The nonexistence of a distance-regular graph with intersection array $\{22,16,5 ; 1,2,20\}$

Supalak Sumalroj Chalermpong Worawannotai*
Department of Mathematics
Silpakorn University
Nakhon Pathom, Thailand
\{sumalroj_s,worawannotai_c\}@silpakorn.edu
Submitted: Aug 13, 2015; Accepted: Feb 5, 2016; Published: Feb 19, 2016
Mathematics Subject Classifications: 05E30

Abstract

We prove that a distance-regular graph with intersection array $\{22,16,5 ; 1,2,20\}$ does not exist. To prove this, we assume that such a graph exists and derive some combinatorial properties of its local graph. Then we construct a partial linear space from the local graph to display the contradiction.

Keywords: distance-regular graph; nonexistence; partial linear space

1 Introduction

One of the main problems in distance-regular graphs is to decide whether a distanceregular graph with a given intersection array exists. Brouwer, Cohen and Neumaier [3] have compiled a list of intersection arrays that passed known feasibility conditions, but the existence of the corresponding distance-regular graphs was unknown for many of those arrays. Since then the arrays from the list are studied and the existence and nonexistence of distance-regular graphs associated to many arrays from the list are proved [5, Section 17] but more than half are still unknown.

In this paper we investigate the intersection array $\{22,16,5 ; 1,2,20\}[3, \mathrm{pp} .427]$. If a distance-regular graph with such array exists, then the number of vertices is $243=3^{5}$, which is relatively small, and the valency is 22 . Moreover, the parameter μ equals 2, which is a very interesting case (it means that every two nonadjacent vertices have either 0 or 2 common neighbors). From [3] the spectrum of the graph is $22^{1} 7^{66}(-2)^{132}(-5)^{44}$ and the distribution diagram is shown in Figure 1.

[^0]

Figure 1: Distribution diagram for a distance-regular graph with intersection array $\{22,16,5 ; 1,2,20\}$.

In addition, the distance-two graph is a strongly regular graph whose parameters are $(243,176,130,120)$; according to Brouwer [2], it is unknown whether such a strongly regular graph exists. Incidentally, there is a very interesting strongly regular graph on 243 vertices, valency 22 , and $\mu=2$, the Berlekamp-Van Lint-Seidel graph, that corresponds to the ternary Golay code [1].

In this paper we prove, however, that a distance-regular graph with intersection array $\{22,16,5 ; 1,2,20\}$ does not exist. Our method for showing this is inspired by [4] where the author cleverly partitioned a local graph of a hypothetical distance-regular graph with intersection array $\{21,16,8 ; 1,4,14\}$ and constructed a partial linear space on the partition. The paper is organized as follows. In Section 2 we recall some definitions and properties of distance-regular graphs. In Section 3 we assume that such a distanceregular graph exists and derive some combinatorial properties of its local graph. Then we construct a partial linear space from the local graph to display the contradiction.

2 Preliminaries

A simple graph is a graph having no loops or parallel edges. All graphs we consider are simple. For any graph Γ, we identify Γ with its vertex set $V(\Gamma)$, and let $E(\Gamma)$ be its edge set. We denote the subgraph of Γ induced by a subset S of $V(\Gamma)$ by S itself. For a subset S of $V(\Gamma)$, the neighborhood of S in Γ, denoted by $N_{\Gamma}(S)$, is the set of all vertices in $\Gamma-S$ that are adjacent to at least one vertex of S. For a vertex x in Γ, the subgraph of Γ induced by the neighbors of x is called the local graph of Γ with respect to x. A walk $C=v_{0} e_{1} v_{1} e_{2} \ldots e_{n-1} v_{n-1} e_{n} v_{0}$ is called a cycle if the edges $e_{1}, e_{2}, \ldots, e_{n}$ and the vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ of C are distinct and C has at least 3 edges. A cycle C has length n if the number of edges of C is n. A complete graph is a simple graph in which any two distinct vertices are adjacent. A complete graph with n vertices is denoted by K_{n}.

For vertices u and v in Γ, the distance between u and v is the length of a shortest path between u and v in Γ. The diameter of Γ is the greatest distance between any pair of vertices in Γ. A clique of a graph Γ is a maximal complete subgraph of Γ. The eigenvalues of Γ are the eigenvalues of its adjacency matrix.

