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Abstract

We associate to any given circulant complex matrix C another one E(C) such
that E(E(C)) = C∗ the transpose conjugate of C. All circulant Hadamard matrices
of order 4 satisfy a condition C4 on their eigenvalues, namely, the absolute value
of the sum of all eigenvalues is bounded above by 4. We prove by a “descent” that
uses our operator E that the only circulant Hadamard matrices of order n > 4, that
satisfy a condition Cn that generalizes the condition C4 and that consist of a list of
n/4 inequalities for the absolute value of some sums of four eigenvalues of H, are
the known ones.

Keywords: Fourier matrix; Fourier transform; Circulant Hadamard matrices;
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1 Introduction

A complex matrix H of order n is complex Hadamard if HH∗ = nIn, where In is the
identity matrix of order n, and if every entry of H is in the complex unit circle. Here,
the ()∗ means transpose and conjugate. When such H has only real entries, so that
H is a {−1, 1}−matrix, H is called Hadamard. An n × n matrix H is circulant, say
H = circ(h1, . . . , hn), if the i-th row Hi of H is given by Hi = [h1−i+1, . . . , hn−i+1], the
subscripts being taken modulo n, for example H2 = [hn, h1, h2, . . . , hn−1]. For a circulant
matrix H := circ(h1, . . . , hn), the polynomial

RH(x) := h1 + h2x+ · · ·+ hnx
n−1,

is called the representer polynomial of H. A long standing-conjecture of Ryser (see [15,
pp. 134]) is:
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Conjecture 1. Let n > 4. If H is a circulant Hadamard matrix of order n, then n = 4.

Details about previous results on the conjecture and a short sample of recent related
papers are in [16], [8], [7], [14], [2], [3], [5], [4], [12], [11] and the bibliography therein.
Some of the papers above contains also computer computations related to the problem.
A good source of numerical data about the problem is available in [13].

For the history of the conjecture up to 2012, see [11]; see also [7] that describes
the current state of knowledge up to 1993. It is worth consulting more general classic
accounts on Hadamard matrices that include some results about the conjecture, in [1]
and in [18]. Of course, the conjecture being at the center of several very interesting
mathematical subjects, some “false” proofs were also published (see [8] for a description
of older attempts, and see [6], for a description of a recent’s one). We prove the conjecture
under the following mild condition: H satisfies the condition Cn.

Definition 2. A complex circulant matrix C of order n = 4k and representer polynomial
RC(x) satisfies the condition Cn if and only if for all i = 1, . . . , k one has

|λi + λk+i + λ2k+i + λ3k+i| 6 2. (1)

where the eigenvalues of K := C/
√
n are defined by λj := RK(exp(2πij/n)).

It is easy to check that all 8 circulant Hadamard matrices of order 4 satisfy the
condition C4, namely that the absolute values of the sum of all its eigenvalues is at most
4. Moreover, if a circulant Hadamard matrix H of order n = 4h2 satisfies the condition Cn
then by adding all these n/4 inequalities in (1) we get the trivial inequality in which “Tr”
means “trace”, 2h = |Tr(H/

√
n)| 6 n/2 = 2h2. Having said that, we will now proceed to

the details. It is sufficient to prove the following theorem that is our main result.

Theorem 3. Let h be an odd positive integer. If there exists a circulant Hadamard matrix
H of order n = 4h2 that satisfies the condition Cn then there exists also a circulant
Hadamard matrix K of order h2.

However, it is better to be a bit more precise.

Corollary 4. Let n > 4. If H is a circulant Hadamard matrix of order n that satisfies
the condition Cn, then n = 4.

In section 2 are collected all the necessary tools. Theorem 9 that describes a kind of
“duality operator” may have an interest in itself. The most important of all these tools
is Lemma 16 in which we manage the main reduction step for the proof of the theorem.
The proof of Theorem 3 appear in section 4. The proof of Corollary 4 appears in section
5.

Thinking to the reader, we added section 3 just after the tools in section 2. Indeed,
we believe that even an “informal” account of the main new ideas and general strategy
of the proof, merits a special section. Thus, we hope that by just reading this section,
and before entering the technical details, the reader, may have (working on an analogy)
a rough idea of what is going here.
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2 Some tools

The following classical result of Turyn [17] is useful.

Lemma 5. The order n of a circulant Hadamard matrix H such that n > 4, must be of
the form n = 4h2, with h an odd integer with at least two distinct prime divisors.

We recall the definition of the Fourier matrix and of the Fourier transform (see [9, pp.
31–35]):

Definition 6. Let n be a positive integer. Let w = exp(2iπ/n).

