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Abstract

In 1982, Tsallis derived a formula which proposed an exact value of 0.522372078 . . .
for the bond percolation threshold of the kagome lattice. We use the substitution
method, which is based on stochastic ordering, to compare the probability distri-
bution of connections in the homogeneous bond percolation model on the kagome
lattice to those of an exactly-solved inhomogeneous bond percolation model on the
martini lattice. The bounds obtained are 0.522394 < pc(kagome) < 0.526750, where
the lower bound shows that the value conjectured by Tsallis is incorrect.

Keywords: percolation threshold, set partition, non-crossing partition, stochastic
ordering.

1 Introduction

Since the origins of percolation theory in the 1950’s, rigorous determination of the exact
percolation thresholds of lattices has been a major challenge. Early 1980’s results [12,
13, 29, 30] determined the exact bond percolation thresholds of the square, triangular,
hexagonal and bow-tie lattices and the site percolation thresholds of the triangular and
kagome lattices, using graph duality properties and the star-triangle transformation. No
further progress on this problem was made until 2006, when a generalized star-triangle
transformation and the concept of self-dual planar hypergraphs led to a method for solving
for bond percolation thresholds for an infinite class of two-dimensional lattices [25, 38,
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44, 46]. However, this method does not produce solutions for several common models,
the most well-studied being the kagome lattice bond model and the square and hexagonal
lattice site models. For lattices for which there is no exact solution, knowledge regarding
the percolation threshold is gained via simulation estimates and mathematically rigorous
bounds.

Figure 1: Induced subgraphs of the kagome lattice (left) and dice lattice (right).

The most studied unsolved two-dimensional bond percolation model is the kagome
lattice model, for which there is an extensive literature of estimates and bounds. Before the
1990s, simulations, approximations, heuristic derivations, and renormalization approaches
[3, 4, 19, 20, 21, 24, 28, 39, 41, 42, 43] produced a collection of estimated values ranging
from 0.449 to 0.526. Since the late 1990s, as more efficient simulation algorithms were
developed and computing power increased, the bond percolation threshold estimates [5,
9, 10, 11, 22, 23, 26, 27, 40, 45, 47] agree on the first four decimal places, at 0.5244, with
the highest-precision simulation values clustering near 0.524405. Particularly notable is a
mathematically rigorous 99.9999% confidence interval [0.52415, 0.52465] by Riordan and
Walters [23]. Mathematically rigorous bounds for the percolation threshold have also
improved over the years, as indicated in the following table:

Authors Year Bounds Reference

Wierman 1988 (0.4045, 0.6180) [31]
Wierman 1990 (0.5182, 0.5335) [32]
Wierman 2003 (0.5209, 0.5291) [37]
May & Wierman 2007 (0.522197, 0.526873) [18]

This article is motivated by the disparity between the simulation estimates and the
conjectured exact value by Tsallis [28], the root of p3 − p2 − p + 1 − 2 sin(π/18) = 0.
For example, a recent estimate is 0.524404999134 by [9], while the numerical value of the
Tsallis conjecture is 0.522372078 . . .

We obtain mathematically rigorous bounds of

0.522394 < pc(kagome) < 0.526750,
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which disprove the Tsallis conjecture by showing that in fact his value is strictly smaller
than the kagome lattice bond percolation threshold. Note that the bounds are improve-
ments of [18], and are approximately centered on the recent simulation estimates.

Note also that, previous to the Tsallis conjecture, Wu [39] conjectured a percolation
threshold of 0.524430 for the kagome lattice bond model. The discrepancy between Wu’s
conjecture and the consensus estimates is much smaller than for the Tsallis conjecture,
and our bounds are not sufficient to disprove Wu’s conjecture.

Since the dual graph of the kagome lattice is the dice lattice, the bounds imply the
following bounds for the dice lattice bond percolation threshold:

0.473250 < pc(dice) < 0.477606.

Our bounds are obtained by the substitution method, using stochastic ordering to
compare an unsolved percolation model to an exactly-solved model. In addition to
the kagome lattice bond model, it has been applied to several other percolation mod-
els [17, 18, 33, 34, 35, 36]. The initial motivation for the development of the sub-
stitution method was to understand the approach of Ottavi, who proposed bounds of
0.522372 6 pc 6 0.528924 for the kagome lattice bond percolation threshold. A discus-
sion of the substitution method, including the flaws in Ottavi’s approach, can be found
in [1, Ch. 6].

