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Abstract

Let Ω be a finite set and let S ⊆ P(Ω) be a set system on Ω. For x ∈ Ω,

we denote by dS(x) the number of members of S containing x. A long-standing

conjecture of Frankl states that if S is union-closed then there is some x ∈ Ω with

dS(x) ≥ 1
2 |S|.

We consider a related question. Define the weight of a family S to be w(S) :=
∑

A∈S |A|. Suppose S is union-closed. How small can w(S) be? Reimer showed

w(S) ≥ 1

2
|S| log2 |S|,

and that this inequality is tight. In this paper we show how Reimer’s bound may

be improved if we have some additional information about the domain Ω of S: if S
separates the points of its domain, then

w(S) ≥
(|Ω|

2

)

.

This is stronger than Reimer’s Theorem when |Ω| >
√

|S| log2 |S|. In addition we

construct a family of examples showing the combined bound on w(S) is tight except

in the region |Ω| = Θ(
√

|S| log2 |S|), where it may be off by a multiplicative factor

of 2.

Our proof also gives a lower bound on the average degree: if S is a point-

separating union-closed family on Ω, then

1

|Ω|
∑

x∈Ω

dS(x) ≥ 1

2

√

|S| log2 |S| + O(1),

and this is best possible except for a multiplicative factor of 2.
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1 Introduction

Let Ω be a finite set. We may identify X ⊆ Ω with its characteristic function and consider
a collection of subsets of Ω as a family of functions from Ω into {0, 1}. For such a family
S ⊆ P(Ω), we refer to Ω = Ω(S) as the domain of S. Note that the domain of a set
system S is not uniquely determined by knowledge S. Therefore when we speak of ‘a set
system S’, we shall in fact mean ‘a pair (S, Ω), where S ⊆ P(Ω)’ so that the domain of
S is implicitly specified.

We also let V (S) :=
⋃

A∈S A be the set of all elements x ∈ Ω which appear as a
member of at least one set A ∈ S. For x ∈ Ω we denote by dS(x) the number of members
of S containing x. We call dS(x) the degree of x in S.

A set system S is union-closed if it is closed under pairwise unions. This is essentially
the same as being closed under arbitrary unions except that we do not require S to
contain the empty set. In 1979, Frankl [9] made a simple-sounding conjecture on the
maximal degree in a union-closed family. This remains open and has become known as
the Union-closed sets conjecture:

Conjecture 1 (Union-closed sets conjecture). Let S be a union-closed set system on some

finite set Ω. Then there is an element x ∈ Ω which is contained in at least half of the

members of S.

(An equivalent lattice-theoretic version also exists, which has received a significant
amount of attention. See [1, 2, 3, 4, 6, 7, 8, 13, 15, 17].)

Very little progress has been made on Conjecture 1. A simple argument due to
Knill [10] establishes that for any union-closed family S with |S| = m, there always
exists some x contained in at least m

log2 m
members of S. Wójcik [18] improved this by a

multiplicative constant. The conjecture is also known to hold if |S| < 40 (see [12, 16])
or |V (S)| ≤ 11 (see [11, 5]), if |S| > 5

8
× 2|V (S)| (see [6, 7, 8]), or if S contains some very

specific collections of small sets (see [11, 5]).
In a different direction, Reimer [14] found a beautiful shifting argument to obtain a

sharp lower bound on the average set size of S as a function of |S|. We state his result
here.

Theorem (Reimer’s Average Set Size Theorem). Let S be a union-closed family. Then

1

|S|
∑

A∈S

|A| ≥ log2 |S|
2

with equality if and only if S is a powerset.

Define the weight of a family S to be

w(S) :=
∑

A∈S

|A|

=
∑

x∈Ω

dS(x).
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We shall think of Reimer’s Theorem as a lower bound for the smallest possible weight
of a union-closed family of a given size. Let S be a union-closed family. In this form,
Reimer’s Theorem states that

w(S) ≥ |S| log2 |S|
2

with equality if and only if S is a powerset. The purpose of this paper is to show how
we may improve this inequality if we have some additional information about Ω(S). As a
corollary, we also give asymptotically tight (up to a constant) lower bounds on the average
degree over Ω, 1

|Ω|

∑

x∈Ω dS(x).

