Local finiteness, distinguishing numbers, and Tucker's conjecture

Florian Lehner*
Department of Mathematics
University of Hamburg
Hamburg, Germany
mail@florian-lehner.net

Rögnvaldur G. Möller
School of Engineering and Natural Sciences
University of Iceland
Reykjavik, Iceland
roggi@hi.is

Submitted: Dec 4, 2014; Accepted: Oct 15, 2015; Published: Oct 30, 2015
Mathematics Subject Classifications: 05C25, 05C63, 05C15

Abstract

A distinguishing colouring of a graph is a colouring of the vertex set such that no non-trivial automorphism preserves the colouring. Tucker conjectured that if every non-trivial automorphism of a locally finite graph moves infinitely many vertices, then there is a distinguishing 2 -colouring.

We show that the requirement of local finiteness is necessary by giving a nonlocally finite graph for which no finite number of colours suffices.

1 Introduction

A colouring of the vertices of a graph G is called distinguishing if no non-trivial automorphism of G preserves the colouring. This notion was first studied by Albertson and Collins [1], motivated by a recreational mathematics problem posed Rubin [9].

While a distinguishing colouring clearly exists for every graph (simply colour every vertex with a different colour), finding a distinguishing colouring with the minimum number of colours can be challenging.

For infinite graphs one of the most intriguing questions is whether or not the following conjecture of Tucker [12] is true.

Conjecture 1. Let G be an infinite, connected, locally finite graph with infinite motion. Then there is a distinguishing 2-colouring of G.

This conjecture can be viewed as a generalisation of a result on finite graphs due to Russell and Sundaram [10]. It is known to be true for many classes of infinite graphs

[^0]including trees [13], tree-like graphs [4], and graphs with countable automorphism group [5]. In [11] it is shown that graphs satisfying the so-called distinct spheres condition have infinite motion as well as distinguishing number two. Examples for such graphs include leafless trees, graphs with infinite diameter and primitive automorphism group, vertex-transitive graphs of connectivity 1, and Cartesian products of graphs where at least two factors have infinite diameter. It is also known that Conjecture 1 is true for graphs fulfilling certain growth conditions [7]. In [8] it is shown that for locally finite graphs random colourings have a good chance of being distinguishing.

Many of the above results also hold for non-locally finite graphs which raises the question, whether the condition of local finiteness in Tucker's conjecture can be dropped.

A first indication, that local finiteness may be necessary has been given in the setting of permutation groups acting on countable sets. Here, instead of considering the automorphism group of a graph acting on the vertex set, we consider (faithful) group actions. A generalization of Conjecture 1 to this setting has been given by Imrich et al. [5].

Conjecture 2. Let Γ be a closed, subdegree finite permutation group on a set S. Then there is a distinguishing 2 -colouring of S.

For this generalization subdegree finiteness (which plays the role of local finiteness) is known to be necessary [6].

In this short note we show that local finiteness is also necessary in the graph case. More precisely we give a non-locally finite, arc transitive graph with infinite motion which does not admit a distinguishing colouring with any finite number of colours.

2 Preliminaries

Throughout this paper we will use Greek letters for group related variables while the Latin alphabet will be reserved for sets on which the group acts.

Let S be a countable set and let Γ be a group acting faithfully (i.e. the identity is the only group element which acts trivially) on S from the left. The image of a point $s \in S$ under an element $\gamma \in \Gamma$ is denoted by γs.

The stabilizer of s in Γ is defined as the subgroup $\Gamma_{s}=\{\gamma \in \Gamma \mid \gamma s=s\}$. We say that Γ is subdegree finite if for every $s \in S$ all orbits of Γ_{s} are finite.

The motion of an element $\gamma \in \Gamma$ is the number (possibly infinite) of elements of S which are not fixed by γ. The motion of the group Γ is the minimal motion of a non-trivial element of Γ. Notice that the motion is not necessarily finite, in fact all groups considered in this paper have infinite motion. The motion of a graph G is the motion of Aut G acting on the vertex set.

