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Abstract

Combining ideas of Rankin, Elkin, Green & Wolf, we give constructive lower
bounds for rk(N), the largest size of a subset of {1, 2, . . . , N} that does not contain
a k-element arithmetic progression: For every ǫ > 0, if N is sufficiently large, then

r3(N) ≥ N

(

6 · 23/4
√

5

e π3/2
− ǫ

)

exp
(

−
√

8 log N + 1
4 log log N

)

,

rk(N) ≥ N Ck exp
(

−n2(n−1)/2 n
√

log N + 1
2n log log N

)

,

where Ck > 0 is an unspecified constant, log = log2, exp(x) = 2x, and n = ⌈log k⌉.
These are currently the best lower bounds for all k, and are an improvement over
previous lower bounds for all k 6= 4.

We denote by rk(N) the maximum possible size of a subset of {1, 2, . . . , N} that does
not contain k numbers in arithmetic progression. Behrend [1] proved that

r3(N)

N
≥ C exp

(

−(1 + ǫ)
√

8 log N
)

,

where exp and log are the base-2 exponential and logarithm and each occurrence of C is
a new positive constant. Sixty years later, Elkin [2] introduced a new idea to Behrend’s
work and showed that there are arbitrarily large N satisfying

r3(N)

N
≥ C exp

(

−
√

8 log N + 1
4

log log N
)

,
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and shortly afterwards Green & Wolf [6] arrived at the same bound by a different method.
For k ≥ 1 + 2n−1, Rankin [10] proved that for each ǫ > 0, if N is sufficiently large then

rk(N)

N
≥ C exp

(

−n 2(n−1)/2 (1 + ǫ) n

√

log N
)

,

where n = ⌈log k⌉. For k = 3, Rankin’s construction is the same as that of Behrend. This
was subsequently rediscovered in a simpler, but less precise, form by  Laba & Lacey [8].
Together with the obvious rk(N) ≤ rk+1(N), rk(N +M) ≤ rk(N) + rk(M), these were the
thickest known constructions. The primary interest in the current work is the following
corollary of our main theorem.

Corollary 1. Fix k, and set n = ⌈log k⌉. There exists a positive constant C such that

for all N ≥ 1
rk(N)

N
≥ C exp

(

−n2(n−1)/2 n

√

log N + 1
2n

log log N
)

For every ǫ > 0, if N is sufficiently large then

r3(N)

N
≥
(

6 · 23/4
√

5

e π3/2
− ǫ

)

exp
(

−
√

8 log N + 1
4

log log N
)

.

The constant in the r3 bound is around 1.5, so we have the pleasant-to-write conse-
quence:

r3(N) ≥ N exp
(

−
√

8 log N + 1
4

log log N
)

≥ N 2−
√

8 log N

for sufficiently large N .
Szemerédi’s Theorem states that rk(N) = o(N), and the task of getting better upper

bounds on rk(N) has been mathematically fruitful. The currently-best upper bounds on
rk(N) (for sufficiently large N) are due to Sanders [11], Green & Tao [5], and Gowers [4],
respectively, and are shown here with our lower bounds:

−
√

8 log N +
1

4
log log N + 1 ≤ log

(

r3(N)
N

)

≤ − log log N + 5 log log log N + C;

−
√

8 log N +
1

4
log log N + 1 ≤ log

(

r4(N)
N

)

≤ −C
√

log log N ;

−n2(n−1)/2 n

√

log N + 1
2n

log log N + C ≤ log
(

rk(N)
N

)

≤ −2−2k+9

log log log N.

It is naturally tempting to speculate as to whether the upper or lower bound on rk(N)
is closer to the truth. Certainly, the upper bounds have seen a steady stream of substantive
improvements, while the main term of the lower bound has remained unchanged for more
than a half century. The reader is directed to a discussion on Gil Kalai’s blog [7] for some
relevant speculative remarks of Gowers and of Kalai’s.

To prove our result we need to induct through sets that do not contain more elaborate
types of progressions. A k-term D-progression is a sequence of the form

Q(1), Q(2), . . . , Q(k)
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where Q is a nonconstant polynomial with degree at most D. For example, 1-progressions
are proper arithmetic progressions. The sequences 2, 1, 2, 5, 10 and 1, 2, 4, 7, 11 are 5-term
2-progressions arising from the polynomials (j − 2)2 + 1 and (j2 − j + 2)/2. In particular,
a progression of integers may contain the same number in different places, and may arise
from a polynomial whose coefficients are not integers. Also, note that the class of k-
term D-progressions is invariant under both translation and dilation. Let rk,D(N) denote
the maximum possible size of a subset of [1, N ] ∩ Z that does not contain any k-term
D-progressions.