As we remarked earlier, Ω(S) is not uniquely specified by S. For example, Ω(S) could
contain many elements which do not appear in S. This would bring the average degree
in Ω arbitrarily close to 0. Restricting our attention to V (S) does not entirely resolve
this problem: pick x ∈ V (S). Replacing every instance of x in a member of S by a set
x1, x2, . . . xM for some arbitrarily large M gives us a new union-closed family S ′ with the
same structure as S but with average degree over V (S ′) arbitrarily close to dS(x).

Thus to say anything interesting about average degree, we need to impose a restriction
on S and its domain. In particular we want to make sure that no element of Ω(S) is
‘cloned’ many times over. We make therefore the following natural definition.

Definition. A family S separates a pair (i, j) of elements of Ω(S) if there exists A ∈ S
such that A contains exactly one of i and j. S is separating if it separates every pair of

distinct elements of Ω(S). If |Ω(S)| = n and S is separating, we say that S is n-separating.

Recalling our identification of sets with their characteristic functions, S is separating
if and only if it separates the points of Ω(S) as a family of functions Ω → {0, 1}.

Trivially, a family S of size |S| = m can be at most 2m-separating. In Section 2, we
make use of certain heredity properties of union-closed families to prove that if in addition
S is union-closed it can be at most (m + 1)-separating. The main result of that section,
Theorem 3, establishes that for any n there is a unique (up to relabelling of vertices)
n-separating union-closed family of minimal weight.

In the third section, we use Theorem 3 together with Reimer’s Theorem to obtain lower
bounds on the weight of n-separating union-closed families of size m for every realisable
pair (m, n). We construct families of examples showing these bounds are sharp up to a

multiplicative factor of 2 + O
(

1
log2 m

)

.

In the final section we consider a generalisation of our original problem. We define the
l-fold weight of a family S to be

wl(S) :=
∑

A∈S

(|A|
l

)

.

The 0-fold weight of S is just the size of S, while the 1-fold weight is the weight w(S) we
introduced earlier. Similarly to the l = 1 case, we can bound wl below for l ≥ 2 when S is
separating using a combination of Reimer’s Theorem and Theorem 3 together with some

the electronic journal of combinatorics 18 (2011), #P95 3



elementary arguments. Again we provide constructions showing our bounds are the best
possible up to a multiplicative factor of 2 + O (1/ log2 m). As instant corollaries to our
results in sections 3 and 4, we have for any l ≥ 1 sharp (up to a multiplicative constant)
lower bounds on the expected number of sets in S containing a randomly selected l-
tuple from Ω(S). These results are related to a generalisation of the union-closed sets
conjecture.

2 Separation

In this section we use our definition of separation to prove some results about separating
union-closed families. We begin with an item of notation. Let S be a family with domain
Ω. Given X ⊆ Ω, we will denote by S[X] the family induced by X on S,

S[X] := {A \ X|A ⊇ X, A ∈ S} .

We shall consider S[X] as a family with domain Ω(S) \ X. In a slight abuse of notation
we shall usually write S[x] for S[{x}]. Note that |S[x]| = dS(x).

Recall that S separates a pair (i, j) of elements of Ω(S) if there exists A ∈ S such that
A contains exactly one of i and j. S is said to be separating if it separates every pair of
distinct elements of Ω(S). We introduce an equivalence relation ∼=S on its domain Ω(S)
by setting x ∼=S y if S does not separate x from y. Quotienting Ω by ∼=S in the obvious
way, we obtain a reduced family

S ′ = S/ ∼=S

on a new domain Ω′ consisting of the ∼=S equivalence classes on Ω. It follows from the
definition of ∼=S that S ′ is separating and uniquely determined by the knowledge of S and
Ω. We shall refer to S ′ as the reduction of S.

Union-closure is clearly preserved by our quotienting operation. Every union-closed
family S may thus be reduced to a unique separating union-closed family in this way.
Such separating union-closed families will be the main object we study in this paper.
Before proving anything about them, let us give a few examples.

For n ≥ 2, we define the staircase of height n to be the union-closed family

Tn = {{n}, {n − 1, n}, {n − 2, n − 1, n}, . . .{2, 3, . . . n}}
with domain Ω(Tn) = {1, 2, 3 . . . ...n}. Note that Tn is n-separating, has size n−1 and that
V (Tn) 6= Ω(Tn), since the element 1 is not contained in any set of Tn. For completeness,
we define T1 to be the empty family with domain Ω(T1) = {1} and size 0. Recall that
Tn[X] is the subfamily of Tn induced by X. Tn has the property that Tn[{n}] = Tn−1∪{∅}.

