim 4 holds.

Since $G[S]$ is not a regular graph, there is an automorphism φ_{10} of G such that $\varphi_{10}(S) \neq S$ and $\varphi_{10}(S) \cap S \neq \emptyset$. Then $G\left[S \backslash \varphi_{10}(S)\right]$ and $G\left[S \cap \varphi_{10}(S)\right]$ are isomorphic to $K_{3,3}$ or $K_{3,4}$ by Claim 4. Set $B=S \cap \varphi_{10}(S)$.

Claim 5. S has no subset A different from $S \backslash B$ and B such that $G[A]$ is isomorphic to $K_{3,4}$ and $G[S \backslash A]$ is isomorphic to $K_{3,3}$ or $K_{3,4}$.

Suppose, to the contrary, that S has a subset A satisfying the above condition. Assume $|S|=13$. As $|W|=|Z|+1=7$, we know $|A \cap W|=4$. It follows that there is a vertex $v_{4} \in S$ with $d_{G[S]}\left(v_{4}\right)=6$. Choose a vertex $v_{5} \in S$ such that $d_{G[S]}\left(v_{5}\right) \geqslant 5$ and $\left|\left\{v_{4}, v_{5}\right\} \cap W\right|=1$. Let φ_{11} be an automorphism of G such that $\varphi_{11}\left(v_{5}\right)=v_{4}$. Then $\varphi_{11}(S) \neq S$ and $\varphi_{11}\left(N_{G[S]}\left(v_{5}\right)\right) \subseteq N_{G[S]}\left(v_{4}\right)$, contradicting that $G\left[S \cap \varphi_{11}(S)\right]$ is isomorphic to $K_{3,3}$ or $K_{3,4}$ by Claim 4. Assume next $|S|=14$. Then each of $G[S \backslash B], G[B], G[A]$ and $G[S \backslash A]$ is isomorphic to $K_{3,4}$. As $|E(S)|=33$, we know $d_{G[S]}(B)=9$. If $|A \cap B|=1$, then $d_{G[S]}(B \backslash A)=9=\frac{1}{2} d_{G}(B \backslash A)$, contradicting Lemma $20(\mathrm{~b})$. If $|A \cap B|=6$, then $d_{G[S]}(S \backslash(A \cup B))=9=\frac{1}{2} d_{G}(S \backslash(A \cup B))$, contradicting Lemma 20(b). If $2 \leqslant|A \cap B| \leqslant 5$, then $9=d_{G[S]}(B) \geqslant d_{G[A]}(A \cap B)+d_{G[S \backslash A]}(B \backslash A) \geqslant 5+5$, a contradiction. Thus Claim 5 holds.

Claim 6. Each vertex in G is contained in exactly two distinct λ_{8}-atoms of G.
By the vertex-transitivity of G, it only needs to show that $S^{\prime}=S$ or $\varphi_{10}(S)$ for a $\lambda_{8^{-}}$ atom S^{\prime} of G with $S^{\prime} \cap B \neq \emptyset$. Suppose $S^{\prime} \neq S$ and $S^{\prime} \neq \varphi_{10}(S)$. By Claims 4 and 5 , we have $S^{\prime} \cap S=B=S^{\prime} \cap \varphi_{10}(S)$. Then $18=d_{G}(B) \geqslant d_{G[S]}(B)+d_{G\left[\varphi_{10}(S)\right]}(B)+d_{G\left[S^{\prime}\right]}(B) \geqslant$ 3×9, a contradiction. Thus Claim 6 holds.

Let D be one of $S \backslash B$ and B such that $G[D]$ is isomorphic to $K_{3,4}$. Choose two vertices v_{6} and v_{7} in D such that $d_{G[D]}\left(v_{6}\right)=d_{G[D]}\left(v_{7}\right)-1=3$. By Claim 6 , there is only one λ_{8}-atom T of G which is different from S and contains v_{6}. By Claims 4 and 5 , we have $S \cap T=D$. By Claim $6, S$ and T are also the only λ_{8}-atoms of G which contain v_{7}. It implies that there is no automorphism φ of G such that $\varphi\left(v_{6}\right)=v_{7}$, a contradiction.

4 Proof of Theorem 2

In this section we complete the proof of Theorem 2.
Proof of Theorem 2. If G is 4 -factor-critical, then by Theorem 8 and Theorem 4 we have $k=\lambda(G) \geqslant 5$. So we consider the sufficiency. Suppose $k \geqslant 5$. We will prove that G is 4 -factor-critical.

Suppose, to the contrary, that G is not 4 -factor-critical. We know by Theorem 1 that G is bicritical. By Lemma 22, there is a subset $X \subseteq V(G)$ with $|X| \geqslant 4$ such that $c_{0}(G-X)=|X|-2$ and every component of $G-X$ is factor-critical. Let H_{1}, H_{2}, \ldots, $H_{p}, H_{p+1}, \ldots, H_{t}$ be the components of $G-X$, where $t=|X|-2$ and $H_{1}, H_{2}, \ldots, H_{p}$
are the nontrivial components of $G-X$. We know $p \geqslant 1$ by Lemma 23. For each $i \in[p]$, since H_{i} is factor-critical, $\delta\left(H_{i}\right) \geqslant 2$. For every subset $J \subseteq[t]$, we have

$$
\sum_{i \in J} d_{G}\left(H_{i}\right)+\lambda(G)(t-|J|) \leqslant \sum_{i=1}^{t} d_{G}\left(H_{i}\right) \leqslant d_{G}(X)=k(t+2)-2|E(X)|
$$

which implies

$$
\begin{equation*}
\sum_{i \in J} d_{G}\left(H_{i}\right)+2|E(X)| \leqslant k(|J|+2) . \tag{1}
\end{equation*}
$$

Hence $|E(X)| \leqslant k$. Set $Y=\bigcup_{j=p+1}^{t} V\left(H_{j}\right)$.
Case 1. $g(G)=3$.
By Lemma 18, $|E(X)| \geqslant t-p=|X|-2-p$.
Subcase 1.1. $d_{G}(A) \geqslant 2 k-2$ for all $A \subseteq V(G)$ with $2 \leqslant|A| \leqslant|V(G)|-2$.
For each $i \in[p]$, we have $d_{G}\left(H_{i}\right) \geqslant 2 k-2$. If k is odd, then $d_{G}\left(H_{i}\right)$ is odd and hence $d_{G}\left(H_{i}\right) \geqslant 2 k-1$. So $d_{G}\left(H_{i}\right) \geqslant 2 k-\frac{1}{2}\left(3+(-1)^{k}\right)$ for each $i \in[p]$. Now we have

$$
\begin{equation*}
\left(2 k-\frac{1}{2}\left(3+(-1)^{k}\right)\right) p+2(|X|-2-p) \leqslant \sum_{i=1}^{p} d_{G}\left(H_{i}\right)+2|E(X)| \leqslant k(p+2), \tag{2}
\end{equation*}
$$

which implies $\left(k-2-\frac{1}{2}\left(3+(-1)^{k}\right)\right) p+2(|X|-2-k) \leqslant 0$. Hence $|X| \leqslant k+1$.
Suppose $|X|<k$. Then $p=t=|X|-2$. By Theorem $9,|X| \geqslant \kappa(G)>\frac{2}{3} k$. Hence we know from (2) that $2 k \geqslant\left(k-\frac{1}{2}\left(3+(-1)^{k}\right)\right) p>\left(k-\frac{1}{2}\left(3+(-1)^{k}\right)\right)\left(\frac{2}{3} k-2\right)$. That is, $k^{2}-7 k+3<0$ if k is odd and $k^{2}-8 k+6<0$ otherwise. It follows that $k \leqslant 6$. If $k=6$, then $|X| \geqslant \kappa(G)=k$ by Lemma 11, a contradiction. Thus $k=5$. Then $\kappa(G)=|X|=4$. By Lemma 10, $\tau(G)=2$. It implies that there is an edge $x_{0} y_{0} \in E(G)$ such that $\left|N_{G}\left(x_{0}\right) \cap N_{G}\left(y_{0}\right)\right|=4$.