Theorem 1. Fix positive integers k, D and set n = ⌈log(k/D)⌉. There exists a positive

constant C such that for every N

rk,D(N)

N
≥ C exp

(

−n2(n−1)/2D(n−1)/n n

√

log N + 1
2n

log log N
)

.

To explain what is new and interesting in the current work, we begin by summarizing
the earlier constructions. Behrend’s construction [1], while no longer the numerically
best or most general, remains the most elegant. His initial observation is that a sphere
cannot contain a 3-term arithmetic progression simply because a line and a sphere cannot
intersect more than twice. Let S be a set of points in Z

d all lying on one sphere and
having all coordinates positive and smaller than P , and then let A be the image of S
under the map ϕ : 〈x1, . . . , xd〉 7→

∑d
i=1 xi(2P )i−1. Because 0 < xi < P , addition of two

elements of A will not involve any carrying. This ϕ is therefore a Freiman 2-isomorphism
between S and A; that is, x1 + x2 = x3 + x4 if and only if ϕ(x1) + ϕ(x2) = ϕ(x3) + ϕ(x4).
Since three integers a < b < c are in arithmetic progression if and only if a + c = b + b,
this proves that A is free of 3-term arithmetic progressions. The only remaining work
is to show that there exists a suitably large S, which Behrend did with the pigeonhole
principle, and to optimize P and d in terms of N .

Rankin combined three observations. His first observation was that Behrend’s use of
the pigeonhole principle could be replaced with a number-theoretic result on the number
of representations of a huge number as a sum of a large number of squares. The second
is that a degree D polynomial cannot intersect a sphere in more than 2D points, and
so Behrend’s argument actually gives a lower bound on r2D+1,D. The third is that one
can use a set that does not contain k-term 2D-progressions to build S as a union of
concentric spheres with skillfully chosen radii. The corresponding set A (after mapping S
as per Behrend, but with the radix 2P replaced by something much larger) will necessarily
be free of k-term D-progressions. This provided for an inductive bound. For example,
r9 = r9,1 is bounded in terms of r9,2, which is bounded in terms of r9,4, which is then
bounded using Rankin’s generalized Behrend argument.

Elkin [2] improved Behrend’s 3-term construction in two ways. First, he used the
central limit theorem (and the pigeonhole principle) to guarantee the existence of a large
S; and second, he considered lattice points in a very thin annulus. Using an annulus
instead of a sphere leads to a set S that is substantively larger but, unfortunately, does
have 3-term arithmetic progressions. After removing a small number of points to eliminate
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the progressions, Elkin proceeded along the same line as Behrend, needing to optimize d,
P , and also the thickness of the annulus.

Green & Wolf [6] give an argument that spiritually similar to Elkin’s, but avoids
counting lattice points. In the d-dimensional torus, they take S to be the intersection of
a small box and an annulus. Using random elements ω, α of the torus, they consider the
map ϕ : n 7→ n ω + α. Letting A := {a : ϕ(a) ∈ S}, this map is a Freiman 2-isomorphism
between A and ϕ(A). The randomness allowed them to easily count the size of A and the
number of progressions in A that need to be removed.

In the current work we recast Rankin’s ideas using the lessons of Elkin and Green &
Wolf. We avoid Rankin’s sum-of-squares number theory lemma by taking random ω, α
(unfortunately, we still need the pigeonhole principle). We find the right generalization
of “an arithmetic progression in a thin annulus has a small difference” to D-progressions,
and thereby generalize Elkin’s result to improve Rankin’s bound on r2D+1,D. Finally,
by taking concentric annuli, we smooth out Rankin’s inductive step. We note also that
previous work has sometimes suffered1 from a cavalier treatment of error terms. For
example, Elkin’s “arbitrarily large N” and Rankin’s “1 + ǫ” term can be eliminated with
a little care. We have taken the opposite tack here, in places working for coefficients
that are not important in the final analysis, but which we consider to be of interest. In
particular, the refinement for r3 stated in Corollary 1 constitutes about 15% (by volume)
of this work.

