A family of symmetric graphs with complete quotients

Teng Fang*
Beijing International Center for
Mathematical Research, Peking University
Beijing 100871, P. R. China
tengfang@pku.edu.cn
Binzhou Xia ${ }^{\dagger}$
Beijing International Center for
Mathematical Research, Peking University
Beijing 100871, P. R. China
binzhouxia@pku.edu.cn

Xin Gui Fang
School of Mathematical Sciences
Peking University
Beijing 100871, P. R. China
xgfang@math.pku.edu.cn
Sanming Zhou ${ }^{\ddagger}$
School of Mathematics and Statistics
The University of Melbourne
Parkville, VIC 3010, Australia
sanming@unimelb.edu.au

Submitted: Nov 13, 2015; Accepted: Apr 22, 2016; Published: May 13, 2016
Mathematics Subject Classifications: 05C25, 20B25

Abstract

A finite graph Γ is G-symmetric if it admits G as a group of automorphisms acting transitively on $V(\Gamma)$ and transitively on the set of ordered pairs of adjacent vertices of Γ. If $V(\Gamma)$ admits a nontrivial G-invariant partition \mathcal{B} such that for blocks $B, C \in \mathcal{B}$ adjacent in the quotient graph $\Gamma_{\mathcal{B}}$ relative to \mathcal{B}, exactly one vertex of B has no neighbour in C, then we say that Γ is an almost multicover of $\Gamma_{\mathcal{B}}$. In this case there arises a natural incidence structure $\mathcal{D}(\Gamma, \mathcal{B})$ with point set \mathcal{B}. If in addition $\Gamma_{\mathcal{B}}$ is a complete graph, then $\mathcal{D}(\Gamma, \mathcal{B})$ is a $(G, 2)$-point-transitive and G -block-transitive 2-(|B|, $m+1, \lambda)$ design for some $m \geqslant 1$, and moreover either $\lambda=1$ or $\lambda=m+1$. In this paper we classify such graphs in the case when $\lambda=m+1$; this together with earlier classifications when $\lambda=1$ gives a complete classification of almost multicovers of complete graphs.

Key words: Symmetric graph; arc-transitive graph; almost multicover

[^0]
1 Introduction

Let $\Gamma=(V(\Gamma), E(\Gamma))$ be a finite graph, and G a finite group acting on $V(\Gamma)$ as a group of automorphisms of Γ (that is, G preserves the adjacency and non-adjacency relations of Γ). If G is transitive on $V(\Gamma)$ and transitive on the set of arcs of Γ, then Γ is said to be G-symmetric or G-arc-transitive, where an arc is an ordered pair of adjacent vertices. Beginning with Tutte's seminal work [30], the study of symmetric graphs has long been one of the central topics in algebraic graph theory. See [24, 25] for two useful surveys in this area.

A G-symmetric graph Γ is called an imprimitive G-symmetric graph if $V(\Gamma)$ admits a nontrivial G-invariant partition \mathcal{B}, that is, $1<|B|<|V(\Gamma)|$ and $B^{g}:=\left\{\alpha^{g}: \alpha \in B\right\} \in \mathcal{B}$ for any $B \in \mathcal{B}$ and $g \in G$. In this case the quotient graph $\Gamma_{\mathcal{B}}$ of Γ relative to \mathcal{B} is defined to be the graph with vertex set \mathcal{B} in which $B, C \in \mathcal{B}$ are adjacent if and only if there exists an edge of Γ joining a vertex of B and a vertex of C. We assume without mentioning explicitly that $\Gamma_{\mathcal{B}}$ has at least one edge, so that each block of \mathcal{B} is an independent set of Γ. Denote by $B(\alpha)$ the block of \mathcal{B} containing α. Since \mathcal{B} is G-invariant, $B\left(\alpha^{g}\right)=(B(\alpha))^{g}$ for any $\alpha \in V(\Gamma)$ and $g \in G$. For each $B \in \mathcal{B}$, define [14] $\mathcal{D}(B)$ to be the 1-design with point set B and blocks $\Gamma(C) \cap B$ (with possible repetitions) for all $C \in \Gamma_{\mathcal{B}}(B)$, where $\Gamma(C):=\cup_{\alpha \in C} \Gamma(\alpha)$ with $\Gamma(\alpha)$ the neighbourhood of α in Γ, and $\Gamma_{\mathcal{B}}(B)$ is the neighbourhood of B in $\Gamma_{\mathcal{B}}$. As in [14], for adjacent blocks B, C of \mathcal{B}, we use $\Gamma[B, C]$ to denote the induced bipartite subgraph of Γ with bipartition $\{\Gamma(C) \cap B, \Gamma(B) \cap C\}$. Since Γ is G-symmetric, up to isomorphism, $\mathcal{D}(B)$ and $\Gamma[B, C]$ are independent of the choice of $B \in \mathcal{B}$ and $C \in \Gamma_{\mathcal{B}}(B)$. Thus the block size $k:=|\Gamma(C) \cap B|$ of $\mathcal{D}(B)$ and the number of times each block of $\mathcal{D}(B)$ is repeated are independent of the choice of B; denote this number by m and call it the multiplicity of $\mathcal{D}(B)$. We use $v:=|B|$ to denote the block size of the partition \mathcal{B}.

Various possibilities for $\Gamma[B, C]$ can happen. In the "densest" case where $\Gamma[B, C] \cong$ $K_{v, v}$ is a complete bipartite graph, Γ is uniquely determined by $\Gamma_{\mathcal{B}}$, namely, $\Gamma \cong \Gamma_{\mathcal{B}}\left[K_{v}\right]$ is the lexicographic product of $\Gamma_{\mathcal{B}}$ by the complete graph K_{v}. The "sparsest" case where $\Gamma[B, C] \cong K_{2}$ (that is, $k=1$) can also happen; in this case Γ is called a spread of $\Gamma_{\mathcal{B}}$ in [16], where it was shown that spreads play a significant role in the study of edge-primitive graphs. See [14, Section 4], [32, Section 4] and [21, 31, 33] for discussions on spreads, and [13] for a recent classification of spreads of complete graphs. As the dual of spreads in some sense [21], the case when $v=k+1 \geqslant 3$ is also of considerable interest; in this case we call Γ an almost multicover of $\Gamma_{\mathcal{B}}$. This case was first studied in [21], where it was proved that G is transitive on the set of 2-arcs (that is, oriented paths of length 2) of $\Gamma_{\mathcal{B}}$ if and only if $\mathcal{D}(B)$ has no repeated blocks. It was proved in [31] that if in addition $\Gamma_{\mathcal{B}}$ is not a complete graph and $\Gamma[B, C]$ is a matching then $\Gamma_{\mathcal{B}}$ is a near polygonal graph. In the case when $\mathcal{D}(B)$ has no repeated blocks and $\Gamma_{\mathcal{B}}$ is a complete graph, all graphs Γ have been classified in [15, Theorem 1.1(b)(ii)(iii)(iv)] (and independently in [33, Theorem 3.19] by using a different approach).

In the case when Γ is an almost multicover of $\Gamma_{\mathcal{B}}$, a certain 1-design $\mathcal{D}(\Gamma, \mathcal{B})$ with point set \mathcal{B} arises naturally (see Section 2.2), and on the other hand Γ can be reconstructed
from this 1-design by using the flag graph construction introduced in [33] (see Theorem 2.2). If in addition $\Gamma_{\mathcal{B}}$ is a complete graph, then $\mathcal{D}(\Gamma, \mathcal{B})$ is a $2-(m v+1, m+1, \lambda)$ design with $\lambda=1$ or $m+1$ admitting G as a 2 -point-transitive and block-transitive group of automorphisms (see Corollary 2.3). In the case when $\lambda=1, \mathcal{D}(\Gamma, \mathcal{B})$ is a ($G, 2$)-pointtransitive and G-block-transitive linear space, and the corresponding graphs Γ have been classified in [15, Theorem 1.1(b)(ii)(iii)(iv)] (see also [33, Theorem 3.19]), [17] and [6] together. These three papers deal with the cases when the linear space $\mathcal{D}(\Gamma, \mathcal{B})$ is trivial (that is, with block size two), nontrivial with G almost simple, and nontrivial with G affine, respectively. The purpose of the present paper is to classify almost multicovers of complete graphs in the case when $\lambda=m+1$ and thus complete the classification of all almost multicovers of complete graphs. The main result is as follows.
Theorem A. Let Γ be a G-symmetric graph whose vertex set admits a nontrivial G invariant partition \mathcal{B} such that the quotient $\Gamma_{\mathcal{B}}$ is a complete graph and is almost multicovered by Γ. In the case when $\mathcal{D}(\Gamma, \mathcal{B})$ is a $2-(m v+1, m+1, m+1)$ design with $m>1$, all graphs Γ are classified and will be described in Sections 3 and 4.

A major tool for the proof of Theorem A is the flag graph construction introduced in [33]. By this construction, the problem of classifying the graphs in Theorem A is equivalent to the one of classifying all $(G, 2)$-point-transitive and G-block-transitive 2 ($m v+1, m+1, m+1$) designs that admit a "feasible" G-orbit Ω on their sets of flags together with all self-paired G-orbitals on Ω "compatible" with Ω in some sense. (See Definition 2.1 for the definitions involved.) The next theorem gives the latter classification, which seems to be of interest for its own sake, from which Theorem A follows immediately.

Theorem B. Let \mathcal{D} be a ($G, 2$)-point-transitive and G-block-transitive 2-(|V|, $m+1, m+1$) design with point set V, where $m>1$ and $G \leqslant \operatorname{Sym}(V)$. Suppose that there exists a feasible G-orbit on the set of flags of \mathcal{D}. Then (\mathcal{D}, G) is one of the following:
(a) \mathcal{D} is a design with $|V|=q^{2}+1$ and $m=q=2^{2 e+1}>2$ associated with the Suzuki group $\operatorname{Sz}(q)$, and G can be any subgroup of $\operatorname{Sym}(V)$ containing $\operatorname{Sz}(q)$ as a normal subgroup;
(b) \mathcal{D} is a design with $|V|=q^{3}+1$ and $m=q^{2}$ associated with the Ree group $\mathrm{R}(q)$, $q=3^{2 e+1} \geqslant 3$, and G can be any subgroup of $\operatorname{Sym}(V)$ containing $\mathrm{R}(q)$ as a normal subgroup;
(c) $G \leqslant \mathrm{~A} \Gamma \mathrm{~L}\left(1, p^{d}\right)$ with p prime and $d \geqslant 1$, and (\mathcal{D}, G) is determined by an admissible quintuple (see Definition 4.4);
(d) $V=\mathbb{F}_{p}^{2}, G \leqslant \operatorname{AGL}(2, p), p=5,7$ or $11, G_{\mathbf{0}} \unrhd \operatorname{SL}(2,3)$ or $G_{\mathbf{0}} \unrhd \operatorname{SL}(2,5)$, where $G_{\mathbf{0}}$ is the stabiliser in G of the zero vector $\mathbf{0}$ of V, and each block of \mathcal{D} is the union of at least two lines of the affine space $\operatorname{AG}(2, p)$;
(e) $V=\mathbb{F}_{3}^{4}, G \leqslant \operatorname{AGL}(4,3), G_{0} \unrhd E$, where E is an extraspecial group of order 32 with $G_{0} / E \cong \operatorname{AGL}(1,5), A_{5}$ or S_{5}, and one of the blocks of \mathcal{D} is the union of two 2 -dimensional subspaces V_{1} and V_{2} such that $V_{1} \oplus V_{2}=V$.

	G	D	$\Gamma(\mathcal{D}, \Omega, \Psi)$	Details
(a)	$\begin{aligned} & \operatorname{soc}(G)=\mathrm{Sz}(q) \\ & q=2^{2 e+1}>2 \end{aligned}$	$2-\left(q^{2}+1, q+1, q+1\right)$	$\begin{aligned} & \mathrm{C}, \text { ord }=q\left(q^{2}+1\right) \text { and } \\ & \text { val }=\left(q^{2}-q\right) i / \operatorname{gcd}(f, i) \end{aligned}$	L3.7
(b)	$\begin{aligned} & \operatorname{soc}(G)=\mathrm{R}(q) \\ & q=3^{2 e+1} \geqslant 3 \end{aligned}$	$2-\left(q^{3}+1, q^{2}+1, q^{2}+1\right)$	$\begin{aligned} & \text { C, ord }=q\left(q^{3}+1\right) \text { and } \\ & \text { val }=\left(q^{3}-q^{2}\right) i / \operatorname{gcd}(f, i) \end{aligned}$	L3.12
(c)	$\begin{aligned} & G \leqslant \mathrm{~A} \mathrm{~L}(1, q) \\ & q=p^{d} \end{aligned}$	$2-(q,\|L\|,\|L\|) ; \mathcal{D}$ has a block $L=P \cup\{0\}$ with P a subgroup of \mathbb{F}_{q}^{\times}and $\left\|\mathbb{F}_{q}^{\times}: P\right\|$ prime	$\begin{aligned} & \mathrm{C}, \text { ord }=q(q-1) /\|P\| \\ & \text { and val }=q-\|L\| \\ & \hline \mathrm{D}, \text { ord }=q(q-1) /\|P\| \\ & \text { and val }=q-\|L\|, \\ & (q-1) /\|P\| \text { components } \end{aligned}$	$\begin{aligned} & \mathrm{L} 4.5 \\ & \mathrm{~L} 4.7 \end{aligned}$
(d)	$\begin{aligned} & G \leqslant \operatorname{AGL}(2, p) \\ & G_{\mathbf{0}} \unrhd \mathrm{SL}(2,3) \text { or } \\ & G_{\mathbf{0}} \unrhd \mathrm{SL}(2,5) \\ & p=5,7,11 \\ & V=\mathbb{F}_{p}^{2} \end{aligned}$	$\begin{aligned} & 2-\left(p^{2}, m+1, m+1\right), \\ & m=8 \text { when } p=5 ; \\ & m=12 \text { when } p=7 ; \\ & m=40 \text { or } 20 \text { when } \\ & p=11 \end{aligned}$	$\begin{aligned} & \text { ord }=\frac{p^{2}\left(p^{2}-1\right)}{m} \\ & \text { and val }=p^{2}-m-1 \end{aligned}$	Cases $1-3$ in §4.9
(e)	$\begin{aligned} & G \leqslant \operatorname{AGL}(4,3) \\ & G_{\mathbf{0}} \unrhd E, G_{\mathbf{0}} / E \cong \\ & \operatorname{AGL}(1,5) \end{aligned}$	2-(81, 17, 17)	$\begin{aligned} & \text { ord }=405 \\ & \text { and val }=64 \end{aligned}$	$\begin{aligned} & \hline \text { Case } \\ & 2 \text { in } \\ & \S 4.10 \end{aligned}$
	$\begin{aligned} & G \leqslant \operatorname{AGL}(4,3) \\ & G_{0} \unrhd E, G_{0} / E \cong \\ & A_{5} \text { or } S_{5} \end{aligned}$	As above	$\begin{aligned} & \hline \text { ord }=405, \mathrm{val}=64 \\ & \text { ord }=405, \mathrm{val}=192 \end{aligned}$	$\begin{aligned} & \text { Case } \\ & 2 \text { in } \\ & \S 4.10 \end{aligned}$

Table 1. Theorem B: Acronym: $\mathrm{L}=$ Lemma, $\mathrm{C}=$ Connected, $\mathrm{D}=$ Disconnected, ord $=$ Order, val $=$ Valency

Moreover, in each case the unique feasible G-orbit Ω on the flag set of \mathcal{D} and all self-paired G-orbitals Ψ on Ω compatible with Ω are determined, the adjacency relations of the corresponding G-flag graphs $\Gamma(\mathcal{D}, \Omega, \Psi)$ (see Definition 2.1) are given, and the connectedness of those G-flag graphs in (a), (b) and (c) is determined.

Information about \mathcal{D}, G and $\Gamma(\mathcal{D}, \Omega, \Psi)$ in Theorem B is summarized in Table 1.
Several interesting families of graphs (that is, graphs in Theorem A up to isomorphism) arise from our classification. In particular, we obtain several infinite families of connected G-flag graphs (see Definition 2.1) with $\operatorname{soc}(G)=\mathrm{Sz}(q), \operatorname{soc}(G)=\mathrm{R}(q)$, and G a certain 2transitive subgroup of $\mathrm{A} \Gamma \mathrm{L}\left(1, p^{d}\right)$, respectively. All these graphs as well as infinite families of disconnected graphs from (c) and the sporadic graphs from (d)-(e) in Theorem B will be given in the course of the proof of Theorem B; see Lemma 3.7, Lemma 3.12, Lemma 4.7, Cases 1-3 in Section 4.9 and Case 2 in Section 4.10, respectively.

Theorem A follows from Theorem B and Corollary 2.3. So we will prove Theorem B only. In Sections 2.1 and 2.2 we will set up notation and introduce the flag graph construction, respectively. Section 2.3 gives a few basic results on the flag graph construction that will be used later, and Section 2.4 outlines our method for the proof of Theorem B.

Since the group G in Theorem B is 2-transitive, it is almost simple or affine, and our proof in these two cases will be given in Sections 3 and 4 respectively, by using the classification of finite 2 -transitive groups.

2 Preliminaries

2.1 Notation and definitions

The reader is referred to [10], [1] and [27] for notation and terminology on permutation groups, block designs and finite geometries, respectively. Unless stated otherwise, all designs in the paper are assumed to have no repeated blocks.

Let G be a group acting on a set Ω. That is, for any $\alpha \in \Omega$ and $g \in G$ there corresponds a point in Ω denoted by α^{g}, such that $\alpha^{1 G}=\alpha$ and $\left(\alpha^{g}\right)^{h}=\alpha^{g h}$ for any $\alpha \in \Omega$ and $g, h \in G$, where 1_{G} is the identity element of G. Let P_{i} be a point or subset of Ω for $i=1,2, \ldots, n$, where $n \geqslant 1$. Define $\left(P_{1}, P_{2}, \ldots, P_{n}\right)^{g}:=\left(P_{1}^{g}, P_{2}^{g}, \ldots, P_{n}^{g}\right)$ for $g \in G$, where $P_{i}^{g}:=\left\{\alpha^{g}: \alpha \in P_{i}\right\}$ if P_{i} is a subset of Ω. Let $P_{i}^{G}:=\left\{P_{i}^{g}: g \in G\right\}$. In particular, α^{G} is the G-orbit on Ω containing α. Define $G_{P_{1}, P_{2}, \ldots, P_{n}}:=\left\{g \in G: P_{i}^{g}=P_{i}, i=1, \ldots, n\right\} \leqslant G$. In particular, if α is a point and P a subset of Ω, then G_{α} is the stabiliser of α in G, G_{P} is the setwise stabiliser of P in G, and $G_{\alpha, P}$ is the setwise stabiliser of P in G_{α}. The natural action of $\operatorname{Sym}(\Omega)$ on Ω is defined as $\alpha^{g}:=g(\alpha)$ for $\alpha \in \Omega$ and $g \in \operatorname{Sym}(\Omega)$.

Let G and H be groups acting on Ω and Δ, respectively. These two actions are said to be permutation isomorphic if there exist a bijection $\rho: \Omega \rightarrow \Delta$ and an isomorphism $\eta: G \rightarrow H$ such that $\rho\left(\alpha^{g}\right)=(\rho(\alpha))^{\eta(g)}$ for $\alpha \in \Omega$ and $g \in G$. If in addition $G=H$ and η is the identity automorphism of G, then these two actions are said to be permutation equivalent. It is known that if $\varphi: G \rightarrow \operatorname{Sym}(\Omega)$ and $\psi: H \rightarrow \operatorname{Sym}(\Omega)$ are monomorphisms, then G and H are permutation isomorphic if and only if $\varphi(G)$ and $\psi(H)$ are conjugate in $\operatorname{Sym}(\Omega)$. Let Γ and Σ be G-symmetric graphs. If there exists a graph isomorphism $\rho: V(\Gamma) \rightarrow V(\Sigma)$ such that the actions of G on $V(\Gamma)$ and $V(\Sigma)$ are permutation equivalent with respect to ρ, then Γ and Σ are said to be G-isomorphic with respect to the G isomorphism ρ, denoted by $\Gamma \cong_{G} \Sigma$.

2.2 Flag graphs

Let \mathcal{D} be a 1 -design with point set V. We identify each block L of \mathcal{D} with the subset of V consisting of the points incident with L. Let Ω be a subset of (point-block) flags of \mathcal{D}, and let $\Psi \subseteq \Omega \times \Omega$. If Ψ is self-paired, that is, $((\sigma, L),(\tau, N)) \in \Psi$ implies $((\tau, N),(\sigma, L)) \in \Psi$, then we define [33] the flag graph of \mathcal{D} with respect to (Ω, Ψ), denoted by $\Gamma(\mathcal{D}, \Omega, \Psi)$, to be the graph with vertex set Ω in which two "vertices" $(\sigma, L),(\tau, N) \in \Omega$ are adjacent if and only if $((\sigma, L),(\tau, N)) \in \Psi$. Given a point σ of \mathcal{D}, denote by $\Omega(\sigma)$ the set of flags of Ω with point entry σ. If Ω is a G-orbit on the flags of \mathcal{D}, for some group G of automorphisms of \mathcal{D}, then $\Omega(\sigma)$ is a G_{σ}-orbit on the flags of \mathcal{D} with point entry σ. In this case $\Gamma(\mathcal{D}, \Omega, \Psi)$ is G-vertex-transitive and its vertex set Ω admits a natural G-invariant partition, namely,

$$
\mathcal{B}(\Omega):=\{\Omega(\sigma): \sigma \in V\} .
$$

If in addition Ψ is a G-orbit on $\Omega \times \Omega$ (under the induced action), then $\Gamma(\mathcal{D}, \Omega, \Psi)$ is G-symmetric. Obviously, for a flag (σ, L) of $\mathcal{D}, G_{\sigma, L}$ is the stabiliser of (σ, L) in G.

Definition 2.1. ([33]) Let \mathcal{D} be a 1 -design that admits a point- and block-transitive group G of automorphisms. Let σ be a point of \mathcal{D}. A G-orbit Ω on the set of flags of \mathcal{D} is said to be feasible if the following conditions are satisfied:
(a) $|\Omega(\sigma)| \geqslant 3$;
(b) $L \cap N=\{\sigma\}$, for $\operatorname{distinct}(\sigma, L),(\sigma, N) \in \Omega(\sigma)$;
(c) $G_{\sigma, L}$ is transitive on $L \backslash\{\sigma\}$, for $(\sigma, L) \in \Omega$; and
(d) $G_{\sigma, \tau}$ is transitive on $\Omega(\sigma) \backslash\{(\sigma, L)\}$, for $(\sigma, L) \in \Omega$ and $\tau \in L \backslash\{\sigma\}$.

Denote

$$
\begin{align*}
& \mathrm{F}(\mathcal{D}, \Omega):=\{((\sigma, L),(\tau, N)) \in \Omega \times \Omega: \sigma \notin N, \tau \notin L, \\
& \left.\quad \text { and } \sigma, \tau \in L^{\prime} \cap N^{\prime} \text { for some }\left(\sigma, L^{\prime}\right),\left(\tau, N^{\prime}\right) \in \Omega\right\} . \tag{1}
\end{align*}
$$

If Ω is a feasible G-orbit on the set of flags of \mathcal{D} and Ψ a self-paired G-orbit on $\mathrm{F}(\mathcal{D}, \Omega)$, then Ψ is said to be compatible with Ω and $\Gamma(\mathcal{D}, \Omega, \Psi)$ is called a G-flag graph of \mathcal{D}.

Since G is transitive on the points of \mathcal{D}, the validity of (a)-(d) above does not depend on the choice of σ. Note that $\mathrm{F}(\mathcal{D}, \Omega)$ is G-invariant, and is non-empty if \mathcal{D} is $(G, 2)$ -point-transitive.

Using the notation in Section 1, we will assume that (Γ, G, \mathcal{B}) is a triple such that Γ is an almost multicover of $\Gamma_{\mathcal{B}}$ with $v=k+1 \geqslant 3$. Then, for each $\alpha \in V(\Gamma), B(\alpha) \backslash\{\alpha\}$ appears m times as a block of $\mathcal{D}(B(\alpha))$, where m is the multiplicity of $\mathcal{D}(B(\alpha))$ as defined in Section 1. Set

$$
\mathcal{B}(\alpha):=\{C \in \mathcal{B}: \Gamma(C) \cap B(\alpha)=B(\alpha) \backslash\{\alpha\}\}
$$

so that $|\mathcal{B}(\alpha)|=m$. Define Γ^{\prime} to be the graph with the same vertices as Γ in which α and β are adjacent if and only if $B(\alpha) \in \mathcal{B}(\beta)$ and $B(\beta) \in \mathcal{B}(\alpha)$. It was proved in [21, Proposition 3] that Γ^{\prime} is a G-symmetric graph. One can check that for each $B \in \mathcal{B}$, $\mathbf{B}(B):=\{\mathcal{B}(\alpha): \alpha \in B\}$ is a G_{B}-invariant partition of $\Gamma_{\mathcal{B}}(B)$, and hence G_{B} induces an action on $\mathbf{B}(B)$. Set

$$
\mathcal{L}(\alpha):=\{B(\alpha)\} \cup \mathcal{B}(\alpha)
$$

for each $\alpha \in V(\Gamma)$. Denote by \mathbf{L} the set of all $\mathcal{L}(\alpha), \alpha \in V(\Gamma)$, with repeated ones identified. Then the action of G on \mathcal{B} induces a natural action on \mathbf{L} defined by $(\mathcal{L}(\alpha))^{g}:=$ $\mathcal{L}\left(\alpha^{g}\right)$ for $\alpha \in V(\Gamma)$ and $g \in G$. The subset $\mathbf{L}(B):=\{\mathcal{L}(\alpha): \alpha \in B\}$ of \mathbf{L} is G_{B}-invariant under this action, and thus G_{B} induces an action on $\mathbf{L}(B)$. It can be verified that the action of G_{B} on B is permutation equivalent to the actions of G_{B} on $\mathbf{B}(B)$ and $\mathbf{L}(B)$ with respect to the bijections defined by $\alpha \mapsto \mathcal{B}(\alpha), \alpha \mapsto \mathcal{L}(\alpha), \alpha \in B$, respectively. Thus, $G_{B, \mathcal{B}(\alpha)}=G_{B, \mathcal{L}(\alpha)}=G_{\alpha}$, where $G_{B, \mathcal{B}(\alpha)}, G_{B, \mathcal{L}(\alpha)}$ are the setwise stabilisers of $\mathcal{B}(\alpha), \mathcal{L}(\alpha)$ in G_{B}, respectively. Define [33]

$$
\mathcal{D}(\Gamma, \mathcal{B}):=(\mathcal{B}, \mathbf{L})
$$

to be the incidence structure with point set \mathcal{B} and block set \mathbf{L} in which a "point" B is incident with a "block" $\mathcal{L}(\alpha)$ if and only if $B \in \mathcal{L}(\alpha)$. The flags of $\mathcal{D}(\Gamma, \mathcal{B})$ of the form $(B(\alpha), \mathcal{L}(\alpha))$ are pairwise distinct, and we define

$$
\Omega(\Gamma, \mathcal{B}):=\{(B(\alpha), \mathcal{L}(\alpha)): \alpha \in V(\Gamma)\}
$$

to be the set of all such flags. Then by [33, Lemma 2.1(c), Lemma 2.2], $\Omega(\Gamma, \mathcal{B})$ is a feasible G-orbit on the set of flags of $\mathcal{D}(\Gamma, \mathcal{B})$.

The following is a slight extension of [33, Theorem 1.1], the only difference being the specification of the parameters of \mathcal{D} that can be easily worked out by using [33, Lemma $2.1(\mathrm{~d})]$ and a similar argument as in the proof of [32, Theorem 4.3].

Theorem 2.2. Suppose that Γ is a G-symmetric graph admitting a nontrivial G-invariant partition \mathcal{B} such that $v=k+1 \geqslant 3$. Then $\Gamma \cong{ }_{G} \Gamma(\mathcal{D}, \Omega, \Psi)$ for a certain G-point-transitive and G-block-transitive 1-design \mathcal{D} with point set \mathcal{B} and block size $m+1$, a certain feasible G-orbit Ω on the flags of \mathcal{D}, and a certain self-paired G-orbit Ψ on $\operatorname{F}(\mathcal{D}, \Omega)$, where m is the multiplicity of $\mathcal{D}(B)$. Moreover, \mathcal{D} is either a $1-(|\mathcal{B}|, m+1, v)$ design or a 1$(|\mathcal{B}|, m+1,(m+1) v)$ design.

Conversely, for any G-point-transitive and G-block-transitive 1-design \mathcal{D} with block size $m+1$, any feasible G-orbit Ω on the flags of \mathcal{D}, and any self-paired G-orbit Ψ on $\mathrm{F}(\mathcal{D}, \Omega)$, the graph $\Gamma=\Gamma(\mathcal{D}, \Omega, \Psi)$, group G and partition $\mathcal{B}=\mathcal{B}(\Omega)$ satisfy all the conditions above. Moreover, the multiplicity of the 1-design $\mathcal{D}(B)($ where $B \in \mathcal{B})$ is equal to m.

