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Abstract

Let P̄7 denote the complement of a path on seven vertices. We determine all
4-connected graphs that do not contain P̄7 as a minor.

Keywords: forbidden minor, 4-connected graph

1 Introduction

In this paper, a graph G is called H-free, where H is a graph, if no minor of G is isomorphic
to H. Many important problems in graph theory can be formulated in terms of H-free
graphs. For instance, the four-color theorem can be equivalently stated as: all K5-free
graphs are 4-colorable. To solve problems involving H-free graphs, it is often desirable to
explicitly determine all H-free graphs. In this area, the two most famous open problems
are to determine K6-free and Petersen-free graphs. Notice that both graphs have fifteen
edges.

For each 3-connected graph H with at most eleven edges, all H-free graphs have been
completely determined. A survey of these results can be found in [3]. For 3-connected
graphs with twelve edges, the characterization problem is solved for the cube [6], the
octahedron [2, 7], and the Wagner graph V8 [8]. In addition, 4-connected Oct+-free
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graphs are also determined [5], where Oct+ is the unique 13-edge graph obtained from
the octahedron by adding an edge. In this paper we consider P̄7-free graphs, where P̄7,
a 15-edge graph, is the complement of a path on seven vertices. Our result makes P̄7

the largest graph H for which 4-connected H-free graphs are completely determined. In
contrast, 6-connected K6-free graphs are not determined (although there is a conjecture
on these graphs) and nothing is known about 6-connected Petersen-free graphs.

To state our main result we need to define a few classes of graphs. For each integer
n > 3, let DWn denote a double-wheel, which is a graph on n + 2 vertices obtained from
a cycle Cn by adding two adjacent vertices and connecting them to all vertices on the
cycle. Let DW = {DWn : n > 3}. For each integer n > 5, let C2

n be a graph obtained
from a cycle Cn by joining all pairs of vertices of distance two on the cycle. Notice
that C2

5 = DW3 = K5, and C2
n is nonplanar when n is odd. Let C0 = {C2

2n : n > 3},
C1 = {C2

2n+1 : n > 2}, and C = C0 ∪ C1. Let K consist of graphs that are 4-connected
nonplanar minors of some K4,n. In other words, these are 4-connected nonplanar graphs
obtained from some K4,n (n > 1) by adding edges to the color class of size four. It is
routine to check that K contains exactly one graph (K5) on five vertices, two (K6\e, DW4)
on six vertices, six (K1

4,3, K
2
4,3, K

3
4,3, K

4
4,3, K

5
4,3, K

6
4,3 in Figure 4.2) on seven vertices, and

eleven on n (n > 8) vertices. Given a graph G, the line graph of G, denoted by L(G), is
the graph with vertex set E(G) and edge set {xy : x, y ∈ E(G) are adjacent in G}. Our
main result is the following.

Theorem 1.1. A 4-connected graph G is P̄7-free if and only if either G is planar or G
belongs to DW ∪ C1 ∪ K ∪ {K6, L(K3,3),Γ1,Γ2,Γ3,Γ4,Γ5}, where Γ1, . . . ,Γ5 are the five
graphs shown below.

Figure 1.1: Graphs Γ1, Γ2, Γ3, Γ4, Γ5

This theorem implies the following.

Corollary 1.2. A 4-connected graph G is C2
7 -free if and only if either G is planar or G

belongs to DW ∪K ∪ {K6, L(K3,3), Γ1,Γ2,Γ3,Γ4,Γ5}.

We remark that Theorem 1.1 is not a complete characterization of P̄7-free graphs, since
we do not know those P̄7-free graphs that have a low connectivity. As observed in [2], P̄7-
free graphs are precisely graphs constructed by 0-, 1-, 2-, and 3-sums starting from K1, K2,
K3, K4, and internally 4-connected P̄7-free graphs. It follows that we need to determine
all internally 4-connected P̄7-free graphs in order to obtain a complete characterization.
Theorem 1.1 determines all 4-connected P̄7-free graphs, but it seems that there are still
many internally 4-connected ones that are not 4-connected. For instance, consider graphs
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obtained from two disjoint copies of K2,n by adding a perfect matching in between. All
such graphs are internally 4-connected and P̄7-free.

A closely related problem is to determine the extreme function for P̄7-free graphs. Such
a function has been determined for many classes, including K6-free graphs and Petersen-
free graphs [4]. As a consequence of Theorem 1.1, every 4-connected graph with n vertices
and 4n − 9 edges must contain a P̄7-minor (the extreme graphs are those in K). This
conclusion is no longer valid if the connectivity is weakened. For instance, for n = 3k,
3-summing k−1 copies of K6 over the same triangle results in a 3-connected P̄7-free graph
with n vertices and 4n− 9 edges. It seems reasonable to conjecture that every graph on
n vertices and 4(n− 2) edges must contain a P̄7-minor.

