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Abstract

The class of Guaranteed Scoring Games (GS) is the class of all two-player scoring
combinatorial games with the property that Normal-play games (Conway et. al.) are
order embedded into GS. They include, as subclasses, the scoring games considered
by Milnor (1953), Ettinger (1996) and Johnson (2014). We present the structure
of GS and the techniques needed to analyze a sum of guaranteed games. Firstly,
GS forms a partially ordered monoid, via defined outcomes over the reals, and with
disjunctive sum as the operation. In fact, the structure is a quotient monoid with
partially ordered congruence classes. We show that there are four reductions that
when applied, in any order, give a unique representative for each congruence class.
The monoid is not a group, but in this paper we prove that if a game has an inverse
it is obtained by ‘switching the players’. The order relation between two games is
defined by comparing their outcomes in any disjunctive sum. Here, we demonstrate
how to compare the games via a finite algorithm instead, extending ideas of Ettinger,
and also Siegel (2013).
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1 Introduction

Combinatorial Game Theory (CGT) studies two-player games, (the players are called Left
and Right) with perfect information and no chance device. A common, almost defining
feature, is that these games often decompose into sub-components and a player is only
allowed to move in one of these at each stage of play. This situation is called a disjunctive
sum of games. It is also commonplace to allow addition of games with similar and well
defined properties; games in such a family do not necessarily have the same rule sets.

The convention we wish to study, has the winner as the player with the best score.
This convention includes rule sets such as dots-&-boxes, go and mancala. A gen-
eral, useful, theory has been elusive and, to our current knowledge, only four approaches
appear in the literature. Milnor [14], see also Hanner [11], considers dicot games (for
all positions, either both or none of the players can move) with nonnegative incentive.
In games with a nonnegative incentive, a move never worsens the player’s score; that is,
zugzwang games, where neither player wishes to move, do not appear. Ettinger [7, 6]
considers all dicot games. Stewart [18] defines a comprehensive class but it has few useful
algebraic properties. Johnson [12] considers another subclass of dicot games, for which,
for any position, the lengths of every branch of the game tree has the same parity.

We study the class of Guaranteed Scoring Games, GS [13]. This class has a partial
order relation, <, which together with the disjunctive sum operation induces a congruence
relation (∼,+). The resulting quotient monoid inherits partially ordered congruence
classes, and it is the purpose of this paper to continue the study of these classes. In
[13], it was shown that Normal-play games (see Remark 1) can be ordered embedded in
a natural way and that a positive incentive for games without Right or Left options is
an obstacle to the order embedding. It was also demonstrated how to compare games
with numbers using waiting moves (images of Normal-play integers) and pass-allowed
outcomes. Intuitively, this class of games has the property that the players want the
component games to continue; every game in which at least one player cannot move has
non-positive incentive.

Here we show that GS has the properties:

1. There is a constructive way to give the order relation between games G and H.
It only requires G, H and a special type of simplistic games that we call ‘waiting
moves’, games with the sole purpose of giving one of the player an extra number of
moves, but with no change in score.

2. There are four reduction theorems, and we find a unique representative game for
each congruence class. Of these, ‘Eliminating Dominated Options’ and ‘Bypassing
Reversible Moves’ with a non-empty set of options are analogous to those found in
the theory of Normal-play games. Bypassing a reversible move by just replacing
it with an empty-set of options leads to a non-equivalent game. In this case, the
appropriate reduction requires consideration of the pass-allowed outcomes. This has
no corresponding concept in Normal-play theory.
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3. In GS the Conjugate Property holds: if G+H is equivalent to 0 then H is the game
obtained by interchanging the roles of Left and Right in G. In Normal-play, this is
called the negative of G; however in GS ‘negatives’ do not always exist.

4. We solve each of these problem via a finite algorithm, which is also implemented in
a Scoring Games Calculator.

The organization of the paper is as follows: Section 2 introduces the main concepts for
Combinatorial Games. In Section 2.1, the class of Guaranteed Scoring Games, together
with the order relations and congruence classes, is presented. Section 2.2 contains results
concerning the order embedding of Normal-play games in GS. Section 2.3 presents results
on pass-allowed stops and waiting moves. Section 3.1 proves four reductions that simplify
games. Section 3.3 proves that applying these reductions leads to a unique game. The
proofs require extending Siegel’s ‘linked’ concept for misère games to scoring games which
is in Section 3.2. Section 4 shows that the Conjugate Property holds in GS. In Section 5
we give a brief intro to the Scoring Games Calculator.

Remark 1. Other famous winning conditions in CGT are considering who moves last.
Normal-play games, the first player who cannot move loses, find their origins with the
analysis of nim [4]; see also [10, 17]. Conway developed the first encompassing theory;
see [2, 5]. A comprehensive Misère theory, the first player who cannot move wins, has
not yet been developed but large strides have been made for impartial games, see [15]. A
related winning convention arises in the Maker-Breaker (or Maker-Maker) games usually
played on a graph—one player wishes to create a structure and the opponent wants to
stop this (or both want to create a structure) such as hex or generalized tic-tac-toe.
See Beck [1] for more details.

2 Background

In a combinatorial game (regardless of the winning condition) there are two players who,
by convention, are called Left (female) and Right (male)1. A position that some player
can move to (in a single move) is an option. The left options are those to which Left can
move and the corresponding set is denoted by GL if the game is G. An element of GL

is often denoted by GL. Similarly, there is a set of right options denoted by GR, with a
typical game GR. There is no requirement that GL and GR be disjoint. A game can be
recursively defined in terms of its options. We will use the representation G = 〈GL | GR〉
(so as to distinguish them from Normal-play games where the convention is {GL | GR}).
The followers of G are defined recursively: G and all its options are followers of G and
each follower of a follower of G is a follower of G. The set of proper followers of G are the
followers except for G itself. The game tree of a position G would then consist of all the
followers of G drawn recursively: i.e. the options of a follower H of G are the children of
H in the tree.

1Remember, Louise and Richard Guy who have contributed much to combinatorial games.
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Positions fall into two kinds: atomic positions in which at most one player can move,
and non-atomic positions in which both players can move. A position with no Left
options is called left-atomic, and in case of no Right options it is right-atomic. A game
with no options at all is called purely-atomic, that is, such games are both left-atomic and
right-atomic.

2.1 Introduction to Guaranteed scoring games

In a combinatorial game, the result of a game is determined at the end, that is when the
player to move has no option. In scoring games, this result is a score, a real number.2 We
adapt the following notation.

Definition 2 (Game termination). Let G be a left-atomic game. Then GL = ∅`, indicates
that, if Left to move, the game is over and the result is the score ` ∈ R. Similarly, if G is
right-atomic then GR = ∅r and, if it is Right to move, the score is r ∈ R. Left wins if the
score is positive, Right wins if the score is negative, and it is a tie if the score is zero.

Since the game 〈∅s | ∅s〉 results in a score of s regardless of whose turn it is, we call
this game (the number) s. We refer to the adorned empty set, ∅s, s ∈ R, as an atom or,
if needed for specificity, the s-atom. By an atom in a game G, we mean an atom of some
atomic follower of G. By an atom in a set of games we mean an atom in one of the games
in that set. In the general scoring universe, S [13, 18], there is no restriction to the form
of the atomic games.

Definition 3. Let S0 be the set of scoring games of birthday 0, i.e. the set {〈∅` | ∅r〉 :
`, r ∈ R}, and for i > 0, let Si be the set of non-atomic games of the form 〈G | H〉, where
G and H are sets of games of birthday less than i (including the possibility of atomic
games of the forms 〈∅` | ∅r〉, 〈∅` | H〉 and 〈G | ∅r〉). For i > 0, if G ∈ Si \ Si−1 then G is
said to have birthday i and we write b(G) = i. Let S = ∪i>0Si.

We impose the following restriction to the set S. (This is a top down approach instead
of the bottom up approach in Definition 3; see also Lemma 5.)

Definition 4. A scoring game H ∈ S is guaranteed if, for every atomic follower G of H
(which includes the possibility that G = H),

1. if G = 〈∅` | ∅r〉 then ` 6 r;

2. if G = 〈∅` | GR〉 then ` 6 s, for every s-atom in G);

3. if G = 〈GL | ∅r〉 then s 6 r, for every s-atom in G.

2Loosely speaking our scoring games would correspond to a zero-sum game in economic game theory,
but the concept is not useful here, since our objective concerns the algebra on the disjunctive sum of
games. Still, if we imagine a rule set, where the players gain or lose point during play, then, it makes
sense to call our games zero-sum, because, if Left gains 5 points by a certain move, then the total score
is increased by 5, and this means that Right is 5 points worse off than before that move.
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Let GS ⊂ S be the set of all guaranteed scoring games.

Note that this definition is formally equivalent to: a game H ∈ S is guaranteed if,
for every atomic follower G of H, ` 6 r, for all `-atoms in GL and all r-atoms in GR.
Moreover, observe that if H is guaranteed then every follower of H is also guaranteed.
For example, 〈〈∅1 | ∅1〉 | 〈∅0 | ∅0〉〉 = 〈1 | 0〉 is guaranteed but H = 〈∅1 || 4, 〈∅3|3, 〈∅5 | 4〉〉
is not (by item d):

(a) H is left-atomic and 1 is less than the other scores;
(b) both 3 = 〈∅3 | ∅3〉 and 4 = 〈∅4 | ∅4〉 are atomic and each satisfies (i) in Definition 4;
(c) 〈∅3 | 3, 〈∅5 | 4〉〉 is left-atomic and 3 is less than or equal to 3, 5 and 4;
(d) 〈∅5 | 4〉 = 〈∅5 | 〈∅4 | ∅4〉〉 does not satisfy Definition 4 (2) and thus H is not

guaranteed.