1 Notation

Throughout, log and exp refer to the base-2 logarithm and exponential. Vectors are all
given overlines, as in x, and all have dimension d.

The parameters N and d tend to infinity together, with N much larger than d, and
all little-oh notation is with respect to N and d. The parameter d is a dimension, and
must be an integer, while N need not be an integer. The other fundamental parameters,
the integers k and D, are held constant.

We define the difference operator ∆ to be the map taking a finite sequence (ai)
k
i=1 to

the finite sequence (av+1 − av)k−1
v=1. The formula for repeated differencing is then

∆n(ai) =

(

n
∑

i=0

(

n

i

)

(−1)iai+v

)k−n

v=1

.

We note that a nonconstant sequence (ai) with at least D + 1 terms is a D-progression if
and only if ∆D+1(ai) is a sequence of zeros. If ai = p(i), with p a polynomial with degree
D and lead term pD, then ∆D(ai) = (D!pD), a constant sequence. Note also that ∆ is a
linear operator. Finally, we will make repeated use of the fact, provable by induction for
1 ≤ n ≤ k, that

|∆n(ai)| ≤ 2n−1
(

max
i

ai − min
i

ai

)

.

1Some would say benefitted.
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A k-term type-(n, a, b) progression is a nonconstant sequence a1, a2, . . . , ak with k ≥ n,
a1 = a, and n-th differences ∆n(ai) the constant nonzero sequence (b). For example, if p
is a degree n polynomial (with lead term pn 6= 0) and k ≥ n, then p(1), . . . , p(k) is a type
(n, p(1), n!pn) progression.

The open interval (a−b, a+b) of real numbers is denoted a±b. The interval [1, N ]∩Z

of natural numbers is denoted [N ]. For positive integers i, the box (0 ± 2−i−1)d, which
has Lebesgue measure 2−id, is denoted Boxi. We define Box0 = [−1/2, 1/2)d, and define
x mod 1 to be the unique element y of Box0 with x − y ∈ Z

d.
A point x = 〈X1, . . . , Xd〉 chosen uniformly from BoxD has components Xi indepen-

dent and uniformly distributed in (−2−D−1, 2−D−1). Therefore, ‖x‖2
2 =

∑d
i=1 X2

i is the
sum of d iidrvs, and is therefore normally distributed as d → ∞. Further ‖x‖2

2 has mean
µD := 2−2Dd/12 and variance σ2

D := 2−4Dd/180.
For any set A ⊆ [n], positive integer D, and sufficiently small positive real number δ,

we define Annuli(A, n, D, δ) in the following manner:

Annuli(A, n, D, δ) :=

{

x ∈ BoxD :
‖x‖2

2 − µD

σD
∈
⋃

a∈A

(

z − a − 1

n
± δ

)

}

,

where z ∈ µD ± σD is chosen to maximize the volume of Annuli(A, n, D, δ). Geometri-
cally, Annuli(A, n, D, δ) is the union of |A| spherical shells, intersected with BoxD.

2 Lemmas

The following lemma is best-possible for k = 2D + 1. Improving the bound for larger k
comes down to the following problem: if Q has degree D and all of |Q(1)|, . . . , |Q(k)| are
less than 1, then how big can the leading coefficient of Q be? This lemma plays the role
that “a line intersects a sphere in at most two points” played for Behrend, and that “a
degree D polynomial curve intersects a sphere in at most 2D points” played for Rankin.
Green & Wolf handle the D = 1 case by a simple geometric argument.

Lemma 1 (Sphere-ish polynomials have small-ish lead coefficients). Let δ, r be real num-

bers with 0 ≤ δ ≤ r, and let k, D be integers with D ≥ 1, k ≥ 2D + 1. If P (j) is

a polynomial with degree D, and r − δ ≤ ‖P (j)‖2
2 ≤ r + δ for j ∈ [k], then the lead

coefficient of P has norm at most 2D (2D)!−1/2
√

δ.

Proof. In this paragraph we summarize the proof; in subsequent paragraphs we provide
the details. Q(j) := ‖P (j)‖2

2 − r is a degree 2D polynomial of j, and each of the 2D + 1
real numbers Q(1), . . . , Q(2D + 1) are close to zero. If they were all exactly zero, then Q
would have more zeros than its degree and so would necessarily be identically zero. Just
having that many values close to 0, however, is already enough to guarantee that the lead
coefficient of Q is small.