As noted in [33], in both parts of this theorem, G is faithful on the vertices of Γ if and only if it is faithful on the points of \mathcal{D}. In the first part of the theorem, we have $\mathcal{D}=\mathcal{D}(\Gamma, \mathcal{B}), \Omega=\Omega(\Gamma, \mathcal{B})$ and $\Psi=\{((B(\alpha), \mathcal{L}(\alpha)),(B(\beta), \mathcal{L}(\beta))):(\alpha, \beta) \in \operatorname{Arc}(\Gamma)\}$, where $\operatorname{Arc}(\Gamma)$ is the set of arcs of Γ.

In the case when in addition $\Gamma_{\mathcal{B}}$ is a complete graph, we have $\Gamma_{\mathcal{B}} \cong K_{m v+1}$ as $\operatorname{val}\left(\Gamma_{\mathcal{B}}\right)=$ $m v$ ([21, Theorem $5(\mathrm{a})])$. Since $\Gamma_{\mathcal{B}}$ is G-symmetric, this occurs precisely when G is 2 -transitive on \mathcal{B}. Hence in this case $\mathcal{D}(\Gamma, \mathcal{B})$ is a $(G, 2)$-point-transitive and G-blocktransitive $2-(m v+1, m+1, \lambda)$ design for some integer $\lambda \geqslant 1$. Conversely, if \mathcal{D} is a $(G, 2)$-point-transitive and G-block-transitive $2-(m v+1, m+1, \lambda)$ design, then for any G-flag graph $\Gamma=\Gamma(\mathcal{D}, \Omega, \Psi)$ of \mathcal{D}, we have $\Gamma_{\mathcal{B}(\Omega)} \cong K_{m v+1}$. Thus Theorem 2.2 has the following consequence, which is a slight extension of [33, Corollary 2.6].

Corollary 2.3. Let $v \geqslant 3$ and $m \geqslant 1$ be integers, and let G be a group. Then the following statements are equivalent.
(a) Γ is a G-symmetric graph admitting a nontrivial G-invariant partition \mathcal{B} of block size v such that $\mathcal{D}(B)$ has block size $v-1$ and $\Gamma_{\mathcal{B}} \cong K_{m v+1}$.
(b) $\Gamma \cong{ }_{G} \Gamma(\mathcal{D}, \Omega, \Psi)$, for a $(G, 2)$-point-transitive and G-block-transitive 2-($m v+1, m+$ $1, \lambda$) design \mathcal{D}, a feasible G-orbit Ω on the flags of \mathcal{D}, and a self-paired G-orbit Ψ on $\mathrm{F}(\mathcal{D}, \Omega)$.

Moreover, either $\lambda=1$ or $\lambda=m+1$, and the set of points of \mathcal{D} other than a fixed point σ admits a G_{σ}-invariant partition of block size m, namely, $\{L \backslash\{\sigma\}:(\sigma, L) \in \Omega\}$. In particular, \mathcal{D} is not $(G, 3)$-point-transitive when $m \geqslant 2$.

As in Theorem 2.2, the integer m above is equal to the multiplicity of $\mathcal{D}(B)$, and G is faithful on $V(\Gamma)$ if and only if it is faithful on the points of \mathcal{D}. The statements in the last paragraph of Corollary 2.3 follow from Theorem 2.2 and basic relations [1, 2.10, Chapter I] among parameters of a 2 -design (and also from [32, Corollary 4.4] since ($\Gamma^{\prime}, G, \mathcal{D}$) satisfies all conditions of [32, Corollary 4.4]). As mentioned earlier, the G-symmetric graphs Γ in Corollary 2.3 have been classified when $\lambda=1$.

In the rest of this paper, we will classify all graphs in part (a) of Corollary 2.3 by classifying all $\Gamma(\mathcal{D}, \Omega, \Psi)$ with $\lambda=m+1>2$ in part (b), thus proving Theorems A and B.

2.3 Orbits and feasible orbits on the set of flags

In this section we assume that \mathcal{D} is a $(G, 2)$-point-transitive and G-block-transitive 2 $(|V|, m+1, \lambda)$ design with point set V.

Let $\sigma, \tau \in V$ be distinct points. Denote by $L_{1}, \ldots, L_{\lambda}$ the λ blocks of \mathcal{D} containing σ and τ. Since $\sigma, \tau \in L_{i}$ for each i, any G-orbit on the flag set of \mathcal{D} satisfying (b) in Definition 2.1 contains at most one flag $\left(\sigma, L_{i}\right)$ for some $i=1,2, \ldots, \lambda$. Denote

$$
\Omega_{i}:=\left(\sigma, L_{i}\right)^{G}, \quad i=1,2, \ldots, \lambda .
$$

Proposition 2.4. $\Omega_{1}, \ldots, \Omega_{\lambda}$ are all possible G-orbits on the flag set of \mathcal{D} (possibly with $\Omega_{i}=\Omega_{j}$ for distinct i and j).

Proof. In fact, let (ξ, N) be any flag of \mathcal{D} and $\eta \in N \backslash\{\xi\}$. Since G is 2-transitive on V, there exists $g \in G$ such that $(\xi, \eta)^{g}=(\sigma, \tau)$. Since $(\xi, N)^{g}=\left(\sigma, N^{g}\right)$ and $\sigma, \tau=\eta^{g} \in N^{g}$, we have $N^{g}=L_{i}$ for some i and hence $(\xi, N)^{G}=\left(\sigma, L_{i}\right)^{G}$.

Proposition 2.5. If G_{L} is transitive on L for some block L of \mathcal{D}, then G is transitive on the flag set of \mathcal{D} (that is, $\Omega_{1}=\cdots=\Omega_{\lambda}$ is the flag set of \mathcal{D}). If in addition the flag set of \mathcal{D} satisfies (b) in Definition 2.1, then $\lambda=1$.

Proof. Suppose that G_{L} is transitive on L for some block L of \mathcal{D}. Let N be any block of \mathcal{D}. Then G_{N} is transitive on N and there exists $g \in G$ such that $\left(\sigma^{g}, N\right)=\left(\sigma, L_{1}\right)^{g} \in \Omega_{1}$ by the G-block-transitivity of \mathcal{D}. Hence $(\eta, N) \in \Omega_{1}$ for any $\eta \in N$, which implies that G is transitive on the set of flags of \mathcal{D}. Consequently, if in addition the flag set Ω_{1} of \mathcal{D} satisfies (b) in Definition 2.1, then we must have $\lambda=1$.

Proposition 2.6. If there exists a G-orbit $\Omega=(\xi, L)^{G}$ on the flag set of \mathcal{D} satisfying (b) and (c) in Definition 2.1 and G_{L} is not transitive on L, then $\lambda=m+1$.

Proof. By (b) in Definition 2.1 we have $|V|=m v+1$ for some integer v. Let η be a fixed point of V. For each $\pi \in V \backslash\{\eta\}$, by (b) in Definition 2.1 there is only one flag in $\Omega(\pi)$ whose block entry contains η.

On the other hand, if there are two distinct flags $\left(\tau_{1}, M\right),\left(\tau_{2}, M\right)$ in Ω for some $M \in L^{G}$, then there is some $g \in G$ such that $\left(\tau_{1}, M\right)=\left(\tau_{2}, M\right)^{g}$. Thus $g \in G_{M}$ and $\tau_{1}=$ τ_{2}^{g}. Since Ω satisfies (c) in Definition 2.1, G_{M} is transitive on M, which contradicts our assumption. Hence the block entries of the flags in $\Omega(\eta)$ and the block entries containing η of the flags in $\Omega(\pi)$ with $\pi \in V \backslash\{\eta\}$ are pairwise distinct, and there are $|\Omega(\eta)|+(|V|-1)=$ $v+m v=(m+1) v$ blocks of \mathcal{D} containing η. By the relations between parameters of the 2 -design \mathcal{D}, we get $\lambda=m+1$.

Proposition 2.7. If $m>1$, then there is at most one G-orbit on the flag set of \mathcal{D} that satisfies (b) and (c) in Definition 2.1.

Proof. Suppose $\Omega_{i} \neq \Omega_{j}$ and each of them satisfies (b) and (c) in Definition 2.1. Since \mathcal{D} is G-block-transitive, there exists a point ξ of \mathcal{D} such that $\left(\xi, L_{j}\right) \in \Omega_{i}$. The assumption $\Omega_{i} \neq \Omega_{j}$ implies $\sigma \neq \xi$, and by (c) in Definition 2.1 we obtain $G_{L_{j}}=G_{\xi, L_{j}} \leqslant G_{\xi}$ (for otherwise $G_{L_{j}}$ is transitive on L_{j} and thus $\Omega_{i}=\Omega_{j}$ by Proposition 2.5). Since $\xi \in L_{j} \backslash\{\sigma\}$, $G_{\sigma, L_{j}} \leqslant G_{L_{j}} \leqslant G_{\xi}$ and $\left|L_{j}\right|=m+1 \geqslant 3, G_{\sigma, L_{j}}$ cannot be transitive on $L_{j} \backslash\{\sigma\}$, which contradicts the assumption that Ω_{j} satisfies (c) in Definition 2.1.

The results above imply the following:
Lemma 2.8. Let \mathcal{D} be a ($G, 2$)-point-transitive and G-block-transitive 2-($|V|, m+1, \lambda)$ design with point set V and $m>1$. Then there is at most one feasible G-orbit on the flag set of \mathcal{D}. Moreover, if such an orbit exists, say, $\Omega=(\xi, L)^{G}$, then either (a) G_{L} is transitive on L (or equivalently $G_{L} \nless G_{\xi}$), $\lambda=1$, and Ω is the set of all flags of \mathcal{D}; or (b) G_{L} is not transitive on L (or equivalently $G_{L} \leqslant G_{\xi}$) and $\lambda=m+1$.

The following result enables us to check whether a G-orbit on the flag set of \mathcal{D} is feasible in another way.

Lemma 2.9. Suppose that \mathcal{D} is a $(G, 2)$-point-transitive and G-block-transitive 2 - $(|V|, m+$ $1, \lambda)$ design with point set V and $m>1$. Let $\Omega=(\sigma, L)^{G}$ be a G-orbit on the flag set of \mathcal{D}. Then Ω is feasible if and only if the following hold:
(a) $|\Omega(\sigma)| \geqslant 3$;
(b*) $L \backslash\{\sigma\}$ is an imprimitive block for the action of G_{σ} on $V \backslash\{\sigma\}$; and
(d*) $G_{\sigma, L}$ is transitive on $V \backslash L$.
Proof. Since G is 2-transitive on V, G_{σ} is transitive on $V \backslash\{\sigma\}$. Suppose Ω satisfies (b) in Definition 2.1. If $(L \backslash\{\sigma\})^{g} \cap(L \backslash\{\sigma\}) \neq \emptyset$ for some $g \in G_{\sigma}$, then $\left(L^{g} \cap L\right) \backslash\{\sigma\} \neq \emptyset$ and hence $L^{g}=L$ by (b). Therefore, (b) in Definition 2.1 implies (b^{*}). The converse can be easily seen, and so (b) in Definition 2.1 is equivalent to (b^{*}). We can see that (b^{*}) implies (c) in Definition 2.1 as $G_{\sigma, L}=\left(G_{\sigma}\right)_{L \backslash\{\sigma\}}$.

Now suppose that Ω satisfies (a) and (b) in Definition 2.1 so that it also satisfies (b^{*}) (we have $|V|=m v+1$ for some integer v). We aim to prove that (d) in Definition 2.1 is equivalent to (d*). Define $\mathcal{P}:=\{N \backslash\{\sigma\}:(\sigma, N) \in \Omega\}=\left\{L^{g} \backslash\{\sigma\}: g \in G_{\sigma}\right\}$ and $P:=L \backslash$ $\{\sigma\}$ so that $G_{\sigma, L}=G_{\sigma, P}$. By $\left(\mathrm{b}^{*}\right), G_{\sigma, \eta} \leqslant G_{\sigma, L}$ for $\eta \in P,\left|G_{\sigma, P}\right|=|P|\left|G_{\sigma, \eta}\right|=m\left|G_{\sigma, \eta}\right|$ and $\left|L^{G_{\sigma}}\right|=|\mathcal{P}|=v$. We then have: (d) in Definition 2.1 holds $\Leftrightarrow G_{\sigma, \eta}$ is transitive on $\mathcal{P} \backslash\{P\}$ \Leftrightarrow for any $Q \in \mathcal{P} \backslash\{P\}$ (so $\eta \notin Q$), v-1=|Q$Q^{G_{\sigma, \eta}}\left|=\left|G_{\sigma, \eta}\right| /\left|G_{\sigma, \eta, Q}\right|=\left|G_{\sigma, P}\right| /\left(m\left|G_{\sigma, Q, \eta}\right|\right)\right.$ $\Leftrightarrow\left|G_{\sigma, P}\right|=m(v-1)\left|G_{\sigma, Q, \eta}\right|=m(v-1)\left|G_{\sigma, Q}\right| /\left|\eta^{G_{\sigma, Q}}\right|=m(v-1)\left|G_{\sigma, P}\right| /\left|\eta^{G_{\sigma, Q}}\right|$ (as the transitivity of G_{σ} on \mathcal{P} implies $\left.\left|G_{\sigma, P}\right|=\left|G_{\sigma, Q}\right|\right) \Leftrightarrow\left|\eta^{G_{\sigma, Q}}\right|=m(v-1)=|(V \backslash\{\sigma\}) \backslash Q|$ $\Leftrightarrow G_{\sigma, Q}$ is transitive on $V \backslash(\{\sigma\} \cup Q) \Leftrightarrow G_{\sigma, L}$ is transitive on $V \backslash L$ (as G_{σ} is transitive on $\mathcal{P}) \Leftrightarrow\left(\mathrm{d}^{*}\right)$ holds.

Lemma 2.10. Suppose that \mathcal{D} is a $(G, 2)$-point-transitive and G-block-transitive 2-($|V|$, $m+1, \lambda)$ design with point set V and $m>1$ such that there is a feasible G-orbit $\Omega=$ $(\sigma, L)^{G}$ on the flags of \mathcal{D}. Let $P:=L \backslash\{\sigma\}$. Then the following hold:
(a) for any subgroup H of G_{σ} transitive on $V \backslash\{\sigma\}, P$ is an imprimitive block of H on $V \backslash\{\sigma\}$ and P is the union of some H_{η}-orbits (including the H_{η}-orbit $\{\eta\}$ of length 1), where $\eta \in P$;
(b) G_{σ} is 2-transitive on $\mathcal{P}:=\{N \backslash\{\sigma\}:(\sigma, N) \in \Omega\}$ and $G_{\sigma, L}=G_{\sigma, P}$ is a maximal subgroup of G_{σ}; moreover, $v:=\left|G_{\sigma}: G_{\sigma, L}\right|=|\mathcal{P}|, v-1$ divides $\left|G_{\sigma}\right| /(|V|-1)$, and $G_{\sigma, L}$ is self-normalizing in G_{σ}.

Proof. (a) The first statement follows from Lemma $2.9\left(\mathrm{~b}^{*}\right)$ and the assumption that $H \leqslant G_{\sigma}$, and the second statement follows from the first one and the fact that H_{η} stabilises P as $\eta \in P$.
(b) Since G_{σ} is transitive on \mathcal{P} and $G_{\sigma, L}\left(\geqslant G_{\sigma, \eta}\right.$ for $\left.\eta \in P\right)$ is transitive on $\mathcal{P} \backslash\{P\}$, G_{σ} acts 2-transitively on \mathcal{P}. In addition, since $G_{\sigma, L}$ contains the kernel K of the action of G_{σ} on \mathcal{P}, the point stabiliser $G_{\sigma, L} / K$ is maximal in the primitive permutation group G_{σ} / K on \mathcal{P}, and thus $G_{\sigma, L}$ is maximal in G_{σ}. If $G_{\sigma, L}$ is not self-normalizing in G_{σ}, then $G_{\sigma, L}$ is a normal subgroup of G_{σ}, which implies $G_{\sigma, L} \leqslant K$ and so $G_{\sigma, L}$ is not transitive on $\mathcal{P} \backslash\{P\}$ as $|\mathcal{P} \backslash\{P\}| \geqslant 2$, a contradiction. Hence $G_{\sigma, P}$ is self-normalizing in G_{σ} and $v=\left|\left\{\left(G_{\sigma, P}\right)^{g}: g \in G_{\sigma}\right\}\right|=\left|\left\{G_{\sigma, Q}: Q \in \mathcal{P}\right\}\right|$. Let $Q \in \mathcal{P} \backslash\{P\}$. By Lemma 2.9 $\left(\mathrm{d}^{*}\right), G_{\sigma, Q} \neq G_{\sigma, P}$ and thus $v=|\mathcal{P}|$. Since $G_{\sigma, \eta}$ is transitive on $\mathcal{P} \backslash\{P\}$, where $\eta \in P$, $v-1=|\mathcal{P} \backslash\{P\}|$ is a divisor of $\left|G_{\sigma, \eta}\right|=\left|G_{\sigma}\right| /(|V|-1)$.

2.4 Overview of the proof of Theorem B

We will use the set-up below in the next two sections. Without loss of generality we may assume that the group G in Theorem B is faithful on V. Thus in the rest of this paper we assume that $G \leqslant \operatorname{Sym}(V)$ is 2-transitive on V with degree $u:=|V|$. Then the socle of $G, \operatorname{soc}(G)$, is either a nonabelian simple group (almost simple case) or an abelian group (affine case). We will deal with these two cases in Sections 3 and 4, respectively.

Let σ be a point in V. Using Lemma 2.10, we will search for an imprimitive block of G_{σ} on $V \backslash\{\sigma\}$ by using the following approaches.
(i) Suppose H is a subgroup of G_{σ} that is transitive on $V \backslash\{\sigma\}$. For each imprimitive block P of H on $V \backslash\{\sigma\}$ satisfying $(|V|-1) /|P| \geqslant 3$ and $|P| \geqslant 2$, we need to check that P is also an imprimitive block of G_{σ} on $V \backslash\{\sigma\}$. By Lemma 2.10(a), P is the union of some H_{τ}-orbits on $V \backslash\{\sigma\}$, where $\tau \in P$.
(ii) Suppose H is a subgroup of G_{σ}. If there is a point $\tau \in V \backslash\{\sigma\}$ such that $H_{\tau}=G_{\sigma, \tau}$, then $P:=\tau^{H}$ is an imprimitive block of G_{σ} on $V \backslash\{\sigma\}$ by [10, Theorem 1.5A].

For each imprimitive block P of G_{σ} on $V \backslash\{\sigma\}$ from (i) or (ii), define

$$
\mathcal{D}:=\left(V, L^{G}\right), \text { where } L:=P \cup\{\sigma\},
$$

to be the incidence structure with point set V and block set L^{G}. Then $\sigma(\in V)$ and N $\left(\in L^{G}\right)$ are incident if and only if $\sigma \in N$. By [1, Proposition III.4.6], \mathcal{D} is a $2-(|V|,|L|, \lambda)$ design admitting G as an automorphism group. By Proposition 2.7, the only possible feasible G-orbit on the flag set of \mathcal{D} is $\Omega:=(\sigma, L)^{G}$. We will test whether Ω is feasible with the help of Lemma 2.9. If Ω is indeed feasible, then we will move on to determine all self-paired G-orbits on $\mathrm{F}(\mathcal{D}, \Omega)$ (see (1)). Suppose Ψ is a self-paired G-orbit on $\mathrm{F}(\mathcal{D}, \Omega)$. Then by the definition of $\Gamma(\mathcal{D}, \Omega, \Psi)$, for each $\eta \in V \backslash L,(\sigma, L)$ has a neighbour in $\Omega(\eta)$, and (σ, L) has no neighbour in $\Omega(\xi)$ when $\xi \in L$. Hence the valency of $\Gamma(\mathcal{D}, \Omega, \Psi)$ is (|V|-|L|)n, where n is the valency of $\Gamma[\Omega(\delta), \Omega(\pi)]$ for distinct $\delta, \pi \in V$.

In order to obtain the connectedness of $\Gamma(\mathcal{D}, \Omega, \Psi)$, we need the following construction. Given a group G, a subgroup T of G, and an element $g \in G$ with $g \notin N_{G}(T)$ and $g^{2} \in T \cap T^{g}$, define the coset graph $\operatorname{Cos}(G, T, T g T)$ to be the graph with vertex set $[G: T]:=\{T x: x \in G\}$ and edge set $\left\{\{T x, T y\}: x y^{-1} \in T g T\right\}$. It is well known (see e.g. [24]) that $\operatorname{Cos}(G, T, T g T)$ is a G-symmetric graph with G acting on $[G: T]$ by right multiplication, and $\operatorname{Cos}(G, T, T g T)$ is connected if and only if $\langle T, g\rangle=G$. Conversely, any G-symmetric graph Γ is G-isomorphic to $\operatorname{Cos}(G, T, T g T$) (see e.g. [24]), where g is an element of G interchanging two adjacent vertices α and β of Γ and $T:=G_{\alpha}$, and the required G-isomorphism is given by $V(\Gamma) \rightarrow[G: T], \gamma \mapsto T x$, with $x \in G$ satisfying $\alpha^{x}=\gamma$. Based on this one can prove the following result.

Lemma 2.11. Let $((\sigma, L),(\tau, N)) \in \Psi$ and $T:=G_{\sigma, L}$. Let $g \in G$ interchange (σ, L) and (τ, N), and set $H:=\langle T, g\rangle$. Then $\rho: \Omega \rightarrow[G: T], \gamma \mapsto T x$, with $x \in G$ satisfying $(\sigma, L)^{x}=\gamma$, defines a G-isomorphism from $\Gamma(\mathcal{D}, \Omega, \Psi)$ to $\operatorname{Cos}(G, T, T g T)$, under which the preimage of the subgraph $\operatorname{Cos}(H, T, T g T)$ of $\operatorname{Cos}(G, T, T g T)$ is the connected component of $\Gamma(\mathcal{D}, \Omega, \Psi)$ containing the vertex (σ, L).

By Lemma 2.8, the parameter λ of \mathcal{D} is equal to 1 or $|P|+1$. We will repeatedly use the following result to exclude those \mathcal{D} with $\lambda=1$.

Lemma 2.12. ([23, Theorem B]) Let G be a 2-transitive permutation group on a finite set V. Suppose that, for $\sigma \in V, G_{\sigma}$ has a system $\Sigma:=\left\{P_{1}, \ldots, P_{v}\right\}$ of blocks of imprimitivity in $V \backslash\{\sigma\}$, where $|\Sigma|=v>1$ and $\left|P_{i}\right|=m>1$. If $m<v$ and for $\tau \in P_{1}, G_{\sigma, \tau}$ is transitive on $\Sigma \backslash\left\{P_{1}\right\}$, then G is a group of automorphisms of a 2 -design with $\lambda=1$, the blocks of which are the images under G of the set $P_{1} \cup\{\sigma\}$.

3 Almost simple case

In this section we deal with the case when $G \leqslant \operatorname{Sym}(V)$ is 2-transitive on V of degree $u:=|V|$ with $\operatorname{soc}(G)$ a nonabelian simple group. Then $\operatorname{soc}(G)$ and u are as follows ([19], [5, p.196], [4]):
(i) $\operatorname{soc}(G)=A_{u}, u \geqslant 5$;
(ii) $\operatorname{soc}(G)=\operatorname{PSL}(d, q), d \geqslant 2, q$ is a prime power and $u=\left(q^{d}-1\right) /(q-1)$, where $(d, q) \neq$ $(2,2),(2,3)$;
(iii) $\operatorname{soc}(G)=\operatorname{PSU}(3, q), q \geqslant 3$ is a prime power and $u=q^{3}+1$;
(iv) $\operatorname{soc}(G)=\operatorname{Sz}(q), q=2^{2 e+1}>2$ and $u=q^{2}+1$;
(v) $\operatorname{soc}(G)=\mathrm{R}(q)^{\prime}, q=3^{2 e+1}$ and $u=q^{3}+1$;
(vi) $G=\operatorname{Sp}_{2 d}(2), d \geqslant 3$ and $u=2^{2 d-1} \pm 2^{d-1}$;
(vii) $G=\operatorname{PSL}(2,11), u=11$;
(viii) $\operatorname{soc}(G)=M_{u}, u=11,12,22,23,24$;
(ix) $G=M_{11}, u=12$;
(x) $G=A_{7}, u=15$;
(xi) $G=\mathrm{HS}, u=176$;
(xii) $G=\mathrm{Co}_{3}, u=276$.

We will show that, in all cases above except (iv) and (v), there is no 2-design as in Lemma 2.10 admitting G as a group of automorphisms, or there is such a $2-(u, m+1, \lambda)$ design but its parameter λ is equal to 1 .

In fact, in cases (i), (viii) and (ix), $\operatorname{soc}(G)$ is 3 -transitive and so a 2-design as in Lemma 2.10 does not exist. In case (x), $G_{\sigma, \tau}$ has orbit-lengths 1 and 12 on $V \backslash\{\sigma, \tau\}$ ([19]). If there exists a $2-(15, m+1, \lambda)$ design as in Lemma 2.10, then $\lambda=1$ by Lemma 2.12. In case (vii), $G_{\sigma, \tau}$ has orbit-lengths 3 and 6 on $V \backslash\{\sigma, \tau\}$ ([19]), and hence there is no 2-design as in Lemma 2.10. In case (xi), $G_{\sigma, \tau}$ has orbit-lengths 12, 72 and 90 on $V \backslash\{\sigma, \tau\}$ by [19], and similarly in case (xii), $G_{\sigma, \tau}$ has orbit-lengths 112 and 162 on $V \backslash\{\sigma, \tau\}$. Thus there is no 2-design as in Lemma 2.10 in these two cases.
 $(q-1) / 2$, and so a 2-design as in Lemma 2.10 does not exist. If $d \geqslant 3$, then $G_{\sigma, \tau}$ has orbit-lengths $q-1$ and $u-(q+1)$ on $V \backslash\{\sigma, \tau\}$, and so by Lemma 2.12 any $2-(u, m+1, \lambda)$ design as in Lemma 2.10 must have parameter $\lambda=1$.

In case (vi), G_{σ} acts on $V \backslash\{\sigma\}$ as $O^{ \pm}(2 d, 2)$ does on its singular vectors ([19]), and $G_{\sigma, \tau}$ has orbit-lengths $2\left(2^{d-1} \mp 1\right)\left(2^{d-2} \pm 1\right)$ and $2^{2 d-2}$ on $V \backslash\{\sigma, \tau\}$. Since the length of an orbit of $G_{\sigma, \tau}$ on $V \backslash\{\sigma, \tau\}$ plus 1 cannot divide $u-1$, a 2-design as in Lemma 2.10 does not exist.

$3.1 \operatorname{soc}(G)=\operatorname{PSU}(3, q), u=q^{3}+1, q \geqslant 3$ a prime power

We prove that a $2-(u, m+1, \lambda)$ design as in Lemma 2.10 with $\lambda>1$ does not exist in this case. We need the following lemma whose proof is straightforward and hence omitted.

Lemma 3.1. Suppose that $q \geqslant 3$ is a prime power with $3 \mid(q+1)$ and ℓ a nonnegative integer.
(a) If $\left(\ell\left(q^{2}-1\right) / 3+q\right) \mid q^{3}$, then $\ell=0$ or $3 q$;
(b) if $\left(\ell\left(q^{2}-1\right) / 3+1\right) \mid q^{3}$, then $\ell=0$ or 3 .