We compare the kagome lattice bond model to a two-parameter inhomogeneous model
on the martini lattice, which is exactly solved by the generalized star-triangle transfor-
mation approach. The generalized star-triangle transformation showed how to generate a
large collection of new lattices for which the percolation threshold can be exactly solved.
The martini lattice has similarities to the kagome lattice which make it well-suited to be
used as the reference lattice for calculating bounds for the kagome lattice bond percolation
threshold.

The paper is organized as follows: Section 2 describes the martini lattice, the solution
for the critical surface of the two-parameter inhomogeneous model on it, and the substitu-
tion regions of the martini and kagome lattices used. Computational issues are discussed
in section 3. The apparently intractably large computation can be reduced substantially
by using planarity and symmetry. A two-stage algorithm is used to determine the bounds
by first generating a candidate value that is expected to be close to the bound, which
greatly reduces the set of possibilities that need to be checked in the second stage. Fi-
nally, section 4 summarizes our conclusions and their consequences, and discusses further
investigations in progress.

2 The Lattices

The kagome lattice, shown in Figure 1, is one of the eleven Archimedean lattices, which
are vertex-transitive graphs created by tilings of the plane by regular polygons [8, Ch.
2]. It is the line graph of the hexagonal lattice, so the site percolation threshold of the
kagome lattice is equal to the bond percolation threshold of the hexagonal lattice [6],
which is exactly 1 − 2 sin( π

18
) [29]. For any lattice, the bond percolation threshold is
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less than or equal to the site percolation threshold [7], so, for a crude upper bound, the
bond percolation threshold satisfies pc(kagome) 6 1−2 sin( π

18
) < 0.652704. Its dual graph

is the dice lattice, one of the 8 Laves lattices which were identified in crystallography
[14, 15]. By Kesten’s duality theorem [13] for bond percolation thresholds of dual graphs,
pc(kagome) + pc(dice) = 1, so bounds for one threshold imply bounds for the other.

The substitution method compares probabilities of connections between vertices in
the percolation model on an unsolved lattice with those on a solved reference lattice.
Previous attempts to disprove the Tsallis conjecture, by May and Wierman [17, 18], used
the hexagonal lattice bond model as the reference model, since the hexagonal lattice
has some structural similarity with the kagome lattice. Since then, a class of new exact
solutions has been established. (See [2] and [38].) However, as pointed out by Ziff [44],
the kagome lattice is not in this class, so an exact solution does not exist using current
methods. The class of new solutions includes the martini lattice, shown in Figure 2, which
is used as the reference lattice in this article.

Figure 2: An induced subgraph of the martini lattice.

There are two principal reasons for using the martini lattice. First, its structure has
more similarities with the kagome lattice than the hexagonal lattice. This is shown in
Figure 3, which shows corresponding substitution regions from the three lattices. One
may view the martini lattice as replacing three three-stars in the two-subdivided hexag-
onal lattice by triangles, and consider it to be “halfway between” the hexagonal lattice
and kagome lattice structures. Intuitively, probabilities of connections between vertices
are expected to be closer for the kagome and martini lattices than for the kagome and
hexagonal lattices.

Secondly, an inhomogeneous bond percolation model on the martini lattice, with one
parameter t for the triangular edges and a second parameter s for the other edges, is ex-
actly solved. This provides an infinite collection of solved reference models for comparison
to the kagome lattice bond model. Figure 4 shows the martini generator labeled with edge
probability parameters, and its critical surface in [0, 1]2, respectively. The critical surface
is the boundary in the parameter space separating regions of existence and non-existence
of infinite clusters, which is given by 2s3t3−3s3t2−3s2t3+3s2t2+3s2t = 1 for the martini
lattice model [44]. Three particular points on the critical surface are labeled in Figure
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Figure 3: Substitution regions for the kagome, martini, and hexagonal lattices.
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Figure 4: Left: The martini generator with two edge probability parameters. Right: The
martini lattice model critical surface.

4. If s = 1, the martini model is equivalent to a triangular lattice model with parameter
t, which has percolation threshold 2 sin(π/18) ≈ 0.3473. If t = 1, the martini model is
equivalent to a hexagonal lattice model with parameter s, which has percolation threshold
1 − 2 sin(π/18) ≈ 0.6527. On the diagonal s = t, the martini model is a homogeneous
model, with percolation threshold equal to 1√

2
.

Although increased computations are required, we find the optimal points on the
critical surface, trading off one parameter for the other, for computing the best upper and
lower bounds for the kagome lattice bond percolation threshold.

