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Abstract

An alternative characterization of k-marked Durfee symbols defined by Andrews

is given. Some identities involving generating functions of k-marked Durfee sym-

bols are proven combinatorially by considering the symbols not individually, but in

equivalence classes. Also, a related binomial coefficient identity is obtained in the

course.

A partition λ of a positive integer n is a nonincreasing sequence of positive integers
λ1 ≥ · · · ≥ λk > 0 such that n = λ1 + · · ·+ λk [1, Ch.1].

A pictorial representation for a partition is its Ferrers graph, a left indented table of
dots such that the first row has λ1 dots and so on. For instance, 36 = 9+7+7+5+4+2+2
has the following Ferrers graph.

· · · ·
· · · ·
· · · ·
· · · ·

· · · · ·
· · ·
· · ·
·

· · · ·
· ·
· ·

The largest square that can be fit in the upper left corner of a Ferrers graph is called the
Durfee square. So the partition above has a Durfee square of side length 4 .

The rank of a partition is defined as the largest part minus the number of parts in a
partition [5]. The rank of the above partition is +2.

The conjugate λ′ of a partition λ is obtained by reflecting the Ferrers graph across its
main diagonal. For the partition above, the conjugate is 7 + 7 + 5 + 5 + 4 + 3 + 3 + 1 + 1
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and has the following Ferrers graph.

· · · ·
· · · ·
· · · ·
· · · ·

· · ·
· · ·
·
·

· · · ·
· · ·
· · ·
·
·

Using the Ferrers graph of a partition, we can form another representation of the same
partition, the Durfee symbol [3]. It is a two-row array, with a subscript indicating the side
length of the Durfee square. The top row is obtained by reading the conjugate partition
of the smaller partition to the right of the Durfee square (recording the columns instead
of rows), and the bottom row by reading the smaller partition below the Durfee square.
Thus, the partition 36 = 9 + 7 + 7 + 5 + 4 + 2 + 2 has Durfee symbol

(
4 3 3 1 1
4 2 2

)

4

Using the Durfee symbol, it is simple to find the rank; as it is the excess of the number
of parts in the top row over the number of parts in the bottom row. Notice also that in
terms of the Durfee symbol, finding the conjugate corresponds to interchanging the top
and bottom row.

In [3], Andrews generalized this notion and defined k-marked Durfee symbols. He
provided and proved a number of identities and congruences. He mainly used analytical
methods, and left the combinatorial explanations to his results as open problems. In
§1, an alternative definition of k-marked Durfee symbols is given. Using this alternative
characterization, some combinatorial open problems listed at the end of [3] are solved. The
method employed is to define equivalence classes of Durfee symbols of a given number, and
to consider the possible ways to make the symbols in an equivalence class into k-marked
Durfee symbols.

Part of the results presented in §3 appears in [4], where the authors use the same
alternative characterization of k-marked Durfee symbols, but more direct combinatorial
methods. In particular, they present a bijection, and a sieve to establish the symmetry,
and the relation to ordinary Durfee symbols of the k-marked ones.

Also, Ji [8] proved the results in §3 along with many more open problems posed by
Andrews in [3]. Ji’s approach is essentially different from §1 and [4]. She defines the
strict shifted k-marked Durfee symbols, shows how to obtain the original k-marked Durfee
symbols from these, and then compares coefficients of certain terms on either sides of
identities.
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1 Definitions

Definition 1.1. Let Sd(m1, . . . , md) denote the collection of Durfee Symbols with Durfee
square of side length d where the total number of appearances of j in the listed Durfee
symbols is exactly mj for j = 1, . . . , d. This is a subset of partitions of n = d2+

∑d
j=1 jmj,

Example: S2(2, 3) =

{(
222 11

)

2

,

(
222 1

1

)

2

,

(
222

11

)

2

,

(
22 11
2

)

2

,
(

22 1
2 1

)

2

,

(
22
2 11

)

2

,

(
2 11
22

)

2

,

(
2 1
22 1

)

2

,

(
2
22 11

)

2

,

(
11

222

)

2

,
(

1
222 1

)

2

,

(

222 11

)

2

}

.

Andrews extended the definition of Durfee symbols to odd Durfee symbols. In an odd
Durfee symbol only odd numbers occur, and the Durfee square is reinterpreted. The
detailed description can be found in [3].

Definition 1.2. Let So
d(m1, . . . , md) denote the collection of odd Durfee Symbols with

Durfee square side of side length d where the total number of appearances of 2j− 1 in the
listed odd Durfee symbols is exactly mj for j = 1, . . . , d. This is a subset of partitions of

n = (2d2 − 2d + 1) +
∑d

j=1(2j − 1)mj.