We shall prove that Tn is an n-separating union-closed family of least weight.
For n ≥ 2, the plateau of width n is the n-separating union-closed family

Un = {{1, 2, . . . n − 1}, {1, 2, . . . n − 2, n}, . . . {1, 3, 4 . . . n}, {2, 3, . . . n}, [n]} .

with domain Ω(Un) = [n] and size n+1. For completeness we let E1 be the family {∅, {1}}
with domain {1}. It is easy to see that Un is the n-separating union-closed family of size
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n + 1 with maximal weight. It has weight roughly twice that of Tn, and the additional
property that for every pair {i, j} ⊆ [n] there is a set in Un containing i and not j as well
as a set containing j and not i.

Finally, or n ≥ 1, the powerset of [n], Pn = P[n] is, of course, a n-separating union-
closed family with domain Ω(Pn) = V (Pn) = [n]. Note that Pn[{n}] = Pn−1, and that Pn

is the largest n-separating family in every sense of the word, having both the maximum
size and the maximum weight possible.

Let us now turn to the main purpose of this section. We begin with a trivial lemma.

Lemma 1. Let S be a separating family on Ω = [n] with elements labelled in order of

increasing degree. Then if 1 ≤ i < j ≤ n there exists A ∈ S with j ∈ A, i /∈ A.

Proof. Since S is separating, there is some A in S containing one but not both of i, j.

But we also know that dS(i) ≤ dS(j), so at least one such A contains j and not i.

Repeated applications of Lemma 1 yield the following:

Lemma 2. Let S be a separating union-closed family with Ω(S) = [n] and elements of

Ω labelled in order of increasing degree. Then for every i ∈ [n − 1], S contains a set

Ai = ([n] \ [i]) ∪ Xi, where Xi ⊆ [i − 1]. These n − 1 sets are distinct.

Proof. Pick i ∈ [n − 1]. By Lemma 1, for each j > i there exists Bj ∈ S containing

j and not i. Let Ai =
⋃

j>i Bj . By union-closure, Ai ∈ S. Ai is clearly of the form

{i+1, i+2, . . . n}∪Xi, where Xi is a subset of [i−1]. Moreover, if i < j we have Ai 6= Aj

since j ∈ Ai, j /∈ Aj .

The main result of this section follows easily.

Theorem 3. Let S be a separating union-closed family on Ω(S) = [n] with elements

labelled in order of increasing degree. Then dS(i) ≥ i − 1 for all i ∈ [n]. In particular,

|S| ≥ n − 1, and the weight of S satisfies :

w(S) ≥
(

n

2

)

.

Moreover, w(S) =
(

n
2

)

if and only if S is one of Tn or Tn ∪ {∅}, where Tn is the staircase

of height n introduced earlier.

Proof. By Lemma 2, S contains n−1 distinct sets A1, A2, . . . An−1 such that [n]\ [i] ⊆ Ai.

It follows in particular that |S| ≥ n − 1 and that dS(i) ≥ i − 1 for all i ∈ [n]. Moreover,

w(S) ≥
∑

i∈[n−1]

|Ai|

≥
∑

i∈[n−1]

(n − i) =

(

n

2

)
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with equality if and only if Ai = [n] \ [i] for every i and in addition S contains no

nonempty set other than the Ai. Thus w(S) =
(

n
2

)

if and only if S is one of Tn or

Tn ∪ {∅}, as claimed.

3 Minimal weight

In this section we use Reimer’s Theorem and Theorem 3 together to obtain a lower
bound on the weight of an n-separating union-closed family of size m. We then give
constructions in the entire range of possible n, log2 m ≤ n ≤ m + 1, showing our bounds
are asymptotically sharp except in the region n = Θ

(√

m log2 m
)

(where they are differ
by a multiplicative factor of at most 2). As a corollary, we obtain a lower bound on the
average degree in a separating union-closed family.

Let S be an n-separating union-closed family with |S| = m. Recall that the weight of
S, w(S) is

w(S) =
∑

A∈S

|A| =
∑

x∈Ω(S)

dS(x).