We close this section by providing an outline of the rest of the paper. In the next
section we explain how our approach works. In particular, we introduce a chain theorem
for 4-connected graphs, which says that all 4-connected graphs are “extensions” of certain
basic graphs. Our proof of Theorem 1.1 will be divided into two parts. First, in Section
3, we determine P̄7-free extensions of every basic graph that is not K5. Then, in Section
4, we determine P̄7-free extensions of K5. Finally, we prove Theorem 1.1 and Corollary
1.2 in the end of Section 4.

2 Basic lemmas

Our main tool is a chain theorem for 4-connected graphs. To explain this result we need
a few definitions. A cubic graph G is called cyclically 4-connected if G has four disjoint
paths between any two disjoint cycles of G. It is not difficult to see that every cyclically
4-connected cubic graph is 3-connected (this was also observed in [9]). Let L denote the
class of line graphs of cyclically 4-connected cubic graphs.

All graphs considered in this paper are simple. In particular, we use G/e to denote the
graph obtained from G by first contracting e and then deleting all but one edge from each
parallel family. When both ends of e have degree at least four, the inverse operation of
this modified contraction is called splitting a vertex, which is formally defined as follows.
Let v be a vertex of a graph G. Let NG(v) denote the set of vertices of G that are adjacent
to v, which are also known as neighbors of v. Let X, Y ⊆ NG(v) such that X∪Y = NG(v)
and |X|, |Y | > 3. Let G′ be obtained from G\v by adding two adjacent vertices x, y and
then joining x to all vertices in X and y to all vertices in Y . We call G′ a split of G. Now
we can state the chain theorem [10] that we will use.

Theorem 2.1. Every 4-connected graph can be obtained from a graph in C∪L by repeatedly
splitting vertices.

We also make the following observation.

Lemma 2.2. If G′ is obtained from a 4-connected graph G by splitting a vertex v, then
G′ is also 4-connected.

Proof. Suppose, to the contrary, that G′ has a vertex cut S of size at most three. Let x, y
and X, Y be as in the definition of vertex split. Since G = G′/xy is 4-connected, exactly
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one of x, y, say x, is in S. Then, for the same reason, y is an isolated vertex in G′\S,
which contradicts the assumption |Y | > 3.

The above two results suggest an algorithm for generating all 4-connected graphs. We
begin with graphs in C ∪ L, which are known to be 4-connected. In the general step,
we split each vertex of each constructed graph in all possible ways. Theorem 2.1 implies
that graphs generated by this procedure include all 4-connected graphs, and Lemma 2.2
ensures that the generated graphs are precisely all 4-connected graphs. We will follow
this algorithm to generate all 4-connected P̄7-free graphs.

When analyzing cubic graphs we will need the following version of Menger theorem,
which can be found in Section 3.3 of [1].

Lemma 2.3. Let G be a graph and let P be a set of k disjoint paths of G between disjoint
A,B ⊆ V (G). If G has a set Q of k + 1 disjoint paths between A and B, then Q can be
chosen so that each end of a path in P is also an end of a path in Q.

A graph G is a subdivision of a graph H if G = H or G is obtained from a subdivision
of H smaller than G by deleting an edge xy, and adding a new vertex z and two new
edges zx, zy. The next is an easy lemma which was also observed in [7].

Lemma 2.4. If a subdivision of H is a subgraph of G then L(H) is a minor of L(G).

We also need the following result from [5].

Theorem 2.5. If a nonplanar graph G is obtained from a 4-connected planar graph by
splitting a vertex, then G contains P̄7 as a minor.

3 Extensions of large graphs

Let Ext(G) be the class of P̄7-free graphs that are either G or obtained from G by
repeatedly splitting vertices. By Theorem 2.1, we need to determine Ext(G) for every
G ∈ C ∪L. In this section we consider extension of graphs in (C −{K5})∪L, and we will
consider Ext(K5) in the next section. As usual, a degree-three vertex will be called cubic.

We first consider planar graphs in C ∪ L. The result follows from Theorem 2.5 and
Lemma 2.2.

Lemma 3.1. If G ∈ C ∪ L is planar then all graphs in Ext(G) are planar.

Next we consider nonplanar graphs in L.

Lemma 3.2. L(K3,3) is C2
7 -free.

Proof. Since L(K3,3) is connected, if C2
7 is a minor of L(K3,3), the minor can be obtained

by contracting two edges e, f and then deleting some edges. Let e = xy and let xyz be
the unique triangle containing e (see Figure 3.1). Notice that z is cubic in L(K3,3)/e,
so f has to be incident with z. If f is not in the triangle xyz then L(K3,3)/e/f has a
cubic vertex, and hence cannot contain C2

7 . If f is in the triangle xyz then L(K3,3)/e/f is
isomorphic to Γ1. To obtain C2

7 , we have to delete one edge from Γ1. However, any edge
deletion results in a cubic vertex, which implies that L(K3,3) is C2

7 -free.

the electronic journal of combinatorics 23(2) (2016), #P2.16 4



x y z u z v

1

Figure 3.1: Contracting edges of L(K3,3)

Lemma 3.3. If G is a cyclically 4-connected nonplanar cubic graph, then either G = K3,3

or G contains a subdivision of V8.