We take the advantage of the following permutation representation of $\operatorname{PSU}(3, q)$ (see [10, pp.248-249]). Denote by W the 3 -dimensional vector space over $\mathbb{F}_{q^{2}}$. The mapping $f: \xi \mapsto \xi^{q}$ is an automorphism of $\mathbb{F}_{q^{2}}$ and $f^{2}=1$. Let $w=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ and $z=\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ be arbitrary vectors in W. Using $\xi \mapsto \bar{\xi}=\xi^{q}$ to denote the automorphism of $\mathbb{F}_{q^{2}}$ of order 2 , we define a hermitian form $\varphi: W \times W \rightarrow \mathbb{F}_{q^{2}}, \varphi(w, z)=\xi_{1} \overline{\eta_{3}}+\xi_{2} \overline{\eta_{2}}+\xi_{3} \overline{\eta_{1}}$. It is straightforward to calculate that for this hermitian form the set of 1-dimensional isotropic subspaces is

$$
V=\{\langle(1,0,0)\rangle\} \cup\left\{\langle(\alpha, \beta, 1)\rangle: \alpha+\bar{\alpha}+\beta \bar{\beta}=0, \alpha, \beta \in \mathbb{F}_{q^{2}}\right\} .
$$

(A vector $w \in W$ is called isotropic if $\varphi(w, w)=0$.) Thus $|V|=q^{3}+1$.
Let

$$
t_{\alpha, \beta}:=\left[\begin{array}{ccc}
1 & -\bar{\beta} & \alpha \\
0 & 1 & \beta \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad h_{\gamma, \delta}:=\left[\begin{array}{ccc}
\gamma & 0 & 0 \\
0 & \delta & 0 \\
0 & 0 & \bar{\gamma}^{-1}
\end{array}\right] .
$$

If $\alpha, \beta, \gamma, \delta \in \mathbb{F}_{q^{2}}$ satisfy $\delta \bar{\delta}=1, \gamma \neq 0$ and $\alpha+\bar{\alpha}+\beta \bar{\beta}=0$, then they define elements of $\operatorname{PGU}(3, q)$, to which we give the same names. There are q^{3} matrices of type $t_{\alpha, \beta}$ and $\left(q^{2}-1\right)(q+1)$ of type $h_{\gamma, \delta}$. Let $e_{1}=(1,0,0)$ and $e_{3}=(0,0,1)$. Then the stabiliser $\operatorname{PGU}(3, q)_{\left\langle e_{1}\right\rangle}$ of the subspace spanned by e_{1} consists of the elements of the form $x=$ $h_{\gamma, \delta} t_{\alpha, \beta}$ (where $\delta \bar{\delta}=1, \gamma \neq 0, \alpha+\bar{\alpha}+\beta \bar{\beta}=0$). The stabiliser in $\operatorname{GU}(3, q)$ of two points $\left\langle e_{1}\right\rangle$ and $\left\langle e_{3}\right\rangle$ is $\operatorname{GU}(3, q)_{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle}=\left\{h_{\gamma, \delta}: \delta \bar{\delta}=1, \gamma \neq 0\right\}$. Obviously, $t_{\alpha, \beta} \in \operatorname{SU}(3, q)$, and $h_{\gamma, \delta} \in \operatorname{SU}(3, q)$ if and only if $\delta=\gamma^{q-1}$. Moreover, $h_{\gamma, \delta} \in \mathrm{SU}(3, q)$ is a scalar matrix if and only if $\gamma^{q-2}=1$.

In the rest of this section we set $J:=\operatorname{PSU}(3, q)$ and $Z:=V \backslash\left\{\left\langle e_{1}\right\rangle\right\}$.
Lemma 3.2. Let $\left\langle\left(\eta_{1}, \eta_{2}, 1\right)\right\rangle \in V \backslash\left\{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle\right\}$. Denote by Q the $J_{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle}$-orbit containing $\left\langle\left(\eta_{1}, \eta_{2}, 1\right)\right\rangle$. If $\eta_{2}=0$, then $|Q|=q-1$. If $\eta_{2} \neq 0$, then

$$
|Q|=\left|J_{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle}\right|=\left\{\begin{array}{l}
q^{2}-1, \quad \text { if } 3 \nmid(q+1), \tag{2}\\
\left(q^{2}-1\right) / 3, \quad \text { if } 3 \mid(q+1) .
\end{array}\right.
$$

Proof. The action of $J_{\left\langle e_{1}\right\rangle}$ on Z can be represented as follows:

$$
\left\langle\left(\xi_{1}, \xi_{2}, 1\right)\right\rangle^{t_{\alpha, \beta}}=\left\langle\left(\xi_{1}+\alpha-\bar{\beta} \xi_{2}, \xi_{2}+\beta, 1\right)\right\rangle,\left\langle\left(\xi_{1}, \xi_{2}, 1\right)\right\rangle^{h_{\gamma, \delta}}=\left\langle\left(\gamma \bar{\gamma} \xi_{1}, \delta \bar{\gamma} \xi_{2}, 1\right)\right\rangle .
$$

Since $\delta \bar{\delta}=1, \gamma \neq 0$ and $\alpha+\bar{\alpha}+\beta \bar{\beta}=0$, setting $a=(\gamma / \delta)^{q}$ and $g_{a}:=h_{\gamma, \delta}$, we can write

$$
\left\langle\left(\xi_{1}, \xi_{2}, 1\right)\right\rangle^{g_{a}}=\left\langle\left(a \bar{a} \xi_{1}, a \xi_{2}, 1\right)\right\rangle
$$

Hence $J_{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle}=\left\langle g_{a} \mid a=r^{2 q-1}, r \in \mathbb{F}_{q^{2}}^{\times}\right\rangle$(since $h_{\gamma, \delta} \in \operatorname{SU}(3, q)$ if and only if $\delta=\gamma^{q-1}$, we have $a=\gamma^{2 q-1}$), and

$$
\left\langle\left(a \bar{a} \eta_{1}, a \eta_{2}, 1\right)\right\rangle=\left\langle\left(b \bar{b} \eta_{1}, b \eta_{2}, 1\right)\right\rangle \Leftrightarrow\left\{\begin{array}{l}
a=b, \quad \text { if } \eta_{2} \neq 0, \\
a^{q+1}=b^{q+1}, \quad \text { if } \eta_{2}=0 .
\end{array}\right.
$$

Moreover, $|\{(\alpha, 0,1):(\alpha, 0,1) \in V\}|=q$ and each orbit of $J_{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle}$ on $V \backslash\left\{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle\right\}$ has length $q-1$ or at least $\left(q^{2}-1\right) / 3\left(\left[19\right.\right.$, p.69]). Therefore, if $\eta_{2}=0$, then $|Q|=q-1$; if $\eta_{2} \neq 0$, then $|Q|=\left|J_{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle}\right|$. Since $\operatorname{gcd}\left(2 q-1, q^{2}-1\right)=\operatorname{gcd}(q+1,3)$, in the latter case we obtain (2).

Now suppose P is an imprimitive block of $J_{\left\langle e_{1}\right\rangle}$ on Z containing $\left\langle e_{3}\right\rangle$ with $|P|>1$ and $|Z| /|P| \geqslant 3$. We know that $P \backslash\left\{\left\langle e_{3}\right\rangle\right\}$ is the union of some $J_{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle}$-orbits on $Z \backslash\left\{\left\langle e_{3}\right\rangle\right\}$. By Lemma 3.1, we have $|P|=q$ or $|P|=q^{2}$. By Lemma 2.12, we may assume $|P|=q^{2}$ in the following.

Denote the q solutions in $\mathbb{F}_{q^{2}}$ of the equation $x+\bar{x}=0$ by $\varepsilon_{0}=0, \varepsilon_{1}, \ldots, \varepsilon_{q-1}$. We know that $\left\langle\left(\varepsilon_{1}, 0,1\right)\right\rangle, \ldots,\left\langle\left(\varepsilon_{q-1}, 0,1\right)\right\rangle$ form a $J_{\left\langle e_{1}\right\rangle,\left\langle e_{3}\right\rangle}$-orbit on $Z \backslash\left\{\left\langle e_{3}\right\rangle\right\}$. By Lemma 3.1, $\left\langle\left(\varepsilon_{i}, 0,1\right)\right\rangle$ is not contained in P for $i>0$.

Now $\Sigma:=\left\{P^{g}: g \in J_{\left\langle e_{1}\right\rangle}\right\}$ is a system of blocks of $J_{\left\langle e_{1}\right\rangle}$ on Z with $|\Sigma|=q$, and $T:=\left\langle t_{\alpha, \beta} \mid \alpha+\bar{\alpha}+\beta \bar{\beta}=0\right\rangle$ is transitive on Σ. Actually T is a normal subgroup of $J_{\left\langle e_{1}\right\rangle}$ acting regularly on Z (see [10, p.249]). Hence the stabiliser of P in T has order q^{2}, that is, $\left|T_{P}\right|=q^{2}$. Let $t_{\alpha_{1}, \beta}, t_{\alpha_{2}, \beta} \in T_{P}$. Then $\langle(0,0,1)\rangle^{t_{\alpha_{1}, \beta}} t_{\alpha_{2}, \beta}^{1}=\left\langle\left(\alpha_{1}, \beta, 1\right)\right\rangle^{t_{-\alpha_{2}-\beta \bar{\beta},-\beta}}=$ $\left\langle\left(\alpha_{1}-\alpha_{2}, 0,1\right)\right\rangle \in P$. Since $\left\langle\left(\varepsilon_{i}, 0,1\right)\right\rangle$ is not contained in P for $i>0$, we have $\alpha_{1}=\alpha_{2}$ and $t_{\alpha_{1}, \beta}=t_{\alpha_{2}, \beta}$. Therefore,

$$
\begin{equation*}
\{\beta:\langle(\alpha, \beta, 1)\rangle \in P\}=\left\{\beta: t_{\alpha, \beta} \in T_{P}\right\}=\mathbb{F}_{q^{2}} . \tag{3}
\end{equation*}
$$

For any $\left\langle\left(\eta_{1}, \eta_{2}, 1\right)\right\rangle,\left\langle\left(\xi_{1}, \xi_{2}, 1\right)\right\rangle \in P, \eta_{2}, \xi_{2} \neq 0$, since by our assumption P is an imprimitive block of $J_{\left\langle e_{1}\right\rangle}$ on Z, both $t_{\eta_{1}, \eta_{2}}$ and $t_{\xi_{1}, \xi_{2}}$ fix P setwise. Thus

$$
\begin{aligned}
& \langle(0,0,1)\rangle^{t_{1}, \eta_{2} t_{1}, \xi_{2}}=\left\langle\left(\eta_{1}, \eta_{2}, 1\right)\right\rangle^{t_{\xi_{1}, \xi_{2}}}=\left\langle\left(\eta_{1}+\xi_{1}-\overline{\xi_{2}} \eta_{2}, \eta_{2}+\xi_{2}, 1\right)\right\rangle \in P, \\
& \langle(0,0,1)\rangle^{t_{1}, \xi_{2} t_{\eta_{1}, \eta_{2}}}=\left\langle\left(\xi_{1}, \xi_{2}, 1\right)\right\rangle^{t_{\eta_{1}, \eta_{2}}}=\left\langle\left(\xi_{1}+\eta_{1}-\overline{\eta_{2}} \xi_{2}, \xi_{2}+\eta_{2}, 1\right)\right\rangle \in P .
\end{aligned}
$$

Hence by (3) we have $\eta_{1}+\xi_{1}-\overline{\xi_{2}} \eta_{2}=\xi_{1}+\eta_{1}-\overline{\eta_{2}} \xi_{2}$, that is, $\left(\xi_{2} / \eta_{2}\right)^{q-1}=1$, which implies $\left(\xi_{2} / \eta_{2}\right) \in F_{0}:=\operatorname{Fix}_{f}\left(\mathbb{F}_{q^{2}}\right)$. Fix $\eta_{2}=1$. Then $\xi_{2} \in F_{0}$ and thus $\mathbb{F}_{q^{2}} \subseteq F_{0}$, a contradiction. Hence there is no $2-(u, m+1, \lambda)$ design as in Lemma 2.10 with $\lambda>1$ admitting G as a group of automorphisms with $\operatorname{soc}(G)=\operatorname{PSU}(3, q)$.

$3.2 \operatorname{soc}(G)=\mathrm{Sz}(q), q=2^{2 e+1}>2$ and $u=q^{2}+1$

We need the following two lemmas that can be easily proved.
Lemma 3.3. Suppose that ℓ and n are positive integers, and $q>1$ is a power of prime. If $(\ell(q-1)+1) \mid q^{n}$, then $\ell=\left(q^{i}-1\right) /(q-1)$ for some $i=1,2, \ldots, n$.

Lemma 3.4. Let \mathbb{F} be a field with characteristic $p>0$ and let $\kappa \in \mathbb{F}$. If $\kappa^{p^{a}}=\kappa=\kappa^{p^{b}}$ for some positive integers a and b, then $\kappa^{p^{\operatorname{scd}(a, b)}}=\kappa$.

We use the permutation representation of $\operatorname{Sz}(q)$ in [10, p.250]. The mapping $\sigma: \xi \mapsto$ $\xi^{2^{2+1}}$ is an automorphism of \mathbb{F}_{q} and σ^{2} is the Frobenius automorphism $\xi \mapsto \xi^{2}$. Define

$$
\begin{equation*}
V:=\left\{\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in \mathbb{F}_{q}^{3}: \eta_{3}=\eta_{1} \eta_{2}+\eta_{1}^{\sigma+2}+\eta_{2}^{\sigma}\right\} \cup\{\infty\} \tag{4}
\end{equation*}
$$

Thus $|V|=q^{2}+1$. For $\alpha, \beta, \kappa \in \mathbb{F}_{q}$ with $\kappa \neq 0$, define the following permutations of V fixing ∞ :

$$
\begin{aligned}
& t_{\alpha, \beta}:\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \mapsto\left(\eta_{1}+\alpha, \eta_{2}+\beta+\alpha^{\sigma} \eta_{1}, \mu\right), \\
& n_{\kappa}:\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \mapsto\left(\kappa \eta_{1}, \kappa^{\sigma+1} \eta_{2}, \kappa^{\sigma+2} \eta_{3}\right),
\end{aligned}
$$

where $\mu=\eta_{3}+\alpha \beta+\alpha^{\sigma+2}+\beta^{\sigma}+\alpha \eta_{2}+\alpha^{\sigma+1} \eta_{1}+\beta \eta_{1}$. Define the involution w fixing V by

$$
w:\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \leftrightarrow\left(\frac{\eta_{2}}{\eta_{3}}, \frac{\eta_{1}}{\eta_{3}}, \frac{1}{\eta_{3}}\right) \text { for } \eta_{3} \neq 0, \infty \leftrightarrow \mathbf{0}:=(0,0,0)
$$

The Suzuki group $\operatorname{Sz}(q)$ is the group generated by w and all $t_{\alpha, \beta}$ and n_{κ}. The stabiliser of ∞ is $\mathrm{Sz}(q)_{\infty}=\left\langle t_{\alpha, \beta}, n_{\kappa} \mid \alpha, \beta, \kappa \in \mathbb{F}_{q}, \kappa \neq 0\right\rangle$. The stabiliser of ∞ and $\mathbf{0}$ is the cyclic $\operatorname{group}\left\langle n_{\kappa} \mid \kappa \in \mathbb{F}_{q}, \kappa \neq 0\right\rangle$.

Lemma 3.5. Each orbit of $\mathrm{Sz}(q)_{\infty, \mathbf{0}}$ on $V \backslash\{\infty, \mathbf{0}\}$ has length $q-1$.
Proof. Since $\operatorname{gcd}\left(2^{e+1}+1,2^{2 e+1}-1\right)=1$ and \mathbb{F}_{q}^{\times}is a cyclic group of order $q-1=2^{2 e+1}-1$, the mapping $\mathbb{F}_{q}^{\times} \rightarrow \mathbb{F}_{q}^{\times}, z \mapsto z^{2^{e+1}+1}=z^{\sigma+1}$ is a group automorphism. Thus, if $\eta_{1} \neq 0$ or $\eta_{2} \neq 0$, then $\left(a \eta_{1}, a^{\sigma+1} \eta_{2}, a^{\sigma+2} \eta_{3}\right)=\left(b \eta_{1}, b^{\sigma+1} \eta_{2}, b^{\sigma+2} \eta_{3}\right) \Leftrightarrow a=b$. Therefore each orbit of $\mathrm{Sz}(q)_{\infty, \mathbf{0}}$ on $V \backslash\{\infty, \mathbf{0}\}$ has length $q-1$.

Lemma 3.6. Suppose that P is an imprimitive block of $\mathrm{Sz}(q)_{\infty}$ on $V \backslash\{\infty\}$ containing $\mathbf{0}$, and $1<|P|<q^{2}$. Then $P=\left\{\left(0, \eta, \eta^{\sigma}\right) \in V: \eta \in \mathbb{F}_{q}\right\}$ and $\operatorname{Sz}(q)_{\infty, P}=\left\langle t_{0, \xi}, n_{\kappa}\right| \kappa \in$ $\left.\mathbb{F}_{q}^{\times}, \xi \in \mathbb{F}_{q}\right\rangle$.

Proof. By Lemma 3.3 we can assume that $P \backslash\{\mathbf{0}\}$ is a $\operatorname{Sz}(q)_{\infty, \mathbf{0}}$-orbit on $V \backslash\{\infty, \mathbf{0}\}$. The elements of P have the form $\left(\kappa \eta_{1}, \kappa^{\sigma+1} \eta_{2}, \kappa^{\sigma+2} \eta_{3}\right)$, where $\kappa \in \mathbb{F}_{q}$ and $\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ is a fixed point in P. Suppose $P^{t_{\alpha, \beta}} \cap P \neq \emptyset$ for some $\alpha, \beta \in \mathbb{F}_{q}$, that is,

$$
\begin{equation*}
\left(\kappa_{1} \eta_{1}, \kappa_{1}^{\sigma+1} \eta_{2}, \kappa_{1}^{\sigma+2} \eta_{3}\right)^{t_{\alpha, \beta}}=\left(\kappa_{0} \eta_{1}, \kappa_{0}^{\sigma+1} \eta_{2}, \kappa_{0}^{\sigma+2} \eta_{3}\right) \text { for some } \kappa_{0}, \kappa_{1} \in \mathbb{F}_{q} \text {. } \tag{5}
\end{equation*}
$$

Then we have the following equations (since the third coordinate of each element in V is determined by the first two, we can just consider the equations given by the first two coordinates):

$$
\begin{equation*}
\alpha=\left(\kappa_{0}+\kappa_{1}\right) \eta_{1}, \beta=\left(\kappa_{1}^{\sigma+1}+\kappa_{0}^{\sigma+1}\right) \eta_{2}+\left(\kappa_{0}^{\sigma}+\kappa_{1}^{\sigma}\right) \kappa_{1} \eta_{1}^{\sigma+1} . \tag{6}
\end{equation*}
$$

Hence, if α, β are as in (6) with respect to η_{1} and η_{2}, then (5) holds. Since by our assumption P is an imprimitive block of $\mathrm{Sz}(q)_{\infty}$ on $V \backslash\{\infty\}$, we need to verify that $P^{t_{\alpha, \beta}}=P$, that is, for any $\ell \in \mathbb{F}_{q}$ there exists $\ell_{0} \in \mathbb{F}_{q}$ such that $\left(\ell \eta_{1}, \ell^{\sigma+1} \eta_{2}, \ell^{\sigma+2} \eta_{3}\right)^{t_{\alpha, \beta}}=$ $\left(\ell_{0} \eta_{1}, \ell_{0}^{\sigma+1} \eta_{2}, \ell_{0}^{\sigma+2} \eta_{3}\right)$. This is to say that, for any $\ell \in \mathbb{F}_{q}$, the equation system

$$
\begin{equation*}
(\ell+x) \eta_{1}=\alpha, \quad\left(\ell^{\sigma+1}+x^{\sigma+1}\right) \eta_{2}+\left(\ell^{\sigma}+x^{\sigma}\right) \ell \eta_{1}^{\sigma+1}=\beta \tag{7}
\end{equation*}
$$

has a solution $x \in \mathbb{F}_{q}$. We claim that this happens only when $\eta_{1}=0$. In fact, if $P^{t_{\xi, \theta}} \cap P=$ \emptyset for any $t_{\xi, \theta} \neq \mathrm{id}$, then different $t_{\xi, \theta}$ must map P to different elements in $P^{\mathrm{Sz}(q)_{\infty}}$, and thus $q^{2}=\left|\left\langle t_{\xi, \theta} \mid \xi, \theta \in \mathbb{F}_{q}\right\rangle\right| \leqslant\left|P^{\mathrm{Sz}(q)} \infty\right|=q$, a contradiction. Hence we can assume that at most one of α, β is 0 in (5). If $\eta_{1} \neq 0$, then $x=\alpha / \eta_{1}-\ell$. The second equation of (7) becomes $\frac{\alpha \eta_{2}}{\eta_{1}} \ell^{\sigma}+\left(\frac{\alpha^{\sigma} \eta_{2}}{\eta_{1}^{\sigma}}+\alpha^{\sigma} \eta_{1}\right) \ell+\frac{\alpha^{\sigma+1} \eta_{2}}{\eta_{1}^{\sigma+1}}-\beta=0$, and it holds for every $\ell \in \mathbb{F}_{q}$. From the knowledge of polynomials over fields we have $\alpha \eta_{2} / \eta_{1}=0, \alpha^{\sigma} \eta_{2} / \eta_{1}^{\sigma}+\alpha^{\sigma} \eta_{1}=0$ since $q>2$. If $\alpha=0$, then from (6) we have $\beta=0$, which contradicts our assumption. Thus $\alpha \neq 0, \eta_{2}=0, \alpha^{\sigma} \eta_{1}=0$, the latter being a contradiction. Therefore, $\eta_{1}=0$.

By Lemma 3.5, $P=\{\mathbf{0}\} \cup(0,1,1)^{\mathrm{Sz}(q)_{\infty, 0}}=\left\{\left(0, \eta, \eta^{\sigma}\right) \in V: \eta \in \mathbb{F}_{q}\right\}$. This P is indeed an imprimitive block of $\mathrm{Sz}(q)_{\infty}$ on $V \backslash\{\infty\}$, and $\mathrm{Sz}(q)_{\infty, P}=\left\langle t_{0, \xi}, n_{\kappa} \mid \kappa \in \mathbb{F}_{q}^{\times}, \xi \in \mathbb{F}_{q}\right\rangle$.

Let G be a subgroup of $\operatorname{Sym}(V)$ containing $\operatorname{Sz}(q)$ as a normal subgroup. Since $\mathrm{Sz}(q)$ has index $2 e+1$ in its normalizer Q in $\operatorname{Sym}(V)$ (see [5, Table 7.4]), $Q / \mathrm{Sz}(q)$ is a cyclic group of order $2 e+1$ and $G=\langle\mathrm{Sz}(q), \zeta\rangle$, where ζ is an automorphism of \mathbb{F}_{q} inducing a permutation of V with ζ fixing ∞ and acting on elements of $V \backslash\{\infty\}$ componentwise. Hence the group G has b possibilities, where b is the number of divisors of $2 e+1$.

Lemma 3.7. Let $\mathcal{D}:=\left(V, L^{\mathrm{Sz}(q)}\right)$ and $\Omega:=(\infty, L)^{\mathrm{Sz}(q)}$, where V is as in (4) and $L:=$ $P \cup\{\infty\}$ with $P=\left\{\left(0, \eta, \eta^{\sigma}\right) \in V: \eta \in \mathbb{F}_{q}\right\}$. Let G be a subgroup of $\operatorname{Sym}(V)$ containing $\mathrm{Sz}(q)$ as a normal subgroup with $|G / \mathrm{Sz}(q)|=(2 e+1) / f$ for some integer f. Then the following hold:
(a) \mathcal{D} is a $2-\left(q^{2}+1, q+1, q+1\right)$ design admitting G as a 2-point-transitive and blocktransitive group of automorphisms, and Ω is a feasible G-orbit on the set of flags of D;
(b) any G-orbit $\Psi=((\infty, M),(\mathbf{0}, N))^{G}$ on $\mathrm{F}(\mathcal{D}, \Omega)$ is self-paired, and the corresponding G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$ is connected with order $|\Omega|=q\left(q^{2}+1\right)$; moreover, by (d) in Definition 2.1 we may assume $M=L^{t_{1,0}}=\left\{\left(1, \eta, \eta+1+\eta^{\sigma}\right) \in V: \eta \in\right.$ $\left.\mathbb{F}_{q}\right\} \cup\{\infty\}$ and $N=M^{n_{\kappa_{0}} w}$ for some $\kappa_{0} \in \mathbb{F}_{q}^{\times}$; the valency of $\Gamma(\mathcal{D}, \Omega, \Psi)$ is equal to $\left(q^{2}-q\right) i / \operatorname{gcd}(f, i)$, where i is the smallest positive integer satisfying $\kappa_{0}^{2^{i}}=\kappa_{0}$.

Proof. From the discussion above we see that \mathcal{D} is a $2-\left(q^{2}+1, q+1, \lambda\right)$ design admitting $\mathrm{Sz}(q)$ as a 2-point-transitive and block-transitive group of automorphisms. Let $\tau \in V \backslash L$. Then $\left|\tau^{\mathrm{Sz}(q)_{\infty, L}}\right|=\left|\mathrm{Sz}(q)_{\infty, L}\right| /\left|\mathrm{Sz}(q)_{\infty, L, \tau}\right|=\left|\mathrm{Sz}(q)_{\infty, L}\right|=q(q-1)$. Hence $\mathrm{Sz}(q)_{\infty, L}$ is transitive on $V \backslash L$, and by Lemma 2.9, Ω is a feasible $\mathrm{Sz}(q)$-orbit on the flag set of \mathcal{D}. Since w does not stabilise $L, \lambda \neq 1$ and thus $\lambda=q+1$.

Let $G=\langle\mathrm{Sz}(q), \zeta\rangle$, where $\zeta: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \xi \mapsto \xi^{2^{f}}$. One can verify that $G_{\infty}=\left\langle\operatorname{Sz}(q)_{\infty}, \zeta\right\rangle$ and P is an imprimitive block of G_{∞} on $V \backslash\{\infty\}$. Moreover, $(\infty, L)^{G}=(\infty, L)^{\operatorname{Sz}(q)}$ and $L^{G}=L^{\mathrm{SZ}(q)}$. By Lemma 2.9, Ω is a feasible G-orbit on the flag set of \mathcal{D}. Since $N^{n_{\kappa_{0}} w}=M^{n_{\kappa_{0}} w n_{\kappa_{0}} w}=M^{n_{\kappa_{0}} n_{\kappa_{0}}^{-1}}=M, n_{\kappa_{0}} w$ interchanges (∞, M) and ($\left.\mathbf{0}, N\right)$. Therefore, Ψ is self-paired and so produces the G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$.

Set $L_{\kappa}:=P_{\kappa} \cup\{\infty\}$ for each $\kappa \in \mathbb{F}_{q}$, where $P_{\kappa}=\left\{\left(\kappa, \eta, \kappa \eta+\kappa^{\sigma+2}+\eta^{\sigma}\right) \in V: \eta \in \mathbb{F}_{q}\right\}$. Consider the set $(\mathbf{0}, N)^{G_{\infty}, M, \mathbf{0}}$ of neighbours of (∞, M) in $\Gamma(\mathcal{D}, \Omega, \Psi)$ contained in $\Omega(\mathbf{0})$. Since $\zeta w=w \zeta$ and $G_{\infty, M, 0}=\left\langle n_{\kappa}, \zeta \mid \kappa \in \mathbb{F}_{q}^{\times}\right\rangle_{M}=\langle\zeta\rangle$, we have $N^{G_{\infty}, M, 0}=M^{n_{\kappa_{0}} w\langle\zeta\rangle}=$ $M^{n_{\kappa_{0}}\langle\zeta\rangle w}$ and $M^{n_{\kappa_{0}} \varphi}=M^{\varphi \varphi^{-1} n_{\kappa_{0}} \varphi}=M^{n_{\kappa_{0}^{\varphi}}}=L_{\kappa_{0}^{\varphi}}$ for any $\varphi \in\langle\zeta\rangle$. It follows that $N^{G_{\infty}, M, 0}=\left(L_{\kappa_{0}^{(\zeta)}}\right)^{w}$, and in particular $\left|(\mathbf{0}, N)^{G_{\infty}, M, \mathbf{0}}\right|=\left|\kappa_{0}^{\langle\zeta\rangle}\right|$.

By Lemma 3.4 we have $\left|\kappa_{0}^{\langle\zeta\rangle}\right|=\operatorname{lcm}(f, i) / f=i / \operatorname{gcd}(f, i)$. Therefore, (∞, M) is adjacent to $i / \operatorname{gcd}(f, i)$ vertices in $\Omega(\mathbf{0})$, namely, $\left(\mathbf{0},\left(L_{\kappa_{0}^{\zeta^{\ell}}}{ }^{w}\right), \ell=1,2, \ldots, i / \operatorname{gcd}(f, i)\right.$. By the discussion in Section 2.4, $\Gamma(\mathcal{D}, \Omega, \Psi)$ has valency $\left(q^{2}-q\right) i / \operatorname{gcd}(f, i)$.

Denote $H:=\left\langle t_{0, \xi}, n_{\kappa_{0}} w: \xi \in \mathbb{F}_{q}\right\rangle$. For any $\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in V \backslash\{\infty, \mathbf{0}\}$, if $\eta_{1}=0$ then $\mathbf{0}^{t_{0, \eta_{2}}}=\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$, and if $\eta_{1} \neq 0$ then $\mathbf{0}^{t_{0, \theta} n_{\kappa_{0}} w t_{0, \eta_{2}}}=\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$, where $\theta / \theta^{\sigma}=\eta_{1} \kappa_{0}$. Hence H is transitive on V, and thus $\left(q^{2}+1\right) q$ divides $|H|$. So $|H|$ does not divide $q^{2}(q-1), 2(q-1), 4(q+\sqrt{2 q}+1)$ or $4(q-\sqrt{2 q}+1)$. Thus, by [26, p.137, Theorem 9], $|H|=\left(s^{2}+1\right) s^{2}(s-1)$, where $s^{j}=q$ for some positive integer j. It follows that $j=1$, $|H|=\left(q^{2}+1\right) q^{2}(q-1)$, and thus $\mathrm{Sz}(q)=H$. Therefore, $\mathrm{Sz}(q)=\left\langle\mathrm{Sz}(q)_{\infty, M}, n_{\kappa_{0}} w\right\rangle$ as $\left\langle t_{0, \xi}: \xi \in \mathbb{F}_{q}\right\rangle \leqslant \mathrm{Sz}(q)_{\infty, M}$, and so $\Gamma(\mathcal{D}, \Omega, \Psi)$ is connected by Lemma 2.11.