Let Γ be a connected graph with diameter d and a vertex set V. For $x \in V$ let $\Gamma_{i}(x)$ be the set of vertices at distance i from x. The graph Γ is called distance-regular if for all vertices x and y at distance i, the numbers $b_{i}=\left|\Gamma_{i+1}(x) \cap \Gamma_{1}(y)\right|, c_{i}=\left|\Gamma_{i-1}(x) \cap \Gamma_{1}(y)\right|$ and $a_{i}=\left|\Gamma_{i}(x) \cap \Gamma_{1}(y)\right|$ depend only on i. In particular, Γ is a regular graph of degree
$k=b_{0}$ and $c_{i}+a_{i}+b_{i}=k$ for all $0 \leqslant i \leqslant d$. The sequence $\left\{b_{0}, \ldots, b_{d-1} ; c_{1}, \ldots, c_{d}\right\}$ is called the intersection array of Γ.

The following proposition gives an upper bound of the size of a clique of a distanceregular graph in terms of its smallest and largest eigenvalues.

Proposition 1. [3, Proposition 4.4.6] Let Γ be a distance-regular graph of diameter $d \geqslant 2$ with eigenvalues $k=\theta_{0}>\theta_{1}>\cdots>\theta_{d}$. Then the size of a clique K in Γ is bounded by

$$
|K| \leqslant 1-k / \theta_{d} .
$$

An incidence geometry (P, L) consists of a set P whose elements are called points and a set L whose elements are called lines together with an incidence relation between points and lines, that is, a subset of $P \times L$. A partial linear space is an incidence geometry such that every pair of distinct points lie on at most one common line and every line has at least two points.

3 Main results

From now on we assume that Γ is a distance-regular graph with intersection array $\{22,16,5 ; 1,2,20\}$. Then Γ has eigenvalues $22,7,-2$ and -5 . Fix a vertex x of Γ. Let $\Delta=\Gamma_{1}(x)$ be the subgraph of Γ induced by all vertices of Γ adjacent to x. Then Δ is a regular graph with 22 vertices and degree 5 . The following results give some combinatorial properties of the local graph Δ.

Corollary 2. Δ does not contain a complete subgraph K_{i} for all $i \geqslant 5$.
Proof. By Proposition 1, the size of a clique in Γ is at most 5 . Thus the size of a clique in Δ is at most 4.

Lemma 3. If Δ contains a cycle C of length 4, then the subgraph induced by C is a complete graph K_{4}.

Proof. Suppose that Δ contains a cycle C of length 4. Suppose there exist vertices u and v of C that are not adjacent in Δ. Then the distance between u and v is 2 and there exist two distinct paths from u to v of length 2 in C and a path $u x v$ in Γ which contradicts the fact that $c_{2}=2$. Thus any two distinct vertices of C are adjacent. Therefore the subgraph induced by C is a complete graph K_{4}.

Lemma 4. Each vertex in Δ is on at least two subgraphs K_{3} 's of Δ.
Proof. Suppose there exists a vertex $v \in \Delta$ which is on at most one subgraph K_{3} of Δ. Let $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5} be the distinct neighbors of v in Δ. Then there is at most one edge joining these neighbors of v. By Lemma $3, v$ is the only common neighbor of v_{i} and v_{j} for all $1 \leqslant i<j \leqslant 5$. Therefore the vertex set of Δ contains v, its neighbors, and at least $(3 \times 2)+(4 \times 3)$ vertices at distance 2 from v. Hence the number of vertices of Δ is at least 24 , a contradiction. Therefore each vertex in Δ is on at least two subgraphs K_{3} 's of Δ.

Figure 2: The 3 possibilities for the subgraph of Δ induced by a vertex u and its neighbors.

By Corollary 2 and Lemma 4, there are 3 possibilities for the subgraph of Δ induced by a vertex u and its neighbors as shown in Figure 2.

Lemma 5. Δ contains a complete subgraph K_{4}.
Proof. Suppose not. Then the subgraph of Δ induced by a vertex in Δ and its neighbors must be isomorphic to the graph on the right in Figure 1. Thus each vertex in Δ is on exactly two K_{3} 's so $\left|\left\{\left(u, K_{3}\right) \mid K_{3} \subseteq \Delta, u \in K_{3}\right\}\right|=22 \times 2=44$. Since the number of vertices of K_{3} is three, $3 \mid 44$, a contradiction. Thus Δ contains a complete subgraph K_{4}.