(a) The Fourier matrix F of order n is defined (note the star in the left-hand member),
by √

nF ∗ = V ([1, w, w2, . . . , wn−1]) = (w(i−1)(j−1)).

(b) For a matrix A with m rows and n columns and (i, j) entry equal to ai,j, we denote,
as usual, by AT the “transpose” of A i.e., the matrix with n rows and m columns
which (i, j) entry is aj,i.

(c) Let P (x) := c1 + c2x + · · · + cnx
n−1 be a complex polynomial of degree < n. The

Fourier transform of the vector c ∈ Cn defined by c := [c1, . . . , cn]T , is the vector
d := [d1, . . . , dn]T ∈ Cn defined by

√
n · [c1, . . . , cn] · F = [d1, . . . , dn],

where the (·) denotes complex conjugation.

We need two other results, both are simple consequences of the definitions for which we
may check [9]. A kind of “double dual” property for complex circulant matrices appears
in the next theorem.

Lemma 7. Let A = circ(a1, . . . , an) with representer polynomial RA(x) ∈ C[x]. Let
w := exp(2iπ/n). Set B := circ(λ1, . . . , λn) where λj := RA(wj−1), j = 1, . . . , n, are the
eigenvalues of A in some order. Let RB(x) ∈ C[x] be the representer polynomial of B.
Set bj := RB(wi−1) for all j = 1, . . . , n be the eigenvalues of B in some order. Then for
all j = 1, . . . , n

bj = n · an−j+2

where the subscripts are considered modulo n. Moreover, if all ai from i = 1, . . . , n are
real, then B = B∗.

Proof. Set r :=
√
n. By definition of the Fourier transform (see Definition 6) we have

r[λ1, . . . , λn] · F = [b1, . . . , bn], r[a1, . . . , an] · F = [λ1, . . . , λn]

where F is the Fourier matrix (see again Definition 6). This implies that

[b1, . . . , bn] = n · [a1, . . . , an] · F 2 = n · [a1, an, an−1, . . . , a2], (2)

since the symmetric matrix F 2 = Γ = (gi,j) has g1,1 = 1, gi,j = 1 when i+ j = n+ 2 and
zeros everywhere else. The result follows by conjugation of both sides of (2). Assume that
all ai’s are real. Then it follows that the bi’s are also real. This proves that B = B∗.
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Lemma 8. Let H := circ(h1, . . . , hn) be a circulant matrix of order n > 1, with real
entries hj. Let w := exp(2iπ/n). Let RH(x) be its representer polynomial. Let ρ :=
circ(λ1, . . . , λn) where λj := RH(wj−1), for all j = 1, . . . , n. For i = 1, . . . , n, let Ri be the
i-th row of ρ. Then for all j = 1, . . . , n we have

〈R1, Rj〉
n

= m2
1 +m2

2v
j−1 + · · ·+m2

nv
(j−1)(n−1)

where v := w, the conjugate of w, 〈·, ·〉 is the hermitian product 〈x, y〉 := x1ȳ1+ · · ·+xnȳn,
and mj := hn−j+2 where the subscripts are considered modulo n.

Proof. By Lemma 7, ρ = n ·F ∗diag(h1, hn, hn−1, . . . , h2)F , where F is the Fourier matrix.
But, ρ = ρ∗ so that β := ρρ∗ = ρ2 = n2 · F ∗diag(h21, h

2
n, h

2
n−1, . . . , h

2
2)F. We have also

by direct multiplication β = circ(〈R1, R1〉, . . . , 〈R1, Rn〉). Let us define some vectors of
length n. For j ∈ {1, 2, . . . , n} let ej := [0, . . . , 1, 0, . . . , 0] with the 1 being at position j.
We compute then

〈R1, Rj〉/ n =
1

n
· (e1 · β · ej) = e1 · (

√
nF ∗) · diag(h21, h

2
n, h

2
n−1, . . . , h

2
2) · (
√
nF ) · ej. (3)

Observe that by definition of F we have e1 ·
√
nF ∗ = [1, 1, . . . , 1] so that (3) becomes

〈R1, Rj〉/ n = [h21, h
2
n, . . . , h

2
2] · F/

√
n · ej. But,

√
nF · ej = [1, wj−1, w2(j−1), . . . , w(n−1)(j−1)]T .

The result follows from this.

We resume both lemmas in the theorem.