We recall one more definition from [3, §4], but rewrite it in an alternative form. This
alternative definition provides the base in [4] for the combinatorial explorations of some
results stated in [3].

Definition 1.3. A k-Marked Durfee Symbol τ is a concatenation of k two-row arrays(
ai,mi

· · · ai,1

bi,ni
· · · bi,1

)

, i = 1, . . . , k, with k−1 posts p1, . . . , pk−1 in between. The first index

indicates the mark. Either or both rows may be empty in an array, and the following
monotonicity conditions hold:

ai,j ≤ ai,j+1, i = 1, . . . , k, j = 1, . . . , mi − 1 ∀ fixed i,

bi,j ≤ bi,j+1, i = 1, . . . , k, j = 1, . . . , ni − 1 ∀ fixed i,

max{ai,mi
, bi,ni

, pi−1} ≤ pi ≤ min{ai+1,1, bi+1,1, pi+1} i = 1, . . . , k

where p0 = 1, pk = d, d being the side length of the Durfee Square.

τ =

(
ak,mk

· · · ak,1

bk,nk
· · · bk,1

pk−1
ak−1,mk−1

· · · ak−1,1

bk−1,nk−1
· · · bk−1,1

pk−2

. . .

. . .
p1

a1,m1 · · · a1,1

b1,n1 · · · b1,1

)

d

If we reinterpret the Durfee square (2d2−2d+1 instead of d2), and allow odd numbers
only, we get the definition of k-marked odd Durfee symbols.
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Definition 1.4. The excess of entries in the top row of ith array over the entries in the
bottom row in the same array is the ith rank of a k-marked Durfee symbol (or a k-marked
odd Durfee symbol) τ , denoted ri(τ).

Notice that ordinary Durfee symbols can be regarded as 1-marked Durfee symbols, we
will write r(τ) = r1(τ) in that case, since there is only one rank.

Example:

τ =

(
4

6 5
3

2 2
1

)

8

is a 2-marked Durfee symbol with 1st rank r1(τ) = 1 and 2nd rank r2(τ) = −1. This is a
partition of 87 = 23 + 82, sum of all entries inside the symbol plus the contribution from
the Durfee square.

The difference of the definition of k-marked Durfee symbols from that as given in [3,
§4] is that the largest entries for each index in the top row are written as posts. It is
obvious that there is a one to one correspondence between these modified Durfee Symbols
and the original ones. To see the other direction of the correspondence, we write pi as
ai,mi+1 in the top row.

Definition 1.5. Let Sk
d (m1, . . . , md) denote the collection of k-marked Durfee symbols,

the side length of whose durfee squares is d, and the total number of appearances of j is
exactly mj in each symbol, j = 1, . . . , d. This is a subset of k-marked Durfee symbols that

partition n = d2 +
∑d

j=1 jmj.

Example:

(
2221

1

)

,

(
22

2
1
1

)

,

(

2
2

21
1

)

∈ S2
2 (2, 3). In fact, there are

exactly 46 elements in S2
2 (2, 3), as shown below.

Definition 1.6. Let Sok
d(m1, . . . , md) denote the collection of k-marked odd Durfee sym-

bols, the side length of whose durfee squares is d, and the total number of appearances of
2j−1 is exactly mj in each symbol, j = 1, . . . , d. This is a subset of k-marked odd Durfee

symbols that partition n = d2 − 2d + 1 +
∑d

j=1(2j − 1)mj.

Observe that S1
d (m1, . . . , md) = Sd(m1, . . . , md), and that So1

d(m1, . . . , md) =
So

d(m1, . . . , md).
The generating function of the k-marked Durfee symbols when k ≥ 2 is

Rk(x1, . . . , xk; q) =

∑

d≥1
m1,...,md≥0

qm1+2m2+···+dmd+d2
∑

τ∈Sk
d
(m1,...,md)

x
r1(τ)
1 · · ·x

rk(τ)
k . (1.1)

When k = 1, we simply add 1 to the multiple sum. This is because the empty partition is
traditionally considered as having rank zero, but the empty partition cannot correspond
to any k-marked Durfee symbol for k ≥ 2. Any k-marked Durfee symbol τ partitioning
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n contributes to the term x
r1(τ)
1 · · ·x

rk(τ)
k qn. For instance, τ as above contributes to the

term x1x
−1
2 q87 in R2(x1, x2; q).

The generating function of k-marked odd Durfee symbols is

Ro
k(x1, . . . , xk; q) =

∑

d≥1
m1,...,md≥0

qm1+3m2+···+(2d−1)md+(d2−2d+1)
∑

τ∈Sok
d(m1,...,md)

x
r1(τ)
1 · · ·x

rk(τ)
k . (1.2)

Exponents of x1, . . . , xk keep track of the 1st, . . . kth ranks of symbols, respectively, and
the exponent of q keeps track of the number being partitioned.