Example 3.8. Suppose that $G=\langle\mathrm{Sz}(8), \zeta\rangle$, where $\zeta: \mathbb{F}_{8} \rightarrow \mathbb{F}_{8}, \xi \mapsto \xi^{2}$ is the Frobenius map. Let $\Psi:=((\infty, M),(\mathbf{0}, N))^{G}$, where $M=L_{1}=\left\{\left(1, \eta, 1+\eta+\eta^{4}\right) \in V: \eta \in \mathbb{F}_{8}\right\} \cup\{\infty\}$, $N=M^{n_{\kappa_{0}} w}$, and κ_{0} is a generator of \mathbb{F}_{8}^{\times}. Then the edges of the G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$ between $\Omega(\infty)$ and $\Omega(\mathbf{0})$ are as shown in Figure 1.

Figure 1

$3.3 \operatorname{soc}(G)=\mathrm{R}(q), q=3^{2 e+1}>3, u=q^{3}+1 ;$ or $G=\mathrm{R}(3), \mathrm{R}(3)^{\prime} \cong$ $\operatorname{PSL}(2,8), u=28$

We will use the following lemma that can be easily proved.
Lemma 3.9. Suppose that $\ell \geqslant 0$ is an integer, n a positive integer, and q an odd power of 3. Then $(\ell(q-1)+(q-1) / 2+1) \nmid q^{n}$.

We use the permutation representation of $\mathrm{R}(q)$ in [10, p.251]. The mapping $\sigma: \xi \mapsto$ $\xi^{3^{e+1}}$ is an automorphism of \mathbb{F}_{q} and σ^{2} is the Frobenius automorphism $\xi \mapsto \xi^{3}$. The set V of points on which $\mathrm{R}(q)$ acts consists of ∞ and the set of sixtuples $\left(\eta_{1}, \eta_{2}, \eta_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ with $\eta_{1}, \eta_{2}, \eta_{3} \in \mathbb{F}_{q}$ and

$$
\left\{\begin{array}{l}
\lambda_{1}=\eta_{1}^{2} \eta_{2}-\eta_{1} \eta_{3}+\eta_{2}^{\sigma}-\eta_{1}^{\sigma+3}, \tag{8}\\
\lambda_{2}=\eta_{1}^{\sigma} \eta_{2}^{\sigma}-\eta_{3}^{\sigma}+\eta_{1} \eta_{2}^{2}+\eta_{2} \eta_{3}-\eta_{1}^{2 \sigma+3} \\
\lambda_{3}=\eta_{1} \eta_{3}^{\sigma}-\eta_{1}^{\sigma+1} \eta_{2}^{\sigma}+\eta_{1}^{\sigma+3} \eta_{2}+\eta_{1}^{2} \eta_{2}^{2}-\eta_{2}^{\sigma+1}-\eta_{3}^{2}+\eta_{1}^{2 \sigma+4}
\end{array}\right.
$$

Thus $|V|=q^{3}+1$. For $\alpha, \beta, \gamma, \kappa \in \mathbb{F}_{q}$ with $\kappa \neq 0$, define the following permutations of V fixing ∞ :

$$
\begin{aligned}
& t_{\alpha, \beta, \gamma}:\left(\eta_{1}, \eta_{2}, \eta_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right) \mapsto \\
& \quad \quad\left(\eta_{1}+\alpha, \eta_{2}+\beta+\alpha^{\sigma} \eta_{1}, \eta_{3}+\gamma-\alpha \eta_{2}+\beta \eta_{1}-\alpha^{\sigma+1} \eta_{1}, \mu_{1}, \mu_{2}, \mu_{3}\right), \\
& n_{\kappa}:\left(\eta_{1}, \eta_{2}, \eta_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right) \mapsto\left(\kappa \eta_{1}, \kappa^{\sigma+1} \eta_{2}, \kappa^{\sigma+2} \eta_{3}, \kappa^{\sigma+3} \lambda_{1}, \kappa^{2 \sigma+3} \lambda_{2}, \kappa^{2 \sigma+4} \lambda_{3}\right),
\end{aligned}
$$

where μ_{1}, μ_{2} and μ_{3} can be calculated from the formulas in (8). Define the involution w fixing V by

$$
\begin{aligned}
w:\left(\eta_{1}, \eta_{2}, \eta_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}\right) & \leftrightarrow\left(\frac{\lambda_{2}}{\lambda_{3}}, \frac{\lambda_{1}}{\lambda_{3}}, \frac{\eta_{3}}{\lambda_{3}}, \frac{\eta_{2}}{\lambda_{3}}, \frac{\eta_{1}}{\lambda_{3}}, \frac{1}{\lambda_{3}}\right) \text { for } \lambda_{3} \neq 0, \\
\infty & \leftrightarrow \mathbf{0}:=(0,0,0,0,0,0)
\end{aligned}
$$

(We correct the action of w on V in [10, p.251] according to [11].) The Ree group $\mathrm{R}(q)$ is the group generated by w and all $t_{\alpha, \beta, \gamma}$ and n_{κ}. We have $\mathrm{R}(q)_{\infty}=\left\langle t_{\alpha, \beta, \gamma}, n_{\kappa}\right| \alpha, \beta, \gamma, \kappa \in$ $\left.\mathbb{F}_{q}, \kappa \neq 0\right\rangle$ and $\mathrm{R}(q)_{\infty, 0}$ is the cyclic group $\left\langle n_{\kappa} \mid \kappa \in \mathbb{F}_{q}, \kappa \neq 0\right\rangle$. Since the first three coordinates in each element of V determine the last three, in the following we simply present an element of V in the form $\left(\eta_{1}, \eta_{2}, \eta_{3}, \ldots\right)$.

Lemma 3.10. Let $\left(\eta_{1}, \eta_{2}, \eta_{3}, \ldots\right) \in V \backslash\{\infty, \mathbf{0}\}$. Then

$$
\left|\left(\eta_{1}, \eta_{2}, \eta_{3}, \ldots\right)^{\mathrm{R}(q)_{\infty, 0}}\right|=\left\{\begin{array}{l}
q-1, \quad \text { if } \eta_{1} \neq 0 \text { or } \eta_{3} \neq 0 \\
(q-1) / 2, \quad \text { if } \eta_{1}=\eta_{3}=0
\end{array}\right.
$$

Proof. Since id : $\mathbb{F}_{q}^{\times} \rightarrow \mathbb{F}_{q}^{\times}, \xi \mapsto \xi$ and $\varphi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{F}_{q}^{\times}, \xi \mapsto \xi^{\sigma+2}$ are both group automorphisms, if $\eta_{1} \neq 0$ or $\eta_{3} \neq 0$, then $\left(a \eta_{1}, a^{\sigma+1} \eta_{2}, a^{\sigma+2} \eta_{3}, \ldots\right)=\left(b \eta_{1}, b^{\sigma+1} \eta_{2}, b^{\sigma+2} \eta_{3}, \ldots\right) \Leftrightarrow$ $a=b$.

Let δ be a generator of the cyclic group \mathbb{F}_{q}^{\times}. Since $\delta^{\sigma+1}=\delta^{3^{e+1}+1}$ and $\operatorname{gcd}\left(3^{e+1}+1, q-\right.$ $1)=2$, we have $\left|\delta^{\sigma+1}\right|=(q-1) / 2$, and thus

$$
\begin{equation*}
L_{1}:=(0,1,0, \ldots)^{\mathrm{R}(q)_{\infty, 0}} \text { and } L_{2}:=(0, \delta, 0, \ldots)^{\mathrm{R}(q)_{\infty, 0}} \tag{9}
\end{equation*}
$$

are two orbits of length $(q-1) / 2$ of $\mathrm{R}(q)_{\infty, \mathbf{0}}$ on $V \backslash\{\infty, \mathbf{0}\}$.
By the result above we know that $\mathrm{R}(q)_{\infty, 0}$ has two orbits of length $(q-1) / 2$ and $q(q+1)$ orbits of length $q-1$ on $V \backslash\{\infty, \mathbf{0}\}$.

Let G be a subgroup of $\operatorname{Sym}(V)$ containing $\mathrm{R}(q)$ as a normal subgroup. Since $\mathrm{R}(q)$ has index $2 e+1$ in its normalizer Q in $\operatorname{Sym}(V)$ ([5, Table 7.4]), $Q / \mathrm{R}(q)$ is a cyclic group of order $2 e+1$ and $G=\langle\mathrm{R}(q), \zeta\rangle$, where ζ is an automorphism of \mathbb{F}_{q} inducing a permutation of V with ζ fixing ∞ and acting on elements of $V \backslash\{\infty\}$ componentwise.

Lemma 3.11. Let $G=\langle\mathrm{R}(q), \zeta\rangle$ be a subgroup of $\operatorname{Sym}(V)$ containing $\mathrm{R}(q)$ as a normal subgroup, where ζ is an automorphism of \mathbb{F}_{q}. Suppose that P is an imprimitive block of G_{∞} on $V \backslash\{\infty\}$ containing $\mathbf{0}$ with $1<|P|<q^{3}$. Then $|P|=q$ or $|P|=q^{2}$. Moreover, if $|P|=q^{2}$ and $G_{\infty, \mathbf{0}}$ is transitive on $P^{G_{\infty}} \backslash\{P\}$, then

$$
\begin{align*}
P & =\left\{\left(0, \eta_{2}, \eta_{3}, \ldots\right): \eta_{2}, \eta_{3} \in \mathbb{F}_{q}\right\}, \tag{10}\\
G_{\infty, P} & =\left\langle t_{0, \beta, \gamma}, n_{\kappa}, \zeta \mid \beta, \gamma \in \mathbb{F}_{q}, \kappa \in \mathbb{F}_{q}^{\times}\right\rangle . \tag{11}
\end{align*}
$$

Proof. By Lemma 2.10 (a), $P \backslash\{\mathbf{0}\}$ is the union of some $R(q)_{\infty, \mathbf{0}}$-orbits on $V \backslash\{\infty, \mathbf{0}\}$. By Lemmas 3.3 and 3.9, we have $|P|=q$ or $|P|=q^{2}$.

Suppose $|P|=q^{2}$ and $G_{\infty, 0}$ is transitive on $P^{G_{\infty}} \backslash\{P\}$. Let L_{1} and L_{2} be as in the proof of Lemma 3.10. Then by Lemma 3.9 either $L_{1} \cup L_{2} \subseteq P$ or $\left(L_{1} \cup L_{2}\right) \cap P=\emptyset$. Since
 then $G_{\infty, 0}$ has an orbit of length at most $(q-1) / 2$ on $P^{G_{\infty}} \backslash\{P\}$ and $G_{\infty, 0}$ is not transitive on $P^{G_{\infty}} \backslash\{P\}$. Hence $L_{1} \cup L_{2} \subseteq P$ and thus $\left\{(0, \eta, 0, \ldots): \eta \in \mathbb{F}_{q}\right\} \subseteq P$. Since $(0, \eta, 0, \ldots)^{t_{\alpha, \beta, \gamma}}=(\alpha, \eta+\beta, \gamma-\alpha \eta, \ldots)$, we have $\left\langle t_{0, \beta, 0} \mid \beta \in \mathbb{F}_{q}\right\rangle \leqslant G_{\infty, P}$ and $H:=\left\langle t_{0, \beta, 0}, n_{\kappa} \mid \beta \in \mathbb{F}_{q}, \kappa \in \mathbb{F}_{q}^{\times}\right\rangle \leqslant G_{\infty, P}$.

If P has a point $\left(\eta_{1}, \eta_{2}, \eta_{3}, \ldots\right)$ with $\eta_{1} \neq 0$, then by the action of H, we can assume that $\rho:=\left(1,0, \varepsilon_{0}, \ldots\right) \in P$ for some $\varepsilon_{0} \in \mathbb{F}_{q}$. Since $\left|\rho^{H}\right|=|H| /\left|H_{\rho}\right|=|H|=q(q-1)$ and $\rho^{H} \cap\left\{(0, \eta, 0, \ldots): \eta \in \mathbb{F}_{q}\right\}=\emptyset$, we have

$$
\begin{equation*}
P=\rho^{H} \cup\left\{(0, \eta, 0, \ldots): \eta \in \mathbb{F}_{q}\right\}=\left\{\left(\eta_{1}, \eta_{2}, \eta_{3}, \ldots\right) \in V: \eta_{3}=\eta_{1}^{\sigma+2} \varepsilon_{0}+\eta_{1} \eta_{2}\right\} . \tag{12}
\end{equation*}
$$

However, this P is not an imprimitive block of $\mathrm{R}(q)_{\infty}$ on $V \backslash\{\infty\}$. In fact, if $(0,1,0, \ldots)^{t_{a, b, c}}$ $=\left(1,0, \varepsilon_{0}, \ldots\right)$, then $a=1, b=-1, c=1+\varepsilon_{0}$. On the other hand, $(0,-1,0, \ldots) \in P$, and $(0,-1,0, \ldots)^{t_{1,-1,1+\varepsilon_{0}}}=\left(1,-2,2+\varepsilon_{0}, \ldots\right)=\left(1,1,2+\varepsilon_{0}, \ldots\right)$. We can check that the first three coordinates of $\left(1,1,2+\varepsilon_{0}, \ldots\right)$ do not satisfy the equation (see (12)) for the elements of P. Hence $(0,-1,0, \ldots)^{t_{1,-1,1+\varepsilon_{0}}} \notin P$, and P given in (12) is not an imprimitive block of $\mathrm{R}(q)_{\infty}$ on $V \backslash\{\infty\}$. Therefore, every element in P must have 0 as the first coordinate. It follows that P is as given in (10). It is straightforward to check that P is indeed an imprimitive block of $G_{\infty}=\left\langle\mathrm{R}(q)_{\infty}, \zeta\right\rangle$ on $V \backslash\{\infty\}$ and $G_{\infty, P}$ is as shown in (11).

We will ignore the case $|P|=q$ in Lemma 3.11, since in this case the design in Lemma 2.10 (if it exists) is a linear space by Lemma 2.12.

Lemma 3.12. Let $\mathcal{D}:=\left(V, L^{\mathrm{R}(q)}\right)$ and $\Omega:=(\infty, L)^{\mathrm{R}(q)}$, where $L:=P \cup\{\infty\}$ with P as defined in (10). Let G be a subgroup of $\operatorname{Sym}(V)$ containing $\mathrm{R}(q)$ as a normal subgroup such that $|G / \mathrm{R}(q)|=(2 e+1) / f$ for some integer f. Then the following hold:
(a) \mathcal{D} is a $2-\left(q^{3}+1, q^{2}+1, q^{2}+1\right)$ design admitting G as a 2-point-transitive and blocktransitive group of automorphisms, and Ω is a feasible G-orbit on the set of flags of D;
(b) any G-orbit $\Psi=((\infty, M),(\mathbf{0}, N))^{G}$ on $\mathrm{F}(\mathcal{D}, \Omega)$ is self-paired, and the G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$ is connected with order $|\Omega|=q\left(q^{3}+1\right)$; moreover, by (d) in Definition 2.1, we may assume $M=L^{t_{1,0,0}}=\left\{\left(1, \eta_{2}, \eta_{3}, \ldots\right) \in V: \eta_{2}, \eta_{3} \in \mathbb{F}_{q}\right\} \cup\{\infty\}$ and $N=$ $M^{n_{\kappa_{0}} w}$ for some $\kappa_{0} \in \mathbb{F}_{q}^{\times}$; the valency of $\Gamma(\mathcal{D}, \Omega, \Psi)$ is equal to $\left(q^{3}-q^{2}\right) i / \operatorname{gcd}(f, i)$, where i is the smallest positive integer satisfying $\kappa_{0}^{3^{i}}=\kappa_{0}$.

Proof. Using the notation above, we have $G=\langle\mathrm{R}(q), \zeta\rangle$, where $\zeta: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \xi \mapsto$ $\xi^{2^{f}}$. Then $(\infty, L)^{G}=(\infty, L)^{\mathrm{R}(q)}, L^{G}=L^{\mathrm{R}(q)}$, and \mathcal{D} is a $2-\left(q^{3}+1, q^{2}+1, \lambda\right)$ design admitting G as a 2-point-transitive and block-transitive group of automorphisms. Let $\theta:=(1,0,0, \ldots) \in V \backslash L$. Since $\left|\theta^{\mathrm{R}(q)_{\infty, L}}\right|=\left|\mathrm{R}(q)_{\infty, L}\right| /\left|\mathrm{R}(q)_{\infty, L, \theta}\right|=\left|\mathrm{R}(q)_{\infty, L}\right|=q^{2}(q-1)$, $\mathrm{R}(q)_{\infty, L}$ and $G_{\infty, L}$ are transitive on $V \backslash L$ and by Lemma $2.9, \Omega$ is a feasible G-orbit on the flag set of \mathcal{D}. Since w does not stabilise $L, \lambda \neq 1$ and thus $\lambda=q^{2}+1$.

Since $N^{n_{\kappa_{0}} w}=M^{n_{\kappa_{0}} w n_{\kappa_{0}} w}=M^{n_{\kappa_{0}} n_{\kappa_{0}}-1}=M, n_{\kappa_{0}} w$ interchanges (∞, M) and $(\mathbf{0}, N)$. Therefore, Ψ is self-paired and so produces the G-flag graph $\Gamma(\mathcal{D}, \Omega, \Psi)$.

Set $L_{\kappa}:=P_{\kappa} \cup\{\infty\}$ for each $\kappa \in \mathbb{F}_{q}$, where $P_{\kappa}=\left\{\left(\kappa, \eta_{2}, \eta_{3}, \ldots\right) \in V: \eta_{2}, \eta_{3} \in \mathbb{F}_{q}\right\}$. Note that $(\mathbf{0}, N)^{G_{\infty, M, 0}}$ is the set of neighbours of (∞, M) in $\Gamma(\mathcal{D}, \Omega, \Psi)$ contained in $\Omega(\mathbf{0})$. Since $\zeta w=w \zeta$ and $G_{\infty, M, 0}=\left\langle n_{\kappa}, \zeta \mid \kappa \in \mathbb{F}_{q}^{\times}\right\rangle_{M}=\langle\zeta\rangle$, we have $N^{G_{\infty}, M, 0}=M^{n_{\kappa_{0}} w\langle\zeta\rangle}=$ $M^{n_{\kappa_{0}}\langle\zeta\rangle w}$ and $M^{n_{\kappa_{0}} \varphi}=M^{\varphi \varphi^{-1} n_{\kappa_{0}} \varphi}=M^{n_{\kappa_{0}^{\varphi}}}=L_{\kappa_{0}^{\varphi}}$ for any $\varphi \in\langle\zeta\rangle$. It follows that $N^{G_{\infty}, M, 0}=\left(L_{\kappa_{0}^{(\zeta \zeta}}\right)^{w}$, and in particular $\left|(\mathbf{0}, N)^{G_{\infty}, M, 0}\right|=\left|\kappa_{0}^{\langle\zeta\rangle}\right|$.

By Lemma 3.4 we have $\left|\kappa_{0}^{\langle\zeta\rangle}\right|=\operatorname{lcm}(f, i) / f=i / \operatorname{gcd}(f, i)$. Therefore, (∞, M) is adjacent to $i / \operatorname{gcd}(f, i)$ vertices in $\Omega(\mathbf{0})$, namely, $\left(\mathbf{0},\left(L_{\kappa_{0}^{\varsigma^{\ell}}}\right)^{w}\right), \ell=1,2, \ldots, i / \operatorname{gcd}(f, i)$. By the discussion in Section 2.4, $\Gamma(\mathcal{D}, \Omega, \Psi)$ has valency $\left(q^{3}-q^{2}\right) i / \operatorname{gcd}(f, i)$.

Recall the following known result (see [20, p.60, Theorem C] or [12, p.3758, Lemma 2.2]): For any subgroup H of $\mathrm{R}(q)$, either $|H|=\left(s^{3}+1\right) s^{3}(s-1)$, where $s^{j}=q$ for some positive integer j, or $|H|$ divides $q^{3}(q-1), 12(q+1), q^{3}-q, 6(q+\sqrt{3 q}+1)$, $6(q-\sqrt{3 q}+1), 504$ or 168 . By Lemma 2.11, in order to prove $\Gamma(\mathcal{D}, \Omega, \Psi)$ is connected, it suffices to prove $\mathrm{R}(q)=H:=\left\langle t_{0, \xi, \eta}, n_{\kappa_{0}} w: \xi, \eta \in \mathbb{F}_{q}\right\rangle$ as $\left\langle t_{0, \xi, \eta}: \xi, \eta \in \mathbb{F}_{q}\right\rangle \leqslant \mathrm{R}(q)_{\infty, M}$. For any $\left(\eta_{1}, \eta_{2}, \eta_{3}, \ldots\right) \in V \backslash\{\infty, \mathbf{0}\}$, if $\eta_{1}=0$ then $\mathbf{0}^{t_{0}, \eta_{2}, \eta_{3}}=\left(\eta_{1}, \eta_{2}, \eta_{3}, \ldots\right)$, and if $\eta_{1} \neq 0$, then similar to the proof of Lemma 3.7, there exist some $\delta, \xi, \eta \in \mathbb{F}_{q}$ such that $\mathbf{0}^{t_{0,0, \delta} n_{\kappa_{0}} w t_{0, \xi, \eta}}=\left(\eta_{1}, \eta_{2}, \eta_{3}, \ldots\right)$. Hence H is transitive on V, and thus $|H|=|V|\left|H_{\infty}\right|$ is divisible by $\left(q^{3}+1\right) q^{2}$. When $q \geqslant 27$, we have $|H|=\left(s^{3}+1\right) s^{3}(s-1)$, where $s^{j}=q$ for some odd positive integer j. It follows that $j=1$ and $H=\mathrm{R}(q)$. When $q=3$, we use the permutation representation of $R(3)$ as a primitive group of degree 28 in the database of primitive groups in Magma [3]. Now $R(3)$ acts on $\Delta:=\{1,2, \ldots, 28\}$, and the two actions of $\mathrm{R}(3)$ on V and Δ are permutation isomorphic. Let Q be the normal subgroup
of $R(3)_{1}$ (the stabiliser of $1 \in \Delta$ in $\left.R(3)\right)$ which is regular on $\Delta \backslash\{1\}$. Q has two subgroups of order 9 which are normal in $\mathrm{R}(3)_{1}$. One of them, say X, is elementary abelian, while the other is cyclic. So H is (permutation) isomorphic to $\widetilde{H}:=\langle X, \tau\rangle$ for some involution $\tau \in \mathrm{R}(3)$ as $n_{\kappa_{0}} w$ is an involution. Computation in Magma shows that $|\widetilde{H}|=18$ or 1512 for any involution τ in $\mathrm{R}(3)$. Since $|H| \geqslant 28 \cdot 9$, it follows that $H=\mathrm{R}(3)$.

4 Affine case

In this section we deal with the case where G is a finite 2-transitive group with an abelian socle acting on a point set V, which we always assume to be some vector space over a finite field. Let $u:=|V|=p^{d}$ be the degree of G, where p is a prime and $d \geqslant 1$. Then u and the stabiliser G_{0} in G of the zero vector $\mathbf{0}$ are as follows ([19], [5, p.194], [4], [18, p.386]):
(i) $G_{0} \leqslant \Gamma \mathrm{~L}(1, q), q=p^{d}$;
(ii) $G_{0} \unrhd \mathrm{SL}(n, q), n \geqslant 2, q^{n}=p^{d}$;
(iii) $G_{0} \unrhd \operatorname{Sp}(n, q), n \geqslant 4, n$ is even, $q^{n}=p^{d}$;
(iv) $G_{0} \unrhd G_{2}(q), q^{6}=p^{d}, q>2, q$ is even;
(v) $G_{\mathbf{0}}=G_{2}(2)^{\prime} \cong \operatorname{PSU}(3,3), u=2^{6}$;
(vi) $G_{0} \cong A_{6}$ or $A_{7}, u=2^{4}$;
(vii) $G_{\mathbf{0}} \cong \mathrm{SL}(2,13), u=3^{6}$;
(viii) $G_{\mathbf{0}} \unrhd \mathrm{SL}(2,5)$ or $G_{\mathbf{0}} \unrhd \mathrm{SL}(2,3), d=2, p=5,7,11,19,23,29$ or 59 ;
(ix) $d=4, p=3, G_{\mathbf{0}} \unrhd \mathrm{SL}(2,5)$ or $G_{\mathbf{0}} \unrhd E$, where E is an extraspecial group of order 32 .

$4.1 \quad G_{0} \leqslant \Gamma \mathrm{~L}(1, q), q=p^{d}$

Now G acts on $V=\mathbb{F}_{q}$, and a typical element in G is of the form

$$
\tau(a, b, \varphi): \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, z \mapsto a z^{\varphi}+b,
$$

where $a \in \mathbb{F}_{q}^{\times}, b \in \mathbb{F}_{q}$ and $\varphi \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)=\langle\zeta\rangle$. Here $\zeta: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, z \mapsto z^{p}$ is the Frobenius map. For convenience, we also use $t(a, j)$ to denote $\tau\left(a, 0, \zeta^{j}\right)$, where j is an integer. For $\delta=\zeta^{n}$ and an integer $i \geqslant 0$, where $n=\min \left\{n_{1}>0: \delta=\zeta^{n_{1}}\right\}$, we use $[\delta, i]$ to denote $\left(p^{n i}-1\right) /\left(p^{n}-1\right)$, and $\delta-1$ to denote $p^{n}-1$. Thus, for $i>0$ and $c \in \mathbb{F}_{q}^{\times}, c^{[\delta, i]}$ is the product of $c^{\delta^{i-1}}, c^{\delta^{i-2}}, \ldots, c^{\delta}, c$ in \mathbb{F}_{q}^{\times}.

Lemma 4.1. Suppose that H is a subgroup of $\mathbb{F}_{q}^{\times}, b \in \mathbb{F}_{q}^{\times} \backslash H$, and δ is a field automorphism of \mathbb{F}_{q}. In the sequence: $H, H b^{[\delta, 1]}, H b^{[\delta, 2]}, \ldots, H b^{[\delta, n]}, \ldots$, if j is the smallest positive integer such that $H b^{[\delta, j]}$ equals some previous term, then $H b^{[\delta, j]}=H$.

Proof. If $H b^{[\delta, j]} \neq H$, then $H b^{[\delta, j]}=H b^{[\delta, i]}$ for some i with $1 \leqslant i<j$. Thus $H=$ $H\left(b^{[\delta, j-i]}\right)^{\delta^{i}}=\left(H b^{[\delta, j-i]}\right)^{\delta^{i}}$ and $H=H^{\delta^{-i}}=H b^{[\delta, j-i]}$, contradicting the definition of j.
Lemma 4.2. Suppose that H is a subgroup of \mathbb{F}_{q}^{\times}and $x \in \mathbb{F}_{q}^{\times}$. Then $x \in H$ if and only if $x^{|H|}=1$.