We know from Reimer’s Theorem that

w(S) ≥ m log2 m

2
.

We have another bound for w(S) coming from our separation result, Theorem 3:

w(S) ≥ n(n − 1)

2
.

If n ≤ 1
2

(

1 +
√

1 + 4m log2 m
)

=
√

m log2 m + O(1), the ‘bound in m’ from Reimer’s

Theorem is stronger; if on the other hand n ≥ 1
2

(

1 +
√

1 + 4m log2 m
)

, the ‘bound in n’
from Theorem 3 is sharper.

For the bound in m, equality occurs if and only if S is a powerset, that is if and
only n = log2 m. For the bound in n, equality occurs if and only if S is a staircase
(with possibly the empty set added in). This can only occur if n = m or n = m + 1.
Remarkably the combined bound is asymptotically sharp everywhere except in the region
n = Θ

(√

m log2 m
)

, where it is only asymptotically sharp up to a constant. We shall show
this by constructing intermediate families between powersets and staircases. Roughly
speaking these intermediary families will look like staircases sitting on top of a powerset-
like bases. This will allow Reimer’s Theorem and Theorem 3 to give us reasonably tight
bounds. Some technicalities arise to make this work for all all possible (m, n).

We call a pair of integers (n, m) satisfiable if there exists an n-separating union-closed
family of size m – in particular n and m must satisfy n − 1 ≤ m ≤ 2n. Of course for
m = 2n the powerset Pn is the only n-separating family of the right size. By Theorem 3
we know already how to construct n-separating union-closed families of sizes m = n − 1
or m = n with minimal weight. Also if m = n + 1, it is easy to see that the family
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Tn ∪ {∅} ∪ {{n − 1}} has minimal weight, so for our purposes we may as well assume
2n > m > n + 1 in what follows.

Given a satisfiable pair (m, n) with 2n > m > n + 1, there exists a unique integer b
such that 2b − b ≤ m−n < 2b+1 − (b + 1). Our aim is to take for our powerset-like base a
suitable family of m − (n − b − 1) subsets of [b + 1], and to place on top of it a staircase
of height n − (b + 1), thus obtaining a separating union-closed family with the right size
and domain.

For such a b we have 2b + 1 ≤ m − n + b + 1 < 2b+1. Write out the binary expansion
of m − n + b + 1 as 2b1 + 2b2 + . . . 2bt with 0 ≤ bt < bt−1 < . . . < b1, and b1 = b. We shall
build the base B of our intermediate family by adding up certain subcubes of P[b + 1].

We let Q1 denote the b1-dimensional subcube {X ∪ {b + 1} | X ⊆ [b]}, and for every
i : 2 ≤ i ≤ t we let Qi be the bi-dimensional subcube {X ∪ {bi−1} | X ⊆ [bi]}. We then
set B =

⋃

i Qi.
It is easy to see that the Qi are disjoint. Indeed write b0 for b + 1 and suppose i < j;

for every X ∈ Qi, bi−1 is the largest element in X whereas for every X ′ ∈ Qj , bj−1 < bi−1

is the largest element contained in X ′, so that X 6= X ′.

Claim. B is a (b + 1)-separating union-closed family.

Proof. Q1 is (b+1)-separating since it contains the singleton {b+1} and the pairs {i, b+1}
for every i < b + 1. Thus B is (b + 1)-separating also.

Clearly each of the Qi is closed under pairwise unions. Now consider 1 ≤ i < j (or

alternatively b0 > bi > bj) and take X ∈ Qi, Y ∈ Qj . Then

Y ⊆ [bj ] ∪ {bj−1}
⊆ [bi],

from which it follows that X ∪ Y ⊆ [bi] ∪ {bi−1}, and hence that X ∪ Y ∈ Qi. Thus

B =
⋃

i Qi is closed under pairwise unions, as claimed.

We now turn to the staircase-like top of our family, T , which we set to be

T = {[b + 2], [b + 3], . . . [n]}.

Our intermediate family will then be:

S = B ∪ T

It is easy to see from our construction that S is union-closed, n-separating and has size

|B| + |T | = (m − n + b + 1) + (n − b − 1) = m.

We do not claim that S is an n-separating union-closed family of size m with minimal
weight; however as we shall see w(S) is quite close to minimal.
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Lemma 4.

w(B) <
|B| log2 |B|

2
+ |B|.