Proof. This result follows from a characterization of V8-free graphs [8]. However, instead
of explaining the characterization, we provide a short direct proof of this lemma.

Since G is cubic and nonplanar, G contains a subgraph H that is a subdivision of
K3,3. Let x1, x2, x3, y1, y2, y3 be the cubic vertices of H and let Pij, where i, j ∈ {1, 2, 3},
be the xiyj-path of H corresponding to edge xiyj of K3,3. If |V (H)| = 6 then G = K3,3

since G is connected. So we assume that P11 has interior vertices. Since G is 3-connected,
G\{x1, y1} has a path Q between P11\{x1, y1} and H\V (P11). If an end of Q is on Pij

for some i, j ∈ {2, 3} then H ∪ Q is a subdivision of V8. So we assume without loss of
generality that Q has an end on P12. Let A be the cycle contained in P11 ∪ P12 ∪ Q
and let B be the union of Pij for i = 2, 3 and j = 1, 2, 3. By Lemma 2.3, since G is
cyclically 4-connected, G has four disjoint paths Q1, Q2, Q3, Q4 between A,B and such
that yi (i = 1, 2, 3) is an end of Qi. Now it is easy to check that the union of A,B and
Q1, Q2, Q3, Q4 contains a subdivision of V8.

Lemma 3.4. If G ∈ L is nonplanar then Ext(G) = ∅, unless G = L(K3,3), and in this
case Ext(G) = {G}.

Proof. We first observe that the line graph of any planar cubic graph is planar. So if
G ∈ L is nonplanar and G = L(H), then H is nonplanar. If H is not K3,3, by Lemma 3.3,
H contains a subdivision of V8. Notice that L(V8) contains a P̄7-minor (see Figure 3.2),
so we deduce from Lemma 2.4 that G contains a P̄7-minor, which proves Ext(G) = ∅.

2

1 8

7

6

54

3

{12}

{15,56} {18}

{26}

{23} {67,78,37}

{34,45,48}

Figure 3.2: V8 and a P̄7-minor of L(V8)

It remains to consider the case H = K3,3. Since P̄7 can be obtained from C2
7 by joining

two nonadjacent vertices, by Lemma 3.2, L(K3,3) is P̄7-free. To complete the proof, we
show that any split of L(K3,3) contains a P̄7-minor. Clearly, we only need to consider the
cases that both the two new vertices have degree four, because other splits contain these
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special splits. Up to symmetry, there are two such splits, and both of them contain a
P̄7-minor, as illustrated in Figure 3.3.

(       )L  K    3,3

Figure 3.3: Two splits of L(K3,3); they have a P̄7-minor by contracting the thick edges.

Remark. In Figure 3.3, the uncontracted edge is colored red and the other edges incident
with the two new vertices are colored blue and orange, respectively. We will use this color
scheme throughout the paper.

Finally we consider nonplanar graphs in C −{K5}. Note that these are exactly graphs
in C1 − {K5} since graphs in C0 are planar.

Lemma 3.5. For every integer n > 3, C2
2n+1 is P̄7-free.

Proof. If a simple connected graph G = (V,E) has an embedding in the projective plane,
then by Euler formula, the embedding has k = |E| − |V |+ 1 faces. If the size of the faces
are f1, f2, . . . , fk, then 2|E| = f1 + f2 + . . . + fk > 3k = 3|E| − 3|V | + 3, which implies
|E| 6 3|V | − 3.

For any graph G, let G+u denote the graph obtained from G by adding a new vertex
u and joining u to all vertices of G. Then P̄7 + u is not projective since it has 8 vertices
and 22 > 3|V | − 3 edges. However, it is easy to see that C2

2n+1 can be embedded in
the Möbius strip with all vertices on the boundary, hence C2

2n+1 + u admits a projective
embedding. As a result, G + u is projective for every minor G of C2

2n+1 and thus P̄7 is
not a minor of C2

2n+1.

Lemma 3.6. For any n > 3, Ext(C2
2n+1) = {C2

2n+1}.

Proof. By Lemma 3.5, we only need to show that every split of C2
2n+1 (n > 3) contains a

P̄7-minor. We prove this by induction on n. First, every split of C2
7 contains a P̄7-minor

since it contains a split, that both new vertices have degree four, as shown in Figure 3.4.

C
7

2

Figure 3.4: Four splits C2
7 ; they have a P̄7-minor by contracting the thick edges.
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Next, suppose n > 3. We claim that every split of C2
2n+1 contains a split of C2

2n−1 as a
minor. Let {v1, v2, . . . , v2n+1} be the vertex set of C2

2n+1 such that for all 1 > i > 2n + 1,
N(vi) = {vi−2, vi−1, vi+1, vi+2}, where the indices are taken modulo 2n + 1. Since vertices
of C2

2n+1 are symmetric, we may choose to split v4 and let G′ be the resulted graph. Then
we contract edges v2n−1v2n+1 and v2nv1 in G′. Let G′′ be the resulted graph and let v′2n−1,
v′1 be the new vertices obtained from contracting v2n−1v2n+1 and v2nv1, respectively. Then
NG′′(v′2n−1) = {v2n−3, v2n−2, v

′
1, v2} and NG′′(v′1) = {v2n−2, v

′
2n−1, v2, v3}. Since n > 3,

v2n−1, v2n+1, v2n, v1 are not adjacent to v4. So G′′ is a split of C2
2n−1, which proves the

claim. Now the induction hypothesis implies that G′ contains a P̄7-minor, which completes
our induction and thus the lemma is proved.