2 Basic Constructions

Lemma 2.1. ∑

τ∈S1
d
(m1,...,md)

zr1(τ) =
∑

τ∈So1
d(m1,...,md)

zr1(τ) =

=

d∏

j=1

(
zmj+1 − z−mj−1

z − z−1

)

(2.1)

Proof. A Durfee symbol listed by Sd(m1, . . . , md) looks like







jd
︷ ︸︸ ︷

d . . . d
d . . . d
︸ ︷︷ ︸

md−jd

. . .

j1
︷ ︸︸ ︷

1 . . . 1
1 . . . 1
︸ ︷︷ ︸

m1−j1







d

It has rank j1 − (m1 − j1) + · · ·+ jd − (md − jd). Therefore,

∑

τ∈S1
d
(m1,...,md)

zr1(τ) =

m1∑

j1=0

. . .

md∑

jd=0

zj1−(m1−j1) . . . zjd−(md−jd) (2.2)

=

(
m1∑

j1=0

zj1−(m1−j1)

)

. . .

(
md∑

jd=0

zjd−(md−jd)

)

= z−m1−...−md

(
m1∑

j1=0

z2j1

)

. . .

(
m1∑

jd=0

z2jd

)

= z−m1−...−md

(
1− z2m1+2

1− z2

)

. . .

(
1− z2md+2

1− z2

)

=
d∏

j=1

(
zmj+1 − z−mj−1

z − z−1

)

The proof is identical for odd Durfee symbols, with obvious notational changes.
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Lemma 2.2. For z 6= w, z 6= 1/w,

∑

τ∈S2
d
(m1,...,md)

zr1(τ)wr2(τ) =
∑

τ∈So2
d(m1,...,md)

zr1(τ)wr2(τ) =

=
1

(z + 1/z)− (w + 1/w)

(
d∏

j=1

zmj+1 − z−mj−1

z − z−1
−

d∏

j=1

wmj+1 − w−mj−1

w − w−1

)

(2.3)

Before we prove the Lemma, we give two corollaries:

Corollary 2.3.

R2(z, w; q) = R2(w, z; q)

Ro
2(z, w; q) = Ro

2(w, z; q)

This is [3, Corollary 4] and[3, Corollary 23] for k = 2.

Proof. Immediate by inspection of (1.1), (1.2) and (2.3).

Corollary 2.4.

R2(z, w; q) =
R1(z; q)−R1(w; q)

(z + 1/z)− (w + 1/w)
(2.4)

Ro
2(z, w; q) =

Ro
1(z; q)−Ro

1(w; q)

(z + 1/z)− (w + 1/w)
(2.5)

This is [3, Theorem 7] and [3, Theorem 25] for k = 2.

Proof. Combine (1.1), and (2.1) to obtain (2.4); and (1.2) and (2.3) to obtain (2.5).

proof of Lemma 2.2. A 2-marked Durfee symbol listed by S2
d(m1, . . . , md) looks like







jd
︷ ︸︸ ︷

d2 . . . d2

d2 . . . d2
︸ ︷︷ ︸

md−jd

. . .

jr−k
︷ ︸︸ ︷
r2 . . . r2

r2 . . . r2
︸ ︷︷ ︸

mr−jr−l

r

k−1
︷ ︸︸ ︷
r1 . . . r1

r1 . . . r1
︸ ︷︷ ︸

l

. . .

j1
︷ ︸︸ ︷

11 . . . 11

11 . . . 11
︸ ︷︷ ︸

m1−j1







d

where the post is r, and subscripts indicate the mark. We require that mr, jr, k ≥ 1 by
the definition of marked Durfee symbols. However, once we compute the sum, mr ≥ 1
will be implied. The contribution to first or second rank due to entries 6= r are found
using (2.1).

The contribution to both the first and the second ranks due to rs in

∑

τ∈S2
d
(m1,...,md)

zr1(τ)wr2(τ)
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when the post is r is given by:

mr∑

jr=1

jr∑

k=1

mr−jr∑

l=0

z(k−1)−lw(jr−k)−(mr−jr−l)

=
w−mr

z

mr∑

jr=1

w2jr

jr∑

k=1

( z

w

)k
mr−jr∑

l=0

(w

z

)l

(2.6)

=
w−mr

z

mr∑

jr=1

w2jr

(
z
w
−
(

z
w

)jr+1

1− z
w

)(

1−
(

w
z

)mr−jr+1

1− w
z

)

=
w−mr−1

(1− z/w)(1− w/z)

mr∑

jr=1

w2jr − (wz)jr −
(w

z

)mr+1

(wz)jr +
(w

z

)mr+1

z2jr

=
w−mr−1z−mr−1

(1− z/w)(1− w/z)