Proof. Writing |B| = 2b1 + 2b2 + 2b3 + . . . 2bt with b = b1 > b2 > . . . > bt ≥ 0, we have

w(B) =
∑

i: bi 6=0

2bi

(

bi

2
+ 1

)

=
b

2

∑

i: bi 6=0

2bi +
∑

i: bi 6=0

2bi
bi − b + 2

2

≤ b|B|
2

+ 2b1 + 2b2/2

<
|B| log2 |B|

2
+ |B|.

Now |B| ≤ m, and the weight of T is clearly less than n(n+1)
2

. Thus it follows that

w(S) <
m log2 m

2
+

n(n + 1)

2
+ m.

On the other hand we already know from Reimer’s theorem and Theorem 3 that

w(S) ≥ max

(

m log2 m

2
,
n(n − 1)

2

)

,

which is asymptotically the same except when n2 ∼ m log2 m when the lower and upper
bounds may diverge by a multiplicative factor of at most 2.

We have thus proved the following theorem.

Theorem 5. Let (n, m) be a satisfiable pair of integers. Suppose S is an n-separating

union-closed family of size m with minimal weight. Then

max

(

m log2 m

2
,
n(n − 1)

2

)

≤ w(S) ≤ m log2 m

2
+

n(n + 1)

2
+ m.

In particular if (nm, m)m∈N is a sequence of satisfiable pairs and Sm a sequence of nm-

separating union-closed families of size m with minimal weight, we have the following:

• If nm/
√

m log m → 0 as m → ∞ then

lim
m→∞

w(Sm)/(
m log2 m

2
) = 1.

• If nm/
√

m log m → ∞ as m → ∞ then

lim
m→∞

w(Sm)/(
n2

2
) = 1.
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• Otherwise

1 ≤ lim w(Sm)/ max(
n2

2
,
m log2 m

2
), and

lim w(Sm)/ max(
n2

2
,
m log2 m

2
) ≤ 2

As a corollary to Theorems 3, 5 and Reimer’s Theorem we have the following result
regarding average degree.

Corollary 6. Let S be a separating union-closed family. Then,

1

|Ω(S)|
∑

x∈Ω(S)

dS(x) ≥
√

|S| log2 |S|
2

+ O(1).

Moreover there exist arbitrarily large separating union-closed families with

1

|Ω(S)|
∑

x∈Ω(S)

dS(x) ≤
√

|S| log2 |S| + O(
√

|S|/ log2 |S|),

so our bound is asymptotically sharp except for a multiplicative factor of at most 2.

Proof. The average degree in a separating family S is

1

|Ω(S)|
∑

x∈Ω(S)

dS(x) =
w(S)

|Ω(S)| .

If S is an n-separating union-closed family of size m, we get two lower bounds on w(S)

from Reimer’s Theorem and Theorem 3. Dividing through by |Ω(S)| = n and optimising

yields
1

|Ω(S)|
∑

x∈Ω(S)

dS(x) ≥
√

|S| log2 |S|
2

− 1

4
.

The constructions from the proof of Theorem 5 then give us for each satisfiable pair

(n, m) examples of n-separating families of size m with close to minimal average degree.

In particular, take m = 2r and n = ⌈
√

2rr⌉: the corresponding family we constructed has

weight 2rr + O(2r). It has therefore average degree
√

r2r + O(
√

2r/r) =
√

m log2 m +

O(
√

m/ log2 m).

We believe our bounds are in fact asymptotically sharp, and that the constructions we
gave in the proof of Theorem 5 are essentially the best possible. We conjecture to that
effect.

Conjecture 2. Suppose n = c
√

m log2 m + o(
√

m log2 m), for some c > 0, and that S is

an n-separating union-closed family of size m. Then

w(S) ≥ 1 + c2

2
m log2 m + o(m log2 m).
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Let S be a separating union-closed family. Recall that the l-fold weight of a family S
is

wl(S) =
∑

A∈S

(|A|
l

)

.

In the previous section we obtained lower-bounds for w1(S) in terms of |S| and |Ω(S)|
and gave constructions showing these were asymptotically sharp up to a multiplicative
constant. Using easy generalisations of Reimer’s Theorem and Theorem 3, we can obtain
similar results concerning wl(S). As a corollary, we will obtain lower bounds on the
expected number of sets containing a random l-subset of Ω(S), and show these are again
asymptotically sharp up to a constant.