Let P (j) = P 0 + P 1j + · · · + PDjD. We work with the degree 2D polynomial

Q(j) := ‖P (j)‖2
2 − r =

2D
∑

n=0

qnjn,
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and note in particular that q2D = ‖PD‖2
2. As 0 ≤ δ ≤ r, we conclude that |Q(j)| ≤ δ.

Set q, Q to be the column vectors 〈q0, q1, . . . , q2D〉T , 〈Q(1), . . . , Q(2D + 1)〉T , respec-
tively. Let M be the (2D + 1)× (2D + 1) matrix whose (i, j)-component is ij−1. We have
the system of equations

M q = Q,

which is nonsingular because M is a Vandermonde matrix. By Cramer’s rule, the cofactor
expansion of a determinant along the last column, and the triangle inequality,

q2D =
det(M ′)

det(M)
=

1

det(M)

2D+1
∑

j=1

Q(j)(−1)j+1Mj,2D+1 ≤
∑2D+1

j=1 |Mj,2D+1|
| det(M)| δ.

By the formula for the determinant of a Vandermonde matrix (the relevant minors of M
are also Vandermonde matrices), we find that

‖PD‖2
2 = q2D ≤

∑2D+1
j=1 |Mj,2D+1|
| det(M)| δ =

22D

(2D)!
δ,

completing the proof.

The next lemma plays the role that “integers whose base-2b + 1 expansions only use
the digits {0, 1, . . . , b} can be added without carrying” played for Behrend, and that
“a polynomial with degree D can be evaluated at integers whose base-B(b) expansions
only use the digits {0, 1, . . . , b} without carrying, provided that B(b) is sufficiently large”
played for Rankin. The D = 1 case is directly in the work of Green & Wolf.

Lemma 2 (Tight modular progressions are also non-modular progressions). Suppose that

p(j) is a polynomial with degree D, with D-th coefficient pD, and set xj := ω p(j) + α
mod 1. If x1, x2, . . . , xk are in BoxD and k ≥ D + 2, then there is a vector polynomial

P (j) =
∑D

i=0 P ij
i with P (j) = xj for j ∈ [k], and D!PD = ω D!pD mod 1.

Proof. Since p has degree D, the (D + 1)-th differences of p(1), p(2), . . . , p(k) are zero,
and therefore the (D + 1)-th differences of x1, x2, . . . , xk are 0 modulo 1, i.e., all of their
components are integers. We will show that in fact all of their components are strictly
between −1 and 1, and so they must all be 0.

The (D + 1)-th differences are given by (valid only for 1 ≤ v ≤ k − D − 1)

∆D+1(xi)(v) =
D+1
∑

i=0

(

D + 1

i

)

(−1)ixv+i.

Denote the i-th component of xj by x
(i)
j . As xv+i ∈ BoxD, each component of xv+i is in

(

−2−D−1, 2−D−1
)

. Thus, the h-th component of ∆D+1(xi)(v) satisfies

∣

∣

∣

∣

∣

D+1
∑

i=0

(

D + 1

i

)

(−1)ix
(h)
v+i

∣

∣

∣

∣

∣

≤
D+1
∑

i=0

(

D + 1

i

)

|x(h)
v+i| <

D+1
∑

i=0

(

D + 1

i

)

2−(D+1) = 1,
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and therefore ∆D+1(xi) = (0).
Now,

D!PD = ∆D(P (i)) = ∆D(xi) ≡ ωD!pD (mod 1).

As P (i) ∈ BoxD for 1 ≤ i ≤ k, the above binomial-coefficient triangle-inequality ar-
gument tells us that the components of ∆D(P (i)) are between −1/2 and 1/2, and so
D!PD =

(

ωD!pD mod 1
)

.

Behrend and Rankin needed to find spheres that contain many lattice points, which is
a fundamentally number theoretic issue that they handled with the pigeonhole principle
and the circle method, respectively. Here, as in Green & Wolf, we don’t need lattice
points on spheres but to put a dynamical system in an annulus frequently; this is merely
a measure theoretic/geometric issue.

Lemma 3 (Annuli has large volume). If d is sufficiently large, A ⊆ [n], and 2δ ≤ 1/n,

then the volume of Annuli(A, n, D, δ) is at least
2

5
2−dD|A|δ. Provided that δ log d → 0,

the volume of Annuli({1}, 1, D, δ) is at least (
√

2/π − o(1)) 2−dD δ.