Noting $k=5$, we know from (2) that $|E(X)| \leqslant 1$. Choose a vertex $u \in X$ with $d_{G[X]}(u)=0$. Since G is vertex-transitive, there is an automorphism φ_{1} of G such that $\varphi_{1}\left(x_{0}\right)=u$. Assume, without loss of generality, that $\varphi_{1}\left(y_{0}\right) \in V\left(H_{1}\right)$. Noting $\mid N_{G}\left(x_{0}\right) \cap$ $N_{G}\left(y_{0}\right) \mid=4$, we have $N_{G}(u) \subseteq V\left(H_{1}\right)$. Then $d_{G}\left(V\left(H_{1}\right) \cup\{u\}\right)=d_{G}(X)-d_{G}\left(H_{2}\right)-5 \leqslant$ $20-9-5<2 k-2$, a contradiction.

Thus $k \leqslant|X| \leqslant k+1$. Noting $\left(k-2-\frac{1}{2}\left(3+(-1)^{k}\right)\right) p+2(|X|-2-k) \leqslant 0$, we have $p \leqslant 2$ and $k \leqslant 8$. Then $|Y|=|X|-2-p \geqslant k-4 \geqslant 1$. For any given vertex v, let q be the number of triangles containing v in G. By the vertex-transitivity of G, each vertex in G is contained in q triangles of G, which implies that each edge in G is contained in at most q triangles of G.

Claim 1. $E(X)$ is a matching of G.
Assume $p=2$ or $|X|=k+1$. Then we know from (2) that $|E(X)|=|X|-2-p=|Y|$. Since there are $q|Y|$ triangles of G containing one vertex in Y, each edge in $E(X)$ is contained in q triangles of G. It implies that $E(X)$ is a matching of G. Next we assume $p=1$ and $|X|=k$. If two edges in $E(X)$ are adjacent, then $|E(X)|=q \geqslant 2|Y|=2(k-3)$
and hence $d_{G}\left(H_{1}\right)+2|E(X)| \geqslant 2 k-2+4(k-3)>3 k$, which contradicts the inequality (1). So Claim 1 holds.

By Claim 1, it follows that each edge incident with a vertex in Y is contained in at most one triangle of G. Then, by the vertex-transitivity of G, each edge in $E(X)$ is contained in at most one triangle of G.

Suppose $|X|=k+1$. From (2), we know $k \leqslant 6, p=1$ and $|E(X)|=|Y|=k-2$. Since G has $q|Y|$ triangles containing one vertex in Y, each edge in $E(X)$ is contained in q triangles of G. Noting that each edge in $E(X)$ is contained in at most one triangle of G, we have $q=1$. Then $\left|E\left(N_{G}(u)\right)\right|=1$ for each $u \in Y$, which implies $|X| \geqslant$ $2|E(X)|+(k-|E(X)|-1)=2 k-3>k+1$, a contradiction.

Thus $|X|=k$. Then for each $e \in E(X)$ and each $u \in Y, G$ has a triangle containing e and u. As each edge in $E(X)$ is contained in at most one triangle of G, it follows that $|Y|=1$, which implies $p=2$ and $k=5$. From (2), we know $d_{G}\left(H_{1}\right)=d_{G}\left(H_{2}\right)=9$ and $|E(X)|=1$. Assume $\left|V\left(H_{1}\right)\right| \leqslant\left|V\left(H_{2}\right)\right|$. Let u_{1} be the vertex in Y. For a vertex $u_{2} \in V\left(H_{1}\right)$ with $N_{G}\left(u_{2}\right) \cap X \neq \emptyset$, we have $\left|N_{G}\left(u_{2}\right) \cap X\right| \leqslant 3$ as $\delta\left(H_{1}\right) \geqslant 2$. As H_{2} is a component of $G-N_{G}\left(u_{1}\right)$ with maximum cardinality, we have, by the definition of the vertex-transitivity of G, that H_{2} also is a component of $G-N_{G}\left(u_{2}\right)$ with maximum cardinality. Then $N_{G}\left(X \backslash N_{G}\left(u_{2}\right)\right) \cap V\left(H_{2}\right)=\emptyset$. It implies $d_{G}\left(V\left(H_{1}\right) \cup\left(X \backslash N_{G}\left(u_{2}\right)\right)\right)<$ $8=2 k-2$, a contradiction. Hence Subcase 1.1 cannot occur.

Subcase 1.2. There is a subset $A \subseteq V(G)$ with $2 \leqslant|A| \leqslant|V(G)|-2$ such that $d_{G}(A)<2 k-2$.

We choose a subset S of $V(G)$ such that $1<|S| \leqslant \frac{1}{2}|V(G)|, d(S)$ is as small as possible, and, subject to these conditions, $|S|$ is as small as possible. Then $d_{G}(S) \leqslant d_{G}(A) \leqslant 2 k-3$. By Corollary $14, d_{G}(S)=|S| \geqslant k$ and $G[S]$ is $(k-1)$-regular. As $2 k-3<\frac{2}{9}(k+1)^{2}, S$ is an imprimitive block of G by Theorem 13. Thus $G[S]$ is vertex-transitive by Lemma 12 . We also know that the orbits $S=S_{1}, S_{2}, \ldots, S_{m_{1}}$ of S under the automorphism group of G form a partition of $V(G)$ and each $G\left[S_{i}\right]$ is $(k-1)$-regular.

Set $I_{i}=\left\{j \in\left\{1,2, \ldots, m_{1}\right\}: S_{j} \cap V\left(H_{i}\right) \neq \emptyset\right\}$ for each $i \in[t]$ and set $\mathscr{M}=\left\{\bigcup_{j \in I_{i}} S_{j}\right.$: $i \in[t]\}$. If any two sets in \mathscr{M} are disjoint, then $2|X| \geqslant 2\left|\bigcup_{U \in \mathscr{M}} \nabla(U)\right| \geqslant \sum_{U \in \mathscr{M}} d_{G}(U) \geqslant$ $|\mathscr{M}| d_{G}(S)$.

Suppose $|S|=k$. Then each $G\left[S_{i}\right]$ is isomorphic to K_{k} and hence $G\left[S_{i}\right]$ has common vertices with at most one component of $G-X$. Hence $|\mathscr{M}|=c_{0}(G-X)=|X|-2$ and any two sets in \mathscr{M} are disjoint. Then $2|X| \geqslant|\mathscr{M}| d_{G}(S)=(|X|-2) k>2|X|$, a contradiction.

Suppose $|S|=k+1$. As $\delta\left(H_{j}\right) \geqslant 2$ for each $j \in[p]$, we have that for each S_{i}, $\left|S_{i} \backslash X\right|=\left|S_{i} \cap Y\right|=2$ or $S_{i} \backslash X \subseteq V\left(H_{i^{\prime}}\right)$ for some $i^{\prime} \in[t]$. Hence $|\mathscr{M}| \geqslant p+\frac{1}{2}(t-$ $p)=\frac{1}{2}(t+p) \geqslant \frac{1}{2}(t+1)=\frac{1}{2}(|X|-1)$ and any two sets in \mathscr{M} are disjoint. Then $2|X| \geqslant|\mathscr{M}| d_{G}(S) \geqslant \frac{1}{2}(|X|-1)(k+1)>2|X|$, a contradiction.

Thus $|S| \geqslant k+2$. Noting that $(k-1)|S|$ is even and $k+2 \leqslant|S| \leqslant 2 k-3$, we have $|S|=k+2$ if $5 \leqslant k \leqslant 6$. For each $i \in[p]$, if $V\left(H_{i}\right) \cap S_{j} \neq \emptyset$, then $\left|V\left(H_{i}\right) \cap S_{j}\right| \geqslant 2$ as $\delta\left(H_{i}\right) \geqslant 2$.

Claim 2. For each S_{i}, there is an element $a_{i} \in[p]$ such that $V\left(H_{a_{i}}\right) \cap S_{i} \neq \emptyset$.