4 Extensions of the last graph

In this section we determine all graphs in Ext(K5).

Lemma 4.1. Ext(K5) = DW ∪K ∪ {K6, Γ1,Γ2,Γ3,Γ4,Γ5}

We divide the proof of Lemma 4.1 into a sequence of lemmas.

Lemma 4.2. Every graph in DW is C2
7 -free.

Proof. Each double-wheel has a set of at most two vertices whose deletion results in a
graph of maximum degree at most two. This is a property preserved by all its minors.
It is easy to check that C2

7 does not have this property, so it is not a minor of any
double-wheel.

Lemma 4.3. Every graph in K is C2
7 -free.

Proof. Every K4,n has a set of at most four vertices that covers all edges of the graph.
This is a property preserved by all its minors. It is easy to check that C2

7 does not have
this property, so it is not a minor of any G ∈ K since G is a minor of some K4,n.

Lemma 4.4. All graphs in {K6, Γ1,Γ2,Γ3,Γ4,Γ5} are C2
7 -free.

1

2

3

4
5

6
7 8

1
2

3

4
5

6
7 8

1

2

3

4
5

6
7 8

1
2

3

4
5

67
8

Figure 4.1: Graphs Γ2, Γ3, Γ4, and Γ5

Proof. It is clear that K6 is C2
7 -free because |V (K6)| < |V (C2

7)|. Since |V (Γ1)| = |V (C2
7)|,

|E(Γ1)| = |E(C2
7)|+ 1, and Γ1\e has a cubic vertex for every edge e, it follows that Γ1 is

C2
7 -free. For i = 2, 3, 4, 5, notice that Γi has eight vertices, see Figure 4.1. If Γi contains a
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P̄7-minor, we may assume that one of its edges is contracted. Some edges of Γi cannot be
contracted since its contraction destroys the 4-connectivity of the graph. In Γ2, we can
contract only edge 14, 25, 36, or 78, and the resulted graph is isomorphic to Γ1. In Γ3, we
can contract only edge 14, 25, 28, 36, 57, or 78, and the resulted graph is isomorphic to
Γ1 or K3

4,3, where K3
4,3 is a graph in K as shown in Figure 4.2. In Γ4, we can contract only

edge 14, 25, 28, 36, 57, or 78, and the resulted graph is isomorphic to Γ1 or K4
4,3, where

K4
4,3 is a graph in K as shown in Figure 4.2. In Γ5, we can contract only edge 14 or 78,

and the resulted graph is isomorphic to Γ1. By Lemma 4.3, Γ2,Γ3,Γ4,Γ5 are C2
7 -free.

In the next few lemmas we determine all extensions of K5. The process is illustrated
in Figure 4.2. We first determine all three splits of K5. Then we determine all P̄7-free
splits of each of these three. We will repeat this procedure and further determine all
P̄7-free splits of these 7-vertex graphs. Finally, we show that any further split will create
a P̄7-minor except for graphs in DW ∪ K. In the following, we will denote graphs in K
with seven or eight vertices by Kj

4,i as shown in Figure 4.2.

Lemma 4.5. The only splits of K5 are K6, K6\e, and DW4.

Proof. When a vertex of K5 is split, the degree sum of the two new vertices could be 8,
9, or 10, and these correspond to DW4, K6\e, and K6, which proves the lemma.

Lemma 4.6. Every split of K6 contains a P̄7-minor.

Proof. To prove this lemma, we may assume that both the two new vertices have degree
four. Up to symmetry, K6 has only one such split, which contains P̄7 as a spanning
subgraph (this is more clear if we consider the complements of the two graphs).

The proofs of the last two lemmas are easy since the conclusions are simple. In proving
the remainder lemmas we will see more cases. Typically, when we split a vertex we first
consider the case when both the two new vertices have degree four. Then we view other
splits as obtained from these minimal splits by adding edges. The following is a useful
lemma for this approach. Let G + e denote a graph obtained from a graph G by adding
an edge e between two nonadjacent vertices.

Lemma 4.7. (i) DW5 + e contains a P̄7-minor;
(ii) Γi + e contains a P̄7-minor, unless i = 4 and Γ4 + e is isomorphic to Γ3;
(iii) Ki

4,3 + e, where e is between hollow vertices, contains a P̄7-minor, unless i = 4;
(iv) Ki

4,4 + e, where e is between hollow vertices, contains a P̄7-minor, unless i = 11.