Proof. This follows from the fact that the polynomial $\alpha^{|H|}-1$ with indeterminate α has at most (actually exactly) $|H|$ solutions in \mathbb{F}_{q}^{\times}.
Lemma 4.3. Let $G \leqslant \mathrm{~A} \Gamma \mathrm{~L}(1, q)$ act 2-transitively on \mathbb{F}_{q}, where $q=p^{d}$ and p is a prime. Suppose that P is an imprimitive block of G_{0} on \mathbb{F}_{q}^{\times}containing 1 such that $(q-1) /|P| \geqslant 3$ and $G_{0,1}$ is transitive on $P^{G_{0}} \backslash\{P\}$. Then P is a subgroup of \mathbb{F}_{q}^{\times}and $\left|\mathbb{F}_{q}^{\times} / P\right|=(q-1) /|P|$ is a prime.
Proof. Set $Y:=\left\{\ell>0: t(a, \ell) \in G_{0}\right.$ for some $\left.a \in \mathbb{F}_{q}^{\times}\right\}$. Let s be the smallest integer in Y and $\varphi:=\zeta^{s}$. For $t\left(a_{i}, \ell_{i}\right) \in G_{0}, i=1,2$, we have $t\left(a_{1}, \ell_{1}\right) t\left(a_{2}, \ell_{2}\right)=t\left(a_{2} a_{1}^{\zeta_{2}}, \ell_{1}+\ell_{2}\right) \in G_{0}$ and $t\left(a_{i}, \ell_{i}\right)^{-1}=t\left(\left(1 / a_{i}\right)^{\zeta^{-\ell_{i}}},-\ell_{i}\right) \in G_{0}$. Hence $s \mid d$ and $Y=\{j s: j=1,2, \ldots\}$. If $s=d$, then $G_{0} \leqslant \operatorname{GL}(1, q), G_{0,1}=\{1\}$ and $G_{0,1}$ would not be transitive on $P^{G_{0}} \backslash\{P\}$ as $\left|P^{G_{0}} \backslash\{P\}\right|=(q-1) /|P|-1 \geqslant 2$. Thus s is a proper divisor of d. For each integer i, set

$$
A_{i}:=\left\{t(a, s i): t(a, s i) \in G_{0}\right\}, \text { and } H_{i}:=\left\{a: t(a, s i) \in G_{0}\right\} .
$$

Let $H:=H_{0}$. Then A_{0} is a normal cyclic subgroup of G_{0}, H is a cyclic subgroup of \mathbb{F}_{q}^{\times}, and $A_{i}=A_{j}$ if and only if $d \mid(i-j) s$. Let $t(b, s)$ be an arbitrary element of A_{1}. Since $A_{i} t(b, s)^{j} \subseteq A_{i+j}$ for any two integers i and $j,\left|A_{i}\right|$ is a constant and thus $A_{i} t(b, s)^{j}=A_{i+j}$. Hence, for $i=1,2, \ldots, d / s-1$,

$$
A_{i}=A_{0} t(b, s)^{i}, H_{i}=H b^{[\varphi, i]},
$$

and $A_{d / s}=A_{0} t(b, s)^{d / s}=A_{0}$ and $H_{d / s}=H b^{[\varphi, d / s]}=H$. Since G_{0} is the (disjoint) union $G_{0}=A_{0} \cup A_{1} \cup \cdots \cup A_{d / s-1}$ and G_{0} is transitive on \mathbb{F}_{q}^{\times}, we have $\mathbb{F}_{q}^{\times}=H \cup H_{1} \cup H_{2} \cup$ $\cdots \cup H_{d / s-1}$.

If $b \in H$, then $H=\mathbb{F}_{q}^{\times}$, which means $\mathrm{GL}(1, q) \leqslant G_{0}$. Hence, for any $a \in P$, since $t(a, 0) \in G_{0}$ and $1^{t(a, 0)}=a \in P$, we have $P a=P^{t(a, 0)}=P$. Therefore P is closed under multiplication and thus P is a subgroup of \mathbb{F}_{q}^{\times}. In the rest of the proof we assume $b \notin H$.

Let $r:=\min \left\{n>0: t(1, n s) \in G_{0,1}\right\}$. Then $r \leqslant d / s, G_{0,1}=\langle t(1, r s)\rangle$ and $\left|G_{0,1}\right|=$ $d /(r s)$. Let $b \in H_{1}$. Since $1 \in H_{r}=H b^{[\varphi, r]}$, we have $H b^{[\varphi, r]}=H$. In the case when $r>1$, if $H_{j}=H$ for some positive integer $j<r$, then $t(1, j s) \in A_{j} \subseteq G_{0}$, which contradicts the definition of r. Hence by Lemma 4.1, in the sequence: $H, H b^{[\varphi, 1]}, H b^{[\varphi, 2]}, \ldots, H b^{[\varphi, r-1]}$, $H b^{[\varphi, r]}, \ldots$, the first r terms are pairwise distinct, and the subsequent terms repeat the previous ones. Since G_{0} is transitive on \mathbb{F}_{q}^{\times}, we have

$$
\begin{equation*}
\mathbb{F}_{q}^{\times}=H \cup H b^{[\varphi, 1]} \cup \cdots \cup H b^{[\varphi, r-1]}, \quad\left|\mathbb{F}_{q}^{\times}: H\right|=r, \quad r \mid[\varphi, r] . \tag{13}
\end{equation*}
$$

Now $G_{0,1} \leqslant G_{0, P} \leqslant G_{0} \leqslant \Gamma \mathrm{~L}(1, q)$. If $G_{0, P} \leqslant \operatorname{GL}(1, q)$, then $G_{0,1}=\{1\}$ and is not transitive on $P^{G_{0}} \backslash\{P\}$. Therefore $G_{0, P} \not \leq \mathrm{GL}(1, q)$. Set $e:=\min \{j>0: t(c, j s) \in$ $G_{0, P}$ for some $\left.c \in \mathbb{F}_{q}^{\times}\right\}$, and $\psi:=\varphi^{e}=\zeta^{s e}$. Then $G_{0, P} \subseteq \cup_{i \geqslant 0} A_{i e}$. For each integer i, set

$$
C_{i}:=\left\{t(a, i e s): t(a, i e s) \in G_{0, P}\right\}, \text { and } K_{i}:=\left\{a: t(a, i e s) \in G_{0, P}\right\} .
$$

Then $K:=K_{0} \leqslant H$. Let $t(w, e s)$ be an element of $G_{0, P}$. For $j=1,2, \ldots, r / e-1$, we have

$$
\begin{equation*}
A_{j e}=A_{0} t(w, e s)^{j}, H_{j e}=H w^{[\psi, j]}, C_{j}=C_{0} t(w, e s)^{j}, \text { and } K_{j}=K w^{[\psi, j]} . \tag{14}
\end{equation*}
$$

Let i_{0} be the smallest positive integer such that $K w^{\left[\psi, i_{0}\right]}=K$. Then $t\left(1, i_{0} e s\right) \in G_{0,1}$. Since $G_{0,1} \leqslant G_{0, P}$, by the definition of r we have $r=e i_{0}$. By Lemma 4.1, in the sequence: $K, K w^{[\psi, 1]}, K w^{[\psi, 2]}, \ldots, K w^{[\psi, r / e-1]}, K w^{[\psi, r / e]}, \ldots$, the first r / e terms must be pairwise distinct, and the subsequent terms repeat the previous ones. Since $G_{0, P}$ is transitive on P, we have

$$
\begin{equation*}
P=K \cup K w^{[\psi, 1]} \cup K w^{[\psi, 2]} \cup \cdots \cup K w^{[\psi, r / e-1]}, \quad \text { and } K w^{[\psi, r / e]}=K . \tag{15}
\end{equation*}
$$

Suppose that $e>1$. Let $t(b, s) \in A_{1}$. Since $P \subseteq H \cup H_{e} \cup H_{2 e} \cup \cdots \cup H_{r-e}$, we have $P^{t(b, s)} \subseteq H_{1} \cup H_{e+1} \cup \cdots \cup H_{r-e+1}$ and thus $P^{t(b, s)} \in P^{G_{0}} \backslash\{P\}$. Since $A_{j} t(1, r s)=A_{j+r}$ and $H_{j}^{t(1, r s)}=H_{j+r}=H_{j}(j=1,2, \ldots), t(1, r s)$ stabilises each term in the sequence: H, $H b, H b^{[\varphi, 2]}, H b^{[\varphi, 3]}, \ldots$.

If $K=H$, then by (14) and (15) we have $e=(q-1) /|P| \geqslant 3$ and $P^{t(b, s)}=H_{1} \cup$ $H_{e+1} \cup \cdots \cup H_{r-e+1}$. Hence $t(1, r s)$ stabilises $P^{t(b, s)}$ and $G_{0,1}=\langle t(1, r s)\rangle$ is not transitive on $P^{G_{0}} \backslash\{P\}$, a contradiction.

If $K \neq H$, then take $a \in H \backslash K$ and $t(a, 0) \in G_{0}$. We have $P a=P^{t(a, 0)} \in P^{G_{0}} \backslash\{P\}$ and $P a \subseteq H \cup H_{e} \cup H_{2 e} \cup \cdots \cup H_{r-e}$. Hence $P a$ can not be mapped to $P^{t(b, s)}$ by elements of $G_{0,1}$, a contradiction.

Therefore, $e=1, \psi=\varphi$, and $|H / K|=(q-1) /|P| \geqslant 3$. Moreover, set $\pi:=(q-$ 1)/|P| and let $\left\{h_{1}=1, h_{2}, \ldots, h_{\pi}\right\}$ be a transversal of K in H. Then $P^{G_{0}} \backslash\{P\}=$ $\left\{P h_{2}, P h_{3}, \ldots, P h_{\pi}\right\}$, and thus $G_{0,1}$ is transitive on $P^{G_{0}} \backslash\{P\}$ if and only if the induced action of $G_{0,1}$ on the quotient group H / K is transitive on the set of non-identity elements of $H / K . \quad G_{0,1}$ induces an automorphism group $\widehat{G}_{0,1}:=\left\{\widehat{\tau}(1,0, \delta): \tau(1,0, \delta) \in G_{0,1}\right\}$ on H / K, where $\widehat{\tau}(1,0, \delta): H / K \rightarrow H / K, K b \mapsto K b^{\delta}$. If $\widehat{\tau}(1,0, \delta)=\operatorname{id}_{H / K}$, that is, $K b^{\delta}=K b$ for any $b \in H$, then $b^{\delta-1} \in K$ for any $b \in H$. By Lemma 4.2, this is equivalent to saying that $b^{(\delta-1)|K|}=1$ for any $b \in H$. In particular, for a generator y of H, $y^{(\delta-1)|K|}=1$. Hence $|H|$ divides $(\delta-1)|K|$, or equivalently $\pi \mid(\delta-1)$, and

$$
\begin{equation*}
\widehat{\tau}(1,0, \delta)=\operatorname{id}_{H / K} \Leftrightarrow \pi \mid(\delta-1) . \tag{16}
\end{equation*}
$$

Since the automorphism group $\widehat{G}_{0,1}$ is transitive on the set of non-identity elements of $H / K, H / K$ must be elementary abelian (see [28, Theorem 11.1]). In addition, since H / K is cyclic, $\pi=|H / K|$ has to be a prime.

Now $P=K \cup K w \cup K w^{[\varphi, 2]} \cup \cdots \cup K w^{[\varphi, r-1]}$ and $|P|=|K| r$. Let $w=\rho^{j}$, where ρ is a generator of \mathbb{F}_{q}^{\times}and $j \geqslant 1$.

If $w^{|K| r} \neq 1$, then $\left|\rho^{|K| r}\right|=|H| r /(|K| r)=\pi$ is a prime, and $\left|w^{|K| r}\right|=\left|\left(\rho^{|K| r}\right)^{j}\right|=$ $\pi / \operatorname{gcd}(j, \pi)=\pi$. Since $K w^{[\varphi, r]}=K$ by (15), we have $w^{[\varphi, r]|K|}=1$. Also, $r \mid[\varphi, r]$ by (13), and thus $1=\left(w^{|K| r}\right)^{[\varphi, r] / r}$. Hence $\pi=\left|w^{|K| r}\right|$ is a divisor of $[\varphi, r] / r$, and $\pi \mid\left(\varphi^{r}-1\right)$. By (16) we have $\widehat{\tau}\left(1,0, \varphi^{r}\right)=\operatorname{id}_{H / K}$, and $\widehat{G}_{0,1}=\{1\}$ as $G_{0,1}=\left\langle\tau\left(1,0, \varphi^{r}\right)\right\rangle$. Thus $G_{0,1}$ is not transitive on $P^{G_{0}} \backslash\{P\}$.

Therefore $w^{|K| r}=1$, $w^{r} \in K$, which means $(K w)^{r}=K$. Thus $P / K=\langle K w\rangle$ is a subgroup of order r of the quotient group $\mathbb{F}_{q}^{\times} / K$, and P is a subgroup of \mathbb{F}_{q}^{\times}. This completes the proof of Lemma 4.3.

The following notion will be used in our construction of all G-flag graphs (see Lemmas 4.5 and 4.7).

Definition 4.4. A quintuple of positive integers (p, d, π, r, s) is called admissible if the following conditions are satisfied:
(a) p is a prime, d is a positive integer, and π is an odd prime;
(b) $p(\bmod \pi)$ is a generator of the multiplication group $\mathbb{F}_{\pi}^{\times}$;
(c) $\operatorname{gcd}(r s, \pi-1)=1$ and $r s(\pi-1) \mid d$; and
(d) $r=1$ or $r \nmid\left(p^{s i}-1\right) /\left(p^{s}-1\right)$ for $i=1,2, \ldots, r-1$, and $r \mid\left(p^{s r}-1\right) /\left(p^{s}-1\right)$.

With the help of Dirichlet's theorem about primes in an arithmetic progression, it can be proved that there are infinitely many admissible quintuples (p, d, π, r, s) with $r>1$.

Lemma 4.5. Let $q=p^{d}$ with p a prime and $d \geqslant 1$. Then there exist a group $G \leqslant$ $\mathrm{A} \Gamma \mathrm{L}(1, q)$ and a subset P of \mathbb{F}_{q}^{\times}containing 1 such that
(a) G is 2-transitive on \mathbb{F}_{q},
(b) P is an imprimitive block of G_{0} on \mathbb{F}_{q}^{\times}and $(q-1) /|P| \geqslant 3$, and
(c) $G_{0,1}$ is transitive on $P^{G_{0}} \backslash\{P\}$
if and only if $(p, d,(q-1) /|P|, r, s)$ is an admissible quintuple for some positive integers r and s.

Proof. Let G and P satisfy (a)-(c). Then by Lemma 4.3 $P \leqslant \mathbb{F}_{q}^{\times}$and $\pi:=\left|\mathbb{F}_{q}^{\times} / P\right|$ is an odd prime. $P^{G_{0}}$ is the set of right cosets of P in \mathbb{F}_{q}^{\times}. Let s, r and φ be defined as in the proof of Lemma 4.3, and let $x=P h$ and $h \in \mathbb{F}_{q}^{\times} \backslash P$. Then $G_{0,1}=\langle\tau(1,0, \theta)\rangle\left(\theta=\zeta^{s r}\right)$ is transitive on $P^{G_{0}} \backslash\{P\}$ if and only if in the sequence: $x, x^{\theta}, x^{\theta^{2}}, \ldots, x^{\theta^{i}}, x^{\theta^{i+1}}, \ldots$, the first $\pi-1$ terms are pairwise distinct (that is, they are in the same cycle of the permutation induced by $\tau(1,0, \theta)$ on $\left.\mathbb{F}_{q}^{\times} / P\right)$. By a similar analysis as in the proof of Lemma 4.3 leading to (16), we have $x^{\theta^{i}}=x$ if and only if $\pi \mid\left(\theta^{i}-1\right)$. Hence the following statements are equivalent:
$\left(\mathrm{T}_{1}\right) G_{0,1}$ is transitive on $P^{G_{0}} \backslash\{P\}$;
$\left(\mathrm{T}_{2}\right) x^{\theta^{i}} \neq x, i=1,2, \ldots, \pi-2$ and $x^{\theta^{\pi-1}}=x ;$
$\left(\mathrm{T}_{3}\right) \pi \nmid\left(p^{s r i}-1\right), i=1,2, \ldots, \pi-2$ and $\pi \mid\left(p^{s r(\pi-1)}-1\right)$;
$\left(\mathrm{T}_{4}\right) \operatorname{gcd}(s r, \pi-1)=1$, and $p(\bmod \pi)$ is a generator of $\mathbb{F}_{\pi}^{\times}$.

Thus $(\pi-1) \mid d$ and $r s(\pi-1) \mid d$ by $\left(\mathrm{T}_{4}\right)$. By the proof of Lemma 4.3, we know G_{0} is generated by $\{t(a, 0): a \in H\}$ and $t(b, s)$, where H is the subgroup of \mathbb{F}_{q}^{\times}of index r and b is some element of \mathbb{F}_{q}^{\times}, and (13) holds.
(i) If $r=1$, then $H=\mathbb{F}_{q}^{\times}$and G_{0} is the group generated by $\operatorname{GL}(1, q)$ and $\tau(1,0, \varphi)$.
(ii) If $r>1$, then by (13) and Lemma 4.1, we have $H b \neq H, H b^{[\varphi, 2]} \neq H, \ldots$, $H b^{[\varphi, r-1]} \neq H$. This is equivalent to saying that $|H|=(q-1) / r$ and $b^{|H|} \neq 1, b^{[\varphi, 2]|H|} \neq 1$, $\ldots, b^{[\varphi, r-1]|H|} \neq 1$ by Lemma 4.2. Denote the set of solutions in \mathbb{F}_{q}^{\times}of each of the equations

$$
\alpha^{|H|}=1, \alpha^{[\varphi, 2]|H|}=1, \ldots, \alpha^{[\varphi, r-1]|H|}=1
$$

by $E_{1}, E_{2}, \ldots, E_{r-1}$, respectively. Then $E_{i}(i=1,2, \ldots, r-1)$ is a cyclic subgroup of \mathbb{F}_{q}^{\times} with $\left|E_{i}\right|=\operatorname{gcd}\left(p^{d}-1,[\varphi, i]|H|\right)=|H| \cdot \operatorname{gcd}(r,[\varphi, i])$, and E_{i} / H is a subgroup of $\mathbb{F}_{q}^{\times} / H$ of order $\operatorname{gcd}(r,[\varphi, i])$. Hence the existence of b satisfying (13) implies $\cup_{i=1}^{r-1} E_{i} \neq \mathbb{F}_{q}^{\times}$, and so $r \nmid\left(p^{s i}-1\right) /\left(p^{s}-1\right), i=1,2, \ldots, r-1$, and $r \mid\left(p^{s r}-1\right) /\left(p^{s}-1\right)$. Thus (p, d, π, r, s) is an admissible quintuple.

Conversely, suppose that (p, d, π, r, s) is an admissible quintuple. Let P be the subgroup of \mathbb{F}_{q}^{\times}of index π and let $\varphi:=\zeta^{s}$. If $r=1$, then choose G to be the group generated by GL $(1, q)$ and $\tau(1,0, \varphi)$. If $r>1$, then choose G to be the group generated by $\{t(a, 0): a \in H\}$ and $t(b, s)$, where H is the subgroup of \mathbb{F}_{q}^{\times}of index r and b is a generator of \mathbb{F}_{q}^{\times}. Then (13) together with $\left(\mathrm{T}_{1}\right)-\left(\mathrm{T}_{4}\right)$ above implies that G and P satisfy (a)-(c).

Remark 4.6. For an admissible quintuple (p, d, π, r, s), there are $\phi(r)$ different subgroups G of $\operatorname{A\Gamma L}(1, q)$ such that $s=\min \left\{\ell>0: t(a, \ell) \in G_{0}\right.$ for some $\left.a \in \mathbb{F}_{q}^{\times}\right\}$and $r=\min \{n>$ $\left.0: t(1, n s) \in G_{0,1}\right\}$, where $q:=p^{d}$ and $\phi(r):=|\{\ell>0: \ell \leqslant r, \operatorname{gcd}(\ell, r)=1\}|$. In fact, if $r=1$, then G_{0} is the group generated by $\operatorname{GL}(1, q)$ and $\tau\left(1,0, \zeta^{s}\right)$. Assume $r>1$. Let $\varphi:=\zeta^{s}$, and let H and $E_{i}(1 \leqslant i \leqslant r-1)$ be as in the proof of Lemma 4.5. Then $\{[\varphi, 1], \ldots,[\varphi, r]\}$ is a complete residue system modulo r by (13). It follows that $\cup_{i=1}^{r-1}\left(E_{i} / H\right)$ is the set of all non-generators of $\mathbb{F}_{q}^{\times} / H$. Let ξ be a fixed generator of \mathbb{F}_{q}^{\times}. Then $\mathbb{F}_{q}^{\times} \backslash \cup_{i=1}^{r-1} E_{i}=\cup_{i=1}^{\phi(r)} H \xi^{\ell_{i}}$, where $\left\{\ell_{1}=1, \ell_{2}, \ldots, \ell_{\phi(r)}\right\}$ is a reduced residue system modulo r, and hence G_{0} is the group generated by $\{t(a, 0): a \in H\}$ and $t\left(\xi^{\ell_{i}}, s\right)$ for some $i \in\{1,2, \ldots, \phi(r)\}$.

Lemma 4.7. Assume that G and P satisfy (a)-(c) in Lemma 4.5 with $|P|>1$. Let H, K, s, r be defined as in the proof of Lemma 4.3 and $\pi:=(q-1) /|P|$. Set $\mathcal{D}:=\left(\mathbb{F}_{q}, L^{G}\right)$ and $\Omega:=(0, L)^{G}$, where $L:=P \cup\{0\}$. Then \mathcal{D} is a $2-(q,|P|+1, \lambda)$ design.
(a) If $G \neq \mathrm{A} \Gamma(1,16)$ or $|P| \neq 3$, then \mathcal{D} is a $2-(q,|P|+1,|P|+1)$ design admitting G as an automorphism group, Ω is a feasible orbit of G on the flag set of \mathcal{D}, and there are exactly two distinct self-paired G-orbits on $\mathrm{F}(\mathcal{D}, \Omega)$.
(b) Assume $\lambda>1$. Denote the two distinct self-paired G-orbits on $\mathrm{F}(\mathcal{D}, \Omega)$ by Ψ_{1} and Ψ_{2}, and denote $\Gamma_{i}=\Gamma\left(\mathcal{D}, \Omega, \Psi_{i}\right)$ for $i=1,2$. Then $\Gamma_{i}[\Omega(0), \Omega(1)] \cong(\pi-1) \cdot K_{2}$,
$i=1,2$. Moreover, Γ_{1} has π connected components each with order $|\Omega| / \pi=q$ and valency $(\pi-1)(q-1) / \pi$, and Γ_{2} is connected with order $|\Omega|=\pi q$ and valency $(\pi-1)(q-1) / \pi$.

Proof. (a) By Lemma 4.3 P is a nontrivial subgroup of \mathbb{F}_{q}^{\times}. If $\lambda=1$, then L is a subfield of \mathbb{F}_{q} by [19, Section 4]. Conversely, if L is a subfield of \mathbb{F}_{q}, then each element in G interchanging 0 and 1 must stabilise L, and thus $\lambda=1$. Moreover, let $|L|=p^{t}$. Then $\left(p^{d}-1\right) /\left(p^{t}-1\right)-1=\left|P^{G_{0}} \backslash\{P\}\right| \leqslant\left|G_{0,1}\right| \leqslant d$ as $G_{0,1}$ is transitive on $P^{G_{0}} \backslash\{P\}$. Since $|P|>1$, this can happen only when $(p, d, t)=(2,4,2)$, or equivalently $(p, d,|P|)=$ $(2,4,3)$. Therefore $\lambda=1$ implies $G=\mathrm{A} \Gamma(1,16)$ (by Remark 4.6) and $|P|=3$.

Let $P^{G_{0}}=\left\{P_{1}=P, P_{2}, \ldots, P_{\pi}\right\}$ and $L_{i}:=P_{i} \cup\{0\}, i=1,2, \ldots, \pi$. Since $\operatorname{gcd}(r, \pi-$ 1) $=1, r$ is odd and $|H|=(q-1) / r$ is even when $p>2$. Thus $-1 \in H$ and $\gamma:=$ $\tau(-1,0$, id $) \in G_{0}$. Similarly, we have $-1 \in P$ since $|P|=(q-1) / \pi$ is even when $p>2$.

Let $\Psi=((0, M),(1, N))^{G}$ be a G-orbit on $\mathrm{F}(\mathcal{D}, \Omega)$, where $M=L_{2}=P x \cup\{0\}$ and $N=L_{j}+1$, for some $x \in \mathbb{F}_{q}^{\times} \backslash P$ and $j \geqslant 2$. Then Ψ is self-paired if and only if there is some $g \in G$ interchanging $(0, M)$ and $(1, N)$. Hence $g=h \widetilde{1}$, where $\widetilde{1}$ is the translation induced by 1 , that is, $\widetilde{1}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, z \mapsto z+1$, and $h \in G_{0}$ is such that $1^{h}=-1$ and h interchanges P_{2} and P_{j}. Thus $h \in \gamma G_{0,1}=G_{0,1} \gamma$ and the action of h on $P^{G_{0}} \backslash\{P\}$ has a cycle $\left(P_{2} P_{j}\right)$, possibly with $P_{2}=P_{j}$. Since γ stabilises each element in $P^{G_{0}} \backslash\{P\}$, we just need $h \gamma$ $\left(\in G_{0,1}\right)$ to have a cycle $\left(P_{2} P_{j}\right)$ on $P^{G_{0}} \backslash\{P\}$. Since $G_{0,1}=\langle\tau(1,0, \theta)\rangle\left(\theta=\zeta^{s r}\right)$ induces a regular permutation group on $P^{G_{0}} \backslash\{P\}, \tau(1,0, \theta)^{\frac{\pi-1}{2}}$ induces the unique permutation on $P^{G_{0}} \backslash\{P\}$ which has a 2-cycle, and its cycle decomposition on $P^{G_{0}} \backslash\{P\}$ is $\left(P_{2} P_{2}^{\varepsilon}\right) \cdots$, where $\varepsilon:=\theta^{\frac{\pi-1}{2}}$. Thus Ψ is self-paired if and only if $P_{j}=P_{2}$ or P_{2}^{ε}.
(b) First assume $P_{j}=P_{2}$, and let $\Psi_{1}:=\left(\left(0, L_{2}\right),\left(1, L_{2}+1\right)\right)^{G}$. One can verify that the set $(1, N)^{G_{0,1, P x}}$ of vertices in $\Omega(1)$ adjacent to $(0, M)$ in Γ_{1} is $\{(1, N)\}$, and the set of vertices in $\Omega(1)$ adjacent to $\left(0, L_{i}\right)$ is $\left\{\left(1, L_{i}+1\right)\right\}, i=2,3, \ldots, \pi$, which implies $\Gamma_{1}[\Omega(0), \Omega(1)] \cong(\pi-1) \cdot K_{2}$.

Set $J:=\left\langle G_{0, P x}, \kappa\right\rangle$, where $\kappa:=\tau(-1,1, \mathrm{id})$ interchanges $(0, M)$ and $(1, N)$. If $(P x)^{\kappa}=$ $P x$, then $(1, \widetilde{N})=(0, M)^{\kappa} \in \Omega(1)$, where $\widetilde{N}=P x \cup\{1\}$. Suppose $(1, \widetilde{L})$ is the flag in $\Omega(1)$ such that $0 \in \widetilde{L}$, and let $\widetilde{P}:=\widetilde{L} \backslash\{1\}$. Then $\widetilde{P}^{G_{1}} \backslash\{\widetilde{P}\}=(P x)^{G_{1,0}}=P^{G_{0}} \backslash\{P\}$ as Ω is feasible. It follows that $\widetilde{L}=L_{1}$ and $G_{L_{1}}$ is transitive on L_{1}, which is a contradiction by Lemma 2.8. Therefore κ does not stabilise $P x$, and J is transitive on \mathbb{F}_{q} as $G_{0, P x}$ is transitive on $\mathbb{F}_{q}^{\times} \backslash P x$ by Lemma 2.9. Since $\tau(-1, c$, id $) \tau(a, 0, \delta)=\tau(a, 0, \delta) \tau\left(-1, a c^{\delta}\right.$, id) for $c \in \mathbb{F}_{q}$ and $\tau(a, 0, \delta) \in G_{0, P x}$, one can see that $J_{0}=G_{0, P x}$. By Lemmas 2.11 and 2.10, the number of connected components of Γ_{1} is equal to $|G: J|=\left|G_{0}: J_{0}\right|=\pi$.

Next assume $P_{j}=P_{2}^{\varepsilon}$, and let $\Psi_{2}:=\left(\left(0, L_{2}\right),\left(1, L_{2}^{\varepsilon}+1\right)\right)^{G}$. One can verify that $(1, N)^{G_{0,1, P x}}=\{(1, N)\}$, and the set of vertices in $\Omega(1)$ adjacent to $\left(0, L_{i}\right)$ is $\left\{\left(1, L_{i}^{\varepsilon}+1\right)\right\}$, $i=2,3, \ldots, \pi$, which implies $\Gamma_{2}[\Omega(0), \Omega(1)] \cong(\pi-1) \cdot K_{2}$.

Set $\widetilde{J}:=\left\langle G_{0, P x}, \eta\right\rangle$, where $\eta:=\tau(-1,1, \varepsilon)$ interchanges $(0, M)$ and $(1, N)$. Similar to J, \widetilde{J} is transitive on \mathbb{F}_{q}. If $a \in \mathbb{F}_{q}^{\times} \backslash P x$, then by the transitivity of $G_{0, P x}$ on $\mathbb{F}_{q}^{\times} \backslash P x$, there is some $\tau(a, 0, \delta) \in G_{0, P x}$, and thus $\tau(a, 0, \delta)^{-1} \eta^{-1} \tau(a, 0, \delta) \eta=\tau\left(a^{\varepsilon-1},-a^{\varepsilon}+1\right.$, id $) \in \widetilde{J}$. In particular, we have $\tau\left(a^{\varepsilon-1},-a^{\varepsilon}+1\right.$, id $)=\tau(1,-a+1$, id $) \in \widetilde{J}$ for any $a \in \mathbb{F}_{\varepsilon}^{\times} \backslash P x$, where \mathbb{F}_{ε} is the subfield of \mathbb{F}_{q} such that $\left|\mathbb{F}_{\varepsilon}\right|=p^{s r(\pi-1) / 2}$.