Similar to the general class S, the class of guaranteed scoring games can be defined
recursively. The birthday of a guaranteed game corresponds to the depth of its game tree,
and this stratification into birthdays is very useful for proofs by induction.

Let T0 be the set of birthday 0 guaranteed games, so these are of the form {〈 ∅` | ∅r 〉 :
`, r ∈ R, ` 6 r}. Let Ti, i > 0, be the set consisting of the games:

(i) 〈G | H〉 where G and H are non-empty subsets of Ti−1;
(ii) 〈∅` |∅r〉, ` 6 r;
(iii) 〈∅` | H〉 where ` 6 r, for all r-atoms in H, a non-empty subset of Ti−1;
(iv) 〈G | ∅r〉, where ` 6 r, for all `-atoms in G, a non-empty set of Ti−1.

Finally, let T = ∪i>0Ti

Lemma 5. The two sets of games GS and T are identical.

Proof. This is immediate by Definition 4.

A player may be faced with several component games/positions, and if there is at least
one in which he can move then he has an option and the game is not over yet. A move in a
disjunctive sum of positions is a move in exactly one of the component positions, and the
other ones remain unchanged. It is then the other player’s turn to move. We formalize
this in the next definition by listing all the possible cases. The distinction between the
two uses of +, the disjunctive sum of games and the addition of real numbers, will be
clear from the context. If G = {G1, . . . , Gm} is a set of games and H is a single game
then G + H = {G1 + H, . . . , Gm + H} if G is non-empty; otherwise G + H is not defined
and will be removed from any list of games.

An intuitively obvious fact that is worthwhile highlighting at this point: if Left has
no move in G+H then Left has no move in either of G and H (and reverse), that is:

G+H is left-atomic if and only if both G and H are left-atomic,

and analogously for right-atomic games.
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Definition 6 (Disjunctive Sum). The disjunctive sum of two guaranteed scoring games
G and H is given by:

G+H =



〈 ∅`1+`2 | ∅r1+r2 〉, if G = 〈 ∅`1 | ∅r1 〉 and H = 〈 ∅`2 | ∅r2 〉;
〈 ∅`1+`2 | GR +H,G+HR 〉, if G = 〈 ∅`1 | GR 〉 and H = 〈 ∅`2 | HR 〉,

and at least one of GR and HR is non-empty;

〈GL +H,G+HL | ∅r1+r2 〉, if G = 〈GL | ∅r1 〉 and H = 〈GL | ∅r2 〉,
and at least one of GL and HL is non-empty;

〈GL +H,G+HL | GR +H,G+HR 〉, otherwise.

Note that in the last equality, if there are no left options in G, then GL + H gets
removed, unless both GL and HL are atoms, in which case some earlier item applies. It
is an easy exercise to show that if G,H ∈ GS then G + H ∈ GS. For completeness, we
include a proof of this and some other observations.

Theorem 7. (GS,+) is a commutative monoid.

Proof. In all cases, the proof is by induction on the sum of the birthdays of the positions.

1. GS is closed, that is, G,H ∈ GS⇒ G+H ∈ GS.

Suppose that G + H is left-atomic. Then both G = 〈∅g | GR〉 and H = 〈∅h | HR〉
are left-atomic. Since both games are guaranteed, then each s-atom in G satisfies
g 6 s and each t-atom in H satisfies h 6 t. Therefore g+h 6 min{s+ t}, where the
minimum runs over all s-atoms in G and all t-atoms in H, and so G+H = 〈∅g+h |
(G+H)R〉 is also guaranteed. this case includes the possibility that (G+H)R is the
(s + t)-atom. Finally, suppose that both GL and GR are non-empty sets of games
of GS. Both players have moves in G+H that, by induction, are games of GS. So,
G+H ∈ GS.

2. Disjunctive sum is commutative.

If G = 〈∅`1 | ∅r1〉 and H = 〈∅`2 | ∅r2〉 then G + H = 〈∅`1+`2 | ∅r1+r2〉 = 〈∅`2+`1 |
∅r2+r1〉 = H +G.

If G = 〈∅`1 | GR〉 and H = 〈∅`2 | HR〉 then

G+H = 〈∅`1+`2 | GR +H,G+HR〉 =︸︷︷︸
induction

〈∅`2+`1 | H +GR, HR +G〉 = H +G.

The other cases are analogous using induction and the fact that the addition of real
numbers is commutative.

3. Disjunctive sum is associative.

If G = 〈∅`1 | ∅r1〉, H = 〈∅`2 | ∅r2〉 and J = 〈∅`3 | ∅r3〉 then G+(H+J) = (G+H)+J
is just a consequence of that the addition of real numbers is associative.
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If G = 〈∅`1 | ∅r1〉, H = 〈∅`2 | ∅r2〉 and J = 〈∅`3 | JR〉 then

G+ (H + J) = 〈∅`1 | ∅r1〉+ 〈∅`2+`3 | H + JR〉
= 〈∅`1+(`2+`3) | G+ (H + JR)〉

=︸︷︷︸
induction

〈∅(`1+`2)+`3 | (G+H) + JR〉 = (G+H) + J.

The other cases are analogous using induction and the fact that the addition of real
numbers is associative.

4. It follows directly from the definition of disjunctive sum that G+ 0 = 0 +G = G so
the zero of (GS,+) is 0 = 〈∅0 |∅0〉.

When analyzing games, the following observation, which follows from the definition of
the disjunctive sum, is useful for human players.

Observation 8 (Number Translation). Let G ∈ GS and x ∈ R then

G+ x =


〈∅`+x | ∅r+x〉 if G = 〈∅` | ∅r〉,
〈∅`+x | GR + x〉 if G = 〈∅` | GR〉,
〈GL + x | ∅r+x〉 if G = 〈GL | ∅r〉,
〈GL + x | GR + x〉 if G = 〈GL | GR〉.

Next, we give the fundamental definitions for comparing games.

Definition 9. For a game G ∈ GS, the outcomes are:

Ls(G) =

{
` if G = 〈∅` | GR〉
max{Rs(GL) : GL ∈ GL} otherwise;

and

Rs(G) =

{
r if G = 〈GL | ∅r〉
min{Ls(GR) : GR ∈ GR} otherwise.

We call the real numbers Ls(G) and Rs(G) the Left- and Right-score of G, respectively.
The motivation for the following (standard CGT) definition of inequality is that Left

prefers a game G over another game H if and only if the outcome is at least as good in
a disjunctive sum, with any game in the same class. Take for example the guaranteed
scoring games G = 〈〈∅−1 | ∅1000〉 | 1000〉 and H = 0. Then G 6� H, because, for example
−1 = Rs(G+X) 6> Rs(0 +X) = 0, if X = 〈0 | 〈∅0 | 0〉〉.

Definition 10 (Inequalities for games). Let G,H ∈ GS. Then G < H if for all X ∈ GS
we have Ls(G+X) > Ls(H +X) and Rs(G+X) > Rs(H +X). The games G and H
are equivalent, denoted by G ∼ H, if G < H and H < G.

Lemma 11. Let G,H ∈ GS. If G < H then G+ J < H + J for any J ∈ GS.
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Proof. Consider any game J ∈ GS. Since G < H, it follows that, Ls(G + (J + X)) >
Ls(H+(J+X)), for any X ∈ GS. Since disjunctive sum is associative this inequality is the
same as Ls((G+J)+X)) > Ls((H+J)+X). The same argument gives Rs((G+J)+X)) >
Rs((H + J) +X) and thus, since X is arbitrary, this gives that G+ J < H + J .

Lemma 11 confirms that GS is a partially ordered monoid (a monoid endowed with a
partial order that is compatible with the addition). Hence, Theorem 12, Corollaries 13, 14
and Lemma 15 are standard results, holding for partially ordered monoids (see [3, 8, 9]).

Theorem 12. The relation < is a partial order and ∼ is an equivalence relation.

Corollary 13. Let G,H, J,W ∈ GS. If G < H and J < W then G+ J < H +W .

Corollary 14. Let G,H, J,W ∈ GS. If G ∼ H and J ∼ W then G+ J ∼ H +W .

Lemma 15. Let G,H ∈ GS. Let J ∈ GS be invertible, then G + J < H + J if and only
if G < H.

The conjugate of a game G,
↔
G, is defined recursively:

↔
G = 〈

←→
GR |

←→
GL〉, where

←→
GR means

←→
GR, for each GR ∈ GR (and similarly for GL), unless GR = ∅r, in which case

←→
GR = ∅−r.

It is easy to see that if a game is guaranteed, then its conjugate is also. As mentioned

early, this is equivalent to interchanging Left and Right. In Normal-play G +
↔
G ∼ 0,

but in GS this is not necessarily true. For example, if G = 〈∅` | ∅r〉, then conjugate is
↔
G = 〈∅−r | ∅−`〉 and G+

↔
G ∼ 0 if and only if ` = r.

The next result will be useful in proving the Conjugate Property in Section 4.

Lemma 16. Let G,H ∈ GS. If G � 0 and H < 0 then G+H � 0.