Proof. Part (i). Notice that the complement of DW5 + e is P5 together with two isolated
vertices, which is a subgraph of P7, so DW5 + e contains P̄7 as a subgraph.

Part (ii). Notice that the complement of Γ1 +e is P6 together with one isolated vertex,
which is a subgraph of P7, so Γ1 +e contains P̄7 as a subgraph. For i = 2, 3, 4, 5, Γi can be
obtained from Γ1 by splitting the degree-5 vertex, as shown in Figure 4.1, where the two
new vertices are 7 and 8. If e is incident to neither 7 nor 8, then Γi +e contains a (Γ1 +e)-
minor by contracting 78. So in each Γi, we only need to consider the addition of those
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4

K
4,3

5

K
4,3

6
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5

7 vertices

K
4,4

1

K
4,4

2

8 vertices

K
4,4

3

3

DW
4

K  \ e
6

K 
6K 

5

6 vertices

1

2

4

5

K
4,4

11

K
4,4

7

K
4,4

8

K
4,4

9

K
4,4

10

K
4,4

4

K
4,4

5

K
4,4

6

Figure 4.2: P̄7-free splits of K5 on 6, 7, and 8 vertices
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missing edges e that are incident with every edge f of Γi with Γi/f isomorphic to Γ1. We
use labels in Figure 4.1. In Γ2, since Γ2/f is isomorphic to Γ1 for f ∈ {14, 25, 36, 78}, Γ2+e
contains a P̄7-minor. In Γ3, since Γ3/f is isomorphic to Γ1 for f ∈ {25, 28, 57, 78}, we only
consider adding e = 58. The resulted graph contains a P̄7-minor because it contains Γ2 +e
as a spanning subgraph. In Γ4, since Γ4/f is isomorphic to Γ1 for f ∈ {25, 28, 57, 78}, we
only consider adding e ∈ {27, 58} and the resulted graph is isomorphic to Γ3. In Γ5, since
Γ5/f is isomorphic to Γ1 for f ∈ {14, 78}, we only consider adding e ∈ {18, 47}. Notice
that these two additions are isomorphic. Suppose e = 18, then by contracting 23, the
resulted graph is isomorphic to P̄7.

Part (iii). Since K4
4,3 + e is isomorphic to K3

4,3, by Lemma 4.3, K4
4,3 + e is P̄7-free. For

i = 1, 2, 3, 5, Ki
4,3 contains K6

4,3 as a subgraph. We only need to consider K6
4,3 + e. Notice

that the complement of K6
4,3 + e consists of P4 with one edge and one isolated vertex,

which is a subgraph of P7, so K6
4,3 + e contains P̄7 as a subgraph.

Part (iv). Since K11
4,4 + e is isomorphic to K10

4,4, by Lemma 4.3, K11
4,4 + e is P̄7-free. For

i = 1, . . . , 9, Ki
4,4 contains K10

4,4 as a subgraph. We only need to consider K10
4,4 + e. Notice

that there is an edge f in K10
4,4 + e incident to two degree-4 vertices in K10

4,4 + e. Then
K10

4,4 +e contains a (K3
4,3 +e)-minor by contracting f . So K10

4,4 +e contains a P̄7-minor.

Lemma 4.8. The only P̄7-free splits of K6\e are K1
4,3, K2

4,3, and K3
4,3.

Proof. We first claim that splitting a degree-4 vertex of K6\e must result in a P̄7-minor.
To prove this we may assume that both the two new vertices have degree four. Up to
symmetry, K6\e has only one such split. The complement of the split is P5 together with
two isolated vertices, which is a subgraph of P7, so the split contains P̄7 as a subgraph.

Next we consider splitting a degree-5 vertex of K6\e. Suppose both of the two new
vertices, x1, x2, have degree four. Up to symmetry, there are exactly three such splits.
They are denoted by G1, G2, G3 and are shown in Figure 4.3. The first two splits, G1 and
G2, contain P̄7 as a spanning subgraph. The third split G3 is isomorphic to K3

4,3, which
is P̄7-free by Lemma 4.3.

1
x

2
x

Figure 4.3: Three splits G1, G2, G3 of K6\e.

Now suppose at least one of the two new vertices has degree exceeding four. Then this
split, denoted by G, is obtained from G1, G2, or G3 by adding edges. If G contains G1

or G2 then G contains a P̄7-minor. So we assume that G is obtained from G3 by adding
edges. If we only add edges incident with x1, then G is isomorphic to K1

4,3 or K2
4,3, both

of which are P̄7-free by Lemma 4.3. If we also add edges incident with x2 then, by Lemma
4.7(iii), G contains a P̄7-minor because G contains Ki

4,3 + e (i = 1, 2, 3) as a spanning
subgraph. Hence, the only P̄7-free splits of K6\e are K1

4,3, K2
4,3, and K3

4,3.
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Proofs for lemmas 4.9, 4.11, and 4.12 are of the same flavor. We generate all possible
splits and we identify the ones that are P̄7-free. Since these lemmas only talk about
graphs with fewer than ten vertices, the conclusions can be verified by a computer. We
reproduced the process (splitting vertices and testing for minors) using Mathematica and
we found that our conclusions agree with results produced by computer. So readers
who are comfortable with computer-assisted proofs can fast forward to Lemma 4.13 for
a summary and then move on to the next lemma where we will deal with graphs of
unbounded size.