[

zmr+1w2 − w2mr+2

1− w2

−
(
wmr+1 + zmr+1

) wz − (wz)mr+1

1− wz
+ wmr+1 z2 − z2mr+2

1− z2

]

=
1

(1− z/w)(1− w/z)

[

w−mr−1

(
w2

1− w2
−

wz

1− wz

)

+ wmr+1

(
1

1− wz
−

1

1− w2

)

z−mr−1

(
z2

1− z2
−

wz

1− wz

)

+ zmr+1

(
1

1− wz
−

1

1− w2

)]

=
1

(z + 1/z)− (w + 1/w)

[
zmr+1 − z−mr−1

z − z−1
−

wmr+1 − w−mr−1

w − w−1

]

Now we sum over r = 1, . . . , d:

1

(z + 1/z)− (w + 1/w)

d∑

r=1

d∏

j=r+1

(
wmj+1 − w−mj−1

w − w−1

)

×

(
zmr+1 − z−mr−1

z − z−1
−

wmr+1 − w−mr−1

w − w−1

) r−1∏

j=1

(
zmj+1 − z−mj−1

z − z−1

)

Upon expansion of the middle factor the sum telescopes and the result follows.

Proposition 2.5.

#Sk+1
d (m1, . . . , md) =

∑

τ∈Sk+1
d

(m1,...,md)

1

=
∑

k1+...+kd=k

(
m1 + k1 + 1

2k1 + 1

)

. . .

(
md + kd + 1

2kd + 1

)
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Proof. Assume that for some r between 1 and d, there are exactly mr rs in a Durfee
Symbol, j of which are in the top row, and mr − j are in the bottom row. To introduce
kr posts (so as to make rs (kr + 1)-marked), following the definitions in [3]; we need to
choose kr of the j elements in the top row, none repeated; and kr possibly repeated posts
from the mr − j + 1 posts between the entries in the bottom row. There are

(
j
kr

)(
mr − j + 1 + kr − 1

kr

)

ways to do this [10, §1.1]. Upon summing over j = 0, . . . , mr using [7, eq.(5.26)], we have

(
mr + kr + 1

2kr + 1

)

Then, to make the whole symbol k + 1-marked, we need to choose a total of k posts, kr

of them in rs in the Durfee symbol. This gives us the asserted sum.

The symmetrized kth moment function is defined [3, eq.(1.13)] as

ηk(n) =

∞∑

m=−∞

(
m +

⌊
k−1
2

⌋

k

)

N(m, n)

where N(m, n) is the number of partitions of n with rank m.

Proposition 2.6.
∑

τ∈Sd(m1,...,md)

(
r(τ) + k − 1

2k

)

=
∑

0≤ji≤mi

i=1,...,d

(
2(j1 + . . . + jd)− (m1 + . . . + md) + k − 1

2k

)

.

Proof. A Durfee symbol having jr rs in the top row, mr − jr rs in the bottom row for
r = 1, . . . , d has rank 2(j1 + . . . + jd)− (m1 + . . . + md).

3 Applications

The line of reasoning in (2.2) yields

∑

τ∈Sd(m1,...,md)

(−1)r(τ) = (−1)m1+...+md(m1 + 1) . . . (md + 1)

which is the number of partitions in Sd(m1, . . . , md) weighted by (−1)rank. Note that the
parity of rank is invariant in Sd(m1, . . . , md).
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A more interesting computation is that

∑

τ∈Sd(m1,...,md)

ir(τ) = ℑ(im1+1) . . .ℑ(imd+1).

This product vanishes unless all mjs are even, and it is (−1)(m1+...+md)/2 then. We interpret
that as follows. Sd(m1, . . . , md) is annihilated in R1(i, q) unless it contains a self conjugate
partition, and self conjugate partitions are given the factor

(−1)number of parts below the Durfee square.

The formulae derived in Lemma 2.1 prove [3, eq.s (13.1)-(13.4)], which follow. Of
course, the equations are mere substitutions in the generating functions in [3]. The point is
that the following identities are proven without having the exact formula of the generating
function of the k-marked Durfee symbols (or k-marked odd Durfee symbols).

R1(−1; q) =
∑

n≥0

qn2

(−q; q)2
n

(3.1)

R1(i; q) =
∑

n≥0

qn2

(−q2; q2)n
(3.2)

Ro
1(−1; q) =

∑

n≥0

q2n2+2n+1

(q; q2)2
n+1

(3.3)

Ro
1(i; q) =

∑

n≥0

q2n2+2n+1

(−q2; q4)n+1
(3.4)

It is also straightforward combine Lemma 2.2, and equations (3.1)-(3.4) to prove [3,
eq.s (13.7) and (13.9)], which follow.