Proof. By Corollary 13, we already know that G + H < 0. So, it is enough to show
that G + H � 0. Since G � 0 then, without loss of generality, we may assume that
Ls(G + X) > Ls(X) for some X. Because H < 0, we have Ls(G + X + H) > Ls(G +
X + 0) = Ls(G+X) > Ls(X), and therefore G+H � 0.

Lemma 16 shows that the somewhat bizarre event, that the sum of two strictly positive
elements is zero, does not happen in GS. Still GS is not archimedian. It is well known
that Normal-play games have hierarchies of infinitesimal elements, and these structures
are inherited in guaranteed scoring play.

Observation 17. If a partially ordered monoid is archimedean (that is ∀a > 0,∀b >
0,∃n ∈ N such that n.a > b) then it has no infinitesimal elements (given b > a > 0,
then a is infinitesimal with respect to b if, ∀n ∈ N, n.a < b). A natural question
comes up: is GS archimedean? Because Normal-play games are order-embedded in GS
(Theorem 19), G = 〈〈∅0 | ∅0〉 | 〈〈∅0 | ∅0〉 | 〈∅0 | ∅0〉〉〉 > 0 is infinitesimal with respect to
H = 〈〈∅0 | ∅0〉 | ∅0〉 > 0. That happens because G is the image of ↑= {0 | ∗} and H is the
image of 1 = {0 | } via order embedding, and ↑ is infinitesimal with respect to 1 in the
Normal-play structure. Hence GS is not archimedean.
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2.2 Relation between Normal-play and Guaranteed games

One of the main results in [13] is that Normal-play games are order-embedded in GS.

Definition 18. For a Normal-play game G, let Ĝ be the scoring game obtained by
replacing each empty set, ∅, in G by the atom ∅0.

This operation retains the game tree structure. For example, the leaves of a Normal-
play game tree are labelled 0 = {∅ | ∅} which is replaced by 0 = 〈∅0 | ∅0〉 for the scoring
game.

Theorem 19 (Normal-play order embedding [13]). Let Np be the set of Normal-play

games. The set {Ĝ : G ∈ Np} induces an order-embedding of Np in GS.

That is, G < H in Normal-play if and only if Ĝ < Ĥ in guaranteed games.
Let n be an integer. The games n̂ are called waiting moves3. For example, 0̂ = 〈∅0 |

∅0〉 = 0 and 1̂ = 〈0 | ∅0〉 and 2̂ = 〈1̂ | ∅0〉. Regardless, the score of a waiting move will be
0, but in a game G + 1̂, Left has the ability to force Right to play consecutive moves in
the G component.

The ability to pass may appear as something beneficial for a player. This is true
in GS but not necessarily in the general universe of scoring games. For example, let
G = 〈∅1 | 〈∅−9 | ∅9〉〉 and note G 6∈ GS. Clearly Left wins playing first. In G + 1̂, Left
has no move in G and she must play her waiting move, 1̂. Right then plays to 〈∅−9 | ∅9〉.
Now Left has no move and the score is −9, a Right win.

There are useful inequalities relating Normal-play and Scoring games.

Definition 20. Let G ∈ GS, and let Gx be as G, but with each atom replaced by ∅x. Let
max(G) = max{s | ∅s is an atom in G} and min(G) = min{s | ∅s is an atom in G}. Set
Gmin = Gmin(G) and Gmax = Gmax(G).

Theorem 21 (Projection Theorem). Let G ∈ GS. If n = b(G) then

1. Gmin 4 G 4 Gmax

2. min(G)− n̂ 4 G 4 max(G) + n̂

3. b (min(G)− n̂) = b (max(G) + n̂) = n.

Proof. For part 1, for any X, we establish the inequalities Ls(Gmin + X) 6 Ls(G + X)
and Rs(Gmin + X) 6 Rs(G+ X). First, if the game G+ X is purely atomic, then, so is
Gmin +X, and the inequalities are trivial, given Definition 20.

Consider the game, (Gmin + X)L, obtained after an optimal move by Left. Ignoring
the scores, Left can make exactly the same move in the game G + X, to say (G + X)L.
Because, we maintain an identical tree structure of the respective games, we get

Ls (Gmin +X) = Rs
(
(Gmin +X)L

)
6 Rs

(
(G+X)L

)
6 Ls (G+X) ,

3These games correspond to the ‘integers’ in Conway’s Normal-play theory, but in our context the
‘numbers’ are atomic games of the form 〈∅s |∅s〉.
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by induction.
To prove the inequality for the Right scores, we consider the game (G+X)R, obtained

after an optimal move by Right. Ignoring the scores, Right can make exactly the same
move in the game Gmin +X, to say (Gmin +X)R. Therefore

Rs (Gmin +X) 6 Ls
(
(Gmin +X)R

)
6 Ls

(
(G+X)R

)
= Rs (G+X) ,

by induction.
For part 2, it suffices to prove that min(G)−N̂ 4 G (and the proof of second inequality

is similar). It is easy to see that N̂ − N̂ ∼ 0. Therefore, it suffices to prove that

min(G) 4 G+ N̂ , which holds if and only if min(G) 6 Ls(G+ N̂) and the latter is easy
to see. Part 3 follows by definition of waiting-moves.

2.3 Pass-allowed outcomes and Waiting moves

The following three points about the outcomes are immediate from the definitions but we
state them explicitly since they will appear in many proofs.

Observation 22. Given a game G ∈ GS,
(i) Ls(G) > Rs(GL) for all GL, and there is some GL for which Ls(G) = Rs(GL);
(ii) Rs(G) 6 Ls(GR) for all GR, and there is some GR for which Rs(G) = Ls(GR);
(iii) Ls(G+ s) = Ls(G) + s for any number s.

The next result indicates that we only need to consider one of Ls and Rs for game
comparison in GS. However, in the sequel, the proofs that use induction on the birthdays
need the inequalities for both the Left- and Right-scores, because we must consider games
with a fixed birthday. However, Theorem 23 enables a simple proof of Lemma 44.

Theorem 23. Let G,H ∈ GS. Then Ls(G + X) > Ls(H + X) for all X ∈ GS if and
only if Rs(G+ Y ) > Rs(H + Y ) for all Y ∈ GS.

Proof. The proof depends on the following result.
Claim 1: Given G and H in GS, then there exists X ∈ GS such that Ls(G + X) >

Ls(H +X) iff there exists a game Y ∈ GS such that Rs(G+ Y ) > Rs(H + Y ).

Proof of Claim 1. Suppose that there is some X such that Ls(G + X) > Ls(H + X).
Let M = max{Ls(G + X) − Rs(GR) : GR ∈ GR} and let GR′

be an option where
M = Ls(G+X)− Rs(GR′

). Put Y = 〈M | X〉.
Now, Ls(GR + Y ) > Rs(GR +M), since M is a Left option of Y . For any GR ∈ GR,

Rs(GR +M) = Rs(GR) +M, by Observation 22 (iii),

= Rs(GR) + Ls(G+X)− Rs(GR′
)

= Ls(G+X) + Rs(GR)− Rs(GR′
)

> Ls(G+X).
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Therefore, Ls(GR + Y ) > Ls(G+X). Thus

Rs(G+ Y ) = min{Ls(G+X),Ls(GR + Y ) : GR ∈ GR} = Ls(G+X)

Now, Rs(G+ Y ) = Ls(G+X) > Ls(H +X) > Rs(H + Y ) where the first inequality
follows from the assumption about X, and, since X is a Right option of Y , the second
inequality follows from Observation 22 (ii).

End of the proof of Claim 1.

Suppose Ls(G+X) > Ls(H+X) for all X. By Claim 1, there is no game Y for which
Rs(G+ Y ) < Rs(H + Y ), in other words, Rs(G+ Y ) > Rs(H + Y ) for all Y .

In the next definition, “pass-allowed” typically means that one player has an arbitrary
number of waiting moves in another component.

Definition 24 (Pass-allowed Outcomes [13]). Let G ∈ GS. Then Ls(G) = min{Ls(G −
n̂ ) : n ∈ N0} is Right’s pass-allowed Left-score of G. Left’s pass-allowed Right-score
is defined analogously, Rs(G) = max{Rs(G + n̂) : n ∈ N0}. We also define Ls(G) =
max{Ls(G+ n̂ ) : n ∈ N0} and Rs(G) = min{Rs(G+ n̂ ) : n ∈ N0}.

The ‘overline’ indicates that Left can pass and the ‘underline’ that Right can pass.
Note that, in Ls(G), Left can even start by passing.

Lemma 25. Let G ∈ GS. If n > b(G) then Ls(G) = Ls(G− n̂) and Rs(G) = Rs(G+ n̂).

Proof. Suppose that n > b(G). By Theorem 19, we have G− b̂(G) < G− n̂ which gives

Ls(G − b̂(G)) > Ls(G − n̂) > min{Ls(G − m̂)} = Ls(G). Since Left begins, Right does
not require more than b(G) waiting-moves, until Left has run out of moves in G. Hence

Ls(G) = min{Ls(G− m̂)} > Ls(G− b̂(G)). This proves the first claim, and the claim for
the Right-score is analogous.

From this result, it follows that the first part of Definition 24 is equivalent to: for
G ∈ GS and n = b(G), Ls(G) = Ls(G − n̂) and Rs(G) = Rs(G + n̂). The pass-allowed
Left- and Right-scores of a disjunctive sum of games can be bounded by pass-allowed
outcomes of the respective game components.