Theorem 9. Let n be a positive integer. Let C := circ(c1, . . . , cn) where ci ∈ C for all

i = 1, . . . , n. Put E(C) := circ(λ1,...,λn)√
n

, where the λi’s are the eigenvalues of C in the

order given by the Fourier transform
√
n [c1, . . . , cn] ·F = [λ1, . . . , λn]. Write E(E(C)) :=

circ(b1,...,bn)√
n

, where the bi’s are the eigenvalues of E(C) in the order given by the Fourier

transform
√
n [d1, . . . , dn] ·F = [b1, . . . , bn], where di := λi√

n
for all i ∈ {1, . . . , n}. In other

words, E(C) = circ(d1, . . . , dn). Then

(a) E(E(C)) = C∗.

(b) If, moreover cj ∈ {−1, 1} for all j = 1, . . . , n, then C = C∗ and E(C) ·E(C)∗ = nIn.

Proof. Part (a) follows from Lemma 7. First result in Part (b) follows from Lemma
7. The second result in part (b) follows from Lemma 8 by taking H = C, so that
ρ :=

√
n ·E(C), since m2

j = c2n−j+2 = 1. More precisely, with these choices Lemma 8 gives

〈R1, R1〉 = n(1 + · · ·+ 1) = n2 and 〈R1, Rj〉 = 1 + wj−1 + w(j−1)2 + · · ·+ w(j−1)(n−1) = 0,
that is, we get E(C) · E(C)∗ = nIn as claimed.

The following simple lemma in Davis’s book is useful also.
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Lemma 10. Let Λ := diag(λ1, . . . , λn). Then Γ := F ∗ΛF is a circulant matrix of order
n.

Proof. See [9, Theorem 3.2.3].

The following result is well known and it is easy to check.

Lemma 11. All eigenvalues of any Hadamard matrix of order n have the absolute value√
n.

The following class of matrices, a priori, an extension of the notion of Hadamard
complex matrices, is important for the proof.

Definition 12. Let n be a positive integer. Let C = (cij) be a complex matrix of order
n. Then we say that C is a lower -Hadamard matrix if C · C∗ = nIn and for each pair of
indices i, j ∈ {1, . . . , n} one has |cij| 6 1.

It is practical to recall here the definition.

Definition 13. Let n be a positive integer. For any column vector v ∈ Cn, say v =
[v1, . . . , vn]T , we define its 2-norm ||v|| by

||v||2 = v1v1 + · · ·+ vnvn.

The proposition below shows that we are not extending the class of complex Hadamard
matrices. It is good news for us.

Proposition 14. Let n be a positive integer. Then, a matrix C of order n, is a lower-
Hadamard matrix if and only if C is a complex Hadamard matrix.

Proof. One direction is trivial. Assume then that C is a lower-Hadamard matrix. Taking
determinants in both sides of C · C∗ = nIn we get | det(C)| = nn/2. But, by Hadamard’s
inequality we have

nn/2 = | det(C)| 6
n∏
i=1

||coli(C)||, (4)

where coli(C) is the i-th column of C. Therefore, by hypothesis, and by definition 13

||coli(C)||2 =
n∑
k=1

ckicki =
n∑
k=1

|cki|2 6
n∑
k=1

1 = n.

Thus,
||coli(C)|| 6

√
n = n1/2. (5)

It follows then from (4) that we cannot have strict inequality < in (5) for any given
column of C. I.e., we cannot have for some i ∈ {1, . . . , n}

||coli(C)|| < n1/2. (6)
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In other words it is impossible to have simultaneously (4) and (6), for if both were
true then we obtain from (4) the contradiction nn/2 < (n1/2)

n
. Therefore, we have now,

for any given k ∈ {1, . . . , n}

Sk := |c1k|2 + · · ·+ |cnk|2 = n. (7)

But by hypothesis, |cik| 6 1, so, if for some i we have |cik| < 1 then we get (from (7)) the
contradiction n = Sk < n. Thus, we must have |cik| = 1 for all k and for all i such that
{i, k} ⊆ {1, . . . , n}. This finishes the proof.

It will be clear in the proof of the main theorem, and in the proof of the crucial Lemma
16, why Proposition 14 is good news for us.

We use the obvious decomposition below of a circulant matrix of even order n in four
blocks of order n/2, (see [12] for a related result based on the same decomposition), in
order to build a smaller size matrix C attached to H.

Lemma 15. Let n be a positive even integer. Let H = circ(h1, . . . , hn) be a circulant
matrix of order n. Then there exist matrices A,B,K of order n

2
such that

(a)

H =

[
A B
B A

]
(b) K := A+B is circulant.

The lemma below is our main result. The theorem would follow quickly from it.

Lemma 16. Let h be an odd positive integer. Assume that H is a circulant Hadamard
matrix of order n, where n = 4h2, that satisfies the condition Cn. Then, there exists a
circulant lower-Hadamard matrix C of order n/4 such that C = C∗.