Suppose $S_{i} \subseteq X \cup Y$. By Lemma 16, $\left|S_{i} \cap Y\right| \leqslant \frac{1}{3}\left|S_{i}\right|$. If $k \geqslant 6$, then $|E(X)| \geqslant$ $\left|E\left(S_{i} \cap X\right)\right|=\frac{1}{2}(k-1)\left(\left|S_{i} \cap X\right|-\left|S_{i} \cap Y\right|\right) \geqslant \frac{1}{6}(k-1)\left|S_{i}\right| \geqslant \frac{1}{6}(k-1)(k+2)>k$, a contradiction. Thus $k=5$. Then $|S|=k+2$ and $\left|S_{i} \cap Y\right| \leqslant\left\lfloor\frac{1}{3}\left|S_{i}\right|\right\rfloor=2$. Hence $|E(X)| \geqslant\left|E\left(S_{i} \cap X\right)\right| \geqslant \frac{1}{2}(k-1)\left(\left|S_{i}\right|-4\right)=\frac{1}{2}(k-1)(k-2)>k$, a contradiction. So Claim 2 holds.

Claim 3. $X \backslash S_{i} \neq \emptyset$ for each S_{i}.
Suppose $X \subseteq S_{i}$. Choose a component H_{j} of $G-X$ such that $H_{j} \neq H_{a_{i}}$. Then $\left|V\left(H_{j}\right) \cap S_{i}\right|=\left|N_{G}\left(V\left(H_{j}\right) \cap S_{i}\right) \backslash S_{i}\right| \leqslant\left|V\left(H_{j}\right) \backslash S_{i}\right|$. Hence $V\left(H_{j}\right) \backslash S_{i} \neq \emptyset$. Then there is some $S_{i^{\prime}} \subseteq V\left(H_{j}\right) \backslash S_{i}$. Now we know $d_{G}\left(V\left(H_{j}\right) \backslash S_{i}\right) \geqslant d_{G}(S)=\left|S_{i}\right|$. On the other hand, we have $d_{G}\left(V\left(H_{j}\right) \backslash S_{i}\right) \leqslant\left|S_{i} \backslash V\left(H_{a_{i}}\right)\right|<\left|S_{i}\right|$, a contradiction. So Claim 3 holds.

Claim 4. For each $i \in[p]$, we have $d_{G}\left(H_{i}\right) \geqslant 2 k-2$ if there is some S_{j} such that $S_{j} \cap V\left(H_{i}\right) \neq \emptyset$ and $S_{j} \backslash V\left(H_{i}\right) \neq \emptyset$.

Suppose $S_{j} \cap V\left(H_{i}\right) \neq \emptyset$ and $S_{j} \backslash V\left(H_{i}\right) \neq \emptyset$. By Claim 3, $X \backslash S_{j} \neq \emptyset$. Suppose $\left|\overline{V\left(H_{i}\right) \cup S_{j}}\right|=1$. Then $\overline{V\left(H_{i}\right) \cup S_{j}}=X \backslash S_{j}$, which implies $\left|\overline{V\left(H_{i}\right) \cup X}\right|=1$. Hence $t=2$ and $p=1$, implying $t=|X|-2 \geqslant k-2>2$, a contradiction. Thus $\left|\overline{V\left(H_{i}\right) \cup S_{j}}\right| \geqslant 2$. Then $\left|S_{j}\right|=d_{G}(S) \leqslant d_{G}\left(V\left(H_{i}\right) \cup S_{j}\right) \leqslant\left|\left[V\left(H_{i}\right), \overline{V\left(H_{i}\right) \cup S_{j}}\right]\right|+\left|S_{j} \backslash V\left(H_{i}\right)\right|$, which implies $\left|\left[V\left(H_{i}\right), \overline{V\left(H_{i}\right) \cup S_{j}}\right]\right| \geqslant\left|S_{j} \cap V\left(H_{i}\right)\right|$. Hence $d_{G}\left(H_{i}\right) \geqslant d_{G\left[S_{j}\right]}\left(S_{j} \cap V\left(H_{i}\right)\right)+\mid\left[V\left(H_{i}\right), \overline{V\left(H_{i}\right)} \cap\right.$ $\left.\overline{S_{j}}\right]\left|\geqslant d_{G\left[S_{j}\right]}\left(S_{j} \cap V\left(H_{i}\right)\right)+\left|S_{j} \cap V\left(H_{i}\right)\right|\right.$. If $| S_{j} \backslash V\left(H_{i}\right) \mid \geqslant 2$, then $d_{G\left[S_{j}\right]}\left(S_{j} \cap V\left(H_{i}\right)\right) \geqslant 2 k-4$ by Corollary 15 , which implies $d_{G}\left(H_{i}\right) \geqslant 2 k-4+\left|S_{j} \cap V\left(H_{i}\right)\right| \geqslant 2 k-2$. If $\left|S_{j} \backslash V\left(H_{i}\right)\right|=1$, then $d_{G}\left(H_{i}\right) \geqslant k-1+\left|S_{j} \cap V\left(H_{i}\right)\right| \geqslant 2 k$. Claim 4 holds.

Claim 5. $S_{i} \subseteq V\left(H_{a_{i}}\right) \cup X$ for each S_{i}.
Suppose, to the contrary, that $G-X$ has a component H_{b} with $V\left(H_{b}\right) \cap\left(S_{i} \backslash V\left(H_{a_{i}}\right)\right) \neq$ \emptyset. Let θ be an integer such that $\theta=1$ if $\mid V\left(H_{b}\right)=1$ and $\theta=0$ otherwise. As $X \backslash S_{i} \neq \emptyset$ by Claim 2, there is some S_{j} with $S_{j} \cap\left(X \backslash S_{i}\right) \neq \emptyset$. Set $J=\left\{a_{i}, b\right\} \cup\left\{a_{j}\right\}$. For each $i^{\prime} \in[p]$, we have $d_{G}\left(H_{i^{\prime}}\right) \geqslant d_{G}(S) \geqslant k+2$ and furthermore $d_{G}\left(H_{i^{\prime}}\right) \geqslant 2 k-2$ by Claim 4 if $i^{\prime} \in[p] \cap J$. If $|J|=2$, then, noting that $d_{G\left[S_{j}\right]}\left(V\left(H_{a_{j}}\right) \cap S_{i}\right) \geqslant 2 k-4$ by Corollary 15 and $\lambda\left(G\left[S_{j}\right]\right)=k-1$ by Theorem 8 , we have $d_{G}\left(H_{a_{j}}\right) \geqslant d_{G\left[S_{i}\right]}\left(V\left(H_{a_{j}}\right) \cap S_{i}\right)+d_{G\left[S_{j}\right]}\left(V\left(H_{a_{j}}\right) \cap S_{j}\right) \geqslant 2 k-4+k-1=$ $3 k-5$.

Assume $5 \leqslant k \leqslant 6$. We know that $|S|=k+2$ and $G\left[S_{i} \cap V\left(H_{i^{\prime}}\right)\right]$ is isomorphic to K_{2} for each $i^{\prime} \in\left\{a_{i}, b\right\} \cap[p]$. Hence $S_{i} \subseteq V\left(H_{a_{j}}\right) \cup V\left(H_{b}\right) \cup X$. If $\theta=1$, then $\left|E\left(G\left[S_{i} \cap X\right]\right)\right|=\frac{1}{2}\left((k-1)\left|S_{i} \cap X\right|-(k-1)-(2 k-4)\right)=\frac{1}{2}\left(k^{2}-5 k+6\right) \geqslant 3$. If $\theta=0$, then $k=6$ as $G\left[S_{i}\right]$ is vertex-transitive, which implies $\left|E\left(S_{i} \cap X\right)\right|=2$. Now we have

$$
\begin{aligned}
& \sum_{i^{\prime} \in J} d_{G}\left(H_{i^{\prime}}\right)+2|E(X)| \\
\geqslant & (3 k-5)(3-|J|)+2(2 k-2)(|J|-2)+\theta k+(1-\theta)(2 k-2)+2\left|E\left(S_{i} \cap X\right)\right| \\
= & k(|J|+2)+|J|+k-9-\theta(k-2)+2\left|E\left(S_{i} \cap X\right)\right|>k(|J|+2),
\end{aligned}
$$