Theorem 26 (Pass-allowed Outcomes of Disjunctive Sums). For all G,H ∈ GS we have

Ls(G) + Rs(H) 6 Ls(G+H) 6 Ls(G) + Ls(H).

Symmetrically
Rs(G) + Rs(H) 6 Rs(G+H) 6 Rs(G) + Ls(H).

Proof. Let n = b(G) and m = b(H) and let N = n+m.

Right plays second in G + H − N̂ which he can regard as (G − n̂) + (H − m̂). He
can restrict his moves to responding only in the component in which Left has just played
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and he has enough waiting moves to force Left to start both components. Thus he can
achieve Ls(G) + Ls(H), i.e., Ls(G+H) 6 Ls(G) + Ls(H).

In the global game G+H, suppose that Right responds in H to Left’s first move in G,
then, for the rest of the game, Left can copy each local move in the global setting and has
enough waiting moves to achieve a score of Ls(G)+Rs(H). Since she has other strategies,
we have Ls(G) + Rs(H) 6 Ls(G+H). The other inequality is proved analogously.

The results for the rest of the paper are sometimes stated only for Left. The proofs
for Right are the same with the roles of Left and Right interchanged.

Corollary 27. Let G,H ∈ GS. If H =
〈
∅h |HR

〉
then Ls(G + H) > Ls(G + H) =

Ls(G) + h.

Proof. By Theorem 26 it suffices to show that Ls(H) = Rs(H) = h. Since Left starts,
Ls(H) = h. Now Rs(H) 6 h, since Right can achieve the score h by passing. Since
H ∈ GS then h = min{x : ∅x is an atom in H}. Hence Rs(H) = h. That Ls(G + H) >
Ls(G+H) is by definition.

Definition 28. Let s ∈ R and G ∈ GS. The game G is left-s-protected if Ls(G) > s and
either G is right-atomic or for all GR, there exists GRL such that GRL is left-s-protected.
Similarly, G is right-s-protected if Rs(G) 6 s and, for all GL, there exists GLR such that
GLR is right-s-protected.

In [13] we prove a necessary and sufficient condition for a game to be greater than or
equal to a number.

Theorem 29 (A Generalized Ettinger’s Theorem [13]). Let s ∈ R and G ∈ GS. Then
G < s if and only if G is left-s-protected.

3 Reductions and Canonical form

The reduction results, Theorems 32, 34, and 36, give conditions under which the options of
a game can be modified resulting in a game in the same equivalence class. In all cases, it is
easy to check that the new game is also in GS. Theorem 37 requires an explicit check that
the modified game is a guaranteed game. In Normal-play games, the reduction procedures
result in a unique game, which also has minimum birthday, called the ‘canonical form’.
It is noted by Johnson that both the scoring games he studied and those studied by
Ettinger there may be many equivalent games with the minimum birthday. The same is
true for guaranteed games. However, Theorem 37 gives a reduction that while it does not
necessarily reduce the birthday does lead to a unique reduced game.

The results in this section will often involve showing that G < H or G ∼ H for some
games G, H where both have the same right options and they differ only slightly in the
left options. Strategically, one would believe that only the non-common left options need
to be considered in inductive proofs, that is, the positions of (GL \HL)∪ (HL \GL). The
next lemma shows that this is true.
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Lemma 30. Let F and K be guaranteed games with the same sets of right options, and
in case this set is empty, the atoms are identical. Let X be a guaranteed game.

1. If Ls(F +XR) = Ls(K +XR) for all XR ∈ XR then Rs(F +X) = Rs(K +X).

2. If Rs(F + XL) > Rs(K + XL), for all XL ∈ XL, and Rs(FL + X) = Ls(F + X),
for some FL ∈ FL ∩KL, then Ls(F +X) > Ls(K +X).

Proof. Part 1: We prove the ‘>’ inequality and then ‘6’ follows by symmetry. If Right’s
best move in F +X is obtained in the X component, then Rs(F +X) = Ls(F +XR) >
Ls(K + XR) > min{Ls((K + X)R)} = Rs(K + X). Otherwise, if Right’s best move is
in the F component, then he achieve a score at least as good in K + X by mimicking.
If there are no right-options in F + X then neither are there any in K + X. Then, by
assumption, the right-atom in F +X is identical to the right-atom in K +X, and hence
the Right-scores are identical.

The proof of part 2 is very similar to that of part 1, since the respective Right-scores
are obtained via a common option.

For example, in part 2 of Lemma 30, if Rs(FL + X) = Ls(F + X), for some FL ∈
FL \KL, then the inequality Ls(F + X) > Ls(K + X) does not follow directly. As we
will see later in this section, when it holds, it is by some other property of the games F
and K.

The next result re-affirms that provided a player has at least one option then adding
another option cannot do any harm. This is not true if the player has no options. For
example, consider G = 〈∅1 | 2〉, now adding the left option −1 to G gives the game
H = 〈−1 | 2〉. But, since Ls(G) = 1 and Ls(H) = 0 then H 6< G.

Lemma 31 (Monotone Principle). Let G ∈ GS. If |GL| > 1 then for any A ∈ GS,
〈GL ∪ A | GR〉 < G.

Proof. The proof is clear since Left never has to use the new option.

3.1 Reductions

We first consider the most straightforward reduction, that of removing dominated options.
For this to be possible we require at least two left options.

Theorem 32 (Domination). Let G ∈ GS and suppose A,B ∈ GL with A 4 B. Let
H = 〈GL \ {A} | GR〉. Then H ∈ GS and G ∼ H.

Proof. Note that H ∈ GS, because H is not atomic (at least B is a left option) and
G ∈ GS. By the monotone principle, Lemma 31, G < H. Therefore we only have to
prove that H < G. For this, we need to show that Ls(H + X) > Ls(G + X) and
Rs(H +X) > Rs(G+X) for all X. We will proceed by induction on the birthday of X.
Fix X ∈ GS.

By induction, for each XR ∈ XR, we know that Ls(H + XR) > Ls(G + XR). Thus
from Lemma 30(1), it follows that Rs(H +X) > Rs(G+X).
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Now consider the Left-scores. By induction, for each XL ∈ XL, we know that Rs(H+
XL) > Rs(G+XL), that is the first condition of Lemma 30(2) is satisfied. By assumption,
the only non-common option is A ∈ G \ H. Therefore, by Lemma 30(2), it suffices to
study the case Ls(G+X) = Rs(A+X). Since A 4 B, we get Ls(H+X) > Rs(B+X) >
Rs(A+X) = Ls(G+X). Hence H < G, and so H ∼ G.

We remind the reader that while we only define the following concepts from Left’s
perspective, the corresponding Right concepts are defined analogously.

Definition 33. For a game G, suppose there are followers A ∈ GL and B ∈ AR with
B 4 G. Then the Left option A is reversible, and sometimes, to be specific, A is said to
be reversible through its right option B. In addition, B is called a reversing option for A
and, if BL is non-empty then BL is a replacement set for A. In this case, A is said to be
non-atomic-reversible. If the reversing option is left-atomic, that is, if BL = ∅`, then A is
said to be atomic-reversible.

If Left were to play a reversible option then Right has a move that retains or improves
his situation. Indeed, it is the basis for the second reduction. In Normal-play games,
bypassing a reversible option is to replace a reversible option by its replacement set, even
if the replacement set is empty. This results in a simpler game equal to the original. In
GS, there are more cases to consider. We begin by showing that, if the replacement set
is non-empty, then bypassing a reversible option does result in a new but equal game. In
Theorem 36, we then treat the case of an atomic-reversible option.

Theorem 34 (Reversibility 1). Let G ∈ GS and suppose that A is a left option of G
reversible through B. If BL is non-empty, then G ∼

〈
GL \ {A}, BL | GR

〉
.

Proof. Consider G,A,B as in the statement of the theorem, and recall that, since B is
a reversing right option, G < B. Moreover, there is a replacement set BL, so we let
H =

〈
GL \ {A}, BL | GR

〉
. We need to prove that H ∼ G, i.e., Ls(G+X) = Ls(H +X)

and Rs(G+X) = Rs(H +X) for all X. We proceed by induction on the birthday of X.
Fix X. Note that BL, GL and HL are non-empty so that B +X, G+X and H +X

all have Left options. Moreover A+X has Right options.
For the Right-scores: by induction we have that Ls(G + XR) = Ls(H + XR) for any

XR ∈ XR. Thus by Lemma 30(1), we have Rs(G+X) = Rs(H +X).
For the Left-scores, and within the induction, we first prove a necessary inequality.

Claim 1: H < B.

Proof of Claim 1: For the Left-scores: if C ∈ BL then C ∈ HL and thus Ls(H +
X) > Rs(C + X). If Ls(B + X) = Rs(C + X) for some C ∈ BL then it follows
that Ls(H + X) > Ls(B + X). Otherwise, Ls(B + X) = Rs(B + XL). By induction,
Rs(B +XL) 6 Rs(H +XL) and since Rs(H +XL) 6 Ls(H +X), we get Ls(H +X) >
Ls(B +X).

For the Right-scores: by the argument before the claim, Rs(H + X) = Rs(G + X).
Since G < B then Rs(G + X) > Rs(B + X) and thus Rs(H + X) > Rs(B + X). This
concludes the proof of Claim 1.
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By induction we have that Rs(G+XL) = Rs(H +XL) for any XL ∈ XL, which gives
the first assumptions of Lemma 30(2). It remains to consider the cases where the second
assumption does not hold.