R2(i,−1; q) =
1

2

(
∑

n≥0

qn2

(−q2; q2)n

−
∑

n≥0

qn2

(−q; q)2
n

)

(3.5)

Ro
2(i,−1; q) =

1

2

(
∑

n≥0

q2n2+2n+1

(−q2; q4)n+1

+
∑

n≥0

q2n2+2n+1

(−q; q2)2
n+1

)

(3.6)

Although the idea of the proofs was to show that both sides generate Sd(m1, . . . , md)
with the same factor, it is not hard to give a combinatorial description of the partitions
enumerated by the right hand side of, for instance (3.5). Self conjugate partitions are
annihilated if the number of parts below the Durfee square is even. Self conjugate par-
titions with an odd number of parts below the Durfee square gain weight 2, which is
then halved. For conjugate pairs of distinct partitions, exactly one partition is counted
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by sign depending on the number of parts appearing in its Durfee symbol. We can even
lexicographically order the rows in the Durfee symbol to make the choice.

It is possible to extend the results to obtain [3, Theorem 7], and hence or otherwise
prove that Rk(x1, . . . , xk; q) is symmetric in x1, . . . , xk. One needs to refine the definition
of Sk

d (m1, . . . , md), and deal with two adjacent variables at once.

Definition 3.1. Given k and i such that 1 ≤ i ≤ k, and a k-marked Durfee symbol
τ (respectively, a k-marked odd Durfee symbol τ o), and a non-negative integer g, Let
Sk+g

(k,i)(τ) (respectively, Sok+g
(k,i)(τ

o)) denote the collection of (k + g)-marked Durfee symbols

(respectively, k+g-marked odd Durfee symbols) which have the same number of occurrences
of each part, the same side length of Durfee squares, and such that

i) the k+g, k+g−1, . . . , i+g+1, i−1, i−2, . . . , 1-marked double arrays of the symbols
in the equivalence class are identical to the k, k−1, . . . , i+1, i−1, i−2, . . . , 1-marked
double arrays of τ (resp. τ o), respectively,

ii) the (k + g − 1)th, (k + g − 2)th, . . ., (i + g)th, (i − 1)th, (i − 2)th, . . ., 1st posts of
the symbols in the equivalence class are identical to the (k − 1)th, (k − 2)th, . . ., 1st
posts of τ (resp. τ o), respectively.

Verbally, given a k-marked Durfee symbol τ with a specified mark i (1 ≤ i ≤ k), we
rearrange the i-marked parts in τ in every possible way. Introducing g new posts hence
making the symbols k + g marked is also allowed.

Example: S3
(2,1)

((
4

65
3

22

1

)

8

)

=

{(
4

65
3

22
1

)

8

,

(
4

65
3

2

2
1

)

8

,

(
4

65
3

22
1

)

8

,

(
4

65
3

2
2

1
)

8

,

(
4

65
3

2
2

1

)

8

,

(
4

65
3

2
2

1
)

8

,

(
4

65
3

2
2

1

)

8

,

(
4

65
3 2

21
)

8

,

(
4

65
3 2

2

1

)

8

,

(
4

65
3 2

1

2

)

8

,

(
4

65
3 2

21

)

8

}

.

Lemma 3.2. Let τ be a k-marked Durfee symbol with (i − 1)th and ith posts pi−1 and
pi. Let mpi−1

, mpi−1
+ 1, . . . , mpi

be the number of occurrences of pi−1, pi−1 + 1, . . . , pi,
respectively, in the ith double array of τ . Then,

∑

̺∈Sk
(k,i)

(τ)

x
ri(̺)
i =

pi∏

j=pi−1

x
mj+1
i − x

−mj−1
i

xi − x−1
i

(3.7)

Proof. A symbol listed by S(k,i)(τ) looks like












αk

βk
pk−1

αk−1

βk−1
pk−2 . . . pi

jpi
︷ ︸︸ ︷
pi . . . pi

pi . . . pi
︸ ︷︷ ︸

mpi
−jpi

. . .

jpi−1
︷ ︸︸ ︷
pi−1 . . . pi−1

pi−1 . . . pi−1
︸ ︷︷ ︸

mpi−1−jpi−1
︸ ︷︷ ︸

i-marked double array

pi−1 . . . p2
α2

β2
p1

α1

β1












d
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and it contributes to the exponent of xi in the appropriate term in the generating function
of k-marked Durfee symbols with

x
jpi

−(mpi
−jpi

)

i . . . x
jpi−1−(mpi−1−jpi−1)

i .

Then the computations in (2.2) apply with the obvious notational changes.