Although the martini lattice was solved using a particular generator, we are not ob-
ligated to use a union of those generators in the substitution method. However, it is
important that the entire lattice can be constructed as an edge-disjoint union of copies of
the generator. We use the larger substitution regions shown in Figure 3 rather than that
shown in Figure 4.

These two advantages of the martini lattice allow us to obtain improved bounds with
a smaller substitution region. In the terminology of May and Wierman [17, 18], they used
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a “seven tile” substitution to obtain the bounds 0.522197 < pc(kagome) < 0.526873. This
article improves both bounds, by comparing a smaller “one tile” substitution region with
the inhomogeneous martini lattice bond model reference.

3 Substitution Method Computations

Many of the computational methods are similar to those of May and Wierman [17, 18].
Modifications or replacements of these methods arose to deal with the fact that there
is not a single reference model at criticality, but the full range of models on the critical
surface for the martini lattice. The following subsections provide brief descriptions and
remarks about various aspects of the computational methods.

3.1 Substitution Method

The substitution method compares two percolation models using stochastic ordering.
There are several steps in implementing substitution method computations.

First, a finite connected subgraph, called the substitution region, is chosen for each
model. These substitution regions must have the same number of vertices on the bound-
ary; that is, vertices through which paths in the infinite lattice may enter or leave the
region. Each lattice must be an edge-disjoint union of isomorphic copies of its substitution
region.

Secondly, a probability measure on the partitions of the boundary vertices of the
substitution region is computed for each model. For each of the substitution regions in
Figure 3, label the boundary vertices 1 through 6 clockwise from the top. Use vertical
bars to indicate separation of the boundary vertices into blocks. The set of boundary
partitions is a partially ordered set with the refinement ordering, in which a partition is
smaller than another if each of its blocks is contained in a single block of the other. For
each parameter value p, and each partition π of the boundary vertices, PK

p (π) denotes the
probability that the boundary vertices in each block of π are connected by open paths,
but no vertices in different blocks are connected by open paths, within the substitution
region of the kagome lattice percolation model. For each pair of parameter values s, t,
PM
s,t (π) is defined similarly for the martini lattice substitution region. The number of

boundary vertices of the substitution regions must be equal in order for the two partition
probability measures to be defined on the same partially ordered set of partitions.

Thirdly, the families of probability measures PK
p and PM

s,t are then compared by
stochastic ordering. An upset in the partial ordering is a set of partitions U such that
if a ∈ U and a 6 b then b ∈ U . A probability measure P is stochastically smaller than
a probability measure Q if P [U ] 6 Q[U ] for every upset U in the set of partitions. By
the well-known equivalence of stochastic ordering and coupling, if (s, t) is a point on the
critical surface of the martini lattice model, and PK

p is stochastically larger than PM
s,t ,

then p > pc(kagome). Similarly, if PK
p is stochastically smaller than PM

s,t and (s, t) is a
point on the critical surface of the martini lattice model, then p 6 pc(kagome).

the electronic journal of combinatorics 22(2) (2015), #P2.52 6



The following subsections discuss the implementation of steps in this approach, em-
phasizing the differences from previous implementations. All computations discussed in
the following were performed using MATLAB.

3.2 Generating Partitions

The first step in the computations is to generate the appropriate lattice of partitions of the
boundary vertices. Since our substitution regions have six boundary vertices, the number
of partitions is the 6-th Bell number, which is 203. However, there exist 90 different
partitions which have exactly 3 blocks, and are thus mutually incomparable. Each of the
290 subsets of this set of partitions, except the empty set, generates an upset which would
be involved in checking stochastic ordering later.

Fortunately, since both lattices are planar, the substitution regions are planar, so
only non-crossing partitions may have positive probability. A non-crossing partition of
[n] = {1, 2, 3, . . . , n} is a partition such that a < b < c < d ∈ [n] where a and c are in
block A and b and d are in block B implies that A = B. Since the number of non-crossing
partitions of six boundary vertices is the 6-th Catalan number, 132, computations are
considerably reduced by restricting to non-crossing partitions. In fact, there are three
non-crossing partitions which also have zero probability in both models, 14|23|56 and two
rotations, so the number of partitions with nonzero probability is actually 129. Using
the lattice of non-crossing partitions results in a considerable reduction of the number of
upsets that must be checked.