First, we consider Ls(G + X). By Lemma 30(2), the remaining case to consider is
Ls(G+X) = Rs(A+X). Since B ∈ AR, we have Rs(A+X) 6 Ls(B+X). By Claim 1,
we know that Ls(H + X) > Ls(B + X). By combining these inequalities we obtain
Ls(G+X) 6 Ls(H +X).

Secondly, we consider Ls(H +X). The only possibly non-common option is C ∈ BL,
with C ∈ HL\GL, and where we, by Lemma 30(2), may assume that Ls(H+X) = Rs(C+
X). Moreover, G < B, and thus Ls(H+X) = Rs(C+X) 6 Ls(B+X) 6 Ls(G+X).

For the next reduction theorem, there is no replacement set, because the reversing
option is left-atomic. We first prove a strategic fact about atomic reversible options—
nobody wants to play to one!

Lemma 35 (Weak Avoidance Property). Let G ∈ GS and let A be an atomic-reversible
Left option of G. For any game X, if XL 6= ∅ then there is an XL such that Rs(A+X) 6
Rs(G+XL).

Proof. Let A be an atomic-reversible Left option of G and let B ∈ AR be a reversing
option for A. Assume that X has a left option.

By definition, G < B and B =
〈
∅` | BR

〉
. Since B is a right option of A then

A+X 6= 〈(A+X)L | ∅r〉. Consequently,

Rs(A+X) 6 Ls(B +X)

= Rs(B +XL), for some XL,

6 Rs(G+XL), since G < B.

The next reduction is about replacing a left atomic-reversible option A in a game G.
There are two cases. If Left has a ‘good’ move other than A then A can be eliminated.
Otherwise, we can only simplify A.

Theorem 36 (Atomic Reversibility). Let G ∈ GS and suppose that A ∈ GL is reversible
through B = 〈∅` | BR〉.

1. If Ls(G) = Rs(GL) for some GL ∈ GL \ {A}, then G ∼
〈
GL \ {A} | GR

〉
;

2. If Ls(G) = Rs(A) > Rs(GL) for all GL ∈ GL \ {A}, then

G ∼
〈〈
∅` | B

〉
, GL \ {A} | GR

〉
.

Proof. Let A ∈ GL and B ∈ AR be as in the statement of the theorem, with G < B.
First an observation:

Claim 1: Ls(G) > `.

Let n be the birthday of G and since B is a proper follower of G, the birthday of B is less
than n. Since G < B, from Lemma 25 we have

Ls(G− n̂) > Ls(B − n̂) = Ls(
〈
∅` | BR

〉
− n̂) = `,

where n is the birthday of G. This proves the claim.
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The proof of the equality in both parts will proceed by induction on the birthday of
X. Again, in both parts, let H be the game that we wish to show is equal to G. We have,
by induction, that Ls(G+XR) = Ls(H +XR), and by GR = HR, from Lemma 30(1), it
then follows that Rs(G+X) = Rs(H +X).

It remains to show that Ls(G+X) = Ls(H +X) in both parts.

Part 1. The assumption is that there exists C ∈ GL \ {A} with Ls(G) = Rs(C). Let
H =

〈
GL \ {A} | GR

〉
. Note that both G + X and H + X have left options since C is

in both GL and HL. From Lemma 31 we have G < H, and thus it remains to show that
Ls(H +X) > Ls(G+X).

By Lemma 30(2), we need only consider the case Ls(G+X) = Rs(A+X). Note that
X must be left-atomic; else, by Lemma 35, there would exist XL ∈ XL with Rs(A+X) 6
Rs(G+XL). Therefore, we may assume that X = 〈∅x |XR〉. In this case, since C 6= A is
the best pass-allowed Left move in G then this is also true for H. We now have the string
of inequalities,

Ls(H +X) > Ls(H +X) = Ls(H) + x = Rs(C) + x = Ls(G) + x > `+ x,

where the first inequalities are from Corollary 27, and the last inequality is by Claim 1.
Since B is a right option of A, we also have that

Ls(G+X) = Rs(A+X) 6 Ls(B +X) = `+ x.

Thus Ls(G+X) 6 Ls(H +X) and this completes the proof of part 1 of the theorem.

Part 2. In this case, the Right’s-pass-allowed Left-score of G is obtained only through A.
Let H =

〈〈
∅` | B

〉
, GL \ {A} | GR

〉
. Recall that it only remains to show that Ls(G+X) =

Ls(H + X), and that, by Lemma 30, we only need to consider the non-common options
in the respective games.

First, suppose Ls(H + X) = Rs(〈∅` | B〉 + X). Since G < B and B is a right option
of 〈∅` | B〉, we have the inequalities

Ls(H +X) = Rs(〈∅` | B〉+X) 6 Ls(B +X) 6 Ls(G+X).

Thus, by Lemma 30(2), Ls(H +X) 6 Ls(G+X).

Secondly, suppose that Ls(G + X) = Rs(A + X). Note that if X has a left option
then, by Lemma 35, there exists some XL ∈ XL such that Ls(G+X) = Rs(G+XL). By
induction, then Rs(G + XL) = Rs(H + XL) 6 Ls(H + X). Therefore, we may assume
that X = 〈∅` | XR〉. Since B is a right option of A, the only Left option in G, we have
the string of inequalities

Ls(G+X) = Rs(A+X) 6 Ls(B +X) = `+ x.

To show that Ls(H + X) > ` + x, we note that it suffices for Left to move in the H
component to 〈` | B〉 ∈ HL, since all scores in B = 〈` | BR〉 are at least `. Thus, by
Lemma 30(2), we now have Ls(G+X) 6 Ls(H +X).

From this, together with the conclusion of the previous paragraph, we have Ls(G +
X) = Ls(H +X).
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Suppose that G ∈ GS has an atomic-reversible option, A ∈ GL, with the reversing
option B = 〈∅` | BR〉. Given the reduction in Theorem 36(2), a remaining problem of
atomic reducibility is to find a simplest substitution for B. In Section 3.3, we will show
that the following result solves this problem.

Theorem 37 (Substitution Theorem). Let A be an atomic-reversible Left option of G ∈
GS and let B = 〈∅` | BR〉 be a reversing Right option of A. Suppose also that Ls(G) =
Rs(A) > Rs(GL) for all GL ∈ GL \ {A}.

1. There exists a smallest nonnegative integer n such that G < ` − n̂ and G ∼ 〈` −
(n̂+ 1), GL \ {A} | GR〉.

2. If A is the only Left option of G and 〈∅` | GR〉 ∈ GS, then G ∼ 〈∅` | GR〉.

Proof. Case 1: Let m = b(B). By assumption G < B and, by Theorem 21(2), B < `−m̂,
and thus G < `− m̂. Since m is a nonnegative integer, the existence part is clear. Let n
be the minimum nonnegative integer such that G < `− n̂.

Let K = `− (n̂+ 1), which upon expanding is 〈∅` |`− n̂〉, let H = 〈K,GL \{A} | GR〉,
and let G′ = 〈K,GL | GR〉. By Lemma 31 and the definition of n, we have G′ < G < `−n̂.
Hence `− n̂ is a reversing game in both G and G′, and both A and K are atomic-reversible
Left options in G′.

Since G satisfies part 2 of Theorem 36. Then Claim 1 in Theorem 36 can be strength-
ened.

Claim 1: Ls(G) = `.

Proof of Claim 1: This is true because Ls(G) = Rs(A) 6 Ls(B) = `.

Hence, ` = Ls(G) = Rs(A). We also have that Rs(K) = `. It is now easy to see that
Ls(G′) = `. Thus we have two atomic-reversible Left options in G′, and so we can apply
part 1 in Theorem 36. We get that G′ ∼ G since K is an atomic-reversible Left option in
G′. Moreover, G′ ∼ H, since A is also atomic-reversible. This finishes the proof of Case 1.

Case 2: This is the case where GL = {A}. We put H = 〈∅` | GR〉 ∈ GS. To prove
G ∼ H we proceed by induction on the birthday of the distinguishing game X.

From Lemma 30(1) and induction, we have that Rs(G + X) = Rs(H + X), for any
X ∈ GS.

For the Left-scores, from Case 1, we know that G ∼ 〈` − (n̂+ 1) | GR〉. Therefore,
in the case X = 〈∅x | ∅y〉 it is easy to see that Ls(H + X) = ` + x 6 Ls(G + X), since
y > x. Moreover, we also have Ls(G + X) = Rs(A + X) 6 Ls(B + X) = ` + x, which
thus proves equality.

If XL = ∅x and XR 6= ∅, then, Ls(G+X) = Rs(`− (n̂+ 1) +X) and it is clear that
Right can obtain the score `+x by playing to `− n̂+X. Since both games are left-atomic
and in GS, then Rs(` − (n̂+ 1) + X) > ` + x, so in fact, equality holds. Hence, in this
case, we get Ls(G+X) = `+ x = Ls(H +X).

If XL 6= ∅, then by Lemma 35 (weak avoidance), there is some XL such that Rs(A+
X) 6 Rs(G + XL). Therefore, Ls(G + X) = max{Rs(G + XL) : XL ∈ XL}. Also,
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Ls(H + X) = max{Rs(H + XL) : XL ∈ XL} since there is no Left move in H. By
induction, Rs(H +XL) = Rs(G+XL) and consequently, Ls(G+X) = Ls(H +X).