Let C be a (usually finite) set. A C-colouring of S is a map $c: S \rightarrow C$. Given a colouring c and $\gamma \in \Gamma$ we say that γ preserves c if $c(\gamma s)=c(s)$ for every $s \in S$. Call a colouring distinguishing if no non-trivial group element preserves the colouring.

Figure 1: An induced subgraph of the graph in Theorem 4 . Note that edges only go from top left to bottom right. By the definition of the graph all such edges are present and every edge is of this type.

3 The example

The construction that we use relies on the following result from [6] which also shows that there are permutation groups on a countable sets whose distinguishing number is infinite. The proof uses a standard back-and-forth argument, see for example [2, Sections 9.1 and 9.2] and [3, Sections 2.8 and 5.2].

Theorem 3 (Laflamme et al. [6]). Let Γ be the group of order automorphisms of \mathbb{Q} (i.e. bijective, order preserving functions $\gamma: \mathbb{Q} \rightarrow \mathbb{Q})$. Then Γ has infinite motion but no distinguishing colouring with finitely many colours.

Clearly the group Γ of the above theorem is the full automorphism group of the following directed graph: take \mathbb{Q} as vertex set and draw an edge from q to r if $q \leqslant r$. The underlying undirected graph is the complete countable graph which also has infinite distinguishing number but finite motion.

Theorem 4. There is a countable, connected, arc transitive graph with infinite motion which has no distinguishing colouring with a finite number of colours.

Proof. Let \mathbb{Q}^{+}and \mathbb{Q}^{-}be two disjoint copies of \mathbb{Q}. Denote the elements corresponding to $q \in \mathbb{Q}$ in these copies by q^{+}and q^{-}, respectively. Consider the (undirected) graph $G=(V, E)$ where $V=\mathbb{Q}^{+} \cup \mathbb{Q}^{-}$and $q^{+} r^{-} \in E$ whenever $q<r$. Figure 1 shows a small subgraph of this graph to give an idea of what it looks like. Clearly G is countable and connected.

Note that G is bipartite with bipartition $\mathbb{Q}^{+} \cup \mathbb{Q}^{-}$. Hence every automorphism γ of G either fixes \mathbb{Q}^{+}and \mathbb{Q}^{-}set-wise, or swaps the two sets. Furthermore if $\gamma q^{+}=r^{+}$then $\gamma q^{-}=r^{-}$because q^{-}is the unique vertex with the property $N\left(q^{-}\right)=\bigcap_{v \sim q^{+}} N(v) \backslash\left\{q^{+}\right\}$. A similar argument shows that if $\gamma q^{+}=r^{-}$then $\gamma q^{-}=r^{+}$. So the action on \mathbb{Q}^{+}uniquely determines an automorphism of G.

Now, we define a family of automorphisms of G (we will later show that these are in fact all the automorphisms of G). For every order automorphism γ of \mathbb{Q}, define the functions γ_{\uparrow} and γ_{\downarrow} as follows:

- γ_{\uparrow} applies γ to both copies of \mathbb{Q}, i.e. $\gamma_{\uparrow}\left(q^{+}\right)=(\gamma(q))^{+}, \gamma_{\uparrow}\left(q^{-}\right)=(\gamma(q))^{-}$,
- γ_{\downarrow} first applies γ to both copies, then reverses the order on each of them and swaps them, i.e. $\gamma_{\downarrow}\left(q^{+}\right)=(-\gamma(q))^{-}$, and $\gamma_{\downarrow}\left(q^{-}\right)=(-\gamma(q))^{+}$.