3.3 Reduction to a Class Lattice

A further reduction of the computational burden is accomplished using symmetry of the
substitution regions. Partitions which are rotations or reflections of each other, so are in
the orbit of each other under the dihedral group, have equal probabilities in the percolation
model. Thus, the set of 129 partitions can be reduced to equivalence classes of partitions
which are related by rotation or reflection. Wierman [37] showed that, for the purpose
of checking stochastic ordering, it is sufficient to consider the class lattice, which is a
partially ordered set in which a class π is considered to be a refinement of a class σ if
there is a partition in π which is a refinement of a partition in σ.

Both substitution regions have some rotational and reflection symmetries. The sym-
metry group for the kagome lattice is the dihedral group on 6 elements, but for the martini
region it is the dihedral group on 3 elements. The class lattice for the martini substitution
region contains 34 classes, but the class lattice for the kagome substitution region has 24.
Since we must compare probability measures for the two models on a common partially
ordered set, and each kagome class is a union of martini classes, we must use the class
lattice with 34 classes. The partitions in each class are isomorphic both in the kagome
substitution region and in the martini substitution region.
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3.4 Partition Probability Functions

The substitution regions for the kagome lattice and the martini lattice both are comprised
of 18 edges. Since each edge may be retained in the random subgraph or not, there are 218

possible configurations that may be realized. For each k, 0 6 k 6 18, the probability of a
realization on the kagome substitution region with k retained edges is pk(1− p)18−k. For
the martini substitution region, for each i, j, 0 6 i, j 6 9, any configuration with i retained
edges in triangles and j retained edges in three-stars has probability ti(1−t)9−isj(1−s)9−j.
Each partition is the union of a set of configurations, so its probability is a sum of these
terms, and is thus a polynomial. In principle, the partition probability polynomials may
be computed by generating all configurations, determining which configurations comprise
each partition, and adding the configuration probabilities to obtain each partition prob-
ability. However, we employed the more efficient “graph-welding” method introduced in
[16]. By carrying out these computations symbolically, the polynomial functions were
found explicitly, in contrast to finding numerical values for each retention probability
parameter value as needed.

3.5 Checking Stochastic Ordering

We follow the approach of [37] to find upper and lower bounds for the kagome lattice
bond percolation threshold for a given point (s, t) on the martini lattice critical surface.
With the values of s and t specified, the partition probability measure associated with the
martini lattice is constant, while each nontrivial upset in the kagome probability measure
has a probability function that is strictly increasing in p. Thus, for each non-trivial upset
U in the class lattice, there is a unique value pU at which the two probabilities are equal.
Let pmax denote the maximum solution of all such upset equations, and pmin denote the
minimum solution. If p > pmax, we have P

K
p (U) > PM

s,t (U) for all upsets U , so PK
p >st P

M
s,t ,

and thus p > pc(kagome). Similarly, if p < pmin, we have p 6 pc(kagome). Between pmin

and pmax, neither stochastic ordering holds. Therefore, the best upper and lower bounds
that we can obtain from the comparison of the two models with the two substitution
regions are pmax and pmin respectively.

However, in general, finding the largest and smallest upset probability equation solu-
tions directly, by solving all upset equations, is impractical, since the number of upsets
grows super-exponentially in the number of boundary vertices. This may be likened to
trying to “find two needles in a haystack.” Thus, when computing a lower bound, it is
important to be able to rule out large collections of upsets that could not possibly give
the minimum solution. We accomplish this using a process which is a modification of the
approach of Wierman [37] and May and Wierman [17, 18].

3.6 Desirable Classes

In this section, we define “desirable classes” and show that the largest lower bound pmin

is the solution for an upset Umin which has only desirable classes as its minimal elements.
(A similar result holds for the smallest upper bound.) Since we only need to solve upset
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equations for upsets with this property, the computational burden is significantly reduced.
The desirable class approach can be adapted to other models, so the following rea-

soning is given more generally than for the kagome and martini lattices. We use the
notation gA(p) for the probability of a set A of classes in the unsolved percolation model
with parameter value p, and hA for the (constant) probability in the solved percolation
model at criticality. In the context of this article, gA(p) = PK

p (A), the kagome lattice
class probabilities, and hA = PM

s,t (A), the martini lattice probabilities for a fixed point
(s, t) on the critical surface for the martini lattice.

We begin with definitions and preliminary facts about upsets.