In summary, there are four types of reductions for Left:

1. Erase dominated options;

2. Reverse non-atomic-reversible options;

3. Replace atomic-reversible options by `− n̂+1 ;

4. If possible, when an atomic-reversible is the only left option, substitute ∅` for ` −
n̂+1 (which could give a game of lower rank).

Here ` is a real number and n > 0 is an integer (as given in Theorem 37) providing a
number of waiting moves for Right. We have the following definition.

Definition 38. A game G ∈ GS is said to be reduced if none of Theorems 32, 34, 36,
or 37 can be applied to G to obtain an equivalent game with different sets of options.

3.2 Constructive game comparison

We wish to prove that, for a given guaranteed scoring game, there is one unique reduced
game representing the full congruence class, a canonical form. To this purpose, in this
subsection, we first develop another major tool (also to be used in Section 4) of con-
structive game comparison. The existence of a canonical form is far from obvious, as the
order of reduction can vary. In Normal-play, the proof of uniqueness uses the fact that if
G ∼ H then G −H ∼ 0. However, in (guaranteed) scoring play, G ∼ H does not imply

G+
←→
H ∼ 0. We use an idea, ‘linked’, adapted from Siegel[16], which only uses the partial

order. To fully adapt it for guaranteed games, we require a generalization of Theorem 29
(which in its turn is a generalization of Ettinger’s [7] theorem for dicot games).

Recall that
↔
G = 〈

←→
GR |

←→
GL〉, where the conjugate is applied to the respective options,

and if, for example, GR = ∅r, then
←→
GR = ∅−r.

Definition 39. Let G ∈ GS and let m(G) = max{|t| : ∅t is an atom in G}. Let r, s
be two nonnegative real numbers. The (r, s)-adjoint of G (or just adjoint) is G◦r,s =
↔
G+ 〈∅−m(G)−r−1 | ∅m(G)+s+1〉.

Since −m(G)− r − 1 6 m(G) + s+ 1, it follows that G◦r,s ∈ GS.

Theorem 40. Given G ∈ GS and two nonnegative real numbers r, s then
Ls(G+G◦r,s) < −r and Rs(G+G◦r,s) > s.
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Proof. In the game G +
↔
G + 〈∅−m(G)−r−1 | ∅m(G)+s+1〉, the second player can mirror

each move in the G +
↔
G component, and there are no other moves since the remaining

component is purely-atomic. Therefore,

Ls(G+G◦r,s) = Ls(G+
↔
G)−m(G)− r − 1 6 m(G)−m(G)− r − 1 < −r.

The bound for the Right-score is obtained similarly.

Observation 41. If r = s = 0 in Definition 39, then Theorem 40 corresponds to the
particular case where Ls(G + G◦0,0) < 0 and Rs(G + G◦0,0) > 0. This will suffice in the
below proof of Lemma 45. Thus we will use the somewhat simpler notation G◦ for the
(0, 0)-adjoint of G.

Definition 42. Let G,H ∈ GS. We say that H is linked to G (by T ) if there exists some
T ∈ GS such that Ls(H + T ) < 0 < Rs(G+ T ).

Note that, if H is linked to G, it is not necessarily true that G is linked to H.

Lemma 43. Let G,H ∈ GS. If H < G then H is linked to no GL and no HR is linked
to G.

Proof. Consider T ∈ GS such that Ls(H+T ) < 0. Because H < G, we have Ls(H+T ) >
Ls(G+T ). Therefore, 0 > Ls(H+T ) > Ls(G+T ) > Rs(GL+T ), for anyGL. Analogously,
consider T ∈ GS such that 0 < Rs(G + T ), we have 0 < Rs(G + T ) 6 Rs(H + T ) 6
Ls(HR + T ), for any HR.

Lemma 44. Let G,H ∈ GS. Suppose that G 6< H.

1. There exists X ∈ GS such that Ls(G+X) < 0 < Ls(H +X)

2. There exists Y ∈ GS such that Rs(G+ Y ) < 0 < Rs(H + Y ).

Proof. By assumption, there exists X such that Ls(G+X) < Ls(H +X) or there exists
Y such that Rs(G+ Y ) < Rs(H + Y ). By Theorem 23 (the claim in its proof), we have
that

∃X : Ls(G+X) < Ls(H +X)⇔ ∃Y : Rs(G+ Y ) < Rs(H + Y ).

Suppose that there exists Z such that α = Ls(G + Z) < Ls(H + Z) = β. Let X =
Z − (α + β)/2. Then Ls(G + X) = Ls(G + Z) − (α + β)/2 = (α − β)/2 < 0 and
0 < (β − α)/2 = Ls(H + Z)− (α + β)/2 = Ls(H + X). Hence the first part holds. The
proof of the other part is analogous.

Lemma 45. Let G,H ∈ GS. Then G is linked to H if and only if no GL < H and no
HR 4 G.

Proof. (⇒): Consider G linked to H by T , that is Ls(G+T ) < 0 < Rs(H+T ). It follows

1. Rs(GL + T ) 6 Ls(G+ T ) < 0 < Rs(H + T ), for any GL
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2. Ls(G+ T ) < 0 < Rs(H + T ) 6 Ls(HR + T ), for any HR.

The two items contradict both GL < H and HR 4 G.

(⇐): Suppose no GL < H and no HR 4 G. Consider GL = {GL1 , . . . , GLk} and HR =
{HR1 , . . . , HR`}, including the case that either or both are atoms. By Lemma 44, for
each i, 1 6 i 6 k, we can define Xi such that Ls(GLi + Xi) < 0 < Ls(H + Xi), and,
for each j, 1 6 j 6 `, we can define Yj such that Rs(G + Yj) < 0 < Rs(HRj + Yj). Let
T = 〈TL | TR 〉 where

TL =

{
{−g − 1}, if G = 〈GL |∅g〉 and also H is right-atomic;
GR

◦⋃∪`j=1{Yi}, otherwise.

TR =

{
{−h+ 1}, if H = 〈∅h |HR〉 and also G is left-atomic;
HL

◦⋃∪ki=1{Xi}, otherwise.

Here GR
◦

denotes the set of (0, 0)-adjoints of the Right options of G, and if there is no
Right option of G, then it is defined as the empty set. Note that, in this case, if also
HR is empty, then the first line of the definition of T L applies, so T L (and symmetrically
for T R) is never empty. Thus T ∈ GS, because each option is a guaranteed game. (For
example, if both G = 〈∅a |∅b〉 and H = 〈∅c |∅d〉 are purely-atomic guaranteed games, then
T = 〈−b − 1 | −c + 1〉 is trivially guaranteed, because each player has an option to a
number. Note also that the scores a and d become irrelevant in this construction.)

Consider first G + T with TL as in the second line of the definition. It follows that
Ls(G+ T ) < 0 because:

1. if Left plays to GLi +T , then, because there is a Left option, the second line applies
also to TR. Right answers with GLi + Xi, and Ls(GLi + Xi) < 0, by definition of
Xi;

2. if Left plays to G+GR◦, Right answers in G to the corresponding GR and Ls(GR +
GR◦) < 0, by Observation 41;

3. if Left plays to G+ Yi, then by construction, Rs(G+ Yi) < 0.

Consider next G+T with TL in the first line of the definition. We get that Ls(G+T ) <
0 because, either

1. Ls(G+ T ) = Rs(G+ TL) = Rs(G− g − 1) = g − g − 1 = −1 < 0; or

2. Ls(G+ T ) = Rs(GLi + T ) 6 Ls(GLi +Xi) < 0.

The last case follows because there are left options in G, so the second line of the definition
of TR applies. In every case, Ls(G+T ) < 0. The argument for Rs(H+T ) > 0 is analogous.
Therefore, Ls(G+ T ) < 0 < Rs(H + T ) and G is linked to H by T .
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In the following result we extend Theorem 29 by using the linked results. From an
algorithmic point of view, when comparing games G and H, it ultimately removes the
need to consider G+X and H +X for all X. 4

Theorem 46 (Constructive Comparison). Let G,H ∈ GS. Then, G < H if and only if

1. Ls(G) > Ls(H) and Rs(G) > Rs(H);

2. For all HL ∈ HL, either ∃GL ∈ GL : GL < HL or ∃HLR ∈ HLR : G < HLR;

3. For all GR ∈ GR, either ∃HR ∈ HR : GR < HR or ∃GRL ∈ GRL : GRL < H.

Proof. (⇒) Suppose that Ls(G) < Ls(H). Then, for some n, Ls(G − n̂) < Ls(H − n̂).
This, however, contradicts G < H and so part 1 holds.

Consider HL ∈ HL. Because G < H, by Lemma 43, G is not linked to HL. Therefore,
by Lemma 45, we have ∃GL ∈ GL : GL < HL or ∃HLR ∈ HLR : G < HLR. The proof of
part 3 is similar.

(⇐) Assume 1, 2 and 3, and also suppose that G 6< H. By the definition of the partial
order, there is a distinguishing game X such that either Ls(G + X) < Ls(H + X) or
Rs(G+X) < Rs(H+X). Choose X to be of the smallest birthday such that Ls(G+X) <
Ls(H +X). There are three cases:

(a) H +X = 〈∅h | HR〉+ 〈∅x | XR〉.
In this case, Ls(H + X) = h + x. On the other hand, Ls(G + X) > Ls(G + X) >
Ls(G) + Rs(X) (this last inequality holds by Theorem 26). Also, Ls(G) + Rs(X) >
Ls(H) + x, because Ls(G) > Ls(H) and by X ∈ GS, Definition 4(2). Finally,
Ls(H)+x = h+x because Ls(H) is trivially equal to h. This contradicts Ls(G+X) <
Ls(H +X).