Proof. A uniformly chosen element x = 〈X1, . . . , Xd〉 of BoxD has the Xi independent
and each uniformly distributed in (−2−D−1, 2−D−1). Thus ‖x‖2

2 is the sum of d iidrvs and
has mean µD := 2−2Dd/12 and variance σ2

D := 2−4Dd/180. By the central limit theorem
(CLT), the random variable

‖x‖2
2 − µD

σD

has a normal distribution, as d → ∞, with mean 0 and variance 1. We would like to
argue that

volAnnuli({1}, 1, D, δ) ≥ 2−dD

(

∫ δ

−δ

e−x2/2

√
2π

dx

)

≥ 2−dD

(

2δ
e−δ2/2

√
2π

)

= 2−dDδ
(

√

2/π − o(1)
)

,

but we cannot apply the CLT to an interval that is shrinking as rapidly as ±δ. We get
around this by applying the CLT to an interval that shrinks very slowly, and then using an
analytic form of the pigeonhole principle to guarantee an appropriately short subinterval
with the needed density.

We could accomplish this using only the classical CLT, but it is expeditious to use
the quantitative CLT known as the Berry-Esseen theorem [3, Section XVI.5], which is
applicable since

ρD := E
[

|X2
i − 2−2D/12|3

]

= 2−6D(3 + 2
√

3)/11340 < ∞.

Let I be an interval whose endpoints depend on d. The Berry-Esseen theorem implies
that

P

[‖x‖2
2 − µ

σD
∈ I

]

≥ 1√
2π

∫

I

exp(−x2/2) dx− 2
ρD

(σD/
√

d)3
√

d
.
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First we handle the case A = {1}, n = 1. We have

P

[‖x‖2
2 − µD

σD
∈ ± 1

log d

]

≥ 1√
2π

∫ 1/ log d

−1/ log d

exp(−x2/2) dx− 2
ρD

(σD/
√

d)3
√

d

≥ 1√
2π

2

log d
exp
(

− (1/ log d)2/2
)

− 3√
d

≥
√

2/π

log d

(

1 − 1
2
(log d)−4 − 3(log d)d−1/2

)

≥
√

2/π

log d

(

1 − (log d)−4
)

.

Let f be the density function of
‖x‖2

2
−µD

σD

, and let χI be the indicator function of I. Since
the convolution

(fχ±1/ log d) ∗ χ±δ

is supported on ±(1/ log d + δ) and has 1-norm

‖fχ±1/ log d)‖1 ‖χ±δ‖1 ≥
(

√

2/π

log d

(

1 − (log d)−4
)

)

2δ,

there must be some z with

(

(fχ±1/ log d) ∗ χ±δ

)

(z) ≥

(√
2/π

log d
(1 − (log d)−4)

)

2δ

2/ log d + 2δ

= δ

√

2

π

(

1 − (log d)−4

1 + δ log d

)

=
(

√

2/π − o(1)
)

δ.

Consequently, volAnnuli({1}, 1, D, δ) ≥
(√

2
π
− o(1)

)

2−dD δ.

Similar calisthenics make the following heuristic argument rigorous. Let G be a normal
rv with mean 0 and variance 1:

vol(Annuli(A, n, D, δ)) → 2−dD
Pω,α

[

G ∈
⋃

a∈A

(

− a − 1

n
± δ

)

]

≥ 2−dD
Pω,α

[

G ∈
(

− 1,−1 + 2δ|A|
)]

= 2−dD 1√
2π

∫ −1+2δ|A|

−1

exp(−x2/2) dx

≥ 2−dD 1√
2π

exp(−1/2)2δ|A|

>
2

5
2−dD|A|δ,
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where we have used 2δ ≤ 1/n to force the intervals −(a − 1)/n ± δ to be disjoint, and
also to force −1 + 2δ|A| < 0. Since the final inequality is strict, we can replace the limit
in the central limit theorem with a “sufficiently large d” hypothesis.

We comment that the use of the pigeonhole principle and the CLT in the previous
lemma could be removed. The distribution of X2

i is explicit, and so we could, at least
in principle, work out an explicit form for the density of ‖x‖2 (similar in spirit to the
Irwin-Hall distribution). This would also likely allow one to take z = 0.