Proof. Let R = E(H) following Theorem 9 applied to H. By part (b) of the same Theorem
9, one has R = R∗ and RR∗ = nIn. Set S = A+B

2
where A and B are defined by Lemma

15 applied to the matrix R. Thus, S is circulant. Write S = circ(s1, . . . , sn). Since R is,
trivially, lower-Hadamard, we claim that S satisfies SS∗ = (n/4)In/2. Moreover, we claim
that S is hermitian. In order to prove the claim observe that |ai| 6 1 and |bi| 6 1. It
follows that we have also |si| =

∣∣ai+bi
2

∣∣ 6 1+1
2

= 1, where ai is the i-th entry in row 1 of A,
and bi is the i-th entry in row 1 of B. This proves the necessary conditions on the entries
of S; and it is the core of the proof. We now check the equation SS∗ = (n/4)In/2. From
RR∗ = nIn, one gets by block multiplication AA∗ + BB∗ = nIn/2 and AB∗ + BA∗ = 0.
Thus,

AA∗ + AB∗ +BA∗ +BB∗ = AA∗ +BB∗ = nIn/2. (8)

It follows from (8), and the definition of S, that S satisfies the equation. It remains to
prove that S is hermitian. From the definition of A and B one has A = A∗ and B = B∗

since R = R∗. It follows that S∗ = S. We have then established the claim. In order to
complete the proof we apply now, by using our condition Cn, an analogue construction to
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the matrix S, instead that applying it to the matrix R. In other words we do the following.
Observe that n/2 = 2h2 is an even positive integer. Define then the matrices K and L
both of order n/4 by applying Lemma 15 to the circulant matrix S. I.e., one has

S =

[
K L
L K

]
.

More precisely, the first rows RowK(1), RowL(1) of K and L are respectively: RowK(1) =
[s1, . . . , sn/4] and RowL(1) = [sn/4+1, . . . , sn/2]. We define now our target matrix C by

C := K + L. (9)

By Lemma 15 C is a circulant matrix of order n/4. Write C = circ(c1, . . . , cn/4).
Put R = E(H) = circ(d1, . . . , dn). Since H satisfies the condition Cn one has

|ci| =
∣∣si + sn/4+i

∣∣ = |(di + di+h2 + di+2h2 + di+3h2)/2| 6
2

2
= 1

for all i = 1, . . . , n/4.
We claim that C is a circulant lower-Hadamard matrix of order n/4. The only thing

that remains to be proved is the equality: CC∗ = (n/4)In/4. As before we have the
following. From SS∗ = (n/4)In/2, one gets by block multiplicationKK∗+LL∗ = (n/4)In/4
and KL∗ + LK∗ = 0. Thus, by (9)

CC∗ = KK∗ +KL∗ + LK∗ + LL∗ = KK∗ + LL∗ = (n/4)In/4,

that proves the equality. It remains to prove that C is hermitian. From the definition of
K and L one has K = K∗ and L = L∗ since S = S∗. It follows that C∗ = C. We have
then established that C is a circulant lower-Hadamard matrix of order n/4, and that C
is hermitian. This proves the lemma.

Now, we describe the eigenvalues of our matrix C defined above.

Lemma 17. The eigenvalues of the matrix C defined in Lemma 16 are elements of the
set Eig(C) := {

√
n/2,−

√
n/2}.

Proof. Since C is hermitian by Lemma 16 the result follows from Lemma 11.

3 Informal account of the new idea for the proof

The idea is to try to build a circulant Hadamard matrix, say T2, of smaller size than a
given circulant Hadamard matrix H of order n, that satisfies the condition Cn. Of course,
this appears at first view like an impossible task. However, the fact that H is formed of
four blocks of size n/2 since H is circulant, suggest a first try. Assume that

H =

[
A B
B A

]
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Then it is easy to see, using that HH∗ = In and block multiplication, that T1 := (A +
B)/2, of size n/2 is circulant, has its entries in {−1, 0, 1} and satisfies T1T

∗
1 = (n/4)In/2.