Case 1: $p>2$. Since $\left|P^{G_{0}} \backslash\{P\}\right| \geqslant 2$, we can choose $P x \in P^{G_{0}} \backslash\{P\}$ such that $2 \notin P x$. Then $\tau\left(2^{\varepsilon-1},-2^{\varepsilon}+1, \mathrm{id}\right)=\tau(1,-1$, id $) \in \widetilde{J}$. It follows that $\tau(1,0, \varepsilon) \in \widetilde{J}_{0} \backslash G_{0, P x}$. By Lemma 2.10, $G_{0, P x}$ is maximal in G_{0} and hence $\widetilde{J}_{0}=G_{0}$. Therefore $\widetilde{J}=G$ and Γ_{2} is connected.

Case 2: $p=2$. First assume $\varepsilon-1 \nmid \frac{q-1}{\pi}$. Then $\operatorname{sr}(\pi-1) / 2>1$ as $\varepsilon=\zeta^{s r(\pi-1) / 2}$. Since $\tau\left(a^{\varepsilon-1},-a^{\varepsilon}+1, \mathrm{id}\right)=\tau(1,-a+1, \mathrm{id}) \in \widetilde{J}$ for any $a \in \underset{\sim}{\mathbb{T}} \times P x$ and $\left|\mathbb{F}_{\varepsilon}^{\times} \cap P y\right|=(\varepsilon-1) / \pi$ for any $y \in \mathbb{F}_{q}^{\times}$, we have $|\widetilde{T}| \geqslant(\varepsilon-1)(\pi-1) / \pi$, where $\widetilde{T}:=\left\langle\tau\left(1,-a+1\right.\right.$, id) $\left|a \in \mathbb{F}_{\varepsilon}^{\times} \backslash P x\right\rangle$. One can see that $|\widetilde{T}|$ is a divisor of $\left|\mathbb{F}_{\varepsilon}\right|=2^{s r(\pi-1) / 2}$. If $|\widetilde{T}| \neq\left|\mathbb{F}_{\varepsilon}\right|$, then $2 \leqslant\left|\mathbb{F}_{\varepsilon}\right| /|\widetilde{T}| \leqslant$ $\left|\mathbb{F}_{\varepsilon}\right| /\left(\left|\mathbb{F}_{\varepsilon}^{\times}\right|(\pi-1) / \pi\right)$, or equivalently $1 / 2 \geqslant(\pi-1)\left|\mathbb{F}_{\varepsilon}^{\times}\right| /\left(\pi\left|\mathbb{F}_{\varepsilon}\right|\right)$. This happens only when $\pi=3$ and $s r=2$, which is impossible as $\operatorname{gcd}(s r, \pi-1)=1$ by $\left(\mathrm{T}_{4}\right)$ in the proof of Lemma 4.5. Therefore, $|\widetilde{T}|=\left|\mathbb{F}_{\varepsilon}\right|$ and $\tau(1,1$, id $) \in \widetilde{T} \leqslant \widetilde{J}$, which implies $\tau(1,0, \varepsilon) \in \widetilde{J}_{0} \backslash G_{0, P x}$ and $\widetilde{J}_{0}=G_{0}$ by the maximality of $G_{0, P x}$ in G_{0}. Hence $\widetilde{J}=G$ and Γ_{2} is connected.

Next assume $\varepsilon-1\left|\frac{q-1}{\pi}=|P|\right.$. Then $\mathbb{F}_{\varepsilon}^{\times} \leqslant P$. If $\operatorname{sr}(\pi-1) / 2>1$, then there are $a, b \in$ $\mathbb{F}_{\varepsilon}^{\times}$such that $a+b=1$, and thus $\tau(1,1, \mathrm{id})=\tau(1, a+1, \mathrm{id}) \tau(1, b+1, \mathrm{id}) \in \widetilde{J}$. Therefore, similar to the above discussion we have $\widetilde{J}=G$ and Γ_{2} is connected. If $\operatorname{sr}(\pi-1) / 2=1$, then $s=r=1, \pi=3$ and $\varepsilon=\zeta$. It follows that $G=\mathrm{A} \Gamma \mathrm{L}\left(1,2^{d}\right)$ (by Remark 4.6) with d even. Now $\tau\left(a^{\varepsilon-1},-a^{\varepsilon}+1, \mathrm{id}\right)=\tau\left(a, a^{2}+1, \mathrm{id}\right)$ for $a \in \mathbb{F}_{q}^{\times} \backslash P x$. One can verify that $G_{0, P x}$ normalizes $\widehat{T}:=\{\tau(a, b, \mathrm{id}): \tau(a, b, \mathrm{id}) \in \widetilde{J}\} \leqslant \widetilde{J}, G_{0, P x} \cap \widehat{T}=\{\tau(a, 0, \mathrm{id}): a \in P\}$, and η normalizes $\widehat{T} G_{0, P x}$. Moreover, since $\eta^{2}=\tau\left(1,0, \varepsilon^{2}\right) \in G_{0, P x},\langle\eta\rangle \cap \widehat{T} G_{0, P x}$ is of index f in $\langle\eta\rangle$, where $f=1$ or 2. Hence $|\widetilde{J}|=\left|\left(\widehat{T} G_{0, P x}\right)\langle\eta\rangle\right|=\left|\widehat{T} G_{0, P x}\right| f=|\widehat{T}|\left|G_{0, P x}\right| f /|P|$. We can see that $|\widehat{T}|=(q-1) n$, where n is the order of the group $\{\tau(1, c, \mathrm{id}): \tau(1, c$, id $) \in \widetilde{J}\}$. Hence $n \mid q=2^{d}$, and $|G: \widetilde{J}|=2^{d}\left|G_{0}\right| /\left(\pi n f\left|G_{0, P x}\right|\right)=2^{d} /(n f)$. Since $G_{0, P x} \leqslant \widetilde{J}_{0}$ and $G_{0, P x}$ is maximal in G_{0} by Lemma 2.10, $|G: \widetilde{J}|$ is equal to 1 or π. Therefore $|G: \widetilde{J}|=1$, and Γ_{2} is connected.

$4.2 \quad G_{0} \unrhd \operatorname{Sp}(n, q), n \geqslant 4$ even, $u=q^{n}=p^{d}$

We denote the underlying symplectic space by (V, φ), where $V=\mathbb{F}_{q}^{n}$ and φ is a symplectic form. Set $H:=\operatorname{Sp}(n, q) \unlhd G_{\mathbf{0}}$. Suppose that P is an imprimitive block of $G_{\mathbf{0}}$ on $V \backslash\{\mathbf{0}\}$ and let $\mathbf{x} \in P$. Define $C_{i}:=\{\mathbf{z} \in V \backslash\langle\mathbf{x}\rangle: \varphi(\mathbf{z}, \mathbf{x})=i\}, i \in \mathbb{F}_{q}$. By Witt's Lemma, each C_{i} is an orbit of $H_{\mathbf{x}}$ on $V \backslash\langle\mathbf{x}\rangle$. Moreover, $\left|C_{i}\right|=q^{n-1}$ for $i \in \mathbb{F}_{q}^{\times}$and $\left|C_{0}\right|=q^{n-1}-q$.

First assume that $C_{0} \nsubseteq P$. Suppose that P includes j orbits of $H_{\mathbf{x}}$ of length $q^{n-1}(0 \leqslant$ $j<q)$ and P contains ℓ elements in $\langle\mathbf{x}\rangle(1 \leqslant \ell<q)$. Then $|P|=j q^{n-1}+\ell$ and $j q^{n-1}+\ell=\operatorname{gcd}\left(j q^{n-1}+\ell, q^{n}-1\right)=\operatorname{gcd}\left(q^{n}-1, \ell q+j\right) \leqslant \ell q+j$. This implies $j=0$ and $P \subseteq\langle\mathbf{x}\rangle$ as $n \geqslant 4$. If there is a feasible G-orbit on the flag set of the $2-(u,|P|+1, \lambda)$ design $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=P \cup\{\mathbf{0}\}$, then by Lemma 2.12, we have $\lambda=1$.

Next assume that $C_{0} \subseteq P$. Suppose that P includes $j-1$ orbits of H_{x} of length $q^{n-1}(1 \leqslant j<q+1)$ and P contains ℓ elements in $\langle\mathbf{x}\rangle(1 \leqslant \ell<q)$. Then $|P|=j q^{n-1}+\ell-q$ and $j q^{n-1}+\ell-q=\operatorname{gcd}\left(j q^{n-1}+\ell-q, q^{n}-1\right)=\operatorname{gcd}\left(q^{n}-1, q^{2}-\ell q-j\right)$. If $q^{2}-\ell q-j \neq 0$, then $j q^{n-1}+\ell-q \leqslant q^{2}-\ell q-j$, which is impossible as $n \geqslant 4$. If $q^{2}-\ell q-j=0$, then $j=q, \ell=q-1$, and thus $P=V \backslash\{0\}$, violating the condition $(u-1) /|P| \geqslant 3$.

Therefore, there is no $2-(u, m+1, \lambda)$ design as in Lemma 2.10 with $\lambda>1$ admitting G as a group of automorphisms.

4.3 $\quad \mathrm{SL}(2, q)=\operatorname{Sp}(2, q) \unlhd G_{0}, u=q^{2}=p^{d}$

Denote the underlying symplectic space by (V, φ), where $V=\mathbb{F}_{q}^{2}$ and φ is a symplectic form. Let $H:=\mathrm{Sp}(2, q)=\mathrm{SL}(2, q) \unlhd G_{\mathbf{0}}$. Suppose that P is an imprimitive block of $G_{\mathbf{0}}$ on $V \backslash\{\mathbf{0}\}$ and $\mathbf{x} \in P$. Define C_{i} for $i \in \mathbb{F}_{q}$ as in Section 4.2. Then $C_{0}=\emptyset$ and $C_{i}=\langle\mathbf{x}\rangle+\mathbf{z}_{i}$ for each $i \in \mathbb{F}_{q}^{\times}$, where $\mathbf{z}_{i} \in C_{i}$. By Witt's Lemma, each C_{i} is an orbit of $H_{\mathbf{x}}$ on $V \backslash\langle\mathbf{x}\rangle$. Denote all 1-subspaces of V by $U=\langle\mathbf{x}\rangle, U_{1}, \ldots, U_{q}$.

If $P \subseteq\langle\mathbf{x}\rangle$ and there is a feasible G-orbit on the flag set of the $2-(u,|P|+1, \lambda)$ design $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=P \cup\{\mathbf{0}\}$, then $\lambda=1$ by Lemma 2.12. So we assume that $P \nsubseteq\langle\mathbf{x}\rangle$ and $P=\left(U+\mathbf{z}_{t_{1}}\right) \cup \cdots \cup\left(U+\mathbf{z}_{t_{j}}\right) \cup E(1 \leqslant j<q)$, where E is a subset of $\langle\mathbf{x}\rangle$ of size $\ell(1 \leqslant \ell<q), t_{1}, \ldots, t_{j}$ are pairwise distinct elements of \mathbb{F}_{q}^{\times}, and $\mathbf{z}_{t_{n}} \in C_{t_{n}}$, $n=1,2, \ldots, j$.

Since H is transitive on the set of 1-subspaces of V, there is some $\gamma \in H$ such that $U^{\gamma}=U_{1}$. Hence $P^{\gamma}=\left(U_{1}+\mathbf{z}_{t_{1}}^{\gamma}\right) \cup \cdots \cup\left(U_{1}+\mathbf{z}_{t_{j}}^{\gamma}\right) \cup E^{\gamma}$. Since U and U_{1} are not parallel, $P^{\gamma} \cap P \neq \emptyset$ and thus $P=P^{\gamma} \supseteq U_{1}+\mathbf{z}_{t_{1}}^{\gamma}$. Since $\left|\left(U_{1}+\mathbf{z}_{t_{1}}^{\gamma}\right) \cap\left(U+\mathbf{z}_{t_{n}}\right)\right|=1, n=1,2, \ldots, j$, and $\left|\left(U_{1}+\mathbf{z}_{t_{1}}^{\gamma}\right) \cap U\right|=1$, we have $j+1 \geqslant\left|U_{1}+\mathbf{z}_{t_{1}}^{\gamma}\right|=q$ and thus $j=q-1$. Now $|P|=$ $q^{2}-q+\ell$ is a divisor of $q^{2}-1$, that is, $q^{2}-q+\ell=\operatorname{gcd}\left(q^{2}-q+\ell, q^{2}-1\right)=\operatorname{gcd}\left(q^{2}-1, q-\ell-1\right)$. Thus $\ell=q-1$ and $P=V \backslash\{\mathbf{0}\}$, violating the condition $(u-1) /|P| \geqslant 3$. Hence there is no 2- $(u, m+1, \lambda)$ design as in Lemma 2.10 with $\lambda>1$.

4.4 $\quad G_{0} \unrhd \mathrm{SL}(n, q), n \geqslant 3, u=q^{n}=p^{d}$

Suppose that P is an imprimitive block of $G_{\mathbf{0}}$ on $V \backslash\{\mathbf{0}\}$ and $\mathbf{x} \in P$, where $V=\mathbb{F}_{q}^{n}$. Since $V \backslash\langle\mathbf{x}\rangle$ is a $G_{\mathbf{0}, \mathbf{x}}$-orbit of length $q^{n}-q$, if P does not include this orbit, then P $\subseteq\langle\mathbf{x}\rangle$; if in addition there is a feasible G-orbit on the flag set of the $2-(u,|P|+1, \lambda)$ design $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=P \cup\{\mathbf{0}\}$, then $\lambda=1$ by Lemma 2.12. If P contains $V \backslash\langle\mathbf{x}\rangle$, then since $|P|$ is a divisor of $|V \backslash\{\mathbf{0}\}|=q^{n}-1$, we have $P=V \backslash\{\mathbf{0}\}$, violating the condition $(u-1) /|P| \geqslant 3$. Therefore, there is no 2- $(u, m+1, \lambda)$ design as in Lemma 2.10 with $\lambda>1$.

$4.5 \quad G_{0} \unrhd G_{2}(q), u=q^{6}=p^{d}, q>2$ even

Suppose that P is an imprimitive block of $G_{\mathbf{0}}$ on $V \backslash\{\mathbf{0}\}$ and $\mathbf{a} \in P$, where $V=\mathbb{F}_{q}^{6}$. Then P is also an imprimitive block of $G_{2}(q)$ on $V \backslash\{0\}$ and P is the union of some orbits of $G_{2}(q)_{\mathbf{a}}$ on $V \backslash\{\mathbf{0}\}$. We will determine all possible lengths of the $G_{2}(q)_{\mathbf{a}}$-orbits on $V \backslash\{\mathbf{0}\}$, with the help of the knowledge about $G_{2}(q)$ from [29, Section 4.3.4].

Now take a basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{8}\right\}$ of the octonion algebra \mathbb{O} over \mathbb{F}_{q} with the multiplication given by Table 2, or equivalently by Table 3, where $\mathbf{e}:=\mathbf{x}_{4}+\mathbf{x}_{5}$ is the identity element of \mathbb{O} (since the characteristic is 2 , we omit the signs).

	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}	\mathbf{x}_{5}	\mathbf{x}_{6}	\mathbf{x}_{7}	\mathbf{x}_{8}
\mathbf{x}_{1}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}_{1}	\mathbf{x}_{2}	\mathbf{x}_{3}	\mathbf{x}_{4}
\mathbf{x}_{2}	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}_{1}	\mathbf{x}_{2}	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}_{5}	\mathbf{x}_{6}
\mathbf{x}_{3}	$\mathbf{0}$	\mathbf{x}_{1}	$\mathbf{0}$	\mathbf{x}_{3}	$\mathbf{0}$	\mathbf{x}_{5}	$\mathbf{0}$	\mathbf{x}_{7}
\mathbf{x}_{4}	\mathbf{x}_{1}	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}_{4}	$\mathbf{0}$	\mathbf{x}_{6}	\mathbf{x}_{7}	$\mathbf{0}$
\mathbf{x}_{5}	$\mathbf{0}$	\mathbf{x}_{2}	\mathbf{x}_{3}	$\mathbf{0}$	\mathbf{x}_{5}	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}_{8}
\mathbf{x}_{6}	\mathbf{x}_{2}	$\mathbf{0}$	\mathbf{x}_{4}	$\mathbf{0}$	\mathbf{x}_{6}	$\mathbf{0}$	\mathbf{x}_{8}	$\mathbf{0}$
\mathbf{x}_{7}	\mathbf{x}_{3}	\mathbf{x}_{4}	$\mathbf{0}$	$\mathbf{0}$	\mathbf{x}_{7}	\mathbf{x}_{8}	$\mathbf{0}$	$\mathbf{0}$
\mathbf{x}_{8}	\mathbf{x}_{5}	\mathbf{x}_{6}	\mathbf{x}_{7}	\mathbf{x}_{8}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

Table 2. Multiplication table of \mathbb{O}

	e	x_{1}	x_{8}	x_{2}	x_{7}	x_{3}	x_{6}	x_{4}
e	e	x_{1}	x_{8}	x_{2}	x_{7}	x_{3}	x_{6}	x_{4}
x_{1}	x_{1}	0	x_{4}	0	x_{3}	0	x_{2}	0
x_{8}	x_{8}	$\mathrm{e}+\mathrm{x}_{4}$	0	x_{6}	0	x_{7}	0	x_{8}
x_{2}	x_{2}	0	x_{6}	0	$\mathrm{e}+\mathrm{x}_{4}$	x_{1}	0	x_{2}
x_{7}	x_{7}	x_{3}	0	x_{4}	0	0	x_{8}	0
x_{3}	x_{3}	0	x_{7}	x_{1}	0	0	$\mathrm{e}+\mathrm{x}_{4}$	x_{3}
x_{6}	x_{6}	x_{2}	0	0	x_{8}	x_{4}	0	0
x_{4}	x_{4}	x_{1}	0	0	x_{7}	0	x_{6}	x_{4}

Table 3. Multiplication table of \mathbb{O}

There is a quadratic form N and an associated bilinear form f satisfying

$$
N\left(\mathbf{x}_{i}\right)=0 \text { and } f\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\{\begin{array}{ll}
0, & i+j \neq 9, \\
1, & i+j=9,
\end{array} \quad i, j=1,2, \ldots, 8 .\right.
$$

$G_{2}(q)$ is the automorphism group of this octonion algebra, and since it preserves the multiplication table, a straightforward computation shows that $G_{2}(q)$ preserves N and f. Moreover, $G_{2}(q)$ induces a faithful action on $\mathbf{e}^{\perp} /\langle\mathbf{e}\rangle$, where $\mathbf{e}^{\perp}=\left\langle\mathbf{x}_{1}, \mathbf{x}_{8}, \mathbf{x}_{2}, \mathbf{x}_{7}, \mathbf{x}_{3}, \mathbf{x}_{6}, \mathbf{e}\right\rangle$. Hence $G_{2}(q)$ can be embedded into $\operatorname{Sp}(6, q)$.

Let $\langle\mathbf{x}\rangle$ denote the subspace of \mathbb{O} spanned by \mathbf{x}, and let $\langle\overline{\mathbf{x}}\rangle$ denote the subspace of $\mathbf{e}^{\perp} /\langle\mathbf{e}\rangle$ spanned by $\overline{\mathbf{x}}$, where $\overline{\mathbf{x}}=\mathbf{x}+\langle\mathbf{e}\rangle$. The actions of $G_{2}(q)$ on $\mathbf{e}^{\perp} /\langle\mathbf{e}\rangle$ and V are permutation isomorphic.

We know that $G_{2}(q)_{\left\langle\overline{\mathbf{x}}_{1}\right\rangle}$ has four orbits on the set of 1-subspaces of $\mathbf{e}^{\perp} /\langle\mathbf{e}\rangle([7$, Lemma $3.1]$, [19, p.72]), which are represented by $\left\langle\overline{\mathbf{x}}_{1}\right\rangle,\left\langle\overline{\mathbf{x}}_{8}\right\rangle,\left\langle\overline{\mathbf{x}}_{2}\right\rangle$ and $\left\langle\overline{\mathbf{x}}_{7}\right\rangle$ and have length $1, q^{5}$, $q(q+1)$ and $q^{3}(q+1)$, respectively.

Actually, $\overline{\mathbf{x}}_{8}$ is not perpendicular to $\overline{\mathbf{x}}_{1}$, while $\overline{\mathbf{x}}_{2}$ and $\overline{\mathbf{x}}_{7}$ are perpendicular to $\overline{\mathbf{x}}_{1}$. Hence the orbit of $\left\langle\overline{\mathbf{x}}_{8}\right\rangle$ is different from the orbit of $\left\langle\overline{\mathbf{x}}_{2}\right\rangle$ and the orbit of $\left\langle\overline{\mathbf{x}}_{7}\right\rangle$ under $G_{2}(q)_{\left\langle\overline{\mathbf{x}}_{1}\right\rangle}$. On the other hand, if there exists some $\varphi \in G_{2}(q)_{\left\langle\overline{\mathbf{x}}_{1}\right\rangle}$ such that $\varphi\left(\left\langle\overline{\mathbf{x}}_{2}\right\rangle\right)=\left\langle\overline{\mathbf{x}}_{7}\right\rangle$, then $\varphi\left(\mathbf{x}_{1}\right)=a \mathbf{x}_{1}+\ell \mathbf{e}$ and $\varphi\left(\mathbf{x}_{2}\right)=b \mathbf{x}_{7}+s \mathbf{e}, a, b \neq 0$, and hence $\mathbf{0}=\varphi\left(\mathbf{x}_{1}\right) \varphi\left(\mathbf{x}_{2}\right)=$ $\left(a \mathbf{x}_{1}+\ell \mathbf{e}\right)\left(b \mathbf{x}_{7}+s \mathbf{e}\right)=a b \mathbf{x}_{3}+\ell b \mathbf{x}_{7}+a s \mathbf{x}_{1}+\ell s \mathbf{e}$, which is a contradiction as $\mathbf{x}_{1}, \mathbf{x}_{3}, \mathbf{x}_{7}$ and \mathbf{e} are linearly independent.

Lemma 4.8. Let $\mathbf{a} \in V \backslash\{\mathbf{0}\}$. Then $G_{2}(q)_{\mathbf{a}}$ has $q-1$ orbits of length $1, q-1$ orbits of length q^{5}, one orbit of length $q\left(q^{2}-1\right)$ and one orbit of length $q^{3}\left(q^{2}-1\right)$ on $V \backslash\{\mathbf{0}\}$.

Proof. Denote the $G_{2}(q)_{\overline{\mathbf{x}}_{1}}$-orbits containing $\overline{\mathbf{x}}_{8}, \overline{\mathbf{x}}_{2}$ and $\overline{\mathbf{x}}_{7}$ by Θ_{8}, Θ_{2} and Θ_{7}, respectively. Since the actions of $G_{2}(q)$ on $\mathbf{e}^{\perp} /\langle\mathbf{e}\rangle$ and V are permutation isomorphic, it suffices to prove that $\left|\Theta_{8}\right|=q^{5},\left|\Theta_{2}\right|=q\left(q^{2}-1\right)$ and $\left|\Theta_{7}\right|=q^{3}\left(q^{2}-1\right)$.

To prove $\left|\Theta_{8}\right|=q^{5}$, we first show that $\Theta_{8} \cap\langle\overline{\mathbf{w}}\rangle \neq \emptyset$ for each $\langle\overline{\mathbf{w}}\rangle$ in the $G_{2}(q)_{\left\langle\overline{\mathbf{x}}_{1}\right\rangle}{ }^{-}$ orbit containing $\left\langle\overline{\mathbf{x}}_{8}\right\rangle$. In fact, let $\varphi \in G_{2}(q)_{\left\langle\overline{\mathbf{x}}_{1}\right\rangle}, \varphi\left(\overline{\mathbf{x}}_{1}\right)=a \overline{\mathbf{x}}_{1}$ for some $a \neq 0$ and $\varphi\left(\overline{\mathbf{x}}_{8}\right)=\overline{\mathbf{z}} \in\langle\overline{\mathbf{w}}\rangle$. Define a linear transformation ψ stabilising \mathbf{e} and $\overline{\mathbf{x}}_{1}$ as follows:

$$
\psi\left(\mathbf{x}_{1}, \mathbf{x}_{8}, \mathbf{x}_{2}, \mathbf{x}_{7}, \mathbf{x}_{3}, \mathbf{x}_{6}, \mathbf{x}_{4}\right):=\left(\frac{1}{a} \varphi\left(\mathbf{x}_{1}\right), a \varphi\left(\mathbf{x}_{8}\right), \varphi\left(\mathbf{x}_{2}\right), \varphi\left(\mathbf{x}_{7}\right), \frac{1}{a} \varphi\left(\mathbf{x}_{3}\right), a \varphi\left(\mathbf{x}_{6}\right), \varphi\left(\mathbf{x}_{4}\right)\right) .
$$

Then ψ preserves Table 3 and hence $\psi \in G_{2}(q)_{\overline{\mathbf{x}}_{1}}$. Now $\psi\left(\overline{\mathbf{x}}_{8}\right)=a \overline{\mathbf{z}} \in \Theta_{8} \cap\langle\overline{\mathbf{w}}\rangle$.
On the other hand, if there are distinct $s, t \in \mathbb{F}_{q}^{\times}$such that $\psi_{1}\left(\overline{\mathbf{x}}_{8}\right)=s \overline{\mathbf{w}}$ and $\psi_{2}\left(\overline{\mathbf{x}}_{8}\right)=$ $t \overline{\mathbf{w}}$, where $\psi_{1}, \psi_{2} \in G_{2}(q)_{\overline{\mathbf{x}}_{1}}$, then $s f\left(\overline{\mathbf{w}}, \overline{\mathbf{x}}_{1}\right)=f\left(\overline{\mathbf{x}}_{8}, \overline{\mathbf{x}}_{1}\right)=t f\left(\overline{\mathbf{w}}, \overline{\mathbf{x}}_{1}\right)$ and hence $s=t$ as $f\left(\overline{\mathbf{w}}, \overline{\mathbf{x}}_{1}\right) \neq 0$, a contradiction. Therefore, $\left|\Theta_{8} \cap\langle\overline{\mathbf{w}}\rangle\right|=1$ and thus $\left|\Theta_{8}\right|=q^{5}$. Similarly, for each $c \in \mathbb{F}_{q}^{\times}$, the length of the $G_{2}(q)_{\overline{\mathbf{x}}_{1}}$-orbit containing $c \overline{\mathbf{x}}_{8}$ is q^{5}.

To prove $\left|\Theta_{2}\right|=q\left(q^{2}-1\right)$, let $\langle\overline{\mathbf{y}}\rangle$ be the image of $\left\langle\overline{\mathbf{x}}_{2}\right\rangle$ under some $\eta \in G_{2}(q)_{\left\langle\overline{\mathbf{x}}_{1}\right\rangle}$ with $\eta\left(\overline{\mathbf{x}}_{1}\right)=b \overline{\mathbf{x}}_{1}(b \neq 0)$ and $\eta\left(\overline{\mathbf{x}}_{2}\right)=\overline{\mathbf{y}}$. Then for each $c \in \mathbb{F}_{q}^{\times}$, there exists $\zeta_{c} \in G_{2}(q)_{\overline{\mathbf{x}}_{1}}$ stabilising \mathbf{e} such that $\zeta_{c}\left(\overline{\mathbf{x}}_{2}\right)=c \overline{\mathbf{y}}$, say, ζ_{c} defined by

$$
\zeta_{c}\left(\mathbf{x}_{1}, \mathbf{x}_{8}, \mathbf{x}_{2}, \mathbf{x}_{7}, \mathbf{x}_{3}, \mathbf{x}_{6}, \mathbf{x}_{4}\right):=\left(\frac{1}{b} \eta\left(\mathbf{x}_{1}\right), b \eta\left(\mathbf{x}_{8}\right), c \eta\left(\mathbf{x}_{2}\right), \frac{1}{c} \eta\left(\mathbf{x}_{7}\right), \frac{1}{b c} \eta\left(\mathbf{x}_{3}\right), b c \eta\left(\mathbf{x}_{6}\right), \eta\left(\mathbf{x}_{4}\right)\right) .
$$

Then ζ_{c} preserves Table 3 and hence $\zeta_{c} \in G_{2}(q)_{\overline{\mathbf{x}}_{1}}$. Thus $\left|\Theta_{2}\right|=q(q+1)(q-1)=q\left(q^{2}-1\right)$. Similarly, one can prove $\left|\Theta_{7}\right|=q^{3}\left(q^{2}-1\right)$.

