Red-Blue Clique Partitions and (1-1)-Transversals

  • Alfréd Gyárfás
  • Jeno Lehel
Keywords: (1-1)-Transversal, Red-blue clique cover

Abstract

Motivated by the problem of Gallai on (1-1)-transversals of 2-intervals, it was proved by the authors in 1969 that if the edges of a complete graph K are colored with red and blue (both colors can appear on an edge) so that there is no monochromatic induced C4 and C5 then the vertices of K can be partitioned into a red and a blue clique. Aharoni, Berger, Chudnovsky and Ziani recently strengthened this by showing that it is enough to assume that there is no induced monochromatic C4 and there is no induced C5 in one of the colors. Here this is strengthened further, it is enough to assume that there is no monochromatic induced C4 and there is no K5 on which both color classes induce a C5.

We also answer a question of Kaiser and Rabinovich, giving an example of six 2-convex sets in the plane such that any three intersect but there is no (1-1)-transversal for them.

Published
2016-09-02
Article Number
P3.40