which contradicts the inequality (1).
Assume $k \geqslant 7$. If $\theta=1$, then $t=|X|-2 \geqslant k-2 \geqslant 5$. If $\theta=0$, then $t=|X|-2 \geqslant$
$\left\lceil\frac{2 k}{3}\right\rceil-2 \geqslant 3$ by Theorem 9 . Now we have

$$
\begin{aligned}
& \sum_{i^{\prime} \in[t]} d_{G}\left(H_{i^{\prime}}\right)+2|E(X)| \\
\geqslant & (3 k-5)(3-|J|)+2(2 k-2)(|J|-2)+\theta(p-|J|+1)(k+2)+ \\
& (1-\theta)(2 k-2+(p-|J|)(k+2))+(t-p) k+2(t-p) \\
= & k(t+2)+2 t+\theta(k+2)+(1-\theta)(2 k-2)-|J|-k-7>k(t+2),
\end{aligned}
$$

which contradicts the inequality (1). So Claim 5 holds.
By Claims 2 and 5 , it follows that $|\mathscr{M}|=p=t$ and any two sets in \mathscr{M} are disjoint. Then $2|X| \geqslant|\mathscr{M}| d_{G}(S) \geqslant(|X|-2)(k+2)>2|X|$, a contradiction.

Case 2. $g(G) \geqslant 4$.
For each $j \in[p]$, we know from (1) that $d_{G}\left(H_{j}\right) \leqslant 3 k$. Let F_{j} be a component of $G\left[\overline{V\left(H_{j}\right)}\right]$ which contains a vertex in $V(G) \backslash\left(V\left(H_{j}\right) \cup X\right)$. Then $\nabla\left(F_{j}\right)$ is a 5 -restricted edge-cut of G. Hence $\lambda_{5}(G) \leqslant d_{G}\left(F_{j}\right) \leqslant d_{G}\left(H_{j}\right) \leqslant 3 k$. As it follows from Corollary 15 that $\lambda_{4}(G) \geqslant 2 k-2$, we have $2 k-2 \leqslant \lambda_{4}(G) \leqslant \lambda_{5}(G) \leqslant 3 k$.

Claim 6. If $\lambda_{5}(G) \geqslant 4 k-8$ and $k \leqslant 6$, then $p=1$, $\left|V\left(H_{1}\right)\right| \geqslant 7, \lambda_{7}(G) \leqslant 3 k$ and furthermore, $\lambda_{8}(G) \leqslant 3 k$ if $\lambda_{5}(G)>4 k-8$.

Suppose $\lambda_{5}(G) \geqslant 4 k-8$ and $k \leqslant 6$. Then $p=1$ by Lemma 23. We claim that $G\left[\overline{V\left(H_{1}\right)}\right]$ is connected. Otherwise, $d_{G}\left(H_{1}\right) \geqslant \lambda(G)+d_{G}\left(F_{1}\right) \geqslant k+\lambda_{5}(G)>3 k$, a contradiction. Suppose $\left|V\left(H_{1}\right)\right|=5$. As $g(G) \geqslant 4$ and H_{1} is factor-critical, H_{1} is a 5 -cycle of G. It follows that $k=5, E(X)=\emptyset$ and $|X| \geqslant 8$. Then $g_{0}(G) \geqslant 7$ by Lemma 17, a contradiction. Thus $\left|V\left(H_{1}\right)\right| \geqslant 7$. Then $\nabla\left(H_{1}\right)$ is a 7 -restricted edge-cut of G and $\lambda_{7}(G) \leqslant d_{G}\left(V\left(H_{1}\right)\right) \leqslant 3 k$. If $\lambda_{5}(G)>4 k-8$, then $|X| \geqslant 7$ and $\left|V\left(H_{1}\right)\right| \geqslant 9$ by Lemma 23 , which implies $\lambda_{8}(G) \leqslant d_{G}\left(H_{1}\right) \leqslant 3 k$. So Claim 6 holds.

By Claim 6, we can discuss Case 2 in the following two subcases.
Subcase 2.1. $k=5, \lambda_{5}(G)=12$ and $\lambda_{7}(G) \geqslant 13$.
We have $\lambda_{4}(G)=12$. As $\lambda_{7}(G)$ exists, $|V(G)| \geqslant 14$. Then, by Lemma 20(a), $d_{G}(A) \geqslant$ $\lambda_{7}(G)$ for each subset $A \subseteq V(G)$ with $|A|=7$, which implies that G has no subgraphs isomorphic to $K_{3,4}$. By the definition of the vertex-transitivity of G, we can obtain that G has no subgraphs isomorphic to $K_{2,5}$. By Claim 6, $p=1$ and $\left|V\left(H_{1}\right)\right| \geqslant 7$. Hence $|X| \geqslant 6$ and $|V(G)| \geqslant 16$. By Lemma $20\left(\right.$ a), $d_{G}\left(V\left(H_{1}\right) \cup A\right) \geqslant \lambda_{7}(G)$ for each subset $A \subseteq X$ with $|A| \leqslant 1$, which implies $d_{G}\left(H_{1}\right) \geqslant 13$ and $\left|N_{G}(u) \cap V\left(H_{1}\right)\right| \leqslant 3$ for each $u \in X$. Noting $\delta\left(H_{1}\right) \geqslant 2$, we have $\left|\nabla(u) \cap \nabla\left(H_{1}\right)\right| \leqslant 3$ for each $u \in V(G)$.

Claim 7. There is no subset $A \subseteq V(G)$ with $|A| \leqslant 3$ such that $A \cap V\left(H_{1}\right) \neq \emptyset$, $\left|\nabla(A) \cap \nabla\left(H_{1}\right)\right|=3|A|$ and $d_{G}\left(\left(V\left(H_{1}\right) \cup A\right) \backslash\left(V\left(H_{1}\right) \cap A\right)\right) \leqslant 12$.

Suppose, to the contrary, that such subset A of $V(G)$ exists. Set $B=\left(V\left(H_{1}\right) \cup\right.$ $A) \backslash\left(V\left(H_{1}\right) \cap A\right)$. Then $|B| \geqslant 4$ and $|\bar{B}| \geqslant 7$. By Lemma 20(a), we have $d_{G}(B) \geqslant \lambda_{4}(G)$ and furthermore, $d_{G}(B) \geqslant \lambda_{7}(G)$ if $|B| \geqslant 7$. As $d_{G}(B) \leqslant 12$, we know $|B| \leqslant 6$ and $d_{G}(B)=12$. It implies that $E\left(V\left(H_{1}\right) \cap A\right)=\emptyset$ and $G[B]$ is isomorphic to $k_{2,2}$ or $K_{3,3}$.

Hence $G\left[V\left(H_{1}\right) \cup A\right]$ is bipartite. Then H_{1} is bipartite, contradicting the fact that H_{1} is factor-critical. So Claim 7 holds.

As $\lambda_{5}(G)=12<\lambda_{7}(G)$ and $k=5$, each λ_{5}-atom of G induces a subgraph which is isomorphic to $K_{3,3}$. Let $T_{1}, T_{2}, \ldots, T_{m_{2}}$ be all the subsets of $V(G)$, which induce subgraphs isomorphic to $K_{3,3}$. Let R_{i} be the set of vertices in X with i neighbors in $V\left(H_{1}\right)$ for $1 \leqslant i \leqslant 3$ and let Q be the set of vertices in $V\left(H_{1}\right)$ with 3 neighbors in X.

Subcase 2.1.1. There are two distinct T_{i} and T_{j} with $T_{i} \cap T_{j} \neq \emptyset$.
Noting that G has no subgraphs isomorphic to $K_{3,4}$ or $K_{2,5}$, we have $\left|T_{i} \cap T_{j}\right|=2$ or 4. If $\left|T_{i} \cap T_{j}\right|=4$, then $d_{G}\left(T_{i} \cap T_{j}\right) \leqslant 12<\lambda_{7}(G)$, which contradicts Lemma 20(a). Thus $\left|T_{i} \cap T_{j}\right|=2$. Assume $T_{i} \cap T_{j}=\left\{v_{1}, v_{2}\right\}$.