Lemma 4.9. The only P̄7-free splits of DW4 are Γ1, DW5, and Ki
4,3 for i = 2, 3, 4, 5, 6.

Proof. We first consider splitting a degree-4 vertex of DW4. Suppose both of the two new
vertices have degree four. Up to symmetry, there are exactly three such splits. They are
denote by G1, G2, G3 and are shown in Figure 4.4. The first two splits, G1 and G2, contain
P̄7 as a spanning subgraph. The third split G3 is isomorphic to DW5, which is P̄7-free
by Lemma 4.2. Now suppose at least one of the two new vertices has degree exceeding
four. Then this split, denoted by G, is obtained from G1, G2, or G3 by adding edges. If G
contains G1 or G2 then G contains a P̄7-minor. So we assume that G is obtained from G3

by adding edges. Then G contains a P̄7-minor by Lemma 4.7(i) since G contains DW5 +e
as a spanning subgraph.

Figure 4.4: Three splits G1, G2, G3 of DW4.

Next we consider splitting a degree-5 vertex. Suppose both of the two new vertices,
x1, x2, have degree four. Up to symmetry, there are exactly four such splits. They are
denoted by H1, H2, H3, H4 and are shown in Figure 4.5. The first split H1 contains P̄7 as
a spanning subgraph. The other three are isomorphic to Γ1, K4

4,3, and K6
4,3, respectively,

which are P̄7-free by lemmas 4.3 and 4.4.

1
x

1
x

Figure 4.5: Another four splits H1, H2, H3, H4 of DW4

Now suppose at least one of the two new vertices has degree exceeding four. Then
this split, denoted by H, is obtained from H1, H2, H3, or H4 by adding edges. If H
contains H1 then H contains a P̄7-minor. If H is obtained from H2 by adding edges then,
by Lemma 4.7(ii), H contains a P̄7-minor since H contains Γ1 + e. We assume that H is
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obtained from Hi (i ∈ {3, 4}) by adding edges. If we only add edges incident with x1 then
H is isomorphic to K2

4,3, K3
4,3, or K5

4,3, which are P̄7-free by Lemma 4.3. The conclusion
is the same if i = 3 and we only add edges incident with x2. Finally, if we add an edge
incident with x2, and, in case i = 3, we add at least one edge incident with x1, then we
deduce from Lemma 4.7(iii) that H contains a P̄7-minor. In summary, the only P̄7-free
splits of DW4 are Γ1, and Ki

4,3 for i = 2, . . . , 6.

Lemma 4.10. Let x be a degree-4 vertex of a graph G, which does not have a 4-cycle
with vertex set NG(x). Then every split G′ of G at x contains a G + e-minor, for some e
between two nonadjacent vertices of NG(x).

Proof. We only need to consider the case that both the two new vertices x1 and x2 have
degree four, because other splits contain these special splits. Then there are y1, y2 ∈ NG(x)
such that y1 ∈ NG′(x1) − NG′(x2), and y2 ∈ NG′(x2) − NG′(x1). Since x has degree four
in G, we let NG′(x1) ∩ NG′(x2) = {u1, u2}. Since y1u1y2u2 is not a 4-cycle of G, we may
assume by symmetry that y1u1 is not an edge in G. So G′ contains a (G + y1u1)-minor
by contracting x1y1.

Lemma 4.11. The only P̄7-free splits of Γ1 are Γ2, Γ3, Γ4, and Γ5, and no split of Γi

(i = 2, 3, 4, 5) is P̄7-free.

Proof. We first claim that splitting a degree-4 vertex of Γ1 must result in a P̄7-minor. Let
x be a degree-4 vertex of Γ1. Since Γ1 does not have a 4-cycle with vertex set NΓ1(x),
by Lemma 4.10, every split G′ of Γ1 at x contains a (Γ1 + e)-minor. By Lemma 4.7(ii),
G′ contains a P̄7-minor. Next we consider splitting the degree-6 vertex of Γ1. Suppose
both the two new vertices have degree four. Up to symmetry, there are only three such
splits, which we denote by G1, G2, and G3. These splits are isomorphic to Γ2, Γ4, and
Γ5, respectively, as shown in Figure 4.1, where the two new vertices are 7 and 8. By
Lemma 4.4, these splits are P̄7-free. Now suppose at least one of the two new vertices has
degree exceeding four. Then this split, denoted by G, is obtained from G1, G2, or G3 by
adding edges. If G is obtained from G1 or G3 by adding edges, then G contains Γi + e for
some i = 2, 5 as a spanning subgraph. By Lemma 4.7(ii), G contains a P̄7-minor. If G is
obtained from G2 = Γ4 by adding edges then G contains Γ4 + e as a spanning subgraph.
By Lemma 4.7(ii), either G is isomorphic to Γ3 or G contains a P̄7-minor. So the only
P̄7-free splits of Γ1 are Γ2, Γ3, Γ4, and Γ5.