Now we partition the vertex set of the local graph Δ. For the rest of the paper, fix a complete subgraph K on four vertices of Δ. Let $S=\Delta_{1}(K)=\{y \in \Delta-K \mid y$ is adjacent to some vertices in $K\}$ be the neighborhood of K in Δ and define $R=\Delta-K-S$.

Lemma 6. K has size $4, S$ has size 8 , and R has size 10 .
Proof. Clearly, $|K|=4$. Let u_{1}, u_{2}, u_{3} and u_{4} be the vertices in K. Since Δ is a regular graph of degree 5 , for each $1 \leqslant i \leqslant 4$ there exist two vertices in S which are adjacent to u_{i}. If u_{i} and u_{j} have a common neighbor s in S for some $1 \leqslant i<j \leqslant 4$, then by Lemma $3, s$ is adjacent to u_{l} for all $1 \leqslant l \leqslant 4$ and hence $\left\{s, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ induces a K_{5} in Δ which contradicts Corollary 2. Thus u_{i} and u_{j} have no common neighbors in S for all $1 \leqslant i<j \leqslant 4$. Therefore $|S|=8$, and hence $|R|=|\Delta|-|K|-|S|=22-4-8=10$.

Let u_{1}, u_{2}, u_{3} and u_{4} be the vertices of K. For $1 \leqslant i \leqslant 4$ let $s_{2 i-1}$ and $s_{2 i}$ be the vertices of S which are adjacent to u_{i}.

Lemma 7. The only possible edges in S are $s_{2 i-1} s_{2 i}$ for $1 \leqslant i \leqslant 4$. Moreover, the vertices $s_{2 i-1}$ and $s_{2 i}$ have no common neighbors in R.

Proof. The result follows from Lemma 3.
To further investigate the structure of R we define an incidence geometry $G=(R, S)$ where elements of R are regarded as points and elements of S are regarded as lines, and a point $r \in R$ is on a line $s \in S$ if and only if the vertices r and s are adjacent in Γ.

Lemma 8. G is a partial linear space. Moreover each line in G is incident with at least 3 points.

Proof. Suppose two distinct points r and r^{\prime} of R are incident with two distinct lines s and s^{\prime}. Then the vertices s, r, s^{\prime} and r^{\prime} form a cycle in Δ. By Lemma 3, the vertices s and s^{\prime} are adjacent. Thus by Lemma 7 the vertices s and s^{\prime} are adjacent to a common vertex u in K. Now u, s, r and s^{\prime} form a cycle in Δ. By Lemma 3, the vertices u and r are adjacent, a contradiction. Thus every pair of distinct points lie on at most one common line.

By Lemma 7 and since Δ is a regular graph of degree 5 , it follows that each vertex of S is adjacent to at least 3 vertices of R, that is, each line in S is incident with at least 3 points in R. Therefore G is a partial linear space.

Lemma 9. One of the following two conditions holds:
1). The number of edges in S is 3 . The number of edges in R is 12 . The number of edges between S and R is 26 .
2). The number of edges in S is 4 . The number of edges in R is 13 . The number of edges between S and R is 24 .

Proof. First we will show that the subgraph induced by S contains at least 3 edges.
Without loss of generality, we may assume that s_{7} and s_{8} are not adjacent. Then s_{7} and s_{8} are lines of size 4 in G. By Lemma 7 , the lines s_{7} and s_{8} have no common points.

Suppose that s_{1} is a line of size 4 in G. Then s_{1} and s_{2} are not adjacent and hence s_{2} is also a line of size 4 in G. By Lemma 7, the lines s_{1} and s_{2} have no common points. Since every pair of distinct points lie on at most one common line and $|R|=10$, the line s_{1} is incident with one point of s_{7}, one point of s_{8} and other two points not on s_{7} or s_{8}. Similarly, the line s_{2} is incident with one point of s_{7}, one point of s_{8} and two points not on s_{1}, s_{7} or s_{8}. Thus G has more than 10 points, a contradiction. Therefore s_{1} is a line of size 3 in G. Similarly, s_{i} is a line of size 3 in G for all $2 \leqslant i \leqslant 6$.

Thus $s_{2 i-1}$ is adjacent to $s_{2 i}$ for all $1 \leqslant i \leqslant 3$ and hence the subgraph induced by S contains at least 3 edges.