Since P is the union of some $G_{2}(q)_{\mathbf{a}^{-}}$-orbits on $V \backslash\{\mathbf{0}\}$, we have four possibilities to consider. First, if P includes neither the orbit of length $q\left(q^{2}-1\right)$ nor the orbit of length $q^{3}\left(q^{2}-1\right)$, then similar to the case $C_{0} \nsubseteq P$ in Section 4.2, we have $P \subseteq\langle\mathbf{a}\rangle$, and moreover if there is a feasible G-orbit on the flag set of the $2-(u,|P|+1, \lambda)$ design $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=P \cup\{\mathbf{0}\}$, then $\lambda=1$ by Lemma 2.12.

Next, if P includes the orbit of length $q\left(q^{2}-1\right)$ and the orbit of length $q^{3}\left(q^{2}-1\right)$, then similar to case $C_{0} \subseteq P$ in Section 4.2, we have $P=V \backslash\{\mathbf{0}\}$, violating the condition $(u-1) /|P| \geqslant 3$.

Next assume that P includes the orbit of length $q\left(q^{2}-1\right), i$ orbits of length $q^{5}(0 \leqslant$ $i<q)$ and ℓ orbits of length $1(1 \leqslant \ell<q)$, and P does not include the orbit of length $q^{3}\left(q^{2}-1\right)$. Then $|P|=i q^{5}+q^{3}-q+\ell$ and $i q^{5}+q^{3}-q+\ell=\operatorname{gcd}\left(|P|, q^{6}-1\right)=$ $\operatorname{gcd}\left(\ell q^{5}+i q^{4}+q^{2}-1, q^{4}-\ell q^{3}-i q^{2}-1\right)$. Since $0<q^{2}-1 \leqslant q^{4}-\ell q^{3}-i q^{2}-1 \leqslant q^{4}-q^{3}-1$, we have $i q^{5}+q^{3}-q+\ell \leqslant q^{4}-\ell q^{3}-i q^{2}-1 \leqslant q^{4}-q^{3}-1$, which implies $i=0$. Thus $|P|=q^{3}-q+\ell$ and $q^{3}-q+\ell=\operatorname{gcd}\left(\ell q^{5}+q^{2}-1, q^{4}-\ell q^{3}-1\right)=\operatorname{gcd}\left(q^{4}-\ell q^{3}-1, \ell q^{3}-q^{2}+\ell q+1\right)=$ $\operatorname{gcd}\left(q^{3}-q+\ell, q^{2}-2 \ell q+\left(\ell^{2}-1\right)\right)$. Since $0 \leqslant q^{2}-2 \ell q+\left(\ell^{2}-1\right)=(\ell-q)^{2}-1 \leqslant q^{2}-2 q$, if $q^{2}-2 \ell q+\left(\ell^{2}-1\right) \neq 0$, then $q^{3}-q+\ell \leqslant q^{2}-2 \ell q+\left(\ell^{2}-1\right) \leqslant q^{2}-2 q$, which is impossible. Hence $q^{2}-2 \ell q+\left(\ell^{2}-1\right)=0, \ell=q-1$ and $|P|=q^{3}-1$. Now $v=\left(q^{6}-1\right) /\left(q^{3}-1\right)=q^{3}+1>|P|$, and thus if a feasible G-orbit on the flag set of the $2-(u,|P|+1, \lambda)$ design $\mathcal{D}:=\left(V, L^{G}\right)$ exists, where $L:=P \cup\{0\}$, then $\lambda=1$ by Lemma 2.12 .

Finally, assume that P includes the orbit of length $q^{3}\left(q^{2}-1\right), i-1$ orbits of length $q^{5}(1 \leqslant i<q+1)$ and ℓ orbits of length $1(1 \leqslant \ell<q)$, and P does not include the orbit of length $q\left(q^{2}-1\right)$. Then $|P|=i q^{5}-q^{3}+\ell$ and $i q^{5}-q^{3}+\ell=\operatorname{gcd}\left(i q^{5}-q^{3}+\ell, q^{6}-1\right)=$ $\operatorname{gcd}\left(q^{6}-1, \ell q^{3}+i q^{2}-1\right)$. Since $0<\ell q^{3}+i q^{2}-1$, we have $i q^{5}-q^{3}+\ell \leqslant \ell q^{3}+i q^{2}-1 \leqslant q^{4}-1$, which is impossible.

In summary, we have proved that there is no $2-\left(q^{6}, m+1, \lambda\right)$ design as in Lemma 2.10 with $\lambda>1$ admitting G as a group of automorphisms.

$4.6 \quad G_{0} \cong \mathrm{SL}(2,13), u=3^{6}$

Suppose that $G_{\mathbf{0}}$ has an imprimitive block P on $V \backslash\{\mathbf{0}\}$, where $V=\mathbb{F}_{3}^{6}$, and there is a feasible G-orbit Ω on the flag set of the 2-design $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=P \cup\{\mathbf{0}\}$. Then $H:=G_{\mathbf{0}, P}$ is maximal in $G_{\mathbf{0}}$ by Lemma 2.10(b), and $v:=\left|G_{\mathbf{0}}: H\right|$ equals the size of $P^{G_{0}}$. If the center Z of $G_{\mathbf{0}}$ is not contained in H, then $G_{\mathbf{0}}=Z H$ and $G_{\mathbf{0}}=G_{0}^{\prime}=(Z H)^{\prime}=$ $H^{\prime} \leqslant H$, a contradiction. Thus $Z \leqslant H$ and H / Z is maximal in $G_{\mathbf{0}} / Z \cong \operatorname{PSL}(2,13)$. By [8, p.8], each maximal subgroup of $\operatorname{PSL}(2,13)$ is of index 14,78 or 91 in $\operatorname{PSL}(2,13)$.

Since $v:=\left|G_{\mathbf{0}}: H\right|=\left|\left(G_{\mathbf{0}} / Z\right):(H / Z)\right|$ is a divisor of $u-1=728=8 \cdot 91$, we have $v=14$ or 91 . But by Lemma 2.10(b), $v-1$ is a divisor of $\left|G_{\mathbf{0}}\right| /(u-1)=3$, which is a contradiction. Hence in this case there is no 2-design as in Lemma 2.10.

$4.7 \quad G_{0}=G_{2}(2)^{\prime} \cong \operatorname{PSU}(3,3), u=2^{6}$

Suppose that G_{0} has an imprimitive block P on $V \backslash\{0\}$, where $V=\mathbb{F}_{2}^{6}$, and Ω is a feasible G-orbit on the flag set of $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=P \cup\{0\}$. Let $H:=G_{0, P}$ and $v:=\left|G_{\mathbf{0}}: H\right|$. By [8, p.14], each maximal subgroup of $\operatorname{PSU}(3,3)$ is of index 28, 36 or 63 in $\operatorname{PSU}(3,3)$. Since v is a divisor of $u-1=63$, we have $v=\left|G_{\mathbf{0}}: H\right|=63$ and $|P|=(u-1) / v=1$. Hence there is no 2-design as in Lemma 2.10 in this case.

$4.8 \quad G_{0} \cong A_{6}$ or $A_{7}, u=2^{4}$

Suppose that $G_{\mathbf{0}}$ has an imprimitive block P on $V \backslash\{\mathbf{0}\}$, where $V=\mathbb{F}_{2}^{4}$, and Ω is a feasible G-orbit on the flag set of $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=P \cup\{0\}$. Let $H:=G_{0, P}$ and $v:=\left|G_{\mathbf{0}}: H\right|$. When $G_{\mathbf{0}} \cong A_{6}$, by [8, p.4] each maximal subgroup of A_{6} is of index 6,10 or 15 in A_{6}. By Lemma 2.10(b), $v-1$ divides $\left|G_{0}\right| /(u-1)=24$, which is a contradiction. When $G_{0} \cong A_{7}$, by [8, p.10] each maximal subgroup of A_{7} is of index $7,15,21$ or 35 in A_{7}. Since v is a divisor of $u-1=15$, we have $v=15$ and $|P|=(u-1) / v=1$. Hence in this case there is no 2-design as in Lemma 2.10.

$4.9 \quad d=2, p=5,7,11,19,23,29$ or 59 , and $G_{0} \unrhd \operatorname{SL}(2,5)$ or $G_{0} \unrhd \operatorname{SL}(2,3)$

In this case $G_{\mathbf{0}}$ has a normal subgroup $J=\langle\gamma\rangle$ of order 2 which is the center of the normal subgroup isomorphic to $\operatorname{SL}(2,5)$ or $\operatorname{SL}(2,3)$. Thus γ is central in $G_{\mathbf{0}}$. Let $\mathcal{L}_{\gamma}(V)$ denote the set of vectors in $V=\mathbb{F}_{p}^{2}$ fixed by γ. Then $\mathcal{L}_{\gamma}(V)$ is a subspace of V and is $G_{\mathbf{0}}$-invariant. Since $G_{\mathbf{0}}$ acts irreducibly on V and $\gamma \neq \mathrm{id}_{V}$, we have $\mathcal{L}_{\gamma}(V)=\{\mathbf{0}\}$ and thus $\gamma-\mathrm{id}_{V}$ is nonsingular. Moreover, since $\left(\gamma-\mathrm{id}_{V}\right)\left(\gamma+\mathrm{id}_{V}\right)=\gamma^{2}-\mathrm{id}_{V}$ is the zero map, we have $\gamma=-\mathrm{id}_{V}$. Hence G_{0} contains $-\mathrm{id}_{V}$. Set $\mathbf{e}_{1}:=(1,0)$ and $\mathbf{e}_{2}:=(0,1)$.

Lemma 4.9. Let P be an imprimitive block of $G_{\mathbf{0}}$ on $V \backslash\{0\}$ such that $|P| \geqslant 2$ and $v:=\left(p^{2}-1\right) /|P| \geqslant 3$. Suppose that $G_{\mathbf{0 , y}}$ is transitive on $P^{G_{\mathbf{0}}} \backslash\{P\}$ for some $\mathbf{y} \in P$, and the $2-\left(p^{2},|L|, \lambda\right)$ design $\mathcal{D}:=\left(V, L^{G}\right)$ has $\lambda>1$, where $L:=P \cup\{\mathbf{0}\}$. Then $v \mid(p+1)$, $(v-1) \mid(p-1)$, and $G_{\mathbf{0}, \mathbf{x}}$ is a nontrivial cyclic group with order dividing $p-1$ for any $\mathrm{x} \in V \backslash\{\mathbf{0}\}$.

Proof. Let $\mathbf{z} \in P$. If $a \mathbf{z} \notin P$ for some $a \in \mathbb{F}_{p}^{\times}$, then $a \mathbf{z} \in R$ for some $R \in P^{G_{0}} \backslash\{P\}$ and $G_{\mathbf{0}, \mathbf{z}}(\leqslant \operatorname{GL}(2, p))$ stabilises R, which is a contradiction. Hence $\mathbf{z} \in P$ implies $\langle\mathbf{z}\rangle \backslash\{\mathbf{0}\} \subseteq P$, and thus $p-1$ divides $|P|$ and $v \mid(p+1)$.

Next we prove that $G_{\mathbf{0}, \mathbf{x}}$ is cyclic and $\left|G_{\mathbf{0}, \mathbf{x}}\right|$ divides $p-1$ for any $\mathbf{x} \in V \backslash\{\mathbf{0}\}\left(G_{\mathbf{0}, \mathbf{x}}\right.$ is nontrivial as $\left|G_{\mathbf{0}, \mathbf{x}}\right|=\left|G_{\mathbf{0}, \mathbf{y}}\right| \geqslant\left|P^{G_{\mathbf{0}}} \backslash\{P\}\right|=v-1>1$). Since $G_{\mathbf{0}}$ is transitive on $V \backslash\{\mathbf{0}\}$, we may assume $\mathbf{x}=\mathbf{e}_{1}$.

For any $\varphi, \psi \in G_{0, \mathbf{e}_{1}}$ such that $\mathbf{e}_{2}^{\varphi}=(s, t)$ and $\mathbf{e}_{2}^{\psi}=(\ell, n)$, we have $(a, b)^{\varphi}=(a+b s, b t)$ and $\langle(a, 1)\rangle^{\varphi}=\langle((a+s) / t, 1)\rangle$. Moreover, $\mathbf{e}_{2}^{\varphi^{-1}}=(-s / t, 1 / t), \mathbf{e}_{2}^{\varphi \psi}=(s+t \ell, t n)$ and $\mathbf{e}_{2}^{\varphi^{-1} \psi}=((\ell-s) / t, n / t)$. Hence $S:=\left\{t \in \mathbb{F}_{p}^{\times}:(s, t)=\mathbf{e}_{2}^{\varphi}\right.$ for some $\left.\varphi \in G_{0, \mathbf{e}_{1}}\right\}$ is a subgroup of \mathbb{F}_{p}^{\times}and $S=\langle c\rangle$ for some $c \in \mathbb{F}_{p}^{\times}$. Let $\varphi_{c} \in G_{\mathbf{0 , \mathbf { e } _ { 1 }}}$ with $\mathbf{e}_{2}^{\varphi_{c}}=(s, c)$.

Suppose that $G_{0, \mathbf{e}_{1}} \neq\left\langle\varphi_{c}\right\rangle$. Then there exists $\theta \in G_{0, \mathbf{e}_{1}}$ such that $\mathbf{e}_{2}^{\theta}=(h, 1)$ for some $h \in \mathbb{F}_{p}^{\times}$. If $|P| \leqslant p-1$, then $P \subseteq\langle\mathbf{y}\rangle$, where $\mathbf{y} \in P$, and $\lambda=1$ by Lemma 2.12. Therefore $|P|>p-1$. Let $Q \in P^{G_{0}}$ and $\mathbf{e}_{1} \in Q$. Then $(a, 1) \in Q$ for some $a \in \mathbb{F}_{p}$. Since $G_{0, \mathbf{e}_{1}}$ stabilises Q and $(a, 1)^{\theta^{j}}=(a+j h, 1), j=1,2, \ldots$, we have $\langle(b, 1)\rangle \backslash\{\mathbf{0}\} \subseteq Q$ for any $b \in \mathbb{F}_{p}$, and thus $Q=V \backslash\{\mathbf{0}\}$, which contradicts our assumption that $\left(p^{2}-1\right) /|Q| \geqslant 3$. Therefore, $G_{0, \mathbf{e}_{1}}=\left\langle\varphi_{c}\right\rangle$ and $\left|G_{0, \mathbf{e}_{1}}\right|=|c|$ divides $p-1\left(c \neq 1\right.$, for otherwise $\varphi_{c}=\operatorname{id}_{V}$ and $G_{\mathbf{0}, \mathbf{e}_{\mathbf{1}}}$ is trivial, a contradiction). Since $G_{\mathbf{0}, \mathbf{y}}$ is transitive on $P^{G_{\mathbf{0}}} \backslash\{P\}, v-1$ divides $\left|G_{\mathbf{0}, \mathbf{y}}\right|$ and thus $(v-1) \mid(p-1)$.

Next we search for all 2- $\left(p^{2}, m+1, \lambda\right)$ designs each with $\lambda>1$ and with a feasible G-orbit on the set of flags, with the assistance of Magma [3]. Set $V^{\sharp}:=V \backslash\{\mathbf{0}\}$. Denote the group consisting of all translations of V by T. Since G is 2-transitive on V, we have $G=T G_{\mathbf{0}}$ with $G_{\mathbf{0}}$ transitive on V^{\sharp}. We call a subgroup K of $\operatorname{GL}(2, p)$ almost satisfactory if K is transitive but not regular on V^{\sharp}, K contains a normal subgroup isomorphic to $\mathrm{SL}(2,5)$ or $\mathrm{SL}(2,3)$ and $K_{\mathbf{x}}$ is cyclic for some $\mathbf{x} \in V^{\sharp}$. In each case below, we will compute the conjugacy classes of subgroups by using Magma, choose one representative K from each of them that is almost satisfactory (or show that none exists), consider subgroups H of K of index v with $v \mid(p+1)$ and $(v-1) \mid(p-1)$, and then construct the corresponding 2-designs and flag graphs (or show that none exists) with the help of Lemma 2.10(b). (Note that, for conjugate K_{1}, K_{2}, say, $K_{2}=\varphi^{-1} K_{1} \varphi$ for some $\varphi \in \operatorname{GL}(2, p)$, we have $\varphi^{-1}\left(T K_{1}\right) \varphi=T K_{2}$ and so $T K_{1}$ and $T K_{2}$ are permutation isomorphic on V.) Denote

$$
G:=T K \leqslant \operatorname{AGL}(2, p) .
$$

Then G is 2-transitive on V and $G_{0}=K$.
Case 1: $p=5$. There are three conjugacy classes of subgroups of GL $(2,5)$, denoted by $\mathcal{C}_{1}, \mathcal{C}_{2}$ and \mathcal{C}_{3}, such that every $K \in \mathcal{C}_{i}(1 \leqslant i \leqslant 3)$ is almost satisfactory.

When $i=1$, we have $|K|=48$ and $\left|G_{\mathbf{0}, \mathbf{e}_{\mathbf{1}}}\right|=2$. By Lemmas 4.9 and 2.10(b), we will consider subgroups of G_{0} of index $v=3$. Set K to be the group in \mathcal{C}_{1} generated by $\left[\begin{array}{ll}0 & 3 \\ 3 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right],\left[\begin{array}{ll}3 & 3 \\ 4 & 2\end{array}\right]$ and $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. Then $G_{\mathbf{0}}$ has only one subgroup H of index 3 . Hence $H \unlhd G_{\mathbf{0}}$ and there is no 2-design as in Lemma 2.10(b) admitting a group $G \leqslant \operatorname{AGL}(2,5)$ as an automorphism group with $G_{0} \in \mathcal{C}_{1}$.

When $i=2$, we have $|K|=120$ and $\left|G_{\mathbf{0}, \mathbf{e}_{\mathbf{1}}}\right|=5$. By Lemma 4.9 this case cannot occur.

When $i=3$, we have $|K|=96$ and $\left|G_{\mathbf{0}_{\mathbf{e}}}\right|=4$. By Lemmas 4.9 and 2.10(b), we need to consider subgroups of $G_{\mathbf{0}}$ of index $v=3$. Choose K to be the group in \mathcal{C}_{3} generated
by $\left[\begin{array}{ll}1 & 1 \\ 1 & 4\end{array}\right],\left[\begin{array}{ll}2 & 4 \\ 3 & 4\end{array}\right],\left[\begin{array}{ll}0 & 3 \\ 2 & 0\end{array}\right],\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$. The subgroups of $G_{\mathbf{0}}$ of index 3 form a conjugacy class of length 3 (thus these groups are self-normalizing in $G_{\mathbf{0}}$). Let H be a subgroup of $G_{\mathbf{0}}$ of index 3 . Since $|H|=32$ and $\left|V^{\sharp}\right|=24, H_{\mathbf{z}} \neq\{1\}$ for any $\mathbf{z} \in V^{\sharp}$. On the other hand, if $\left|H_{\mathbf{z}}\right|=2$ for any $\mathbf{z} \in V^{\sharp}$, then $16=|H| / 2$ divides $\left|V^{\sharp}\right|=24$, a contradiction. Hence there exists $\mathbf{x} \in V^{\sharp}$ such that $H_{\mathbf{x}}=G_{\mathbf{0}, \mathbf{x}}$, and thus $R:=\mathbf{x}^{H}$ is an imprimitive block of G_{0} on V^{\sharp} ([10, Theorem 1.5A]). In addition, computing by Magma shows that H has two orbits on V^{\sharp}. Thus $\Omega:=(\mathbf{0}, L)^{G}$ is a feasible orbit on the flags of the 2- $(25,9, \lambda)$ design $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=R \cup\{\mathbf{0}\}$.

If $\lambda=1$, then G_{L} is 2-transitive on L and $\left|G_{L}\right|=|L| \cdot|H|$ is a divisor of $|G|$, which is a contradiction. Therefore, $\lambda=|R|+1=9$.

Let $\Sigma:=R^{G_{0}}=\left\{R=R_{1}, R_{2}, R_{3}\right\}$ and $L_{\ell}:=R_{\ell} \cup\{\mathbf{0}\}, \ell=1,2,3$. Suppose that $\Psi=((\mathbf{0}, M),(\mathbf{x}, N))^{G}$ is a G-orbit on $\mathrm{F}(\mathcal{D}, \Omega)$, where $M \backslash\{\mathbf{0}\}=R_{2}$ and $N \backslash\{\mathbf{x}\}=R_{j}+\mathbf{x}$ for some $j>1$. Then Ψ is self-paired if and only if there exists $\eta \in G$ interchanging $(\mathbf{0}, M)$ and (\mathbf{x}, N). Hence $\eta=\delta \widehat{\mathbf{x}}$, where $\widehat{\mathbf{x}}$ is the translation induced by \mathbf{x} and $\delta \in G_{\mathbf{0}}$ is such that $\mathbf{x}^{\delta}=-\mathbf{x}$ and δ interchanges R_{2} and R_{j}. Thus $\delta \in \gamma G_{\mathbf{0 , x}}$, where $\gamma=-\mathrm{id}_{V}$, and the action of δ on $\Sigma \backslash\{R\}$ has a cycle $\left(R_{2} R_{j}\right)$, possibly with $R_{2}=R_{j}$. Since γ stabilises each element of Σ (by the proof of Lemma 4.9, L_{ℓ} is the union of some 1 -subspaces of $V, \ell=1,2,3)$, we just need $\gamma \delta\left(\in G_{\mathbf{0}, \mathbf{x}}\right)$ to have a cycle $\left(R_{2} R_{j}\right)$ on $\Sigma \backslash\{R\}$. Therefore, $\Psi=((\mathbf{0}, M),(\mathbf{x}, N))^{G}$ is self-paired if and only if there exists an element of $G_{\mathbf{0}, \mathbf{x}}$ which has a cycle $\left(R_{2} R_{j}\right)$ on $\Sigma \backslash\{R\}$. Since $G_{\mathbf{0 , \mathbf { x }}}$ acts nontrivially on $\Sigma \backslash\{R\}$, every orbit of G on $\mathrm{F}(\mathcal{D}, \Omega)$ is self-paired. Let Ψ be such a G-orbit. Then in the G-flag graph $\Gamma=\Gamma(\mathcal{D}, \Omega, \Psi),\left(\mathbf{0}, L_{2}\right)$ is adjacent to $\left(\mathbf{x}, L_{j}+\mathbf{x}\right)$ and $\left(\mathbf{0}, L_{3}\right)$ is adjacent to $\left(\mathbf{x}, L_{n}+\mathbf{x}\right)$, where $\{j, n\}=\{2,3\}$, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 2 \cdot K_{2}$.

Case 2: $p=7$. There is only one conjugacy class \mathcal{C} of subgroups of $\operatorname{GL}(2,7)$ such that every $K \in \mathcal{C}$ is almost satisfactory. We have $|K|=144$ and $\left|G_{\mathbf{0}_{\mathbf{,}}^{\mathbf{e}}}\right|=3$. By Lemmas 4.9 and 2.10(b), it suffices to consider subgroups of $G_{\boldsymbol{0}}$ of index $v=4$. Choose K to be the group in \mathcal{C} generated by $\left[\begin{array}{ll}5 & 5 \\ 4 & 2\end{array}\right],\left[\begin{array}{ll}2 & 4 \\ 1 & 6\end{array}\right],\left[\begin{array}{ll}2 & 1 \\ 2 & 5\end{array}\right],\left[\begin{array}{ll}1 & 3 \\ 4 & 6\end{array}\right]$ and $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$. The subgroups of G_{0} of index 4 form a conjugacy class of length 4 . Let H be a subgroup of $G_{\mathbf{0}}$ of index 4. Then H is not semiregular on V^{\sharp} and there exists $\mathbf{x} \in V^{\sharp}$ such that $H_{\mathbf{x}} \neq\{1\}$. Therefore $H_{\mathbf{x}}=G_{\mathbf{0}, \mathbf{x}}$ and $R:=\mathbf{x}^{H}$ is an imprimitive block of $G_{\mathbf{0}}$ on V^{\sharp}. Computing by Magma shows that H has two orbits on V^{\sharp}. Thus $\Omega:=(\mathbf{0}, L)^{G}$ is a feasible G-orbit on the flags of the 2-(49, 13, λ) design $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=R \cup\{\mathbf{0}\}$.

If $\lambda=1$, then G_{L} is 2-transitive on L and $\left|G_{L}\right|=|L| \cdot|H|$ is a divisor of $|G|$, which is a contradiction. Therefore, $\lambda=|R|+1=13$.

Let $\Sigma:=R^{G_{0}}=\left\{R=R_{1}, R_{2}, R_{3}, R_{4}\right\}$ and $L_{\ell}:=R_{\ell} \cup\{\mathbf{0}\}, \ell=1,2,3,4$. Suppose that $\Psi=((\mathbf{0}, M),(\mathbf{x}, N))^{G}$ is a G-orbit on $\mathrm{F}(\mathcal{D}, \Omega)$, where $M \backslash\{\mathbf{0}\}=R_{2}$ and $N \backslash\{\mathbf{x}\}=R_{j}+\mathbf{x}$ for some $j>1$. Similar to case 1 above, we see that Ψ is self-paired if and only if there exists an element of $G_{\mathbf{0}, \mathbf{x}}$ that has a cycle $\left(R_{2} R_{j}\right)$ on $\Sigma \backslash\{R\}$. Since the cycle decomposition of each nonidentity element of $G_{\mathbf{0 , x}}$ on $\Sigma \backslash\{R\}$ is a 3-cycle, Ψ is self-paired if and only if $R_{j}=R_{2}$. In this case, in the corresponding G-flag graph $\Gamma=\Gamma(\mathcal{D}, \Omega, \Psi)$, $\left(\mathbf{0}, L_{i}\right)$ is adjacent to $\left(\mathbf{x}, L_{i}+\mathbf{x}\right), i=2,3,4$, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 3 \cdot K_{2}$.

Case 3: $p=11$. There are two conjugacy classes of subgroups of GL $(2,11)$, denoted by \mathcal{C}_{1} and \mathcal{C}_{2}, such that every $K \in \mathcal{C}_{i}(1 \leqslant i \leqslant 2)$ is almost satisfactory.

When $i=1$, we have $|K|=240$ and $\left|G_{0_{0, \mathbf{e}_{1}}}\right|=2$. By Lemmas 4.9 and 2.10(b), it suffices to consider subgroups of G_{0} of index $v=3$. Choose K to be the group in \mathcal{C}_{1} generated by $\left[\begin{array}{ll}8 & 0 \\ 6 & 3\end{array}\right],\left[\begin{array}{ll}2 & 6 \\ 9 & 2\end{array}\right],\left[\begin{array}{cc}4 & 3 \\ 10 & 7\end{array}\right],\left[\begin{array}{ll}5 & 5 \\ 3 & 6\end{array}\right]$ and $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. The subgroups of G_{0} of index 3 form a conjugacy class of length 3 . Let H be a subgroup of $G_{\mathbf{0}}$ of index 3. Then there exists $\mathbf{x} \in V^{\sharp}$ such that $H_{\mathbf{x}}=G_{\mathbf{0}, \mathbf{x}}$, and thus $R:=\mathbf{x}^{H}$ is an imprimitive block of $G_{\mathbf{0}}$ on V^{\sharp}. Computing by Magma shows that H has two orbits on V^{\sharp}. Hence $\Omega:=(\mathbf{0}, L)^{G}$ is a feasible G-orbit on the flags of the $2-(121,41, \lambda)$ design $\mathcal{D}:=\left(V, L^{G}\right)$ by Lemma 2.9, where $L:=R \cup\{\mathbf{0}\}$. Similar to case 1 above, we have $\lambda=|R|+1=41$ and each G-orbit on $\mathrm{F}(\mathcal{D}, \Omega)$ is self-paired. Let Ψ be such a G-orbit, and let $\Sigma:=R^{G_{0}}=\left\{R=R_{1}, R_{2}, R_{3}\right\}$ and $L_{\ell}:=R_{\ell} \cup\{\mathbf{0}\}, \ell=1,2,3$. Then in $\Gamma=\Gamma(\mathcal{D}, \Omega, \Psi),\left(\mathbf{0}, L_{2}\right)$ is adjacent to $\left(\mathbf{x}, L_{j}+\mathbf{x}\right)$ and $\left(\mathbf{0}, L_{3}\right)$ is adjacent to $\left(\mathbf{x}, L_{n}+\mathbf{x}\right)$, where $\{j, n\}=\{2,3\}$, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 2 \cdot K_{2}$.