Next, we consider splits of Γi, i = 2, 3, 4, 5. For i = 2, 5, every vertex x in Γi has degree
four and Γi does not have a 4-cycle with vertex set NΓi

(x). By Lemma 4.10, every split
G′ of Γi at x contains a (Γi + e)-minor. Then by Lemma 4.7(ii), G′ contains a P̄7-minor.

In Γ3, for every degree-4 vertex x, Γ3 does not have a 4-cycle with vertex set NΓ3(x).
By lemmas 4.7(ii) and 4.10, every split of Γ3 at x contains a P̄7-minor. For splitting a
degree-5 vertex in Γ3, we claim that such splits contain a P̄7-minor. To prove this we may
assume that both the two new vertices have degree four. Up to symmetry, Γ3 has exactly
six such splits, which contain a P̄7-minor, as shown in Figure 4.6.

In Γ4, every vertex x in Γ4 has degree four and Γ4 does not have a 4-cycle with vertex
set NΓ4(x). By Lemma 4.10, every split G′ of Γ4 at x contains a (Γ4 + e)-minor. By
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Figure 4.6: Six splits of Γ3; they contain a P̄7-minor by contracting the thick edges.

Lemma 4.7(ii), G′ contains a P̄7-minor unless Γ4 + e = Γ3. In this exception case, G′ is
also a split of Γ3. Then our proof in the last paragraph shows that G′ has a P̄7-minor.

In Lemma 4.12 and Lemma 4.15, we will consider splits of graphs in K. We will use
the following terminology in both cases. For any graph K in K, let X be a set of four
vertices that cover all edges of K, and let Y = V (K)−X. Let G be a split of K, where a
vertex x in X is split into x1, x2. Then there are two possibilities. If x1 or x2 is adjacent
to no vertex in Y then we call G a clean split of K. It is clear that if G is clean then G
belongs to K. A non-clean split is called a mixed split. In other words, G is a mixed split
if both x1 and x2 have a neighbor in Y .

Lemma 4.12. Let G be a split of H = Ki
4,3, i = 1, . . . , 6.

(i) If G is obtained by splitting a vertex in Y then G contains a P̄7-minor.
(ii) If G is mixed then G contains a P̄7-minor, unless G is isomorphic to Γ3 or Γ4.

Proof. Suppose G is obtained by splitting some y ∈ Y into y1 and y2. We may assume
that y1 and y2 have degree four. Then G has a minor P̄7 because G contains a split as
shown in Figure 4.7(a) as a subgraph. This proves (i).

(a) (b) (c) (d) (e) (f) (g)

Figure 4.7: These splits of Ki
4,3 have a P̄7-minor by contracting the thick edges.

To prove (ii), we assume that G is mixed and is obtained by splitting x ∈ X into x1 and
x2. Let u, v, w denote the other three vertices of X. We first claim that if both x1, x2 have
degree four then G contains a P̄7-minor, unless G contains Γ4 as a spanning subgraph.
We group the cases according to the degree of x. Suppose x has only one neighbor u in X.
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Then we may assume uv ∈ E(H) as H[X] is connected. Upto symmetry, x can be split
in two ways, as shown in Figure 4.7(b-c), and both of them contain a P̄7-minor. Next,
suppose x has exactly two neighbors u, v in X. Upto symmetry, x can be split in three
ways, as shown in Figure 4.7(d-f), where in (f) we assume without loss of generality that
wu ∈ E(H). In all three cases we find a P̄7-minor. Finally, suppose x has three neighbors
in X. Since G is mixed, there is only one split which is shown in Figure 4.7(g). In this
case G contains Γ4 as a spanning subgraph. The claim is proved.

Now suppose at least one of x1, x2 has degree exceeding four. Then G must have
a triangle x1x2z. It is easy to see that either G\zx1 or G\zx2 is a mixed split of H.
Therefore, G is obtained from a mixed split G′ by adding edges, where both of the two
new vertices of G′ have degree four. Now the result follows immediately from the above
claim and Lemma 4.7(ii).

Lemma 4.13. Every G ∈ Ext(K5) satisfies at least one of the following.
(i) G ∈ {K6, DW4,Γ1,Γ2,Γ3,Γ4,Γ5};
(ii) G ∈ K with |V (G)| 6 7;
(iii) G ∈ Ext(DW5);
(iv) G ∈ Ext(K) for some K ∈ K with |V (K)| = 8.

Proof. The result follows from Lemmas 4.5, 4.6, 4.8, 4.9, 4.11, and 4.12.

In the next two lemmas we consider the two infinite families contained in Ext(K5).

Lemma 4.14. Ext(DW5) = {DWn : n > 5}.

Proof. Since C2
7 is a subgraph of P̄7, by Lemma 4.2, every double-wheel is P̄7-free. Thus

it is enough for us to show that, for each n > 5, the only P̄7-free split of DWn is DWn+1.
Suppose DWn is constructed from cycle v1v2 . . . vn and two adjacent vertices u1, u2. Let
G be a split of DWn.