Claim 8. For each $u \in X$ with $d_{G[X]}(u)=0$ and $N_{G}(u) \cap V\left(H_{1}\right) \neq \emptyset$, we have $N_{G}(u) \cap V\left(H_{1}\right) \subseteq Q$ if $u \in R_{1} \cup R_{2}$, and $\left|N_{G}(u) \cap V\left(H_{1}\right) \cap Q\right| \geqslant 1$ if $u \in R_{3}$.

Since G is vertex-transitive, there is an automorphism φ_{2} of G such that $\varphi_{2}\left(v_{1}\right)=u$. If $u \in R_{1} \cup R_{2}$, then $\varphi_{2}\left(N_{G}\left(v_{2}\right)\right) \subseteq X$, which implies $N_{G}(u) \cap V\left(H_{1}\right) \subseteq Q$. If $u \in R_{3}$, then $\left|\varphi_{2}\left(N_{G}\left(v_{2}\right)\right) \cap X\right| \geqslant 3$, which implies $\left|N_{G}(u) \cap V\left(H_{1}\right) \cap Q\right| \geqslant 1$. So Claim 8 holds.

Assume $E(X) \neq \emptyset$. Then $|E(X)|=1$ and $\sum_{i=1}^{3} i\left|R_{i}\right|=d_{G}\left(H_{1}\right)=13$, which implies $\sum_{i=1}^{3}\left|R_{i}\right| \geqslant 5$. By Claim $8, Q \neq \emptyset$. We have $d_{G}\left(V\left(H_{1}\right) \backslash\{u\}\right) \leqslant 12$ for each $u \in Q$, contradicting Claim 7.

Thus $E(X)=\emptyset$. As $d_{G}\left(V\left(H_{1}\right) \cup A\right) \geqslant \lambda_{4}(G)$ for each subset $A \subseteq X$ with $|A|=4$ by Lemma 20(a), we have $\left|R_{3}\right| \leqslant 3$. By Claim 8 , $\left|\nabla(Q) \cap \nabla\left(H_{1}\right)\right| \geqslant\left|R_{3}\right|+2\left|R_{2}\right|+\left|R_{1}\right|=$ $15-2\left|R_{3}\right| \geqslant 9$, which implies $|Q| \geqslant 3$. Choose a subset $Q^{\prime} \subseteq Q$ with $\left|Q^{\prime}\right|=3$. Then $d_{G}\left(V\left(H_{1}\right) \backslash Q^{\prime}\right) \leqslant 12$, contradicting Claim 7. Hence Subcase 2.1.1 cannot occur.

Subcase 2.1.2. Any two distinct T_{i} and T_{j} are disjoint.
By the vertex-transitivity of G, each vertex in G is contained in a λ_{5}-atom of G. Hence $T_{1}, T_{2}, \ldots, T_{m_{2}}$ form a partition of $V(G)$.

Assume $E(X) \neq \emptyset$. As $c_{0}(G-X)=|X|-2$ and $|E(X)|=1$, it follows that there is some T_{i} such that $T_{i} \cap X \neq \emptyset, T_{i} \cap V\left(H_{1}\right) \neq \emptyset$ and $E\left(T_{i}\right) \cap E(X)=\emptyset$. Then there is a vertex $u_{1} \in T_{i} \cap\left(R_{3} \cup Q\right)$. By Claim 7, it follows that $u_{1} \in X$. We have $d_{G}\left(V\left(H_{1}\right) \cup\left\{u_{1}\right\}\right)=$ $12<\lambda_{7}(G)$, contradicting Lemma 20(a).

Thus $E(X)=\emptyset$. Set $\mathscr{B}_{1}=\left\{T_{j}:\left|T_{j} \cap X\right|=3, j \in\left[m_{2}\right]\right\}$ and $\mathscr{B}_{2}=\left\{T_{j}:\left|T_{j} \cap X\right|<\right.$ $\left.3, j \in\left[m_{2}\right]\right\}$. Let $D=\left(\bigcup_{A \in \mathscr{B}_{1}} A \cap V\left(H_{1}\right)\right) \cup\left(\bigcup_{A \in \mathscr{B}_{2}} A \cap X\right)$. Noting $c_{0}(G-X)=$ $|X|-2$ and $p=1$, we have $|D|=3$. By Claim 7, we have $D \subseteq X$. If $|X| \geqslant 7$, then $d_{G}\left(H_{1}+D\right)=12<\lambda_{7}(G)$, which contradicts Lemma 20(a). Thus $|X|=6$. As G has no subgraphs isomorphic to $K_{2,5}$, we know that $\left|R_{2}\right|=\left|R_{3}\right|=3$ and $G\left[Y \cup R_{2}\right]$ is isomorphic to $K_{3,3}$. Choose a vertex $u_{3} \in R_{3}$ and a vertex $u_{4} \in Y$. Let φ_{3} be an automorphism of G such that $\varphi_{3}\left(u_{4}\right)=u_{3}$. Noting $\varphi_{3}\left(Y \cup R_{2}\right) \cap\left(Y \cup R_{2}\right)=\emptyset$, we have $\varphi_{3}(Y)=R_{3}$ and $\varphi_{3}\left(R_{2}\right) \subseteq V\left(H_{1}\right)$. It implies $D \subseteq V\left(H_{1}\right)$ by the choice of D, a contradiction. Hence Subcase 2.1 cannot occur.

Subcase 2.2. $k \neq 5, \lambda_{5}(G) \neq 12$ or $\lambda_{5}(G)=\lambda_{7}(G)=12$.

Let S^{\prime} be a λ_{s}-atom of G, where

$$
s=\left\{\begin{array}{l}
4, \text { if } k \leqslant 6 \text { and } \lambda_{5}(G)<4 k-8 ; \\
7, \text { if } k=5 \text { and } \lambda_{5}(G)=\lambda_{7}(G)=12 ; \\
6, \text { if } k=5 \text { and } \lambda_{5}(G)=\lambda_{6}(G)=13 ; \\
7, \text { if } k=5, \lambda_{5}(G)=13 \text { and } \lambda_{6}(G)=\lambda_{7}(G)=14 ; \\
8, \text { if } k=5, \lambda_{5}(G)=13, \lambda_{6}(G) \geqslant 14 \text { and } \lambda_{8}(G)=15 ; \\
5, \text { if } k=5 \text { and } \lambda_{5}(G)=14 ; \\
6, \text { if } k=5 \text { and } \lambda_{5}(G)=\lambda_{6}(G)=15 ; \\
5, \text { if } k=6 \text { and } \lambda_{5}(G)=4 k-8 ; \\
8, \text { if } k=6 \text { and } \lambda_{5}(G)=18 ; \\
5, \text { if } k \geqslant 7 .
\end{array}\right.
$$

Claim 9. S^{\prime} is an imprimitive block of G such that $\left|S^{\prime}\right|>\frac{1}{2} \lambda_{s}(G)$ if $k \leqslant 6$ and $\left|S^{\prime}\right|>\frac{1}{3} \lambda_{s}(G)$ otherwise.