The k = 3, D = 1 case of the following lemma is in Green & Wolf.
Lemma 4 is not best possible. However, the factor 2D+1 will turn out to be irrelevant

in the final analysis.

Lemma 4 (There are not many types of progressions). Assume k ≥ D. There are fewer

than 2D+1N2 types of k-term progressions with degree at most D contained in [N ].

Proof. We suppose that we have a k-term progression a1, . . . , ak contained in [N ] of type
(D′, a, b), and find restrictions on D′, a and b. First, fix D′. There are clearly at most N
possibilities for a. It is straightforward to prove by induction that for ℓ ∈ {1, . . . , D′}

−2ℓ−1N < ∆ℓ(ai)(v) < 2ℓ−1N.

Since ∆D′

(ai) must be a nonzero constant sequence of integers, there are fewer than 2D′

N
possibilities for the constant sequence (b) = ∆D′

(ai). Summing this total over 1 ≤ D′ ≤ D
yields the claim.

3 A base case and an inductive step

Following  Laba & Lacey (it is implicitly in Rankin), we proceed by induction. The
statements of the next two propositions are extremely similar to what appears in  Laba &
Lacey, but the proofs are considerably messier.

Proposition 1 (Base Case). If k > 2D, then as N → ∞

rk,D(N)

N
≥
( √

90

eπ3/2

2D

D1/4

(

2D

D

)

− o(1)

)

4
√

2 log N

2
√

8D log N
. (1)

Proposition 2 (Inductive Step). If k > 2D, then there exists a positive constant C

rk,D(N)

N
≥ C 2−dD rk,2D(N0)

N0
,

where

N0 :=
eπ

3
√

5

(

4D

(

2D

D

))−1
N2/d

d1/2
.
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Let A0 be a subset of [N0] with cardinality rk,2D(N0) that does not contain any k-term
2D-progression, assume 2δN0 ≤ 2−2D, and let

A := A(ω, α) = {n ∈ [N ] : n ω + α mod 1 ∈ Annuli(A0, N0, D, δ)},

which we will show is typically (with respect to ω, α being chosen uniformly from Box0) a
set with many elements and few types of D-progressions. After removing one element from
A for each type of progression it contains, we will be left with a set that has large size and
no k-term D-progressions. Since Box0 ×Box0 has Lebesgue measure 1, this argument
could be easily recast in terms of Lebesgue integrals, but we prefer the probabilistic
notation and language.

Define T := T (ω, α) to be the set

{

a ∈ [N ] :
∃b ∈ R, D′ ∈ [D] such that A(ω, α) contains

a k-term progression of type (D′, a, b)

}

,

which is contained in A(ω, α). Observe that A \ T is a subset of [N ] and contains no
k-term D-progressions, and consequently rk,D(N) ≥ |A \ T | = |A| − |T | for every ω, α. In
particular,

rk,D(N) ≥ Eω,α [|A| − |T |] = Eω,α [|A|] − Eω,α [|T |] . (2)

First, we note that

Eω,α [|A|] =

N
∑

n=1

Pω,α [n ∈ A] =

N
∑

n=1

Pα [n ∈ A] = N vol(Annuli(A0, N0, D, δ)).

Let E(D′, a, b) = 1 if A contains a k-term progression of type (D′, a, b), and otherwise
set E(D′, a, b) = 0. We have

|T | ≤
∑

(D′,a,b)

E(D′, a, b),

where the sum extends over all types (D′, a, b) for which D′ ∈ [D] and there is a D′-
progression of that type contained in [N ]; by Lemma 4 there are fewer than 2D+1N2 such
types.

Suppose that A has a k-term progression of type (D′, a, b), with D′ ∈ [D]. Let p be a
degree D′ polynomial with lead term pD′ 6= 0, p(1), . . . , p(k) a D′-progression contained
in A, and ∆D′

(p(i)) = (b). Then

xi := p(i) ω + α mod 1 ∈ Annuli(A0, N0, D, δ) ⊆ BoxD .