If S contains exactly 4 edges, then the number of edges between S and R is $3 \times 8=24$ and the number of edges in R is $(5 \times 10-24) / 2=13$. If S contains exactly 3 edges, then the number of edges between S and R is $(3 \times 6)+(4 \times 2)=26$ and the number of edges in R is $(5 \times 10-26) / 2=12$.

Lemma 10. Each vertex in R has degree at least 2 in R. Moreover there are at least 4 vertices in R with degree 2 in R.

Proof. If a vertex r in R is adjacent to 5 vertices in S, then r is adjacent to $s_{2 i-1}$ and $s_{2 i}$ for some $1 \leqslant i \leqslant 4$. The vertices $r, s_{2 i-1}, u_{i}$ and $s_{2 i}$ form a cycle in Δ. By Lemma 3, the vertices u_{i} and r are adjacent, a contradiction. Thus each vertex in R is adjacent to at most 4 vertices in S.

Suppose that there exists a vertex r_{1} in R such that the number of edges from r_{1} to S is 4 . By Lemma 3, we may assume that r_{1} is adjacent to s_{1}, s_{3}, s_{5} and s_{7}. By Lemma 4
applied to r_{1}, there exist $i, j \in\{1,3,5,7\}, i \neq j$, such that s_{i} and s_{j} are adjacent which contradicts Lemma 7. Thus there are no vertices in R which are adjacent to 4 vertices in S. That is each vertex in R has degree at least 2 in R.

If there are at most 3 vertices in R with degree 2 in R, then the number of edges between R and S is less than or equal to $(3 \times 3)+(7 \times 2)=23$ which contradicts Lemma 9 . Thus there are at least 4 vertices in R with degree 2 in R.

By Lemma 9 and Lemma 10, there are 8 possibilities for the degree sequence of R as shown in Table 1.

The number of vertices in the induced subgraph R with degree i				$\|E(R)\|$
$i=2$	$i=3$	$i=4$	$i=5$	
4	6	0	0	13
5	4	1	0	13
6	3	0	1	13
6	2	2	0	13
6	4	0	0	12
7	2	1	0	12
8	0	2	0	12
8	1	0	1	12

Table 1: The 8 possibilities for the degree sequence of R.

By Lemma 9, either $|E(R)|=12$ or $|E(R)|=13$. We now rule out both possibilities. We start with the latter.

Lemma 11. $|E(R)| \neq 13$.
Proof. Suppose that $|E(R)|=13$. By Lemma 9, the subgraph induced by S contains 4 edges and the number of edges between S and R is 24. Thus each vertex in S is adjacent to 3 vertices in R. By Lemma 3 and Lemma 4 , there are 8 distinct edges e_{1}, e_{2}, l dots, e_{8} in R such that s_{i} is adjacent to both ends of e_{i} for $1 \leqslant i \leqslant 8$. Let $T=\left\{e_{1}, e_{2}, \ldots, e_{8}\right\}$.

Suppose that there exists a vertex $r \in R$ which has degree 5 in R. Let $r_{1}, r_{2}, r_{3}, r_{4}$ and r_{5} be the distinct neighbors of r in R. Then for each $i \in\{1,2,3,4,5\}, r r_{i} \notin T$. Since R has 13 edges, $E(R)-\left\{r r_{1}, r r_{2}, r r_{3}, r r_{4}, r r_{5}\right\}=T$. By Lemma 4 applied to r, we may assume that r_{1} and r_{2} are adjacent. Thus $e_{i}=r_{1} r_{2}$ for some $1 \leqslant i \leqslant 8$. So the vertices s_{i}, r_{1}, r and r_{2} form a cycle in Δ and hence r is adjacent to s_{i}, a contradiction. Therefore each vertex in R has degree at most 4 in R. By Lemma 10, each vertex in R is adjacent to 1,2 or 3 vertices in S.