Repeating the procedure we got (we cannot now divide by 2), say, T2 := C + D, of size
n/4 is circulant with entries in {−2,−1, 0, 1, 2} and satisfies T2T

∗
2 = (n/4)In/4. Besides

the problem with the entries not equal to −1 or to 1 these circulant matrices, may exist
!. For example, for n = 36 (for which of course it is known that there are no circulant
Hadamard matrix), we got, by example T2 := circ(0, 1,−1, 0, 1,−1, 0, 1, 2) that satisfies
T2T

∗
2 = 9I9. An interesting comment of the referee is that an orthogonal matrix with few

entries often appear in “frames” in some lattices such as Leech lattice.
We need then to “fix” the problem with the entries in such a manner that we do not

have trivial solutions as above. This can be done by considering a slightly more general
form of a circulant Hadamard matrix. Namely, considering instead a matrix H with
complex entries that satisfies HH∗ = nIn and has its entries in the complex unit disk.
First of all we prove (see Proposition 14) that these matrices are exactly the same as the
matrices with the same constraint but having its entries exactly in the boundary of the
disk. This uses the classical Hadamard’s inequality. Then with the help of the Fourier
transform we obtain a kind of “duality operator” E (see Theorem 9). After that (see
Lemma 16) we build an analogue of the construction above, beginning now with E(H)
instead that with H, that works in the more general context, and then (see proof on next
section) we are able to show that we can really do the “fix”, i.e., we are able to build a
kind of “descent”. This “descent” is possible by the condition Cn on the eigenvalues of
H, (see (2)) above.

We are now ready to show our main result.

4 Proof of Theorem 3

Let n = 4h2. Let H be a circulant Hadamard matrix of order n. From Lemma 16
there exists a circulant, lower-Hadamard matrix C of order n/4 such that C is her-
mitian. Write C = circ(c1, . . . , ch2). We define (see Lemma 10) a circulant matrix T
by T = h · F ∗diag(c1, . . . , ch2)F where F is the Fourier matrix defined in Definition
6, and diag(c1, . . . , ch2) is a diagonal matrix of order h2 with diagonal entries ci for
i = 1 . . . , h2. Let T := circ(t1, . . . , th2). Observe that the eigenvalues of T are hc1, . . . , hch2 .
More precisely, see Theorem 9, one has E(T ) = C. Define now the circulant matrix
D = circ(d1, . . . , dh2) of order n/4 by

D := E(E(T )). (10)

By Lemma 17 we see that the eigenvalues of C are in {h,−h}. This together with the
definition of D (see Theorem 9) implies that one has for all i = 1, . . . , h2 di ∈ {−1, 1}.
More precisely: from (4) and the definition of E(C) (see Theorem 9) we have D =

E(E(T )) = E(C) =
circ(δ1,...,δh2 )

h
where the δi’s, for i = 1, . . . , h2 satisfy δi ∈ {h,−h}, by

Lemma 17. Now, we come back to T . Since C is a circulant lower-Hadamard matrix of
order h2, by Proposition 14 we have that, indeed, C is a circulant complex Hadamard
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matrix. This means, in particular, that all the entries of the first row of C, namely all
the ci from i = 1, . . . , h2 satisfy

|ci| = 1 (11)

(and not just merely that |ci| 6 1). Here we touch, really the point of the proof.
Since C is a circulant complex Hadamard matrix of order h2, we have also CC∗ = h2Ih2 .

We will show now that (11) has important consequences:
We claim that TT ∗ = h2Ih2 . Proof of the claim using (11):

TT ∗ = h2 · F ∗diag(c1, . . . , ch2)FF
∗diag(c1, . . . , ch2)F

= h2 · F ∗diag(|c1|2, . . . , |ch2|2)F = h2 · F ∗diag(1, . . . , 1)F

= h2 · F ∗Ih2F = h2 · F ∗F = h2 · Ih2 .
It remains just the following claim about the entries in the first row of the circulant
matrix T : We claim that for all i = 1, . . . , h2 one has ti ∈ {−1, 1}. Proof of the claim: By
Theorem 9 part (a) one has E(E(T )) = T ∗. But, by (10), this means

T ∗ = D. (12)

But, each entry of the matrix D is in {1,−1}. So by (12), each entry of the matrix T ∗

is in {−1, 1}. Therefore, each entry of the matrix T is also in {−1, 1}. This proves the
claim. We have then

(a) The matrix T is a circulant matrix of order h2. All its entries belong to the set
{1,−1}, and

(b) the circulant matrix T of order h2 satisfies TT ∗ = h2Ih2 .

Therefore we obtain, by the definition of a Hadamard matrix, that T is a circulant
Hadamard matrix of odd order h2. This proves the theorem.

5 Proof of Corollary 4

Put n = 4h2 where h is an odd positive integer. By Theorem 3 we deduce that there
exists a circulant Hadamard matrix of odd order h2. But it is well known that the unique
square matrices of odd order k that are circulant and Hadamard, simultaneously, are all
of order k = 1. More precisely these matrices are the following two square matrices with
one, and only one, entry: I1 = (1) and I2 = (−1). Therefore, we must have h = 1. This
proves the corollary.
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