Results in this section are motivated by the remark that repeated iterations of the
classical union-closed sets conjecture imply the following stronger looking statement:

Conjecture 3 (Generalised union-closed sets conjecture). Let S be a union-closed family.

Then for every integer l : 1 ≤ l ≤ log2 |S|, there is an l-subset X of Ω(S) which is

contained in at least |S|/2l members of S.

Let us first show how Reimer’s Theorem can be immediately generalised to l-fold
weights.

Lemma 7. Let l ∈ N and let S be a union-closed family. Then

wl(S) > |S|
(

log2 |S|/2

l

)

.

Proof. The function x 7→
(

x
l

)

is convex in R
+. By Jensen’s inequality, it follows that

wl(S) =
∑

A∈S

(|A|
l

)

≥ |S|
(∑

A∈S |A|/|S|
l

)

with equality if and only if all the members of S have the same size. On the other hand,

Reimer’s average set size theorem tell us

∑

A∈S |A|
|S| ≥ log2 |S|

2
,

with equality if and only if S is a powerset (in which case not all the member of S have

the same size). Thus

wl(S) > |S|
(

log2 |S|/2

l

)

,

and this inequality is strict (since we cannot have equality in both Jensen’s inequality and

Reimer’s Theorem.)
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Now, the l-fold weight of a powerset Pr = P([r]) is

wl(Pr) =
∑

A: |A|=l

∑

B

1A⊆B = 2r−l

(

r

l

)

> 2r

(

r/2

l

)

.

However for a fixed l,
wl(Pr)

2r
(

r/2
l

) → 1 as r → ∞,

so the bound on wl is still asymptotically sharp.

Next, let us generalise our result that for S an n-separating union-closed family,

w1(S) ≥
(

n

2

)

.

Again this comes as an easy consequence of Lemma 2.

Lemma 8. Let l ∈ N and let S be a separating union-closed family with Ω(S) = [n] and

elements of Ω labelled in order of increasing degree dS. Then

wl(S) ≥
(

n

l + 1

)

,

with equality if and only if S is of the form

S = {[n] \ [1], [n] \ [2], [n] \ [3], . . . [n] \ [n − l]} ∪ R,

where R∪ {[n] \ [n − l]} is a separating and union-closed subfamily of P([n] \ [n − l]).

Proof. By Lemma 2, S contains at least n − 1 distinct sets Ai, i ∈ [n − 1], of the form

Ai = {i + 1, i + 2 . . . n} ∪ Xi, Xi ⊆ [i − 1].

Thus

wl(S) ≥
∑

i∈[n−1]

(|Ai|
l

)

≥
∑

i∈[n−1]

(

n − i

l

)

=

(

n

l + 1

)

.

Equality may occur in the above if and only if Ai = [n] \ [i] for all i ≤ n − l and S
contains no other set of size greater or equal to l. Suppose this is the case, and that S
contains a set B with B ∩ [n − l] 6= ∅.

Then B contains some x ∈ [n − l]. Suppose it does not contain n − l + 1. Then by

union-closure B ∪ An−l+1 is an element of S of size at least |{x, n − l + 2, . . . n}| = l. As

it does not contain n− l +1, it is not amongst the sets Ai : i ≤ n− l we identified earlier,

a contradiction. B therefore contains n − l + 1. By iterating this argument, we see that
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B must also contain all of n − l + 2, n − l + 3, . . . n − 1. But then B has size at least

|{x, n− l + 1, n− l + 2, . . . n− 1}| = l. If it does not contain n, it is distinct from the sets

Ai : i ≤ n − l we identified earlier, which is a contradiction. If it does contain n, then it

has size at least l + 1 > l. This is only possible if B = Ai for some i ∈ [n − l].

It follows that S = {[n], [n] \ {1}, [n] \ {2} . . . [n] \ {n− l}}∪R with R∪{[n] \ [n− l]}
a union-closed and separating subset of P([n] \ [n − l]) as required.

With Lemmas 7 and 8 in hand, we can now generalise Theorem 5.