Now suppose that r is a vertex in R with degree 3 in R. Let $N_{R}(r)=\left\{r_{1}, r_{2}, r_{3}\right\}$. Without loss of generality, we may assume that $N_{S}(r)=\left\{s_{1}, s_{3}\right\}$.
Case 1: s_{i} and r_{j} are not adjacent for all $i \in\{1,3\}$ and $j \in\{1,2,3\}$.
Then r_{j} and r_{k} are adjacent for all $1 \leqslant j<k \leqslant 3$ by Lemma 4 applied to r. By Lemma 3, the edges $r r_{1}, r r_{2}, r r_{3}, r_{1} r_{2}, r_{1} r_{3}, r_{2} r_{3} \notin T$. Since R contains 13 edges,
$8=|T| \leqslant\left|E(R)-\left\{r r_{1}, r r_{2}, r r_{3}, r_{1} r_{2}, r_{1} r_{3}, r_{2} r_{3}\right\}\right|=7$, a contradiction. Thus Case 1 cannot occur.
Case 2: s_{1} is adjacent to exactly one vertex in $\left\{r_{1}, r_{2}, r_{3}\right\}$.
Without loss of generality, we may assume that s_{1} is adjacent to r_{3}. Then s_{1} is not adjacent to r_{1} and r_{2}. Since s_{1} is adjacent to 3 vertices in R, there exists a vertex $r_{4} \in R-\left\{r, r_{1}, r_{2}, r_{3}\right\}$ such that r_{4} is adjacent to s_{1}. By Lemma 3, the vertex s_{2} is not adjacent to r_{i} for $1 \leqslant i \leqslant 4$. Since s_{2} is adjacent to 3 vertices in R, there exist $r_{5}, r_{6}, r_{7} \in R-\left\{r, r_{1}, r_{2}, r_{3}, r_{4}\right\}$ such that r_{5}, r_{6}, r_{7} are adjacent to s_{2}. Since R has 10 vertices, there exist $r_{8}, r_{9} \in R-\left\{r, r_{i} \mid 1 \leqslant i \leqslant 7\right\}$. By Lemma $3, r_{4}$ is not adjacent to r_{i} for $1 \leqslant i \leqslant 7$. By Lemma 10, r_{4} is adjacent to r_{8} and r_{9}. By Lemma 3, r_{3} is not adjacent to r_{i} for $1 \leqslant i \leqslant 9$. Thus r_{3} has degree 1 in R, a contradiction to Lemma 10. Hence Case 2 cannot occur.
Case 3: s_{1} is adjacent to exactly two vertices in $\left\{r_{1}, r_{2}, r_{3}\right\}$.
Without loss of generality, we may assume that s_{1} is adjacent to r_{2} and r_{3}. Then s_{1} is not adjacent to r_{1}. By Lemma 3, r_{2} is adjacent to r_{3}, and s_{3} is not adjacent to r_{2} and r_{3}. By Case 2 applied to r and s_{3}, the vertex s_{3} is not adjacent to r_{1}. By Lemma 3, r_{1} is not adjacent to s_{2} and s_{4}. So r_{1} has at most two neighbors in S by Lemma 7 that is r_{1} has degree at least 3 in R. By Lemma 3, r_{1} is not adjacent to r_{2} and r_{3}. Then there exist $r_{4}, r_{5} \in R-\left\{r, r_{1}, r_{2}, r_{3}\right\}$ such that r_{4}, r_{5} are adjacent to r_{1}. Since each vertex in R is adjacent to at least one vertex in S, we may assume that r_{1} is adjacent to s_{5}. By Lemma $3, s_{3}$ is not adjacent to r_{4} and r_{5}. Since s_{3} is adjacent to 3 vertices in R, there exist $r_{6}, r_{7} \in R-\left\{r, r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}$ such that r_{6}, r_{7} is adjacent to s_{3}. By Lemma 4 applied to s_{3}, the vertex r_{6} is adjacent to r_{7}. By Lemma 3, s_{4} is not adjacent to $r, r_{1}, r_{2}, r_{3}, r_{6}, r_{7}$, and s_{4} is adjacent to at most one vertex in $\left\{r_{4}, r_{5}\right\}$. Since s_{4} is adjacent to 3 vertices in R and $|R|=10$, we may assume that s_{4} is adjacent to r_{4}, r_{8} and r_{9} where $\left\{r_{8}, r_{9}\right\}=R-\left\{r, r_{1}, r_{2}, \ldots, r_{7}\right\}$. Then r_{1} and r_{8} are not adjacent; otherwise r_{1}, r_{8}, s_{4} and r_{4} form a cycle in Δ and hence r_{1} is adjacent to s_{4}, a contradiction. Similarly, r_{1} and r_{9} are not adjacent. By Lemma 3, r_{1} is not adjacent to r_{6} and r_{7}. Thus r_{1} has degree 3 in R. By Lemma 3, we may assume that r_{1} is adjacent to s_{7}. By Case 1 and Case 2 appiled to r_{1} and s_{5}, we may assume that s_{5} is adjacent to r_{4} and r_{5}. Then r_{4} and r_{5} are adjacent by Lemma 3. Since s_{2} is adjacent to 3 vertices in R and by Lemma 3, s_{2} is adjacent to one vertex in $\left\{r_{4}, r_{5}\right\}$, one vertex in $\left\{r_{6}, r_{7}\right\}$ and one vertex in $\left\{r_{8}, r_{9}\right\}$. Without loss of generality, we may assume that s_{2} is adjacent to r_{6} and r_{8}. Then s_{2} and r_{4} are not adjacent; otherwise s_{2}, r_{4}, s_{4} and r_{8} form a cycle in Δ and hence s_{2} is adjacent to s_{4}, a contradiction. Thus s_{2} is adjacent to r_{5}. The vertices s_{7} and r_{4} are not adjacent; otherwise the vertices s_{7}, r_{4}, s_{5} and r_{1} form a cycle in Δ and hence s_{5} is adjacent to s_{7}, a contradiction. By Lemma 3, r_{4} is not adjacent to s_{6} and s_{8}. Thus r_{4} has degree 3 in R. The vertex r_{4} is not adjacent to r_{2} and r_{3}; otherwise the vertices r_{4}, r_{i}, r and r_{1} form a cycle in Δ where $i \in\{2,3\}$ and hence r_{4} is adjcent to r, a contradiction. The vertices r_{4} and r_{6} are not adjcent; otherwise the vertices r_{4}, r_{6}, s_{3} and s_{4} form a cycle in Δ and hence r_{4} is adjcent to s_{3}, a contradiction. Similarly, r_{4} is not adjacent to r_{7}. Hence r_{4} is adjacent to either r_{8} or r_{9}. The vertices r_{4} and r_{8} are not adjacent; otherwise r_{4}, r_{8}, s_{2} and r_{5} form a cycle in Δ and hence r_{4} is adjacent to s_{2}, a contradiction. It follows that r_{4}
is adjacent to r_{9}. By Case 2 appiled to r_{4} and s_{4}, the vertex s_{4} is adjacent to r_{5}. Hence s_{4} has degree more than 5 in Δ, a contradiction. Therefore Case 3 cannot occur.