By Lemma 2, the xi are a D′-progression in R
d, say P (j) =

∑D′

i=0 P ij
i has P (j) = xj and

D′!P D′ = D′!pD′ ω mod 1 = b ω mod 1. By elementary algebra

Q(j) :=
‖P (j)‖2

2 − µD

σD
− z
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is a degree 2D′ polynomial in j, and since P (j) = xj ∈ Annuli(A0, N0, D, δ) for j ∈ [k],
we know that

Q(j) ∈
⋃

a∈A0

(

−a − 1

N0
± δ

)

for all j ∈ [k], and also Q(1), . . . , Q(k) is a 2D′-progression. Define the real numbers
aj ∈ A0, ǫj ∈ ±δ by

Q(j) = −aj − 1

N0
+ ǫj.

We need to handle two cases separately: either the sequence (ai) is constant or it
is not. Suppose first that it is not constant. Since ai ∈ A0, a set without k-term 2D-
progressions, we know that ∆2D+1(ai) 6= (0), and since (ai) is a sequence of integers, for
some v

|∆2D+1(ai)(v)| ≥ 1.

Consider:

(0) = ∆2D+1(Q(i)) =
1

N0

∆2D+1(ai) + ∆2D+1(ǫi),

whence

|∆2D+1(ǫi)(v)| =
1

N0
|∆2D+1(ai)(v)| ≥ 1

N0
.

Since |ǫi| < δ, we find that |∆2D+1(ǫi)(v)| < 22D+1δ, and since we assumed that 2δN0 ≤
2−2D, we arrive at the impossibility

1

N0

≤ |∆2D+1(ǫi)(v)| < 22D+1δ ≤ 22D · 2−2D

N0

=
1

N0

.

Now assume that (ai) is a constant sequence, say a := ai, so that

Q(j) ∈ −a − 1

N0
± δ

for all j ∈ [k]. This translates to

‖P (j)‖2
2 ∈ µD − (z − a − 1

N0
)σD ± δσD.

Using Lemma 1, the lead coefficient PD′ of P (j) satisfies

‖D′!PD′‖2 ≤ D′! 2D′

(2D′)!
−1/2

√

δσD ≤ D! 2D(2D)!−1/2
√

δσD

=

(

4D D!2

(2D)!

)1/2
√

σDδ =
√

FσDδ,

where F := 4D/
(

2D
D

)

. We have deduced that E(D′, a, b) = 1 only if

a ω + α mod 1 ∈ Annuli(A0, N0, D, δ) and ‖b ω mod 1‖2 ≤
√

FσDδ.
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Since α is chosen uniformly from Box0, we notice that

Pα [a ω + α mod 1 ∈ Annuli(A0, N0, D, δ)] = volAnnuli(A0, N0, D, δ),

independent of ω. Also, we notice that the event {‖b ω mod 1‖2 ≤
√

FσDδ} is independent
of α, and that since b is an integer, ω mod 1 and b ω mod 1 are identically distributed.
Therefore, the event {‖b ω mod 1‖2 ≤

√
FσDδ} has probability at most2

volBall(
√

FσDδ) =
2πd/2(

√
FσDδ)d

Γ(d/2)d
,

where Ball(x) is the d-dimensional ball in R
d with radius x. It follows that

Pω,α [E(D′, a, b) = 1] ≤ volAnnuli(A0, N0, D, δ) · volBall(
√

FσDδ),

and so

Eω,α [|T |] ≤ 2D+1N2 volAnnuli(A0, N0, D, δ) · volBall(
√

FσDδ).

Equation (2) now gives us

rk,D(N)

N
≥ vol(Annuli(A0, N0, D, δ))

(

1 − 2D+1N volBall(
√

FσDδ)
)

.

Setting

δ :=
1

πF

(

d

(d + 2)2D+1

)2/d
Γ(d/2)2/d

N2/dσD
∼ 3

√
5

eπ

(

2D

D

)

d1/2

N2/d
,

we observe that

1 − 2D+1N
2πd/2(Fδ1/2d1/4)d

Γ(d/2)d
=

d

d + 2
.

3.1 Finish proof of Proposition 1

We set

d :=

⌊

√

2 log N

D

⌋

,

2In fact, since we will shortly choose δ so that FσDδ → 0, this upper bound cannot be improved.
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so that δ log d → 0, and

rk,D(N)

N
≥ d

d + 2
volAnnuli({1}, 1, D, δ)

≥ d

d + 2

(

√

2

π
− o(1)

)

2−dD δ

≥ d

d + 2

(

√

2

π
− o(1)

)

2−dD 1

πF

(

d

(d + 2)2D+1

)2/d
Γ(d/2)2/d

N2/dσD

=

( √
2

π3/2F
− o(1)

)

2−dD Γ(d/2)2/d

N2/dσD

=

( √
2

π3/2F
− o(1)

)

2−dD (1 + o(1))d/2e

N2/d2−2D
√

d/180

≥
(

22D
√

360

2eπ3/2F
− o(1)

)

2−dD

√
d

N2/d

=

( √
90

eπ3/2

(

2D

D

)

− o(1)

)

√
d exp

(

− (dD +
2

d
log N)

)

.