Lemma 3.3. Let τ be a k-marked Durfee symbol with (i − 1)th and ith posts pi−1 and
pi. Let mpi−1

, mpi−1
+ 1, . . . , mpi

be the number of occurrences of pi−1, pi−1 + 1, . . . , pi,
respectively, in the ith double array of τ . Then,

∑

̺∈Sk+1
(k,i)

(τ)

x
ri(̺)
i x

ri+1(̺)
i+1 = (3.8)

1

(xi − 1/xi)− (xi−1 − 1/xi−1)





pi∏

j=pi−1

x
mj+1
i − x

−mj−1
i

xi − x−1
i

−

pi∏

j=pi−1

x
mj+1
i−1 − x

−mj−1
i−1

xi−1 − x−1
i−1





Proof. We will choose a post among the entries in the ith double array in τ , and make
it into a (k + 1)-marked Durfee symbol. We will then keep track of the ith rank as the
exponent of xi, and of the (i+1)th rank as the exponent of xi+1. The other double arrays
and posts are kept fixed by definition of S(k,i)(τ), the only portion of τ that can be played
around with is the ith double array. τ after the choice of an extra post will look like

(
αk

βk
pk−1

αk−1

βk−1
pk−2 . . . pi

new (i+1)-marked double array
︷ ︸︸ ︷

jpi
︷ ︸︸ ︷
pi . . . pi

pi . . . pi
︸ ︷︷ ︸

mpi
−jpi

. . .

jr−k
︷ ︸︸ ︷
r . . . r
r . . . r
︸ ︷︷ ︸

mr−jr−l

r

new i-marked double array
︷ ︸︸ ︷

k−1
︷ ︸︸ ︷
r . . . r
r . . . r
︸ ︷︷ ︸

l

. . .

jpi−1
︷ ︸︸ ︷
pi−1 . . . pi−1

pi−1 . . . pi−1
︸ ︷︷ ︸

mpi−1−jpi−1
︸ ︷︷ ︸

initial i-marked double array

pi−1 . . . p2
α2

β2
p1

α1

β1

)

d

for some r between pi−1 and pi. At this point, we make the substitutions

pk+1 ← pk

pk ← pk−1
...

pi+1 ← pi

pi ← r

along with the corresponding re-marking of αs and βs in between these new posts, so that
the exponent of xj now keeps track of jth rank for j = 1, . . . , (k + 1).
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The ith rank, as the exponent of xi is

(ji−1 − (mi−1 − ji−1)) + . . . + (jr−1 − (mr−1 − jr−1)) + (k − l)

and the (i + 1)th rank as the exponent of xi+1 is

(jr − k − (mr − jr − l))(jr+1 − (mr+1 − jr+1)) + . . . + (ji − (mi − ji))

Then, the computations in (2.3) carry over with appropriate notational changes.

Corollary 3.4. Rk(x1, . . . , xk; q) is symmetric in x1, . . . , xk.

This is [3, Corollary 4].

Proof. For any fixed i = 1, . . . , k,

Rk+1(x1, . . . , xk+1; q) =
∑

d≥1
m1,...,md≥0

qm1+2m2...+dmd+d2

(3.9)

×
∑

τ∈Sk
d
(m1,...,md)

x
r1(τ)
1 · · ·x

ri−1(τ)
i−1 x

ri+1(τ)
i+2 · · ·x

rk(τ)
k+1

∑

̺∈Sk+1
(k,i)

(τ)

x
ri(̺)
i x

ri+1(̺)
i+1 .

Because any (k + 1)-marked Durfee symbol ̺ could be thought of as belonging to some
equivalence class Sk+1

(k,i)(τ), and no ̺ corresponds to two distinct equivalence classes at once

for any fixed i. Also, when ̺ ∈ Sk+1
(k,i)(τ), the 1st, 2nd, . . ., (i − 1)th, (i + 1)th, . . ., kth

ranks of τ are the same as the 1st, 2nd, . . ., (i− 1)th, (i + 2)th, . . ., (k + 1)th ranks of ̺,
respectively, by definition.

Thus, by Lemma 3.3 we see that

Rk+1(x1, . . . , xi, xi+1, . . . , xk) = Rk+1(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xk)

Then, we use the well known fact that pairwise switching of adjacent symbols (in this
case, xjs) generate the symmetric group on k + 1 letters. Upon k → k − 1, the Corollary
follows.

Corollary 3.5. For k ≥ 2, and xi 6= xj , xi 6= 1/xj for i 6= j, i, j = 1, . . . , k,

Rk(x1, . . . , xk; q) =

k∑

i=1

R1(xi; q)
∏k

j=1,j 6=i

[(

xi + 1
xi

)

−
(

xj + 1
xj

)] (3.10)

This is [3, Theorem 7]. The proof in this context would be identical to the one given
in [4], which is mathematical induction on k. The base case is given by Corollary 2.4, and
the inductive step is provided by Lemma 3.3 along with (3.9).