By Case 1, Case 2 and Case $3,|E(R)| \neq 13$.
Lemma 12. $|E(R)| \neq 12$.
Proof. Suppose that $|E(R)|=12$. Then the subgraph induced by S contains 3 edges. Without loss of generality, we may assume that $s_{2 i-1}$ and $s_{2 i}$ are adjacent for $i \in\{1,2,3\}$ but s_{7} and s_{8} are not adjacent. By Lemma 9 , the number of edges between S and R is 26. By Lemma 3 and Lemma 4, there are 10 distinct edges $e_{1}, e_{2}, \ldots, e_{10}$ in R such that s_{i} is adjacent to both ends of e_{i} for $1 \leqslant i \leqslant 6, s_{7}$ is adjacent to both ends of e_{7} and e_{8} and s_{8} is adjacent to both ends of e_{9} and e_{10}. Let $T=\left\{e_{1}, e_{2}, \ldots, e_{10}\right\}$. By similar arguments as in Lemma 11, each vertex in R has degree at most 4 in R.

Suppose that there exists a vertex r in R which has degree 4 in R. Let r_{1}, r_{2}, r_{3} and r_{4} be distinct neighbors of r in R. Since $|E(R)-T|=2$, we may assume that $r r_{1}, r r_{2} \in T$ and r is adjacent to s_{7}. By Lemma 3, r_{1} is adjacent to r_{2}. By construction, $r_{1} r_{2} \notin T$. Since $r r_{1}$ and $r r_{2}$ are two edges with both ends adjacent to s_{7}, it follows that $r r_{3}, r r_{4} \notin T$. Hence $13=\left|T \cup\left\{r_{1} r_{2}, r r_{3}, r r_{4}\right\}\right| \leqslant|E(R)|=12$, a contradiction.