(b) Ls(H +X) = Rs(HL +X), for some HL ∈ HL.

In this case, because of part 2, we have either GL < HL or G < HLR. If the first
holds, then Ls(G + X) > Rs(GL + X) > Rs(HL + X) = Ls(H + X). If the second
holds, then Ls(G+X) > Ls(HLR+X) > Rs(HL+X) = Ls(H+X). Both contradict
the assumption Ls(G+X) < Ls(H +X).

(c) Ls(H +X) = Rs(H +XL), for some XL ∈ XL.

By the “smallest birthday” assumption, Rs(G + XL) > Rs(H + XL). Therefore,
Ls(G+X) > Rs(G+XL) > Rs(H +XL) = Ls(H +X). Once more, we contradict
Ls(G+X) < Ls(H +X).

For the Right-scores Rs(G + X) < Rs(H + X) the argument is similar. Hence, we have
shown that G < H.

Note that we can derive the known result, Theorem 29, as a simple corollary of The-
orem 46, by letting H = s be a number.

4This is as close as guaranteed games get to the Normal-play constructive comparison—Left wins
playing second in G −H iff G < H. For not-necessarily-guaranteed scoring games, no efficient method
for game comparison is known.
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3.3 Uniqueness of Reduced forms

We are now able to prove the existence of a unique reduced form for a congruence class
of games. We let h denote “identical to”, that is if G,H ∈ GS, then G h H if they have
identical game tree structure and, given this structure, each atom in G corresponds to an
identical atom, in precisely the same position, in the game H.

Theorem 47. Let G,H ∈ GS. If G ∼ H and both are reduced games, then G h H.

Proof. We will proceed by induction on the sum of the birthdays of G and H. We will
exhibit a correspondence GLi ∼ HLi and GRj ∼ HRj between the options of G and H.
By induction, it will follow that GLi h HLi , for all i, and GRj h HRj , for all j, and
consequently G h H.

Part 1. For the base case, if G = 〈∅a | ∅b〉 and H = 〈∅c | ∅d〉 then, since G ∼ H, we must
in particular have a = Ls(G) = Ls(H) = c and b = Rs(G) = Rs(H) = d. Hence G h H.

Without loss of generality, we may assume that there is a Left option HL. We also
assume that if HL is reversible, then, since H is reduced, it has to be atomic-reversible of
the form in Theorem 37.

Part 2. Assume that HL is not atomic-reversible.
Since G ∼ H, of course, G < H. From Theorem 46, there exists a GL with GL < HL or

there exists a HLR 4 G. Now HLR 4 G ∼ H would contradict that HL is not reversible.
Thus, there is some GL with GL < HL.

Suppose that GL is atomic-reversible, that is, GL ∼ 〈∅` | `− n̂〉 ∼ `− n̂+1 for some
nonnegative integer n and with G < `− n̂. Since G ∼ H we also have H < `− n̂. (For any
real number s and nonnegative integer m, s− m̂ is invertible since s− m̂+(−s+ m̂) = 0.)
Therefore

GL < HL ⇔ `− n̂+1 < HL ⇔ 0 < HL − `+ n̂+1 ,

where the last equivalence is by Lemma 15. From Theorem 29, after a Left move from
HL − ` + n̂+ 1 to HL − ` + n̂, Right must have a move to a position less than or equal
to zero, say HLR − `+ n̂ 4 0. The inequalities H < `− n̂ and HLR − `+ n̂ 4 0 give that
H < HLR, which contradicts that HL is not atomic-reversible. It follows therefore, that
GL is not atomic-reversible.

A similar argument for GL gives a left option HL′
such that HL′

< GL. Therefore,
HL′

< GL< HL. Since there is no domination, HL′∼ HL∼ GL. By induction, HL h GL.
The symmetric argument gives that each non-atomic option HR is identical to some

GR. In conclusion, we have a pairwise correspondence between options of G and H that
are not atomic-reversible.

Part 3. Assume that A = HL is atomic-reversible.
The proof is divided into two cases.

Case 1: |HL| > 1.
Observe that part 2 of Theorem 36 (the atomic-reversibility theorem) applies, because

if A would have been as in part 1 of that theorem, then it would have reversed out
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(contradicting the assumptions on G and H). Therefore, A is the only Left option with
Ls(H) = Rs(A).

If, for every GL ∈ GL we have Ls(H) 6= Rs(GL), then Ls(G) 6= Ls(H), which con-
tradicts G ∼ H. Thus, there is some A′ ∈ GL with Ls(H) = Rs(A′) and, from the
pairwise correspondence for non-atomic-reversible options, it also follows thatA′ is atomic-
reversible. Therefore, we may assume that A = a − n̂+ 1 and that A′ = a′ − m̂+ 1 for
some real numbers a, a′, and some nonnegative integers, n,m. Since Rs(A′) = Rs(A) then
a = a′. That m = n follows from (Theorem 37(1)), the definition of minimal nonnegative
integer, since AR = a− n̂ and A′R = a′− m̂ are reversing options. Therefore A h A′, and
again, if there was another Left option, GL ∈ GL with Ls(G) = Rs(GL), then it must
have been reversed out, because of the assumption of reduced form. Hence A′ is the only
such Left option in G.

Case 2: The only left option of H is A = 〈∅h | h − n̂〉, for some real number h and
nonnegative integer n, that is H = 〈〈∅h | h − n̂〉 | HR〉. Since H cannot be reduced
further, by the second part of Theorem 37, it follows that 〈∅h | HR〉 6∈ GS. Thus there
must exist an s-atom, with s < h, in an atomic follower of HR.

Consider the Left options of G. By the pairwise correspondence of non-atomic-
reversible options, since HL has none then neither has GL. So, if GL has options they are
atomic-reversible.

First, suppose that G = 〈∅h | GR〉.
The non-atomic-reversible right options of G and H are paired (the conclusion of Part

2 of this proof). Since G ∈ GS then ∅s is not in any non-atomic-reversible right option
of G and hence ∅s is not in any non-atomic-reversible right option of H. Thus, either
HR = ∅s or H has a right atomic-reversible option 〈s − m̂ | ∅s〉. In the latter case, by
Theorem 36(2) (with Left and Right interchanged) Rs(H) = s. Thus, in both cases,
Rs(H) = s, from which it follows that Rs(G) = s which, in turn, implies that ∅s is in
GR. This again contradicts G ∈ GS. Therefore, G = 〈∅h | GR〉 is impossible.

Therefore G = 〈〈∅` | `− m̂〉 | GR〉 for some ` and m. Since Ls(G) = Ls(H) it follows
that ` = h. By Theorem 37, since G ∼ H, the number of waiting moves (for Right), is
given by exactly the same definition as for H. Hence, m = n and GL = {A}.

In all cases, we have shown that HL is identical to GL. The proof for HR and GR is
similar. Consequently G h H.

The next result is immediate. It allows us to talk about the canonical form of a
game/congruence class.

Corollary 48 (Canonical Form). Let G ∈ GS. There is a unique reduced form of G.

Finally, the canonical form can be used for induction proofs since it has the minimum
birthday of all games in its congruence class. Incidentally, it has the least width (number
of leaves) of all such trees. However, minimum birthday and minimum width is not a
characterization of canonical form. Let G = 〈−1, 1− 1̂ | 〈2 | 2〉〉 and H = 〈−1, 〈∅1 | 〈∅1 |
∅2〉〉 | 〈2 | 2〉〉. Then G is the canonical form of H but the game trees of the two games
have the same depth and width.
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4 Additive Inverses and Conjugates

From the work in Misère games comes the following concept.

Definition 49. Let X be a class of combinatorial games with defined disjunctive sum
and game comparison. It has the Conjugate Property if for each game G ∈ X for which

there exists an inverse, that is a game H ∈ X such that G+H ∼ 0, then H =
↔
G.

Theorem 50. GS has the Conjugate Property.

Proof. Consider G,H ∈ GS in their reduced forms, such that G+H ∼ 0. We will prove,

by induction on the birthday of G+H, that we must have H =
↔
G.

Case 1: The game G + H is purely-atomic. Let G =
〈
∅` | ∅r

〉
where ` 6 r. Then, by

definition,
↔
G =

〈
∅−r | ∅−`

〉
and

↔
G ∈ GS. Let H = 〈∅−` |∅−r〉. Then G+H h 〈∅0 |∅0〉 = 0,

but H ∈ GS if and only if ` = r. Hence, the game
↔
G is the inverse to G if and only if

` = r. Thus, a purely atomic game is invertible if and only if it is a number.

In the below proof, because of numerous algebraic manipulations, we will revert to the

short hand notation −G =
↔
G, if the existence of a negative is given by induction.

Case 2: The game G+H has at least one option. We may assume that G and H are in
their respective canonical forms. Let J = G+H ∼ 0. It is a consequence of Theorem 29
that for all Left moves JL, there exists JLR such that JLR 4 0. Without loss of generality,
we will assume that JL = GL +H. There are two cases:

Case 2a: Suppose there exists a non-atomic-reversible GL ∈ GL.
(This option is not reversible, because only atomic-reversible options may exist in the

reduced form.) We prove two claims.

Claim (i): There exists HR such that GL +HR 4 0.
If there is a good Right reply GLR + H 4 0, after adding G to both sides (Theorem

14), we would have GLR 4 G. This is a contradiction, since GL is not a reversible option.
Therefore, there exists HR with GL +HR 4 0.