Theorem 3.6.

Rk+1(1, . . . , 1; q) =
∑

n≥0

η2k(n)qn
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This is [3, Corollary 5].
In other words, η2k(n) counts the number of (k+1)-marked Durfee symbols associated

to n [3, Corollary 13].

Proof. It suffices to establish

∑

k1+...+kd=k

(
m1 + k1 + 1

2k1 + 1

)

. . .

(
md + kd + 1

2kd + 1

)

=
∑

0≤ji≤mi

i=1,...,d

(
2(j1 + . . . + jd)− (m1 + . . . + md) + k − 1

2k

)

. (3.11)

Since, by Proposition 2.5

∑

n≥0

η2k(n)qn =
∑

d≥1
m1,...,md≥0

qm1+2m2+...+dmd+d2
∑

τ∈Sd(m1,...,md)

(
r(τ) + k − 1

2k

)

=
∑

d≥1
m1,...,md≥0

qm1+2m2+...+dmd+d2
∑

0≤ji≤mi

i=1,...,d

(
2(j1 + . . . + jd)− (m1 + . . . + md) + k − 1

2k

)

,

and by Proposition 2.6 and (1.1),

Rk+1(1, . . . , 1; q) =
∑

d≥1
m1,...,md≥0

qm1+2m2+...+dmd+d2
∑

τ∈Sk
d
(m1,...,md)

1

=
∑

d≥1
m1,...,md≥0

qm1+2m2+...+dmd+d2
∑

k1+...+kd=k

(
m1 + k1 + 1

2k1 + 1

)

. . .

(
md + kd + 1

2kd + 1

)

.

We use mathematical induction on d. For d = 1 we have:
(

m + k + 1
2k + 1

)

=
m∑

j=0

(
2j −m + k − 1

2k

)

Now, for k = 0, we have m + 1 = m + 1. For k positive,

m∑

j=0

(
2j −m + k − 1

2k

)

=
∑

0≤j≤⌊m/2⌋

(
2j −m + k − 1

2k

)

+
∑

⌊m/2⌋<j≤m

(
2j −m + k − 1

2k

)

=
∑

0≤j≤⌊m/2⌋

(
m− 2j + k

2k

)

+
∑

⌊m/2⌋<j≤m

(
2j −m + k − 1

2k

)

=
m∑

j=0or 1

(
j + k
2k

)

=

(
m + k + 1

2k + 1

)
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where we negated the upper index in the first half of the sum and used (5.10) in [7]. This
provides the base case.

Assuming for some d, after applying the inductive hypothesis, and upon substituting

2(j1 + . . . + jd)− (m1 + . . . + md)← N,

md+1 ← m,

jd+1 ← d,

we are down to proving

k∑

i=0

(
m + (k − i) + 1

2(k − i) + 1

)(
N + i− 1

2i

)

=
m∑

j=0

(
N + 2j −m + k − 1

2k

)

(3.12)

for k, m ≥ 0, and N ∈ Z.
In fact, it suffices to establish the result for non-negative N , since

(
N + i− 1

2i

)

= (−1)2i

(
(2i− 1)− (N + i− 1)

2i

)

=

(
(1−N) + i− 1

2i

)

and (
N + 2j −m + k − 1

2k

)

=

(
(2k − 1)− (N + 2j −m + k − 1)

2k

)

=

(
(1−N) + m− 2j + k − 1

2k

)

using [7, eq.(5.14)]. For the latter derivation, we are also allowed to substitute j ← m− j
under the sum over 0 ≤ j ≤ m.

For integral k, m, N ≥ 0, we define

Le(N, k) =
k∑

i=0

(
m + (k − i) + 1

2(k − i) + 1

)(
N + i− 1

2i

)

Re(N, k) =

m∑

j=0

(
N + 2j −m + k − 1

2k

)

Lo(N, k) =

k∑

i=0

(
m + (k − i) + 1

2(k − i) + 1

)(
N + i− 1

2i− 1

)

Ro(N, k) =

m∑

j=0

(
N + 2j −m + k − 1

2k − 1

)

Then, using the basic recurrence for binomial coefficients, we obtain

Le(N, k) =

k∑

i=0

(
m + (k − i) + 1

2(k − i) + 1

)((
(N − 1) + i− 1

2i

)

+

(
(N − 1) + i− 1

2i− 1

))
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= Le(N − 1, k) + Lo(N − 1, k)

and

Lo(N, k) =
k∑

i=0

(
m + (k − i) + 1

2(k − i) + 1

)((
N + i− 2

2i− 1

)

+

(
N + i− 2

2i− 2

))