When $i=2$, we have $|K|=600$ and $\left|G_{0_{0}, \mathbf{e}_{\mathbf{1}}}\right|=5$. By Lemmas 4.9 and 2.10(b), it suffices to consider subgroups of G_{0} of index $v=6$. Choose K to be the group in \mathcal{C}_{2} generated by $\left[\begin{array}{ll}6 & 1 \\ 4 & 5\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 2 & 8\end{array}\right]$ and $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. The subgroups of G_{0} of index 6 form a conjugacy class of length 6 (thus these groups are self-normalizing in $G_{\mathbf{0}}$). Let H be a subgroup of $G_{\mathbf{0}}$ of index 6 . Then H is not semiregular on V^{\sharp} and there exists $\mathbf{x} \in V^{\sharp}$ such that $H_{\mathbf{x}}=G_{0, \mathbf{x}}$. Hence $R:=\mathbf{x}^{H}$ is an imprimitive block of $G_{\mathbf{0}}$ on V^{\sharp}. Computing by Magma shows that H has two orbits on V^{\sharp}. Thus $\Omega:=(0, L)^{G}$ is a feasible G-orbit on the flags of the $2-(121,21, \lambda)$ design $\mathcal{D}:=\left(V, L^{G}\right)$, where $L:=R \cup\{\mathbf{0}\}$. Similar to case 2 above, we have $\lambda=|R|+1=21$.

Let $\Sigma:=R^{G_{0}}=\left\{R=R_{1}, R_{2}, R_{3}, R_{4}, R_{5}, R_{6}\right\}$ and denote $L_{i}:=R_{i} \cup\{\mathbf{0}\}, i=$ $1,2, \ldots, 6$. Let $\Psi=((\mathbf{0}, M),(\mathbf{x}, N))^{G}$ be a G-orbit on $\mathrm{F}(\mathcal{D}, \Omega)$, where $M \backslash\{\mathbf{0}\}=R_{2}$ and $N \backslash\{\mathbf{x}\}=R_{j}+\mathbf{x}$ for some $j>1$. Similar to case 1 above, Ψ is self-paired if and only if there is an element of $G_{\mathbf{0}, \mathbf{x}}$ that has a cycle $\left(R_{2} R_{j}\right)$ on $\Sigma \backslash\{R\}$. Since the cycle decomposition of each nonidentity element of $G_{\mathbf{0 , x}}$ on $\Sigma \backslash\{R\}$ is a 5 -cycle, Ψ is self-paired if and only if $R_{2}=R_{j}$. In this case, $\left(\mathbf{0}, L_{i}\right)$ is adjacent to $\left(\mathbf{x}, L_{i}+\mathbf{x}\right)$ in the corresponding G-flag graph $\Gamma=\Gamma(\mathcal{D}, \Omega, \Psi), i=2,3,4,5,6$, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 5 \cdot K_{2}$.

Case 4: $p=19$. There is only one conjugacy class \mathcal{C} of subgroups of GL $(2,19)$, such that every $K \in \mathcal{C}$ is almost satisfactory. We have $|K|=1080$ and $\left|G_{0, \mathbf{e}_{\mathbf{1}}}\right|=3$. By Lemmas 4.9 and $2.10(\mathrm{~b})$, it suffices to consider subgroups of $G_{\mathbf{0}}$ of index $v=4$. Choose K to be the group in \mathcal{C} generated by $\left[\begin{array}{cc}5 & 2 \\ 14 & 14\end{array}\right],\left[\begin{array}{cc}9 & 11 \\ 3 & 0\end{array}\right]$ and $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$. Then K has no subgroup of index 4, and thus there is no 2-design as in Lemma 2.10(b) admitting $G \leqslant \operatorname{AGL}(2,19)$ as a group of automorphisms with $G_{0} \in \mathcal{C}$.

Case 5: $p=23$. There is no subgroup K of $\operatorname{GL}(2,23)$ that is almost satisfactory. Hence this case cannot occur.

Case 6: $p=29$. There is only one conjugacy class \mathcal{C} of subgroups of GL $(2,29)$, such that every $K \in \mathcal{C}$ is almost satisfactory. We have $|K|=1680$ and $\left|G_{\mathbf{0}, \mathbf{e}_{\mathbf{1}}}\right|=2$. By Lemmas
4.9 and $2.10(\mathrm{~b})$, it suffices to consider subgroups of G_{0} of index $v=3$. Choose K to be the group in \mathcal{C} generated by $\left[\begin{array}{cc}27 & 15 \\ 10 & 2\end{array}\right],\left[\begin{array}{cc}3 & 12 \\ 8 & 5\end{array}\right],\left[\begin{array}{cc}17 & 0 \\ 0 & 17\end{array}\right]$ and $\left[\begin{array}{cc}25 & 0 \\ 0 & 25\end{array}\right]$. Then $G_{\mathbf{0}}$ has no subgroup of index 3 , and so this case cannot occur.

Case 7: $p=59$. There is no subgroup of $\operatorname{GL}(2,59)$ that is almost satisfactory. Hence this case cannot occur.

$4.10 d=4, p=3$, and $G_{0} \unrhd \operatorname{SL}(2,5)$ or $G_{0} \unrhd E$, where E is an extraspecial group of order 32

In this case $V=\mathbb{F}_{3}^{4}$ and we set $V^{\sharp}:=V \backslash\{\mathbf{0}\}$.
Case 1: $G_{\mathbf{0}} \unrhd \mathrm{SL}(2,5)$. Suppose that P is an imprimitive block of $G_{\mathbf{0}}$ on V^{\sharp} with $|P| \geqslant 2$ and $v:=\left|V^{\sharp}\right| /|P| \geqslant 3$, such that $G_{\mathbf{0}, \mathbf{x}}$ is transitive on $P^{G_{\mathbf{0}}} \backslash\{P\}$ for some $\mathbf{x} \in P$. Then $v \mid\left(3^{4}-1\right)=80$ and $v-1$ is a divisor of $\left|G_{\mathbf{0}, \mathbf{x}}\right|$.

Using Magma we find that there are four conjugacy classes of subgroups of GL $(4,3)$, denoted by $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathcal{C}_{4}, such that if $K \in \mathcal{C}_{i}$ then K is transitive but not regular on V^{\sharp} and K contains a normal subgroup isomorphic to $\operatorname{SL}(2,5)$. Let $K \in \mathcal{C}_{i}$ and $G:=T K$. Then G is 2-transitive on V and $G_{\mathbf{0}}=K$. Similar to Section 4.9, it suffices to consider one representative group K in \mathcal{C}_{i}.

When $i=1$, we have $|K|=240$ and $\left|G_{\mathbf{0}, \mathbf{x}}\right|=3$. By Lemma 2.10(b), we need to consider subgroups of $G_{\mathbf{0}}$ of index $v=4$. Since $G_{\mathbf{0}}$ has no subgroup of index 4, this case cannot occur.

When $i=2$ or 3 , we have $|K|=480$ and $\left|G_{\mathbf{0 , \mathbf { x }}}\right|=6$. By Lemma 2.10(b), we need to consider subgroups of $G_{\boldsymbol{0}}$ of index $v=4$. Since $G_{\mathbf{0}}$ has only one subgroup H of index 4, we have $H \unlhd G_{0}$ and thus there is no 2-design as in Lemma 2.10(b) admitting $G \leqslant \operatorname{AGL}(4,3)$ as a group of automorphisms with $G_{0} \in \mathcal{C}_{2}$ or $G_{0} \in \mathcal{C}_{3}$.

When $i=4$, we have $|K|=960$ and $\left|G_{\mathbf{0 , x}}\right|=12$. By Lemma 2.10(b), we need to consider subgroups of G_{0} of index $v=4$ or 5 . Magma shows that there are three conjugacy classes of subgroups of $G_{\mathbf{0}}$, each consisting of subgroups of $G_{\boldsymbol{0}}$ of order 240 and none of such subgroups is self-normalizing in $G_{\mathbf{0}}$. The subgroups of G_{0} of index 5 form a conjugacy class of length 5 . Let H be such a subgroup of $G_{\mathbf{0}}$. By Magma H has two orbits on V^{\sharp}, which have lengths 32 and 48, respectively. Hence there is no 2-design as in Lemma 2.10(b) admitting $G \leqslant \operatorname{AGL}(4,3)$ as a group of automorphisms with $G_{\mathbf{0}} \in \mathcal{C}_{4}$.

Case 2: $G_{0} \unrhd E$, where E is an extraspecial group of order 32 . In this case G_{0} has a normal subgroup $J=\langle\gamma\rangle$ of order 2 which is the center of E. Thus γ is central in $G_{\mathbf{0}}$. Since G_{0} acts irreducibly on V, we have $\gamma=-\mathrm{id}_{V}$. Hence G_{0} contains $-\mathrm{id}_{V}$.

Since G_{0} is transitive on V^{\sharp}, E is $1 / 2$-transitive on V^{\sharp} and is not semiregular. By the proof of Theorem 19.6 in [22, p.237], if $E \leqslant D \unlhd G_{0}$ and D is a 2-group, then D is not semiregular on V^{\sharp} and D must be in category (iv) there. Thus $|D|=32$ and $D=E$. It follows that E is the maximal normal 2-subgroup of $G_{\mathbf{0}}$. Moreover, by the proof of Theorem 19.6 in [22, p.237], $V=U \oplus W$, where U and W are subspaces of dimension 2 over \mathbb{F}_{3}, and $\mathbf{x}^{E}=\mathbf{y}^{E}=(U \cup W) \backslash\{\mathbf{0}\}$ for any $\mathbf{x} \in U^{\sharp}$ and $\mathbf{y} \in W^{\sharp}$, where we set $Y^{\sharp}:=Y \backslash\{\mathbf{0}\}$ for every subspace Y of V.

Fix an element \mathbf{x} of U^{\sharp} from now on. Then $P:=\mathbf{x}^{E}$ is an imprimitive block of G_{0} on V^{\sharp}. Denote $\Lambda:=P^{G_{0}}=\left\{P_{1}=P, P_{2}, P_{3}, P_{4}, P_{5}\right\}$.

Lemma 4.10. The kernel of the action of G_{0} on Λ is equal to E.
Proof. Let K be the kernel of the action of $G_{\mathbf{0}}$ on Λ. Then $E \leqslant K \unlhd G_{\mathbf{0}}$. We aim to prove $K=E$.

By Frattini's argument, we have $G_{\mathbf{0}, P}=G_{\mathbf{0}, \mathbf{x}} E$, and thus $K=K \cap G_{\mathbf{0}, P}=K \cap$ $\left(G_{\mathbf{0}, \mathbf{x}} E\right)=E\left(K \cap G_{\mathbf{0}, \mathbf{x}}\right)=E K_{\mathbf{x}}$. Since E is a maximal normal 2-subgroup of $G_{\mathbf{0}}$, it suffices to show that K is a 2 -group. Suppose otherwise. Then there exists some $\varphi \in K_{\mathbf{x}} \backslash E$ of odd order. Let ψ_{i} be a fixed element of $G_{\mathbf{0}}$ such that $P_{i}=P^{\psi_{i}}=\left(U^{\psi_{i}} \cup W^{\psi_{i}}\right) \backslash\{\mathbf{0}\}$, $i=1,2, \ldots, 5$. We choose ψ_{1} to be id_{V}, and denote $U_{i}:=U^{\psi_{i}}$ and $W_{i}:=W^{\psi_{i}}$. Then, for any $\psi \in K$, since $U^{\psi}=U^{\psi} \cap(U \cup W)=\left(U^{\psi} \cap U\right) \cup\left(U^{\psi} \cap W\right)$, we have $U^{\psi} \cap U \subseteq U^{\psi} \cap W$ or $U^{\psi} \cap W \subseteq U^{\psi} \cap U$, and thus $U^{\psi}=U$ or W. Similarly, we have $U_{i}^{\psi}=U_{i}$ or W_{i}, $i=2,3,4,5$.

Suppose that φ stabilises $U_{i}, i=1,2,3,4,5$. For each $i=2,3,4,5$, let $\mathbf{x}=\mathbf{a}_{i}+\mathbf{b}_{i}$, where $\mathbf{a}_{i} \in U_{i}^{\sharp}, \mathbf{b}_{i} \in W_{i}^{\sharp}$ (see Figure 2). Then $\mathbf{a}_{i}^{\varphi}=\mathbf{a}_{i}$ and $\mathbf{b}_{i}^{\varphi}=\mathbf{b}_{i}$, since $\mathbf{a}_{i}+\mathbf{b}_{i}=$ $\mathbf{x}=\mathbf{x}^{\varphi}=\mathbf{a}_{i}^{\varphi}+\mathbf{b}_{i}^{\varphi}$ and U_{i} and W_{i} direct sum. If $i, \ell \in\{2,3,4,5\}$ with $i \neq \ell$, then $\mathbf{a}_{\ell} \notin\left\langle\mathbf{a}_{i}, \mathbf{b}_{i}\right\rangle$ (for otherwise $\mathbf{a}_{\ell}=\mathbf{a}_{i}-\mathbf{b}_{i}$ or $\mathbf{a}_{\ell}=-\mathbf{a}_{i}+\mathbf{b}_{i}$ as $P_{\ell} \cap P_{1}=P_{\ell} \cap P_{i}=\emptyset$, implying $\mathbf{b}_{\ell}\left(=\mathbf{x}-\mathbf{a}_{\ell}\right)=-\mathbf{b}_{i}$ or $-\mathbf{a}_{i}$, a contradiction). Hence $\mathbf{b}_{3}, \mathbf{a}_{4}, \mathbf{b}_{4} \in\left\langle\mathbf{a}_{2}, \mathbf{b}_{2}, \mathbf{a}_{3}\right\rangle$ as $\varphi \neq \mathrm{id}_{V}$. For each $j \in\{3,4\}$, let $\mathbf{a}_{2}=\mathbf{t}_{j}+\mathbf{w}_{j}$, where $\mathbf{t}_{j} \in U_{j}^{\sharp}$ and $\mathbf{w}_{j} \in W_{j}^{\sharp}$. If $\mathbf{t}_{j} \notin\left\langle\mathbf{a}_{j}\right\rangle$ and $\mathbf{w}_{j} \notin\left\langle\mathbf{b}_{j}\right\rangle$, then $U_{j}=\left\langle\mathbf{a}_{j}, \mathbf{t}_{j}\right\rangle$ and $W_{j}=\left\langle\mathbf{b}_{j}, \mathbf{w}_{j}\right\rangle$. As φ fixes \mathbf{a}_{2}, it fixes \mathbf{t}_{j} and \mathbf{w}_{j}, and thus $\varphi=\mathrm{id}_{V}$, a contradiction. Hence $\mathbf{t}_{j} \in\left\langle\mathbf{a}_{j}\right\rangle$ or $\mathbf{w}_{j} \in\left\langle\mathbf{b}_{j}\right\rangle$, and $U_{j} \subseteq\left\langle\mathbf{a}_{2}, \mathbf{b}_{2}, \mathbf{a}_{3}\right\rangle$ or $W_{j} \subseteq\left\langle\mathbf{a}_{2}, \mathbf{b}_{2}, \mathbf{a}_{3}\right\rangle$. Since U_{j} and W_{j} are of dimension $2, P_{3} \cap P_{4} \neq \emptyset$, a contradiction.

Therefore, φ interchanges U_{i} and W_{i} for some i with $2 \leqslant i \leqslant 5$ and $|\varphi|$ can not be odd, a contradiction.

Figure 2
By Lemma 4.10, G_{0} / E can be embedded into S_{5}, and G_{0} is transitive on V^{\sharp} if and only if $G_{\mathbf{0}}$ contains an element of order 5 . Hence $G_{\mathbf{0}} / E \cong C_{5}, D_{10}$, $\operatorname{AGL}(1,5), A_{5}$ or S_{5}, and $\left|G_{\mathbf{0}}\right|=160,320,640,1920$ or 3840.

In what follows suppose that Q is an imprimitive block of G_{0} on V^{\sharp} containing \mathbf{x} with $|Q| \geqslant 2$ and $v:=\left|V^{\sharp}\right| /|Q| \geqslant 3$ such that $G_{\mathbf{0 , \mathbf { x }}}$ is transitive on $\Sigma \backslash\{Q\}$, where
$\Sigma:=Q^{G_{0}}=\left\{Q_{1}=Q, Q_{2}, \ldots, Q_{v}\right\}$. Let $L_{i}:=Q_{i} \cup\{\mathbf{0}\}, i=1,2, \ldots, v$. Set $\mathcal{D}:=\left(V, L^{G}\right)$, $\Omega:=(\mathbf{0}, L)^{G}$ and $H:=G_{\mathbf{0}, Q}$, where $L=L_{1}$. Then \mathcal{D} is a $2-(81,|L|, \lambda)$ design.

Since $v \mid\left(3^{4}-1\right)=80$, we have $v=4,5,8,10,16,20$ or 40 . Since we want $\lambda>1$, by Lemma 2.12 we have $|Q|=80 / v \geqslant v$ and thus $v=4,5$ or 8 .
(i) If $v=8$, then since $G_{\mathbf{0}, \mathbf{x}}$ is transitive on $\Sigma \backslash\{Q\}, v-1=7$ divides $\left|G_{\mathbf{0}, \mathbf{x}}\right|$ and so divides $|\mathrm{GL}(4,3)|=80 \cdot 78 \cdot 72 \cdot 54$, a contradiction.
(ii) If $v=4$, then since $v-1=3$ divides $\left|G_{\mathbf{0}, \mathbf{x}}\right|$, we have $G_{\mathbf{0}} / E \cong A_{5}$ or S_{5}. Consider the induced (faithful) action of G_{0} / E on $\Lambda . G_{0} / E$ is 2-transitive on Λ, and since A_{5} and S_{5} have no subgroup of index $4, E \not \leq H$ and $H E / E$ is normal in G_{0} / E. Thus $H E / E$ is transitive on Λ. Moreover, since $G_{\mathbf{0}, P}=G_{\mathbf{0}, \mathbf{x}} E \leqslant H E$, we have $H E=G_{\mathbf{0}}$. Let J be the core of H in G_{0}. Then J is exactly the kernel of the action of G_{0} on Σ and G_{0} / J is 2-transitive on Σ. Thus $G_{\mathbf{0}} / J \cong A_{4}$ or S_{4} and 12 divides $\left|G_{\mathbf{0}}\right| /|J|$. On the other hand, since $J E / E$ is normal in $G_{0} / E, J E \neq E$ and $J E / E$ is nonsolvable (otherwise G_{0} / E is solvable), $J E / E$ is transitive on Λ and hence by [28, Theorem 11.7] $J E / E$ is 2-transitive on Λ, which implies that $J E / E \cong A_{5}$ or S_{5}. Now we have 60 divides $|J|$ and 12 divides $\left|G_{\mathbf{0}}\right| /|J|$, which is a contradiction. Hence there is no 2-design as in Lemma 2.10(b) if $v=4$.
(iii) If $v=5$, then $\left|G_{0}: H\right|=v=5$. Since $\operatorname{gcd}(|E|, 5)=1$, we have $E \leqslant H$, $Q=P=\mathbf{x}^{E}$ and $\Sigma=\Lambda$. Moreover, since $G_{\mathbf{0}, P}=G_{\mathbf{0}, \mathbf{x}} E, G_{\mathbf{0}, \mathbf{x}}$ is transitive on $\Sigma \backslash\{P\}$ if and only if $G_{\mathbf{0}, P}$ is transitive on $\Sigma \backslash\{P\}$, that is, if and only if $G_{\mathbf{0}}$ is 2-transitive on Σ. Therefore, Ω is feasible if and only if $G_{0} / E \cong \operatorname{AGL}(1,5), A_{5}$ or S_{5}.

If $\lambda=1$, then G_{L} is 2-transitive on L and $\left|G_{L}\right|=|L| \cdot\left|G_{0, L}\right|=17 \cdot|H|$. But $\left|G_{L}\right|$ is a divisor of $|G|=|V| \cdot\left|G_{\mathbf{0}}\right|=81 \cdot\left|G_{\mathbf{0}}\right|$, a contradiction. Hence $\lambda>1$ and so $\lambda=|L|=17$ by Lemma 2.8 .

Let $\Psi=((\mathbf{0}, M),(\mathbf{x}, N))^{G}$ be a G-orbit on $\mathrm{F}(\mathcal{D}, \Omega)$, where $M \backslash\{\mathbf{0}\}=P_{2}, N \backslash\{\mathbf{x}\}=$ $P_{j}+\mathbf{x}$ for some $j>1$. Similar to the discussion in case 1 (when $i=3$) in Section 4.9, Ψ is self-paired if and only if there exists an element of $G_{\mathbf{0} \mathbf{x}}$ that has a cycle $\left(P_{2} P_{j}\right)$ on $\Sigma \backslash\{P\}$. We have

$$
\begin{equation*}
G_{\mathbf{0}, P_{1}}=G_{\mathbf{0}, \mathbf{x}} E, \text { and } G_{\mathbf{0}, P_{1}, P_{j}}=\left(G_{\mathbf{0}, \mathbf{x}} E\right) \cap G_{\mathbf{0}, P_{j}}=G_{\mathbf{0}, \mathbf{x}, P_{j}} E \text { for } j>1 \tag{17}
\end{equation*}
$$

First assume that $G_{\mathbf{0}} / E \cong \operatorname{AGL}(1,5)$. Then by (17) $G_{0, \mathrm{x}}$ induces a regular permutation group which is cyclic of order 4 on $\Sigma \backslash\{P\}$. Let $\varphi \in G_{\mathbf{0}, \mathbf{x}}$ have a cycle decomposition $\left(P_{2} P_{i} P_{\ell} P_{n}\right)$ on $\Sigma \backslash\{P\}$, where $\{i, \ell, n\}=\{3,4,5\}$. Then $\Psi=((\mathbf{0}, M),(\mathbf{x}, N))^{G}$ is self-paired if and only if $j=2$ or $j=\ell$. Since $(\mathbf{x}, N)^{G_{0, \mathbf{x}, P_{2}}}=\{(\mathbf{x}, N)\}$, we have $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 4 \cdot K_{2}$ for $\Gamma=\Gamma(\mathcal{D}, \Omega, \Psi)$.

Next assume that $G_{\mathbf{0}} / E \cong A_{5}$ or S_{5}. Then by (17), for any $n \in\{2,3,4,5\}$ there is an element of $G_{\mathbf{0}, \mathbf{x}}$ whose cycle decomposition on $\Sigma \backslash\{P\}$ is $\left(P_{2} P_{n}\right)\left(P_{i} P_{\ell}\right)$, where $i, \ell \neq 1,2, n$. Thus each G-orbit on $\mathrm{F}(\mathcal{D}, \Omega)$ is self-paired.

If $P_{j}=P_{2}$, then in $\Gamma=\Gamma(\mathcal{D}, \Omega, \Psi),\left(\mathbf{0}, L_{i}\right)$ is adjacent to $\left(\mathbf{x}, L_{i}+\mathbf{x}\right), i=2,3,4,5$, and $\Gamma[\Omega(\mathbf{0}), \Omega(\mathbf{x})] \cong 4 \cdot K_{2}$ since $(\mathbf{x}, N)^{G_{0, \mathbf{x}, P_{2}}}=\{(\mathbf{x}, N)\}$.

If $P_{j} \neq P_{2}$, then by (17) we have $(\mathbf{x}, N)^{G_{0, x, P_{2}}}=\left\{\left(\mathbf{x}, L_{e}+\mathbf{x}\right): e=3,4,5\right\}$ and the edges of $\Gamma(\mathcal{D}, \Omega, \Psi)$ between $\Omega(\mathbf{0})$ and $\Omega(\mathbf{x})$ are as shown in Figure 3 .

We have completed the proof of Theorem B.

Acknowledgements

The authors would like to thank the anonymous referees for their comments that lead to improvements of presentation.

References

[1] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol.1-2, 2nd ed., Cambridge University Press, Cambridge, 1999.
[2] N. L. Biggs, Algebraic Graph Theory (2nd edition), Cambridge University Press, Cambridge, 1993.
[3] W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Comput., 24(3-4):235-265, 1997.
[4] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc., 13:1-22, 1981.
[5] P. J. Cameron, Permutation Groups, Cambridge University Press, Cambridge, 1999.
[6] Y.-Q. Chen and S. Zhou, Affine flag graphs and classification of a family of symmetric graphs with complete quotients, in preparation.
[7] B. N. Cooperstein, The geometry of root subgroups in exceptional groups. I, Geom. Dedicata, 8:317-381, 1979.
[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, An Atlas of Finite Simple Groups, Clarendon Press, Oxford, 1985.
[9] P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1968.
[10] J. D. Dixon and B. Mortimer, Permutation Groups, Springer, New York, 1996.
[11] J. D. Dixon http://people.math.carleton.ca/~jdixon/, Errata to the book "Permutation Groups".
[12] X. G. Fang and C. E. Praeger, Finite two-arc transitive graphs admitting a Ree simple group, Comm. Algebra, 27(8):3755-3769, 1999.
[13] T. Fang, X. G. Fang, B. Xia and S. Zhou, Symmetric spreads of complete graphs, submitted, arXiv:1605.03530
[14] A. Gardiner and C. E. Praeger, A geometrical approach to imprimitive graphs, Proc. London Math. Soc., 71(3):524-546, 1995.
[15] A. Gardiner and C. E. Praeger, Symmetric graphs with complete quotients, preprint, arXiv:1403.4387.
[16] M. Giudici and C. H. Li, On finite edge-primitive and edge-quasiprimitive graphs, J. Combin. Theory Ser. B, 100:275-298, 2010.
[17] M. Giulietti, S. Marcugini, F. Pambianco and S. Zhou, Unitary graphs and classification of a family of symmetric graphs with complete quotients, J. Alg. Combin., 38:745-765, 2013.
[18] B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, 1982
[19] W. M. Kantor, Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A, 38:66-74, 1985.
[20] P. B. Kleidman, The maximal subgroups of the Chevalley groups $G_{2}(q)$ with q odd, the Ree groups ${ }^{2} G_{2}(q)$, and their automorphism groups, J. Algebra, 117:30-71, 1988.
[21] C. H. Li, C. E. Praeger and S. Zhou, A class of finite symmetric graphs with 2-arc transitive quotient, Math. Proc. Cambridge Philos. Soc., 129(1):19-34, 2000.
[22] D. S. Passman, Permutation Groups, New York, 1968.
[23] C. E. Praeger, Doubly transitive automorphism groups of block designs, J. Combin. Theory Ser. A, 25:258-266, 1978.
[24] C. E. Praeger, Finite transitive permutation groups and finite vertex transitive graphs, in: G. Hahn and G. Sabidussi eds., Graph Symmetry (Montreal, 1996, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., 497) Kluwer Academic Publishing, Dordrecht, pp.277-318, 1997.
[25] C. E. Praeger, Finite symmetric graphs, in: L. W. Beineke and R. J. Wilson eds., Topics in Algebraic Graph Theory, Encyclopedia of Mathematics and Its Applications 102, Cambridge University Press, Cambridge, pp.179-202, 2004.
[26] M. Suzuki, On a class of doubly transitive groups, Annals of Mathematics, 75:105145, 1962.
[27] Z-X. Wan, Geometry of Classical Groups over Finite Fields, Chartwell-Bratt Ltd., Bromley, 1993.
[28] H. Wielandt, Finite Permutation Groups, Academic Press, New York/London, 1964.
[29] R. A. Wilson, The Finite Simple Groups, Springer-Verlag, London, 2009.
[30] W. T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc., 43:459-474, 1947.
[31] S. Zhou, Almost covers of 2-arc transitive graphs, Combinatorica, 24:731-745, 2004. [Erratum: Combinatorica, 27:745-746, 2007.]
[32] S. Zhou, Symmetric graphs and flag graphs, Monatshefte für Mathematik, 139:69-81, 2003.
[33] S. Zhou, Constructing a class of symmetric graphs, European J. Combinatorics, 23:741-760, 2002.

Appendix: Sample Magma codes

The following Magma codes are for Case 1 in Section 4.9. For other values of p and d in Sections 4.9 and 4.10, the Magma codes are similar.

```
d:=2; p:=5; G:=GL(d,p);
V:=VectorSpace(G); V; u:=V![1,0]; u;
L:=Subgroups(G:OrderMultipleOf:=p^d-1);
L:=[a`subgroup:a in L|#Orbits(a`subgroup) eq 2];
L:=[a:a in L|#a ne p^d-1];
L1:=[a:a in L|#[b:b in NormalSubgroups(a:OrderEqual:=120)|IsIsomorphic
    (b`subgroup,SL(2,5)) eq true]+#[b:b in NormalSubgroups
    (a:OrderEqual:=24)|IsIsomorphic(b'subgroup,SL(2,3)) eq true] gt 0];
L2:=[a:a in L1|IsCyclic(stabilizer(a,u)) eq true];
n:=#L2;
for i in [1..n] do #L2[i];
end for;
G0:=L2[1];
H:=Subgroups(G0:OrderEqual:=16); #H;
H[1]'length;
G0:=L2 [3];
H:=Subgroups(G0:OrderEqual:=32); #H;
H[1]'length;
#Orbits(H[1] 'subgroup);
```


[^0]: *Research supported by a scholarship from the China Scholarship Council (CSC).
 ${ }^{\dagger}$ Research supported by the National Science Foundation of China (NSFC 11501011).
 ${ }^{\ddagger}$ Research supported by the Australian Research Council (FT110100629) as well as an MRGSS grant of the University of Melbourne.