If $k=5$ and $\lambda_{5}(G)=\lambda_{7}(G)=12$, then, by Lemma 24, Claim 9 holds. So we assume $k>5$ or $\lambda_{5}(G) \neq 12$. By Lemma $6, \frac{1}{2}\left|S^{\prime}\right|^{2} \geqslant 2\left|E\left(S^{\prime}\right)\right|=k|S|-\lambda_{s}(G)$. If $5 \leqslant k \leqslant 6$ and $\lambda_{5}(G)<4 k-8$, then $\frac{1}{2}\left|S^{\prime}\right|^{2} \geqslant k\left|S^{\prime}\right|-\lambda_{s}(G)>k\left|S^{\prime}\right|-4 k+8$, which implies $\left|S^{\prime}\right|>$ $2 k-4 \geqslant \max \left\{2(s-1), \frac{1}{2} \lambda_{s}(G)\right\}$. If $5 \leqslant k \leqslant 6$ and $\lambda_{5}(G) \geqslant 4 k-8$, then $\left|S^{\prime}\right|>2(s-1)$ and $2\left|S^{\prime}\right|>\lambda_{s}(G)$ by Lemmas 21 and 25-29. If $k \geqslant 7$, then $\frac{1}{2}\left|S^{\prime}\right|^{2} \geqslant k\left|S^{\prime}\right|-\lambda_{s}(G) \geqslant k\left|S^{\prime}\right|-3 k$ and hence $\left|S^{\prime}\right|>k+2>\max \left\{2(s-1), \frac{1}{3} \lambda_{s}(G)\right\}$. Suppose S^{\prime} is not an imprimitive block of G. Then there is an automorphism φ of G such that $\varphi\left(S^{\prime}\right) \neq S^{\prime}$ and $\varphi\left(S^{\prime}\right) \cap S^{\prime} \neq \emptyset$. By Lemma $20(\mathrm{c}),\left|S^{\prime}\right|=\left|S^{\prime} \cap \varphi\left(S^{\prime}\right)\right|+\left|S^{\prime} \backslash \varphi\left(S^{\prime}\right)\right| \leqslant 2(s-1)$, a contradiction. So Claim 9 holds.

By Claim 9 and Lemma $12, G\left[S^{\prime}\right]$ is vertex-transitive and hence it is $(k-1)$-regular if $k \leqslant 6$ and is $(k-1)$-regular or $(k-2)$-regular otherwise. From Claim 9 , we also know that the orbits $S^{\prime}=S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{m_{3}}^{\prime}$ of S^{\prime} under the automorphism group of G form a partition of $V(G)$.

Claim 10. $G\left[S^{\prime}\right]$ is $(k-1)$-regular.
Suppose that $G\left[S^{\prime}\right]$ is $(k-2)$-regular. Then $k \geqslant 7, s=5$ and $2\left|S^{\prime}\right|=\lambda_{s}(G) \leqslant 3 k$, which implies $\left|S^{\prime}\right| \leqslant \frac{3}{2} k$. By Lemma $6, \frac{1}{4}\left|S^{\prime}\right|^{2} \geqslant\left|E\left(S^{\prime}\right)\right|=\frac{1}{2}(k-2)\left|S^{\prime}\right|$, which implies $\left|S^{\prime}\right| \geqslant 2(k-2)$. Now $2(k-2) \leqslant\left|S^{\prime}\right| \leqslant \frac{3}{2} k$, which implies $k \leqslant 8$ and $\left|S^{\prime}\right|=2(k-2)$. Hence $G\left[S^{\prime}\right]$ is isomorphic to $K_{k-2, k-2}$. For each $i \in[p]$, noting $3 k \geqslant d_{G}\left(H_{i}\right) \geqslant \lambda_{s}(G)=4(k-2)$ and that $d_{G}\left(H_{i}\right)$ has the same parity with k, we have $d_{G}\left(H_{i}\right)=3 k$. Hence $p=1$, $E(X)=\emptyset,\left|V\left(H_{1}\right)\right|>5$ and $|X| \geqslant k$. As $c_{0}(G-X)=|X|-2$, there is some $S_{i}^{\prime \prime}$ with $S_{i}^{\prime} \cap X \neq \emptyset$ and $S_{i}^{\prime} \cap V\left(H_{1}\right) \neq \emptyset$. Then there is a vertex $u \in S_{i}^{\prime}$ with $\left|\nabla(u) \cap \nabla\left(H_{1}\right)\right| \geqslant k-2$. Then $d_{G}\left(V\left(H_{1}\right) \cup\{u\}\right) \leqslant d_{G}\left(H_{1}\right)-(k-4)=2 k+4<4(k-2)=\lambda_{s}(G)$ if $u \in X$ and $d_{G}\left(V\left(H_{1}\right) \backslash\{u\}\right)<\lambda_{s}(G)$ otherwise, contradicting Lemma 20(a). So Claim 10 holds.

As $\delta\left(H_{i}\right) \geqslant 2$ for each $i \in[p]$, it follows from Claim 10 that $\delta\left(G\left[V\left(H_{j}\right) \cap S_{i}^{\prime}\right]\right) \geqslant 1$ if $V\left(H_{j}\right) \cap S_{i}^{\prime} \neq \emptyset$.

Claim 11. For each $S_{i}^{\prime}, S_{i}^{\prime} \backslash(X \cup Y) \neq \emptyset$ or $\left|S_{i}^{\prime} \cap X\right|=\left|S_{i}^{\prime} \cap Y\right|$.
Suppose $\left|S_{i}^{\prime} \cap X\right|>\left|S_{i}^{\prime} \cap Y\right|$ for some $S_{i}^{\prime} \subseteq X \cup Y$. If $G\left[S_{i}^{\prime}\right]$ is bipartite, then $\left|S_{i}^{\prime} \cap Y\right| \leqslant$ $\left|S_{i}^{\prime} \cap X\right|-2$. If $G\left[S_{i}^{\prime}\right]$ is non-bipartite, then $\left|S_{i}^{\prime} \cap Y\right| \leqslant \alpha\left(G\left[S_{i}^{\prime}\right]\right) \leqslant \frac{1}{2}\left|S_{i}^{\prime}\right|-\frac{k-1}{4}$ by Lemma 16, which implies $\left|S_{i}^{\prime} \cap Y\right| \leqslant\left|S_{i}^{\prime} \cap X\right|-\frac{k-1}{2} \leqslant\left|S_{i} \cap X\right|-2$. Thus $\left.\mid E\left(S_{i}^{\prime} \cap X\right]\right) \mid=$ $\frac{1}{2}(k-1)\left(\left|S_{i}^{\prime} \cap X\right|-\left|S_{i}^{\prime} \cap Y\right|\right) \geqslant k-1$. Noting $d_{G}\left(H_{1}\right) \geqslant \lambda_{5}(G) \geqslant 2 k-2$, we have $d_{G}\left(H_{1}\right)+2|E(X)| \geqslant 2 k-2+2(k-1)>3 k$, a contradiction. So Claim 11 holds.

Subcase 2.2.1. $\left|S^{\prime}\right| \leqslant 2 k-1$.
Claim 12. If $S_{i}^{\prime} \cap V\left(H_{j}\right) \neq \emptyset$ for some $j \in[p]$, then $S_{i}^{\prime} \subseteq V\left(H_{j}\right) \cup X$.
Suppose $S_{i}^{\prime} \cap V\left(H_{j}\right) \neq \emptyset$ for some $j \in[p]$ and $S_{i}^{\prime} \cap V\left(H_{j^{\prime}}\right) \neq \emptyset$ for some $j^{\prime} \in[t] \backslash\{j\}$. As $\delta\left(G\left[S_{i}^{\prime} \cap V\left(H_{j}\right)\right]\right) \geqslant 1$, there is an edge $x_{1} y_{1} \in E\left(S_{i}^{\prime} \cap V\left(H_{j}\right)\right)$. Then $\left|S_{i}^{\prime} \cap\left(V\left(H_{j}\right) \cup X\right)\right| \geqslant$ $\left|N_{G\left[S_{i}^{\prime}\right]}\left(x_{1}\right) \cup N_{G\left[S_{i}^{\prime}\right]}\left(y_{1}\right)\right|=2 k-2$. It implies $\left|S_{i}^{\prime} \cap V\left(H_{j^{\prime}}\right)\right|=1$ and $\left|S_{i}^{\prime}\right|=2 k-1$. Then $\left|V\left(H_{j^{\prime}}\right)\right|=1$ and $|X| \geqslant\left|N_{G}\left(V\left(H_{j^{\prime}}\right)\right)\right|=k$. Hence $\left|\overline{V\left(H_{j}\right) \cup S_{i}^{\prime}}\right| \geqslant\left|N_{G}\left(V\left(H_{j^{\prime}}\right)\right) \backslash S_{i}^{\prime}\right|+$ $\left(c_{0}(G-X)-2\right) \geqslant 1+k-4 \geqslant 2$. By Corollary 15, we have