Thus there are no vertices in R which has degree 4 in R. By Table 1 , there exist 6 vertices in R with degree 2 in R, and 4 vertices in R with degree 3 in R. By Lemma 8 , each line in G is incident with at least 3 points. Since s_{7} and s_{8} are not adjacent, s_{7} and s_{8} are lines of size 4 in G. By Lemma 7, the lines s_{7} and s_{8} have no common points. Let the point set of G be $\left\{r_{i} \mid 1 \leqslant i \leqslant 10\right\}$ such that $r_{3}, r_{4}, r_{5}, r_{6}$ lie on s_{7} and $r_{7}, r_{8}, r_{9}, r_{10}$ lie on s_{8}. Note that any line other than s_{7} and s_{8} must be incidence with either r_{1} or r_{2}. If r_{1} lies on exactly 2 lines, then G has at most 7 lines, a contradiction. Since every vertex in R is adjacent to 2 or 3 vertices in S, r_{1} lies on 3 lines in G. Similarly, r_{2} lies on 3 lines in G. The points r_{1} and r_{2} are not on the same line; otherwise G has at most 7 lines, a contradiction. If there exist at least 3 points in s_{7} each of which lies on exactly two lines, then G has at most 7 lines, a contradiction. So there are 2 points on the line s_{7} which lie on exactly two lines. Similarly, there are 2 points on the line s_{8} which lie on exactly two lines. Without loss of generality, we may assume that each of r_{5}, r_{6}, r_{9} and r_{10} lies on exactly 2 lines and each of r_{3}, r_{4}, r_{7} and r_{8} lies on exactly 3 lines. Then there are 3 possibilities for the incidence geometry G on 10 points and 8 lines satisfying these properties as shown in Figure 3.

In each figure a pair of solid lines represents s_{7} and s_{8}, and each pair of nonsolid lines of same style represents $s_{2 i-1}$ and $s_{2 i}$ for $1 \leqslant i \leqslant 3$. If a point r is on a line $s_{2 i-1}$ and a point r^{\prime} is on a line $s_{2 i}$, then the vertex r is not adjacent to r^{\prime}; otherwise $r, r^{\prime}, s_{2 i}$ and $s_{2 i-1}$ form a cycle in Δ, and by Lemma 3, the point r is on both $s_{2 i-1}$ and $s_{2 i}$, a contradiction. For convenience we call this the parallelity of lines.

In Figure 3a, by the parallelity of lines, the vertex r_{3} is not adjacent to r_{4}, r_{6}, and the vertex r_{5} is not adjacent to r_{4}. Suppose that the vertices r_{5} and r_{6} are adjacent. The vertices r_{3} and r_{5} are not adjacent; otherwise the vertices r_{3}, r_{5}, r_{6} and s_{7} form a cycle in Δ, and by Lemma 3, the vertices r_{3} and r_{6} are adjacent, a contradiction. The vertices r_{4} and r_{6} are not adjacent; otherwise the vertices r_{4}, r_{6}, r_{5} and s_{7} form a cycle in Δ, and by

Figure 3: The 3 possibilities for the incidence geometry G.

Lemma 3, the vertices r_{4} and r_{5} are adjacent, a contradiction. Thus the vertex s_{7} is on exactly one subgraph K_{3} of Δ which contradicts Lemma 4. Hence the vertices r_{5} and r_{6} are not adjacent. The vertex r_{6} is not adjacent to r_{i} for $i \in\{1,2\}$; otherwise the vetices r_{6}, r_{i}, s_{j} and r_{4} form a cycle in Δ where s_{j} is the line containing both r_{i} and r_{4}, and by Lemma 3, the point r_{6} is on s_{j}, a contradiction. Since r_{6} has degree 3 in R, the vertex r_{6} is adjacent to 2 vertices u, v in $\left\{r_{7}, r_{8}, r_{9}, r_{10}\right\}$. Thus the vertices r_{6}, u, s_{8} and v form a cycle in Δ, and by Lemma 3 , the point r_{6} is on s_{8}, a contradiction.