Claim (ii): With HR as in (i), GL +HR ∼ 0.
We have that GL +HR 4 0. Suppose that GL1 +HR1 ≺ 0, where we index the options

starting with GL = GL1 and HR = HR1 .
Consider the Right move in G + H to G + HR1 . Since G + H ∼ 0, i.e., G + H < 0,

then there exists a Left option such that (G+HR1)L < 0.
Suppose that G + HR1L < 0. Then, by adding H to both sides, we get HR1L <

H. Therefore, since H is in canonical form, HR1 is an atomic-reversible option and,
by Theorem 37, HR1 = r + n̂+ 1 for some real r and nonnegative integer n. The two
inequalities GL1 +HR1 ≺ 0 and G+HR1L < 0 become GL1 + r+ n̂ ≺ 0 and G+ r+ n̂ < 0,
respectively. In GL1 + r + n̂+ 1, against the Left move to GL1 + r + n̂, Right must have
a move of the form GL1R + r + n̂ 4 0. Since r + n̂ is invertible, GL1R + r + n̂ 4 0
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and G + r + n̂ < 0 leads to GL1R 4 G (Lemma 15), i.e., GL1 is reversible, which is a
contradiction.

Consequently, we may assume that there is a non-reversible option, GL2 , such that
GL2 + HR1 < 0. If GL2 + HR1 ∼ 0 then, by induction, HR1 = −GL2 (since G and H
are in canonical form). Since 0 < GL1 + HR1 = GL1 − GL2 , then GL2 < GL1 , which is a
contradiction, because GL has no dominated options. Therefore, GL2 +HR1 � 0.

By Claim (i), there must exist a Right option in H, HR2 , corresponding to GL2 , and
so on. If we repeat the process, we now have the following inequalities:

GL1 +HR1 ≺ 0, GL2 +HR1 � 0

GL2 +HR2 ≺ 0, GL3 +HR2 � 0
...

but the number of options is finite. Thus, without loss of generality, we may assume that
there is some m such that GL1 +HRm � 0 (re-indexing if necessary).

Because the inequalities are strict, summing the left-hand and the right-hand inequal-
ity gives, respectively,

m∑
i=1

GLi +
m∑
i=1

HRi ≺ 0 and
m∑
i=1

GLi +
m∑
i=1

HRi � 0

which is a contradiction.
Therefore, we conclude that GL +HR ∼ 0 and, by induction, that HR = −GL.

Case 2b: Suppose there exists an atomic-reversible option, A ∈ GL.
Since A is atomic-reversible, it follows, by Theorem 37, that A = `− (n̂+ 1), where n

is the minimum nonnegative integer such that G < `− n̂, and where ` = Ls(B) is a real
number (where B is the reversing option).

(i) Suppose first that there is some Right option in H. We prove four claims.

(a) Rs(G) > `.

Since G < `− n̂, we get G+ n̂ < `. Hence, Rs(G) > Rs(G+ n̂) > `, where the
first inequality holds because Left can pass.

(b) There exists an atomic-reversible option HR ∈ HR.

Suppose not; we will argue that this implies Rs(G + H) > 0, contradicting
G + H ∼ 0 (Theorem 29). Because H has no atomic-reversible Right option,
we saw in Case 2a that for all HR there exists non-atomic-reversible GL such
that GL + HR ∼ 0. By induction, GL ∼ −HR. Because A = ` − n̂+ 1 is
an atomic-reversible option in GL, by Theorem 36(2), Rs(GL) < Rs(A) = `.
Hence,

Ls(HR) = −Rs(−HR) = −Rs(GL) > −`, (1)
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where the first equality is by definition of the conjugate of a game. This holds
for all HR ∈ HR and so, Rs(H) > −`. Therefore, by Theorem 26,

Rs(G+H) > Rs(G) +Rs(H) > `+Rs(H) > `− ` = 0, (2)

and the claim is proved.

(c) The atomic-reversible Right option of H is −` + m̂+ 1 (where m is minimum
such that H 4 −`+ m̂).

We have seen in the inequality (1) that for all non-atomic-reversible HR, we have

Ls(HR) > −`. If the only atomic-reversible Right option of H was −s+ m̂+ 1
and ` > s, we would have Rs(H) > −`, leading to the same contradiction as
obtained in the inequality (2). Suppose, instead, that the only atomic-reversible

Right option of H were −s + m̂+ 1 with ` < s. By definition of a reversing
option (for an atomic-reversible Right option), we have that H 4 −s + m̂.
Altogether, Ls(H) 6 Ls(H − m̂) 6 −s < −`. Therefore, by Theorem 26,
Ls(G + H) 6 Rs(G) + Ls(H) 6 ` − s < ` − ` = 0. The two contradictions
together imply s = `.

(d) Finally, m = n.

Consider the integers, n and m as previously defined. They are minimal such
that G < ` − n̂ and H 4 −` + m̂, respectively. If n 6= m, say n < m, from
G < `− n̂, adding H to both sides gives 0 < H + `− n̂⇒ H 4 −`+ n̂. This is
a contradiction (m is not minimal). Hence, we must have m = n.

Thus, we have proved that if A = `− n̂ (in reduced form) is a Left atomic-reversible
option of G, then there is an HR ∈ HR with HR = −`+ n̂ = −A.

(ii) Since A ∈ GL is an atomic-reversible option, then HR is not an atom.

First, if it were true that HR = ∅−s, for some real number s, then this would force
s = `. This follows by an argument similar to that in 2b(i.c). Rs(G) > ` holds by
2a (i.a). Thus, if Rs(H) = −s > −`, then Rs(G+H) > Rs(G) + Rs(H) > 0. Also,
if Rs(H) = −s < −`, then, because of the guaranteed property, Ls(H) 6 −s < −`.
So, by Ls(G) = `, we have Ls(G+H) 6 Ls(G) + Ls(H) < 0. The inequalities are
contradictory, and so s = `.

Suppose therefore that HR = ∅`. In this case, A = `− n̂+ 1 is the only Left option
of G; any other options would be non-atomic-reversibles (by domination) paired in
HR (by Case 2a), but there are none. Now, the non-atomic-reversible options of HL

and GR are paired and since G ∈ GS then ` is less than or equal to all the scores
in the games of GR. Since n > 0 then, by Theorem 37, GL could be replaced by ∅`
contradicting that G was in reduced form.

We have seen that each GL has a corresponding −GL in the set of Right options of
H. This finishes the proof.
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As a final comment, not every game is invertible and we do not have a full character-
ization of invertible games. We do know that zugzwang games do not have inverses.

Theorem 51. Let G be a game with Ls(G) < Rs(G). Then G is not invertible.

Proof. Suppose G is a game with Ls(G) < Rs(G). If G is invertible then G +
↔
G = 0,

which by Theorem 29 implies that Ls(G+
↔
G) = 0.

Now,

Ls(G+
↔
G) 6 Ls(G) + Ls(

↔
G) (by Theorem 26)

6 Ls(G) + Ls(
↔
G)

= Ls(G)− Rs(G)

< 0

which contradicts Ls(G+
↔
G) = 0 and finishes the proof.

The converse is not true. For example, G = 〈〈−1 | 1〉 | 0〉 is not invertible, since

Ls(G+
↔
G) = −1 6= 0, and is not zugzwang since Ls(G) > Rs(G).

5 A Guaranteed scoring games’ calculator

The translation of a guaranteed game position to its canonical scoring value is not a
trivial computation task and cannot be done manually except for very simple examples. A
computer program is required for more complex positions. The Scoring Games Calculator
(SGC) is such a program. It is implemented as a set of Haskell modules that run on an
interpreter available in any Haskell distribution or embedded in a program that imports
these modules.

The SGC has two main modules, Scoring and Position, that act as containers of
two data types: Game and Position. The first module deals with scoring game values
and the second with board positions given a ruleset.

Game values represent values from set S like <1|∅3>. This type includes an extensive
list of Haskell functions that mirror the mathematical functions presented in this article.
One simple example is predicate guaranteed that checks if a game value in S is also in
GS. Another operation is the sum of games that takes two values in GS and computes
their disjunctive sum.

Position values represent board positions. Type Position is an abstract type. It
encloses a set of services useful for all games, like reading a position from file or con-
verting a position to its scoring value. These functions are only able to work when a
concrete ruleset is implemented. Given a game, say Diskonnect, there should be a module
Diskonnect that imports module Position, and is required to implement the Diskonnect
ruleset. Almost all effort to define a new game focus in the implementation of function
moves that, given a board position and the next player, returns the list of all possible
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next positions. With this, Position is able to construct a game tree for a given board
position and to translate that position into its scoring value.

The scoring universe together with its main theorems concerning reductions and com-
parisons all have a strong recursive structure that fits quite well into a functional pro-
gramming language like Haskell. Not all mathematical definitions are simply translations
to functions, but some are. For example, the implementation of left-r-protected mirrors
quite closely its definition,

lrp :: NumberData -> Game -> Bool

lrp r g =

ls_d g >= r &&

for_all [

for_any [lrp r gRL | gRL <- leftOp gR] | gR <- rightOp g]

where ls_d is Ls and syntax [f x|x<-list] defines list comprehensions.
The SGC includes too many functions to be described here5. Currently, the following

guaranteed rulesets are implemented: Diskonnect, Kobber, TakeSmall and TakeTall.
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