Fact 1. If P is a finite poset, then every non-empty upset U of P has an antichain

representation of the form

U =
k⋃

i=1

{↑ xi}

where {x1, x2, . . . , xk} is an antichain in P and {↑ xi} = {π ∈ P : π > xi} is the principal

upset generated by xi. The elements {x1, x2, . . . , xk} are the minimal elements of upset

U . This provides a recipe for constructing all the upsets, though it is practical only when

the poset is relatively small.

Fact 2. If U is an upset, and a is a minimal element of U , then U\{a} is an upset.

Definition 3. A class π is desirable with respect to the interval [llow, lup] if and only if
gπ(p) > hπ for some p ∈ [llow, lup].

To apply our principal result, the interval [llow, lup] must be chosen so that it contains
the value pmin. Even though pmin is unknown, this may be done. An appropriate interval
may be computed using smaller substitution regions, as is discussed in Remark 5 after
the following theorem. It is beneficial to have a short interval, so the number of desirable
classes is small, to reduce the computational effort required.

Theorem 4. Suppose that pmin ∈ [llow, lup] for some values 0 6 llow 6 lup 6 1, with the

corresponding upset denoted by Umin. Then every minimal element of Umin is desirable

with respect to [llow, lup].

Proof: Let A be the antichain consisting of the minimal elements of Umin. We will
prove by contradiction that each a ∈ A is desirable. Assume there exists an element a ∈ A
which is not desirable. Then

g{a}(p) < h{a} ∀ p ∈ [llow, lup].

By assumption, pmin ∈ [llow, lup], so the fact that a is not desirable implies that

g{a}(pmin) < h{a}.

Consider Umin\{a}, which is an upset by Fact 2. By definition of pmin and Umin,

gUmin
(pmin) = hUmin

,
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which may be decomposed into

gUmin\{a}(pmin) + g{a}(pmin) = hUmin\{a} + h{a}.

Consequently,
gUmin\{a}(pmin) > hUmin\{a}.

Since Umin\{a} is an upset, its probability is a nondecreasing function of p, so there exists
p∗ < pmin such that

gUmin\{a}(p
∗) = hUmin\{a},

which contradicts the fact that pmin is the minimum of the solutions of all the upset
equations. Thus, our assumption that a minimal element of Umin is not desirable must
be false, so we conclude that all minimal elements of Umin are desirable.

Remark 5. An appropriate interval [llow, lup] may be determined from substitution method
computations from smaller regions. Notice that the 6-boundary-vertex substitution region
is the edge-disjoint union of three isomorphic 4-boundary-vertex regions. Let pl and pu
denote the substitution method lower and upper bounds, respectively, computed for the 4-
boundary-vertex regions (for the same point (s, t) on the martini lattice critical surface).
By the equivalence of stochastic ordering and coupling, independent couplings on the
4-boundary vertex regions exist, which can be combined to provide a coupling on the
6-boundary-vertex region. This implies that the kagome lattice percolation model at pl
is stochastically smaller than the martini lattice model on the 6-boundary-vertex region,
so pl 6 pmin. Similarly, for the upper bounds, pu > pmax. Thus, we may choose [pl, pu] as
the interval [llow, lup] for application of the Theorem.

Remark 6. In fact, the interval [llow, lup] may be shortened further. Note that any upset
equation solution provides a value that is at least as large as the minimum solution, and
thus may be used as lup. A simple choice is to use the solution for the upset consisting
of only the maximal class. For our calculations, we considered the classes in the order
generated by our programs, solved the upset equations as the classes were successively
added to form upsets, then used the smallest of these solutions for our initial value of lup.

To apply Theorem 4 in a straightforward manner, one would identify all desirable
classes, construct all the upsets generated by sets of desirable classes, solve their upset
equations, then find the smallest solution, to obtain the lower bound for the percolation
threshold. However, if there are k desirable classes, the number of subsets of desirable
classes is 2k, so the computational efficiency can be improved considerably by two addi-
tional reductions in the number of classes needed to generate the equations. In calculations
for this article, they reduce the typical running time for calculating a bound from more
than 6 to 20 hours to 2 to 10 minutes.

Remark 7. Note that the maximum class in the class poset must be in every upset, so
it must be in the upset that generates the minimum upset solution. Suppose there is a
desirable class C for which every class D > C in the class poset is either desirable or is
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the maximum class. By reasoning as in the proof of Theorem 4, C must be included in
the upset that generates the minimum upset equation solution. Therefore, to determine
the smallest solution, we need only consider the union of such classes with the upsets
generated by the other desirable classes.