Define the error term ǫ(N) by

dD +
2

d
log N =

√

8D log N + ǫ(N),

and observe that for any integer ℓ, we have ǫ(x) monotone increasing on [2ℓ2D/2, 2(ℓ+1)2D/2),
while N being in that interval gives d = ℓ. By algebra ǫ(2ℓ2D/2) = 0, and also

lim
N→exp((d+1)2D/2)

ǫ(N) =
D

d
.

It follows that ǫ(N) ≤ D/(
√

2(log N)/D − 1).
From this, we see that

exp
(

− (dD +
2

d
log N)

)

≥ exp(−
√

8D log N) exp

(

D
√

2(log N)/D − 1

)

= (1 + o(1)) exp(−
√

8D log N),

which completes the proof of Proposition 1.

3.2 Finish proof of Proposition 2

We set

N0 :=
eπ

3
√

5

(

4D

(

2D

D

))−1
N2/d

d1/2
,

the electronic journal of combinatorics 18 (2011), #P59 13



which accomplishes 1
4
2−2D ≤ 2δN0 ≤ 2−2D. With this δ, N0, and Lemma 3 we have

rk,D(N)

N
≥ d

d + 2
volAnnuli(A0, N0, D, δ) ≥ d

d + 2

2

5
2−dD |A0| δ

≥ 1

2

2

5
2−dD |A0|

N0
δN0 = C 2−dD rk,2D(N0)

N0
.

4 Proof of Theorem 1

We proceed by induction, with the base case of n = 2 following immediately from Propo-
sition 1. We now assume that Theorem 1 holds for n, assume that k > 2nD, and show
that

rk,D(N)

N
≥ C

(log N)1/(2n+2)

exp
(

(n + 1)2n/2Dn/(n+1) n+1
√

log N
) .

By Proposition 2, we have

rk,D(N)

N
≥ C

1

2dD

rk,2D(N0)

N0
,

with N0 = CN2/dd−1/2. Since k > 2nD = 2n−1(2D), the inductive hypothesis gives us

rk,D(N)

N
≥ C

1

2dD

(log N0)
1/(2n)

exp
(

n2(n−1)/2(2D)(n−1)/n n
√

log N0

)

= C
(log N0)1/(2n)

exp
(

dD + n2(n−1)/2(2D)(n−1)/n n

√

log C − 1
2

log d + 2
d

log N
)

≥ C
(log N0)1/(2n)

exp
(

dD + n2(n−1)/2(2D)(n−1)/n n

√

2
d

log N
)

,

with the final inequality coming from d being sufficiently large.
Setting

d :=

⌊

2n/2

(

log N

D

)1/(n+1)
⌋

we arrive at the error term and bound for it:

dD + n2(n−1)/2(2D)(n−1)/n n

√

2

d
log N = (n + 1)2n/2Dn/(n+1)(log N)1/(n+1) + ǫ(N)

where

ǫ(N) ≤ (1 + o(1))
(n + 1)D(n+2)/(n+1)

n 2n/2+1 (log N)1/(n+1)
≤ C

(log N)1/(n+1)
.

Thus,

exp

(

−
(

dD + n2(n−1)/2(2D)(n−1)/n n

√

2

d
log N

)

)

≥

(1 + o(1)) exp
(

−(n + 1)2n/2Dn/(n+1)(log N)1/(n+1)
)

.
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5 Further Thoughts

The approach here works mutatis mutandis for constructing a subset of an arbitrary set
N of N integers. The number of progressions in N becomes a critical parameter, and the
inductive step is somewhat more technical. The specific changes are detailed in [9].

Further, the methods here can serve as a basic outline for constructing thick subsets
of a large arbitrary set that does not contain nontrivial solutions to a linear system of
equations. This problem has seen recent progress due to Shapira [12], but a universal
thick construction remains elusive.
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