In Figure 3b, by the parallelity of lines, the vertex r_{3} is not adjacent to r_{4}, and the vertex r_{5} is not adjacent to r_{6}. Since r_{2} has degree 2 in R, the vertex r_{2} is adjacent to r_{6} and r_{9} by the parallelity of lines. The vertices r_{4} and r_{6} are not adjacent; otherwise the vertices r_{4}, r_{6}, r_{2} and s_{j} forms a cycle in Δ where s_{j} is the line containing both r_{2} and r_{4}, and by Lemma 3, the point r_{6} is on s_{j}, a contradiction. Suppose that the vertices r_{3} and r_{5} are adjacent. The vertices r_{3} and r_{6} are not adjacent; otherwise the vertices r_{3}, r_{6}, s_{7} and r_{5} form a cycle in Δ, and by Lemma 3, the vertices r_{5} and r_{6} are adjacent, a contradiction. The vertices r_{4} and r_{5} are not adjacent; otherwise the vertices r_{4}, r_{5}, r_{3} and s_{7} form a cycle in Δ, and by Lemma 3, the vertices r_{3} and r_{4} are adjacent, a contradiction.

Hence the vertex s_{7} is on exactly one subgraph K_{3} of Δ which contradicts Lemma 4. Thus the vertices r_{3} and r_{5} are not adjacent. The vertex r_{5} is not adjacent to r_{i} for $i \in\{1,2\}$; otherwise the vertices r_{5}, r_{i}, s_{j} and r_{4} form a cycle in Δ where s_{j} is the line containing both r_{i} and r_{4}, and by Lemma 3, the point r_{5} is on s_{j}, a contradiction. Since r_{5} has degree 3 in R, the vertex r_{5} is adjacent to 2 vertices u, v in $\left\{r_{7}, r_{8}, r_{9}, r_{10}\right\}$. Thus the vertices r_{5}, u, s_{8} and v form a cycle in Δ, and by Lemma 3 , the point r_{5} is on s_{8}, a contradiction.

In Figure 3c, by the parallelity of lines, the vertex r_{7} is not adjacent to r_{8}, r_{10}, and the vertex r_{9} is not adjacent to r_{8}. Suppose that the vertices r_{9} and r_{10} are adjacent. The vertices r_{7} and r_{9} are not adjacent; otherwise the vertices r_{7}, r_{9}, r_{10} and s_{8} form a cycle in Δ, and by Lemma 3, the vertices r_{7} and r_{10} are adjacent, a contradiction. The vertices r_{8} and r_{10} are not adjacent; otherwise the vertices r_{8}, r_{10}, r_{9} and s_{8} form a cycle in Δ, and by Lemma 3, the vertices r_{8} and r_{9} are adjacent, a contradiction. Thus the vertex s_{8} is on exactly one subgraph K_{3} of Δ which contradicts Lemma 4. Hence the vertices r_{9} and r_{10} are not adjacent. The vertex r_{10} is not adjacent to r_{i} for $i \in\{1,2\}$; otherwise the vertices r_{10}, r_{i}, s_{j} and r_{8} form a cycle in Δ where s_{j} is the line containing both r_{i} and r_{8}, and by Lemma 3, the point r_{10} is on s_{j}, a contradiction. Since r_{10} has degree 3 in R, the vertex r_{6} is adjacent to 2 vertices u, v in $\left\{r_{3}, r_{4}, r_{5}, r_{6}\right\}$. Thus the vertices r_{10}, u, s_{7} and v form a cycle in Δ, and by Lemma 3, the point r_{10} is on s_{7}, a contradiction. Hence $|E(R)| \neq 12$.

By Lemma 9, Lemma 11 and Lemma 12, we have our main result.
Theorem 13. A distance-regular graph with intersection array $\{22,16,5 ; 1,2,20\}$ does not exist.

Acknowledgements

The authors would like to thank the anonymous referees for careful reading and valuable suggestions.

References

[1] E.R. Berlekamp, J.H. van Lint, and J.J. Seidel, A Strongly Regular Graph Derived from the Perfect Ternary Golay Code. A Survey of Combinatorial Theory, Symp. Colorado State Univ., 1971 (Ed. J. N. Srivastava et al.) Amsterdam, Netherlands: North Holland, 1973.
[2] A.E. Brouwer, Parameters of strongly regular graphs, https://www.win.tue.nl/ ~aeb/graphs/srg/srgtab.html.
[3] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs. SpringerVerlag, Berlin, Heidelberg, 1989.
[4] K. Coolsaet. A distance-regular graph with intersection array (21,16,8;1,4,14) does not exist. European J. Combin., 26:709-716, 2005.
[5] E.R. van Dam, J.H. Koolen, and H. Tanaka. Distance-regular graphs. arXiv:1410.6294.

[^0]: *Corresponding author