$$
\begin{aligned}
2 k-2 & \leqslant d_{G}\left(V\left(H_{j}\right) \cup S_{i}^{\prime}\right) \\
& \leqslant d_{G}\left(H_{j}\right)-d_{G\left[S_{i}^{\prime}\right]}\left(S_{i}^{\prime} \cap V\left(H_{j}\right)\right)+\left|S_{i}^{\prime} \backslash V\left(H_{j}\right)\right| \\
& =d_{G}\left(H_{j}\right)-\left((k-1)\left|S_{i}^{\prime} \cap X\right|-2\left|E\left(S_{i}^{\prime} \cap X\right)\right|-(k-1)\right)+\left|S_{i}^{\prime} \cap X\right|+1 \\
& =d_{G}\left(H_{j}\right)+2\left|E\left(S_{i}^{\prime} \cap X\right)\right|-(k-2)\left|S_{i}^{\prime} \cap X\right|+k \\
& \leqslant 3 k-(k-2)(k-1)+k=-k^{2}+7 k-2,
\end{aligned}
$$

which implies $k=5$. It is easy to verify that there is no triangle-free non-bipartite 4 regular graph of order 9 , which implies $\left|S^{\prime}\right| \neq 9=2 k-1$, a contradiction. So Claim 12 holds.

Set $I_{i}^{\prime}=\left\{j \in\left[m_{3}\right]: S_{j}^{\prime} \cap V\left(H_{i}\right) \neq \emptyset\right\}$ for each $i \in[t]$ and $\mathscr{M}^{\prime}=\left\{\bigcup_{j \in I_{i}^{\prime}} S_{j}^{\prime}: i \in[t]\right\}$. Then any two sets in \mathscr{M}^{\prime} are disjoint by Claim 12. By Lemma 20(a), $d_{G}(U) \geqslant \lambda_{s}(G)$ for each $U \in \mathscr{M}^{\prime}$. Then, by Claim 11, we have

$$
\begin{aligned}
& 2\left(p+2+(k-1)\left(\left|\mathscr{M}^{\prime}\right|-p\right)\right) \\
= & 2|X| \geqslant 2\left|\bigcup_{U \in \mathscr{M}^{\prime}} \nabla(U)\right|=\sum_{U \in \mathscr{M}^{\prime}} d_{G}(U) \geqslant\left|\mathscr{M}^{\prime}\right| \lambda_{s}(G) \geqslant\left|\mathscr{M}^{\prime}\right|(2 k-2),
\end{aligned}
$$

which implies $p \leqslant \frac{2}{k-2}<1$, a contradiction. Hence Subcase 2.2.1 cannot occur.
Subcase 2.2.2 $\left|S^{\prime}\right| \geqslant 2 k$.
We have $\lambda_{s}(G)=\left|S^{\prime}\right| \geqslant 2 k$. If $s=4$, then $\lambda_{5}(G) \geqslant \lambda_{s}(G) \geqslant 2 k$. If $s \geqslant 5$, then $\lambda_{5}(G) \geqslant 2 k$ by the choice of s. Then $2 k p \leqslant p \lambda_{5}(G) \leqslant \sum_{i=1}^{p} d_{G}\left(H_{i}\right)+2|E(X)| \leqslant k(2+p)$, which implies $p \leqslant 2$.

Let

$$
\mathscr{N}=\left\{S_{i}^{\prime}: S_{i}^{\prime} \cap X \neq \emptyset \text { and } S_{i}^{\prime} \backslash(X \cup Y) \neq \emptyset, i \in\left[m_{3}\right]\right\} .
$$

By Claim 11, $\sum_{A \in \mathcal{N}}(|A \cap X|-|A \cap Y|)=\sum_{i=1}^{m_{3}}\left(\left|S_{i}^{\prime} \cap X\right|-\left|S_{i}^{\prime} \cap Y\right|\right)=|X|-|Y|=p+2$. Noting $|A \cap X|>|A \cap Y|$ for each $A \in \mathscr{N}$, we have $1 \leqslant|\mathscr{N}| \leqslant p+2$. Choose a set $S_{j_{1}}^{\prime} \in \mathscr{N}$. Without loss of generality, we assume $S_{j_{1}}^{\prime} \cap V\left(H_{1}\right) \neq \emptyset$.

Suppose $p=2$. Then $E(X)=\emptyset$ and $2 k=\lambda_{5}(G)=d_{G}\left(H_{1}\right)=d_{G}\left(H_{2}\right)$. Hence $\lambda_{4}(G)=$ $\lambda_{5}(G)=2 k=\left|S^{\prime}\right|$. For each $u \in V(G)$ and each $i \in[p]$, we have $d_{G}\left(V\left(H_{i}\right) \cup\{u\}\right) \geqslant \lambda_{4}(G)$ and $d_{G}\left(V\left(H_{i}\right) \backslash\{u\}\right) \geqslant \lambda_{4}(G)$ by Lemma 20(a), which implies $\left|\nabla(u) \cap \nabla\left(H_{i}\right)\right| \leqslant k-3$. Hence $\left|S_{j_{1}}^{\prime} \backslash V\left(H_{1}\right)\right| \geqslant 2$ and $\delta\left(G\left[S_{j_{1}}^{\prime} \cap V\left(H_{1}\right)\right]\right) \geqslant 2$, which implies $\left|S_{j_{1}}^{\prime} \cap V\left(H_{1}\right)\right| \geqslant 4$. Choose an edge $x_{2} y_{2} \in E\left(S_{j_{1}}^{\prime} \cap V\left(H_{1}\right)\right)$. Then $\left|S_{j_{1}}^{\prime} \backslash\left(V\left(H_{1}\right) \cup X\right)\right| \leqslant \mid S_{j_{1}}^{\prime} \backslash\left(N_{G\left[S_{j_{1}}^{\prime}\right]}\left(x_{2}\right) \cup\right.$ $\left.N_{G\left[S_{j_{1}}^{\prime}\right]}\left(y_{2}\right)\right) \mid=2$. It follows that $S_{j_{1}}^{\prime} \cap V\left(H_{2}\right)=\emptyset$. Noting that $d_{G\left[S_{j_{1}}^{\prime}\right]}\left(S_{j_{1}}^{\prime} \cap V\left(H_{1}\right)\right) \geqslant 2 k-4$ by Corollary 15 , we have $\left|S_{j_{1}}^{\prime} \cap X\right| \geqslant\left|S_{j_{1}}^{\prime} \cap Y\right|+2$. Now

$$
\begin{aligned}
d_{G}\left(V\left(H_{1}\right) \cup S_{j_{1}}^{\prime}\right) & \leqslant d_{G}\left(H_{1}\right)-d_{G\left[S_{j_{1}^{\prime}}^{\prime}\right.}\left(V\left(H_{1}\right) \cap S_{j_{1}}^{\prime}\right)+\left|S_{j_{1}}^{\prime} \backslash V\left(H_{1}\right)\right| \\
& =2 k-(k-1)\left(\left|S_{j_{1}}^{\prime} \cap X\right|-\left|S_{j_{1}}^{\prime} \cap Y\right|\right)+\left|S_{j_{1}}^{\prime} \backslash V\left(H_{1}\right)\right| \\
& \leqslant 2 k-2(k-1)+2 k-4<2 k=\lambda_{4}(G),
\end{aligned}
$$

contradicting Lemma 20(a).
Thus $p=1$. Suppose $|\mathscr{N}|=1$. Then $\left|S_{j_{1}}^{\prime} \cap X\right|=\left|S_{j_{1}}^{\prime} \cap Y\right|+3$ and there is some $S_{j}^{\prime} \subseteq \overline{V\left(H_{1}\right) \cup S_{j_{1}}^{\prime}}$. We know by Claim 11 that $G\left[S^{\prime}\right]$ is bipartite. Hence there is some $S_{j^{\prime}}^{\prime} \subseteq V\left(H_{1}\right) \backslash S_{j_{1}}^{\prime}$. By Lemma 20(a), we have

$$
\begin{aligned}
\left|S^{\prime}\right|=\lambda_{s}(G) \leqslant d_{G}\left(V\left(H_{1}\right) \cup S_{j_{1}}^{\prime}\right) & \leqslant d_{G}\left(H_{1}\right)-d_{G\left[S_{j_{1}}^{\prime}\right]}\left(S_{j_{1}}^{\prime} \backslash V\left(H_{1}\right)\right)+\left|S_{j_{1}}^{\prime} \backslash V\left(H_{1}\right)\right| \\
& =d_{G}\left(H_{1}\right)+2\left|E\left(S_{j_{1}}^{\prime} \cap X\right)\right|-3(k-1)+\left|S_{j_{1}}^{\prime} \backslash V\left(H_{1}\right)\right| \\
& \leqslant 3 k-3(k-1)+\left|S_{j_{1}}^{\prime} \backslash V\left(H_{1}\right)\right| .
\end{aligned}
$$