Theorem 9. Let (n, m) be a satisfiable pair of integers, and let l ∈ N. Suppose S is an

n-separating union-closed family of size m with minimal l-fold weight wl(|S|) = wl. Then,

max

((

n

l + 1

)

, m

(

log2 m/2

l

))

≤ wl

and

wl ≤
((

n

l + 1

)

+ m

(

log2 m/2

l

))

(1 + o(1)).

Again the lower and upper bounds on wl are asymptotically the same except when
n ∼ m1/(l+1) log2 m1−1/(l+1).

Proof. As this proof is essentially the same as that of Theorem 5, we omit the details.

The lower bound on wl follows from Lemmas 7 and 8. The upper bound follows from

considering the l-fold weight of the families we introduced in the proof of Theorem 5. The

only difficulty involved lies in adapting Lemma 4 to l-fold weights. We state and prove

below the required generalisation.

Lemma 10. Let B be as defined in the previous section, and assume |B| = 2b+2b2 +. . . 2bt.

Then

wl(B) <

(

1 +
2l

log2 |B|

) |B|
l!

(

log2 |B|
2

)l

.

Proof.

wl(B) =
∑

i

(

bi

l

)

2bi−l +

(

bi

l − 1

)

2bi−l+1

≤
((

b

l

)

+ 2

(

b

l − 1

))

∑

i

2bi−l

<

(

1 +
2l

b

)

bl

l!
|B|

<

(

1 +
2l

log2 |B|

) |B|
l!

(

log2 |B|
2

)l

.

Theorem 9 follows straightforwardly from here.
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As in the previous section we can use our result on l-fold weights to obtain information
about the average number of sets containing a randomly chosen l-subset in a separating
union-closed family.

Corollary 11. Let S be a separating union-closed family, and let X be an l-subset of

Ω(S) chosen uniformly at random. Then

EXdS(X) ≥ |S| 1

l+1

(

log2 |S|
2(l + 1)

)1− 1

l+1

+ O

(

( |S|
log2 |S|

)
1

l+1

)

.

Moreover there exist arbitrarily large separating union-closed families S with

EXdS(X) ≤ 2|S| 1

l+1

(

log2 |S|
2(l + 1)

)1− 1

l+1

+ O

(

( |S|
log2 |S|

)
1

l+1

)

,

so this bound is asymptotically sharp except for a multiplicative factor of at most 2.

Proof. This is instant from Lemma 7, Lemma 8 and Theorem 9.

We end our paper with the natural generalisation of Conjecture 2.

Conjecture 4. Let l be an integer. Suppose n = n(m) satisfies

n = cm1/l+1 (log2 m)1−1/(l+1) (1 + o(1))

for some c = c(m). Then if S is an n-separating union-closed family of size m, its l-fold

weight satisfies

wl(S) ≥ m(log2 m)l

(

1

l!2l
+

cl+1

(l + 1)!

)

(1 + o(1)).
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[7] G. Czédli, M. Maróti and E. T. Schmidt, On the scope of averaging for Frankl’s

conjecture, Order 26 (2009), 31-48.

[8] G. Czédli and E. T. Schmidt, Frankl’s conjecture for large semimodular and planar

semimodular lattices, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 47

(2008), 47-53.

[9] P. Frankl, Extremal set systems. Handbook of combinatorics, Vols. 1, 2, 1293-1329,
Elsevier, Amsterdam, 1995.

[10] E.Knill, Graph generated union-closed families of set, (1993), unpublished
manuscript.

[11] R. Morris, FC-families and improved bounds for Frankl’s conjecture, European Jour-
nal of Combinatorics 27 (2006), 269-282.

[12] G. Lo Faro, Union-closed sets conjectures: improved bounds, Journal of Combinato-
rial Mathematics and Combinatorial Computing 16, 97-102.

[13] B. Poonen, Union-closed families, Journal of Combinatorial Theory — Series A 59

(1992), 253-268.

[14] D. Reimer, An Average Set Size Theorem, Combinatorics, Probability and Comput-
ing 12 (2003), 89-93.

[15] J. Reinhold, Frankl’s conjecture is true for lower semimodular lattices, Graphs and
Combinatorics 16(1) (2000), 115-116.

[16] I. Roberts, The union closed sets conjecture, Technical Report No 2/92, School of
Mathematical Statistics, Curtin University of Technology, Perth (1992).

[17] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks/Coole,
Belmont CA, 1996.
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