It is straightforward to check that these maps are indeed automorphisms of the graph G.
To see that G is arc transitive, notice that the arc $0^{+} 1^{-}$can be mapped to any arc of the form $q^{+} r^{-}$by the automorphism γ_{\uparrow} where

$$
\gamma(x)=q+(r-q) x .
$$

The map γ is an order automorphism of \mathbb{Q} since $q^{+} r^{-} \in E$ implies that $q<r$. By analogous arguments, the arc $0^{+} 1^{-}$can be mapped to any arc of the form $q^{-} r^{+}$by the automorphism γ_{\downarrow} where

$$
\gamma(x)=-q+(q-r) x .
$$

Every map of the type γ_{\uparrow} and γ_{\downarrow} moves infinitely many vertices. Thus, to show that G has infinite motion, it suffices to prove that the automorphisms of the form γ_{\uparrow} and γ_{\downarrow} as defined above are the only automorphisms of G.

It is not hard to see that $q \geqslant r$ if and only if $N\left(q^{+}\right) \subseteq N\left(r^{+}\right)$. This implies that $N\left(\phi\left(q^{+}\right)\right) \subseteq N\left(\phi\left(r^{+}\right)\right)$for every automorphism φ of G. If φ fixes \mathbb{Q}^{+}set-wise we conclude that φ preserves the order on \mathbb{Q}^{+}, hence it is equal to γ_{\uparrow} for a suitable order automorphism γ. An analogous argument shows that if φ swaps \mathbb{Q}^{+}and \mathbb{Q}^{-}, then $\varphi=\gamma_{\downarrow}$ for an order automorphism γ of \mathbb{Q}.

Finally, assume that there is a distinguishing colouring c of G with $n<\infty$ colours. In particular this colouring would break every automorphism of the form γ_{\uparrow}. Hence the map $q \mapsto\left(c\left(q^{+}\right), c\left(q^{-}\right)\right)$would be a distinguishing colouring of \mathbb{Q} with $n^{2}<\infty$ colours, a contradiction to Theorem 3.

References

[1] M. O. Albertson and K. L. Collins. Symmetry breaking in graphs. Electron. J. Combin., 3(1):\#R18, 1996.
[2] M. Bhattacharjee, D. Macpherson, R. G. Möller, and P. M. Neumann. Notes on infinite permutation groups. Springer Lecture Notes Series 1698. Springer, 1998.
[3] P. J. Cameron. Oligomorphic permutation groups. LMS Lecture Notes Series 152. Cambridge: Cambridge University Press, 1990.
[4] W. Imrich, S. Klavžar, and V. Trofimov. Distinguishing infinite graphs. Electron. J. Combin., 14(1):\#R36, 2007.
[5] W. Imrich, S. M. Smith, T. Tucker, and M. E. Watkins. Infinite motion and 2distinguishability of graphs and groups. J. Algebr. Comb., 41(1):109-122, 2015.
[6] C. Laflamme, L. Nguyen Van Thé, and N. Sauer. Distinguishing number of countable homogeneous relational structures. Electron. J. Combin., 17(1):\#R20, 2010.
[7] F. Lehner. Distinguishing graphs with intermediate growth. Combinatorica, to appear.
[8] F. Lehner. Random colorings and automorphism breaking in locally finite graphs. Combin. Probab. Comput., 22(6):885-909, 2013.
[9] F. Rubin. Problem 729. J. Recreational Math., 11:128, 1979. (solution in volume 12, 1980).
[10] A. Russell and R. Sundaram. A note on the asymptotics and computational complexity of graph distinguishability. Electron. J. Combin., 5:\#R23, 1998.
[11] S. M. Smith, T. W. Tucker, and M. E. Watkins. Distinguishability of infinite groups and graphs. Electron. J. Combin., 19(2):\#R27, 2012.
[12] T. W. Tucker. Distinguishing maps. Electron. J. Combin., 18(1):\#P50, 2011.
[13] M. E. Watkins and X. Zhou. Distinguishability of locally finite trees. Electron. J. Combin., 14(1):\#R29, 2007.

[^0]: *The author acknowledges the support of the Austrian Science Fund (FWF), project W1230-N13.