Similarly, we can obtain $\left|S^{\prime}\right| \leqslant d_{G}\left(H_{1}-S_{j_{1}}^{\prime}\right) \leqslant 3+\left|S_{j_{1}}^{\prime} \cap V\left(H_{1}\right)\right|$. Then $2\left|S^{\prime}\right| \leqslant 6+\left|S_{j_{1}}^{\prime}\right|$, which implies $\left|S^{\prime}\right| \leqslant 6<2 k$, a contradiction.

Thus $|\mathscr{N}| \geqslant 2$. For each $S_{i}^{\prime} \in \mathscr{N}$, noting $\left|S_{i}^{\prime} \cap V\left(H_{1}\right)\right| \geqslant 2$, if $\left|S_{i}^{\prime} \backslash V\left(H_{1}\right)\right| \geqslant 2$, then, by Corollary 15 , we have $d_{G\left[S_{1}^{\prime}\right]}\left(S_{i}^{\prime} \cap V\left(H_{1}\right)\right) \geqslant 2 k-4$, which implies that $\left|S_{i}^{\prime} \cap X\right|=1$ if $\left|S_{i}^{\prime} \cap X\right|=\left|S_{i}^{\prime} \cap Y\right|+1$. If $|\mathscr{N}|=3$, then $\left|S_{i}^{\prime} \cap X\right|=1$ for each $S_{i}^{\prime} \in \mathscr{N}$ and hence $d_{G}\left(V\left(H_{1}\right) \cup\left(\bigcup_{S_{i}^{\prime} \in \mathcal{N}} S_{i}^{\prime}\right)\right) \leqslant d_{G}\left(H_{1}\right)-3(k-2) \leqslant 6<\lambda_{s}(G)$, which contradicts Lemma 20(a). Thus $|\mathscr{N}|=2$. Assume $\mathscr{N}=\left\{S_{j_{1}}^{\prime}, S_{j_{2}}^{\prime}\right\}$ and $\left|S_{j_{1}}^{\prime} \cap X\right|=1$. We know that there is some $S_{j}^{\prime} \subseteq V(G) \backslash\left(V\left(H_{1}\right) \cup S_{j_{1}}^{\prime} \cup S_{j_{2}}^{\prime}\right)$. By Lemma 20(a),

$$
\begin{aligned}
|S|=\lambda_{s}(G) & \leqslant d_{G}\left(V\left(H_{1}\right) \cup S_{j_{1}}^{\prime} \cup S_{j_{2}}^{\prime}\right) \\
& \left.\leqslant d_{G}\left(H_{1}\right)-d_{G\left[S_{j_{2}^{\prime}}^{\prime}\right]} \backslash S_{j_{2}}^{\prime} \cap V\left(H_{1}\right)\right)+\left|S_{j_{2}}^{\prime} \backslash V\left(H_{1}\right)\right|-(k-2) \\
& =d_{G}\left(H_{1}\right)+2\left|E\left(S_{j_{2}}^{\prime} \cap X\right)\right|-2(k-1)+\left|S_{j_{2}}^{\prime} \backslash V\left(H_{1}\right)\right|-(k-2) \\
& \leqslant 3 k-3 k+4+\left|S_{j_{2}}^{\prime} \backslash V\left(H_{1}\right)\right| .
\end{aligned}
$$

Similarly, we can obtain $\left|S^{\prime}\right| \leqslant d_{G}\left(\left(V\left(H_{1}\right) \cup S_{j_{1}}^{\prime}\right) \backslash S_{j_{2}}^{\prime}\right) \leqslant 4+\left|S_{j_{2}}^{\prime} \cap V\left(H_{1}\right)\right|$. Then $2\left|S^{\prime}\right| \leqslant$ $8+\left|S_{j_{2}}^{\prime}\right|$, which implies $\left|S^{\prime}\right| \leqslant 8<2 k$, a contradiction.

References

[1] B. Andrásfai, P. Erdős, and V. T. Sós, On the connection between chromatic number, maximal clique and minimal degree of a graph, Discrete Math., 8:205-218, 1974.
[2] N. Biggs, Algebraic Graph Theory, pages 36-38. Cambridge University Press, 1993.
[3] O. Chan, C.C. Chen, and Q. Yu, On 2-extendable obelian Cayley graphs, Discrete Math., 146:19-32, 1995.
[4] C.C. Chen, J. Liu, and Q. Yu, On the classification of 2-extendable Cayley graphs on dihedral groups, Australas. J. Combin., 6:209-219, 1992.
[5] R. Diestel, Graph Theory, page 41. Springer, 2006.
[6] J. Fàbrega, and M.A. Fiol, Extraconnectivity of graphs with large girth, Discrete Math., 127:163-170, 1994.
[7] O. Favaron, On k-factor-critical graphs, Discuss. Math. Graph Theory, 16:41-51, 1996.
[8] O. Favaron, Extendability and factor-criticality, Discrete Math., 213:115-122, 2000.
[9] T. Gallai, Neuer Beweis eines Tutte-schen Satzes, Magyar Tud. Akad. Matem. Kut. Int. Közl., 8:135-139, 1963.
[10] J. Heuvel, and B. Jacskon, On the edge connectivity, hamiltonicity, and toughness of vertex transitive graphs, J. Combin. Theory Ser. B, 77:138-149, 1999.
[11] A. Holtkamp, D. Meierling, and L.P. Montejano, k-restricted edge-connectivity in triangle-free graphs, Discrete Appl. Math., 160:1345-1355, 2012.
[12] L. Lovász, On the structure of factorizable graphs, Acta Math. Acad. Sci. Hungar., 23:179-195 1972.
[13] L. Lovász, and M.D. Plummer, Matching Theory, page 207. North-Holland, 1986.
[14] W. Mader, Minimale n-fach kantenzusammenhängenden Graphen, Math. Ann., 191:21-28, 1971.
[15] W. Mantel, Problem 28, Wiskundige Opgaven, 10:60-61, 1907.
[16] Š. Miklavič, and P. Šparl, On extendability of Cayley graphs, Filomat, 23:93-101, 2009.
[17] M.D. Plummer, On n-extendable graphs, Discrete Math., 31:201-210, 1980.
[18] R. Tindell, Connectivity of Cayley graphs, In D.Z. Du, D.F. Hsu (Eds.). Combinatorial Network Theory, pages 41-64. Kluwer, 1996.
[19] M.E. Watkins, Connectivity of transitive graphs, J. Combin. Theory, 8:23-29, 1970.
[20] M. Yang, Z. Zhang, C. Qin, and X. Guo, On super 2-restricted and 3-restricted edge-connected vertex transitive graphs, Discrete Math., 311:2683-2689, 2011.
[21] Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin., 7:55-64, 1993.
[22] H. Zhang, and W. Sun, 3-Factor-criticality of vertex-transitive graphs, J. Graph Theory, 81:262-271, 2016.

[^0]: *Supported by NSFC grant 11371180.