Remark 8. Definition 3, of desirable class, and Theorem 4 were stated in the context of
determining a lower bound for the percolation threshold of the unsolved model. One may
reverse the inequality in Definition 3 and restate Theorem 4 in terms of downsets rather
than upsets in the class lattice to obtain a companion result, since the complement of an
upset is a downset and a downset is generated by its maximal elements. Most classes are
desirable for the upset approach only or the downset approach only, with some desirable
for both. We determine whether the upset approach or downset approach has the smallest
number of desirable classes, and typically reduce the computational effort considerably
by performing the calculations with that approach.

Finally, we note that the approach discussed above may be easily adapted to determine
the upper bound for the percolation threshold.

3.7 Determining Bounds

The desirable class method described for checking stochastic ordering can be applied
using any point (s, t) on the critical surface of the inhomogeneous martini lattice bond
model. To determine the best possible bounds for these substitution regions, for each
value s = .66, .67, .68, . . . , 1.00, we determined the corresponding t so that (s, t) is on the
critical surface, then computed the upper and lower bounds for pc(kagome). These upper
and lower bounds are graphed in Figure 5.
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Figure 5: Graphs of bounds for various values of s: Left: Upper and lower bounds for the
full range of values. Right: Lower bounds in a small interval containing the maximum.
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The largest lower bound for this set of s-values was not larger than Tsallis’ conjec-
tured value. However, by iterating this discretization on successively shorter intervals, we
determined the upper bound of .526750 at s = 0.804942 and the lower bound of .522394
at s = 0.806921. The results of the finest discretization are also shown in Figure 5.

The calculations were done using MATLAB on personal computers. For various points
(s, t) on the critical surface of the martini lattice, the running time varied from approxi-
mately two to ten minutes.

4 Conclusion and Future Research

We have disproved the conjectured value of Tsallis for the bond percolation threshold
of the kagome lattice, by improving both the upper and lower bounds due to May and
Wierman [18], which required computations for a much larger substitution region. The
improvement was possible because there is now a wider class of exactly solved bond
percolation models. Among those models, the inhomogeneous bond percolation model on
the martini lattice appeared to provide a better match to the connectivity of the kagome
lattice than the hexagonal lattice bond model used by May and Wierman [18], and its
use did in fact produce better percolation threshold bounds.

In the future, we expect to improve the methods of this article and apply them to
additional unsolved percolation models. Specifically, there are two prime candidates for
our next investigations:

Tsallis also conjectured an exact bond percolation threshold value of pc = 0.739830 . . .
for the Archimedean (3, 122) lattice, which the research literature suggests is smaller than
the true value. For example, a recent high-precision estimate of Jacobsen [9] provides the
value pc ≈ 0.7404207988474(7). Our comparison with the two-parameter martini lattice
for the substitution region with six boundary vertices provides the following bounds:

0.739227 < pc(3, 12
2) < 0.740880,

which are roughly centered on Jacobsen’s estimate. The lower bound does not disprove
Tsallis’ conjecture, but the upper bound is an improvement from the best previous upper
bound, 0.741125, obtained by May and Wierman [18].

The hexagonal lattice site model is one of the most important unsolved site percolation
model in two dimensions. May and Wierman [18] computed the best known bounds for
it using the substitution method, comparing it to the hexagonal lattice bond model. A
comparison with the inhomogeneous martini lattice model may produce improved bounds.

Acknowledgments: We thank Matthew Sedlock for helpful discussions and Alexander
Nathan, Edward Lim, and Junghoon Lee for assistance in preliminary computations for
this project.
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lattice by a substitution method. Disorder in Physical Systems (G. Grimmett and D.
J. A. Welsh, eds.), Oxford University Press, pp. 349–360.

[33] Wierman, J. C. (1995) Substitution method critical probability bounds for the square
lattice site percolation model. Combinatorics, Probability and Computing, 4, 181–
188.

the electronic journal of combinatorics 22(2) (2015), #P2.52 14



[34] Wierman, J. C. (2001) Site percolation critical probability bounds for the (4, 82) and
(4, 6, 12) lattices. Congressus Numerantium 150, 117–128.

[35] Wierman, J. C. (2002) Bond percolation critical probability bounds for three
Archimedean lattices. Random Structures & Algorithms 20, 508–518.

[36] Wierman, J. C. (2002) An improved upper bound for the hexagonal lattice site
percolation critical probability. Combinatorics, Probability and Computing 11, 629–
643.

[37] Wierman, J. C. (2003) Upper and lower bounds for the kagomé lattice bond perco-
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