= Lo(N −1, k)+

k−1∑

i=0

(
m + ((k − 1)− i) + 1

2((k − 1)− i) + 1

)(
N + i− 1

2i

)

= Lo(N −1, k)+Le(N, k−1)

Similar reasoning shows that

Re(N, k) =

m∑

j=0

((
N − 1 + 2j −m + k − 1

2k

)

+

(
N − 1 + 2j −m + k − 1

2k − 1

))

= Re(N − 1, k) + Ro(N − 1, k)

and that

Ro(N, k) =

m∑

j=0

((
N − 1 + 2j −m + k − 1

2k − 1

)

+

(
N + 2j −m + (k − 1)− 1

2k − 2

))

= Ro(N − 1, k) + Re(N, k − 1)

Thus, the Ls satisfy the same pair of recurrences as the Rs. The following base cases
then establish

Le(N, k) = Re(N, k)

which is (3.12), and
Lo(N, k) = Ro(N, k)

which is a side result.
Please note that

Le(0, k) =

(
m + k + 1

2k + 1

)

=
m∑

j=0

(
2j −m + k − 1

2k

)

= Re(0, k)

as shown above in the case d = 1. Also,

Le(N, 0) = m + 1 = Re(N, 0)

Lo(N, 0) = m + 1 = Ro(N, 0)

is immediate.
Lo(0, k) = 0

and

Ro(0, k) =

m∑

j=0

(
2j −m + k − 1

2k − 1

)
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=
∑

0≤j≤⌊m/2⌋

(
2j −m + k − 1

2k − 1

)

+
∑

⌈m/2⌉≤j≤m

(
2j −m + k − 1

2k − 1

)

Now we substitute j ← m− j in the second sum, and negate the upper index

=
∑

0≤j≤⌊m/2⌋

(
2j −m + k − 1

2k − 1

)

+
∑

0≤j≤m−⌈m/2⌉

(−1)2k−1

(
((2k − 1)− 1)− (m− 2j + k − 1)

2k − 1

)

=
∑

0≤j≤⌊m/2⌋

(
2j −m + k − 1

2k − 1

)

−
∑

0≤j≤⌊m/2⌋

(
2j −m + k − 1

2k − 1

)

= 0

as desired.

The proof of (3.12) above is given by Andrews [private communication]. The original
proof is a double induction on m and k.

The side result of the double recursion in the preceding proof is

k∑

i=1

(
m + (k − i) + 1

2(k − i) + 1

)(
N + i− 1

2i− 1

)

=
m∑

j=0

(
N + 2j −m + k − 1

2k − 1

)

In the context of k-marked Durfee symbols, this would be related to moments of odd
ranks, which are zero, as shown in [3, Theorem 1].

4 Conclusion and Further Research

As stated in the introduction, Ji [8] solved many more open problems listed in [3] us-
ing generating function techniques. The aim of this paper was to use more elementary
methods on conveniently chosen sets of objects.

The idea of proofs may be applied to other partition identities. The challenge is to
choose the appropriate set of objects for the identity at hand. For example, Sd(m1, . . . , md)
fails to explain the Rogers-Ramanujan identities [9] in the sense that almost no
Sd(m1, . . . , md) is assigned the same factor by the series and the product side. Yet,
the empirical evidence suggests that the distribution of factors among Sd(m1, . . . , md)s
corresponding to the same number n = d2 +

∑
jmj by the product side follows some

pattern.
A computer assisted proof of (3.11) is unknown to the author. This will not only

enhance the understanding of the identity, but also possibly lead to the discovery of similar
identities. A q-analog of (3.11) along with combinatorial interpretation may be another
reserach problem. The technique Andrews developed in [2] for producing q-analogs of
binomial coefficient identities does not yield well-poised or balanced q-series [6], so the
standard hieararchy of q-series identities does not readily help.
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[4] C. Boulet and K. Kurşungöz, Symmetry of k-marked Durfee symbols, accepted,
IJNT.

[5] F.J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge), 8:10–15,
1944.

[6] G. Gasper and M. Rahman, Basic Hypergeometric Series (Encyclopedia of mathe-
matics and its applications; vol. 96), Cambridge University Press, 2nd ed., 2004.

[7] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation
for Computer Science, Addison-Wesley, 2nd ed., 1998.

[8] K.Q. Ji, The combinatorics of k-marked Durfee symbols, Trans. AMS, to appear.

[9] S. Ramanujan and L.J. Rogers, Proof of Certain Identities in Combinatory Analysis,
Proc. Cambridge Phil. Soc., 19:211–216, 1919.

[10] J. Riordan, Combinatorial Identities, John Wiley & Sons, United States, 1968.

the electronic journal of combinatorics 18 (2011), #P41 17