Suppose G is obtained by splitting ui. Let u1
i and u2

i be the two new vertices. In case
n > 6 we assume without loss of generality that u1

i has degree exceeding four. Let vj
be a neighbor of u1

i . If possible we choose j such that vj is not a neighbor of u2
i . Then

G′ = G/vjvj+1 is a split of DWn−1, because G′/u1
iu

2
i = DWn−1 and both u1

i , u
2
i have

degree at least four in G′. By repeating this process we see that G contains a minor that
is obtained from DW5 by splitting a degree-6 vertex. Note that DW5 has two splits of
u1 such that both of the two new vertices have degree four (see Figure 4.8). Since both
splits contain a P̄7-minor, it follows that G contains a P̄7-minor.

Figure 4.8: Two minimal splits of DW5. Both contain a P̄7-minor.
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Now suppose G is obtained by splitting vi. If G\u1u2 is nonplanar, by applying
Theorem 2.5 to G\u1u2 we deduce that G contains a P̄7-minor. So we assume that
G\u1u2 is planar. Then there are two cases as shown in Figure 4.9 with i = 2. So either
G is isomorphic to DWn+1 or G contains a P̄7-minor.

Figure 4.9: Two planar splits of DWn: one is DWn+1 and the other contains a P̄7-minor.

Lemma 4.15. If K ∈ K has at least eight vertices and G is a P̄7-free split of K, then G
belongs to K.

Proof. Suppose the lemma is false. Then there exist K ∈ K with |V (K)| > 8 and a P̄7-free
split G of K with G 6∈ K. We choose such a K with |V (K)| as small as possible. Recall
that we denote by X = {x1, x2, x3, x4} a set of four vertices that cover all edges of K and
we let Y = V (K)−X = {y1, y2, . . . , yn}. If G is obtained by splitting some yj, say, j = 1,
we consider G′ = G/{x1y4, x1y5, . . . , x1yn}. Since n > 4, G′ satisfies the assumption in
Lemma 4.12(i), which implies that G′ contains a P̄7-minor. This is a contradiction since
G is P̄7-free. This contradiction shows that G is not obtained by splitting any vertex in
Y , and thus G is obtained by splitting a vertex xi ∈ X. Since G is not in K, G must be
a mixed split. Without loss of generality, let i = 1, let x1

1 and x2
1 be the two new vertices,

and let yj (j = 1, 2) be a neighbor of xj
1.

We first claim that in each G/xiyj (i = 2, 3, 4 and j = 3, 4, . . . , n), at lease one of x1
1, x2

1

has degree smaller than four. Suppose on the contrary that both x1
1 and x2

1 have degree at
least four in G/xiyj. Since (G/xiyj)/x

1
1x

2
1 = (G/x1

1x
2
1)/xiyj = K/xiyj ∈ K, it follows that

G/xiyj is a mixed split of K/xiyj. To proceed we consider two cases. First, assume n = 4.
Then K/xiyj = Kk

4,3 for some k = 1, 2, . . . , 6. By Lemma 4.12(ii) and our assumption
that G is P̄7-free, it follows that G/xiyj is isomorphic to either Γ3 or Γ4. However, by
Lemma 4.11, G contains a P̄7-minor, a contradiction. Next, assume n > 5. Observe that
G/xiyj 6∈ K, because if Z is a set of four vertices covering all edges of G/xiyj, then some
vertex in Y − {yj} is not in Z, which implies {x2, x3, x4} ⊆ Z, and thus a contradiction
since we have to cover x1

1y1 and x2
1y2 with only one vertex. This observation shows that

K/xiyj is a smaller counterexample, which contradicts the choice of G and K, and this
contradiction completes the proof of our claim.

The above claim implies that for each edge xiyj (i = 2, 3, 4 and j = 3, 4, . . . , n),
there exists k ∈ {1, 2} such that xk

1xiyj is a triangle and xk
1 is a degree-4 vertex in G.

In particular, each xi (i = 2, 3, 4) is adjacent to at least one of x1
1, x

2
1. Consequently,

dG(x1
1) + dG(x2

1) > |Y |+ (|X| − 1) + 2 > 9, which implies that only one of x1
1, x

2
1, say, x1

1,
has degree four. Now we conclude that x1

1xiyj is a triangle for all i = 2, 3, 4 and j = 3, 4,
which contradicts dG(x1

1) = 4 and this contradiction proves the lemma.
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Proof of Lemma 4.1. The result follows from Lemmas 4.13, 4.14, and 4.15.

Proof of Theorem 1.1. By Theorem 2.1, Lemmas 3.1, 3.4, and 3.6, we only need to
determine Ext(K5). Then the result follows from Lemma 4.1.

Proof of Corollary 1.2. Since C2n+1 (n > 4) contains a C2
2n−1-minor, by Lemmas

3.2, 4.2, 4.3, and 4.4, the result follows from Theorem 1.1.
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