
Combinatorics meets potential theory

Philippe D’Arco
Institut des Sciences de la Terre de Paris
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Abstract

Using potential theoretic techniques, we show how it is possible to determine
the dominant asymptotics for the number of walks of length n, restricted to the
positive quadrant and taking unit steps in a “balanced” set Γ. The approach is
illustrated through an example of inhomogeneous space walk. This walk takes its
steps in {←, ↑,→, ↓} or {↙,←,↖, ↑,↗,→,↘, ↓}, depending on the parity of the
coordinates of its positions. The exponential growth of our model is (4φ)n, where

φ = 1+
√

5
2 denotes the Golden ratio, while the subexponential growth is like 1/n.

As an application of our approach we prove the non-D-finiteness in two dimensions
of the length generating functions corresponding to nonsingular small step sets with
an infinite group and zero-drift.

Keywords: Lattice path enumeration, analytic combinatorics in several variables,
discrete potential theory, discrete harmonic functions.

1 Introduction

Counting lattice walks in a fixed region R ⊂ Z2 is one of the most fundamental topics
in enumerative combinatorics. In recent years, the case of walks confined to the first
quadrant Q = {(x, y) ∈ Z2; x > 0, y > 0} has been a subject of several important works
(see [3, 4, 5, 10, 11, 12, 17, 26, 27, 32, 33, 34]).

Given a set Γ of allowed steps, the basic enumerative question is to determine the
number of walks confined to Q, starting from (x, y) ∈ Q, having length n = 1, 2, . . .

the electronic journal of combinatorics 23(2) (2016), #P2.28 1



and taking steps in Γ only. A walk in which the set of allowable steps Γ is contained in
{↙,←,↖, ↑,↗,→,↘, ↓} is said to have small steps.

The enumeration of small steps walks restricted to the positive quadrant has focused
primarily on the associated generating functions. In contrast with the corresponding 1-
dimensional problem, where the generating functions are always algebraic [2, 9, 14], in the
2-dimensional case, depending on the choice of the set Γ, the generating functions may
be algebraic, D-finite and some times not even D-finite [8, 10, 12].

Three fundamental works should be mentioned. Firstly, the seminal work of Bousquet-
Mélou and Mishna [11] (see also [33]) initiating a complete classification of small steps
walks in Q and showing that the nature of the generating function is correlated to
the finiteness of a certain group of 2-dimensional transformations associated with Γ.
Bousquet-Mélou and Mishna proved that among the 256 possible small-step walks, there
are exactly 79 different models (up to symmetries) and 23 have a finite group. Among the
23, they proved that 22 models have D-finite generating functions (the 23rd was shown
algebraic in [4]). Secondly, the Kurkova and Raschel result [27] proving a conjecture of
Bousquet-Mélou and Mishna about the non-D-finiteness of the trivariate generating func-
tion which takes into account the length of the walk and the position of its endpoint for the
51 nonsingular models among the 56 with infinite groups. The remaining 5 models were
shown to have non-D-finite length generating functions by Mishna and Rechnitzer [34]
and Melczer and Mishna [31]. Thirdly, the Bostan et al. result [5] establishing the non-
D-finiteness of excursions generating functions for the same 51 nonsingular walks (the
nature of the length generating function for all quadrant walks is still unknown in those
51 cases).

After the important progress made on understanding small steps quadrant walks,
efforts are now deployed to move one dimension higher (small steps walks in octants [6])
and to address walks with big jumps (see [12, 18]).

A natural question about quadrant walks that has not received any special attention
despite its interest provided the first motivation for this paper. What does happen if we
let the set where the walk takes its steps depend on its positions?

At first glance, it might seem difficult to investigate inhomogeneous space walks be-
cause of the great difficulty of analysis of their generating functions [30]. A further major
difficulty that appears in the non-homogeneous case is that paths are no longer equally
probable and it is no longer possible to use the counting formula relating the enumeration
problem to the survival probability in the quadrant to count them (see [13]).

Our aim is to offer an alternative approach allowing us to investigate quadrant walks.
To explain the underlying principle we choose to present this approach through an exam-
ple. However, our method has a more general scope and applies in higher dimension and
for models with longer steps. It relies on a systematic use of tools and techniques from
discrete potential theory developed in [24, 35, 36]. It assumes a centering condition and re-
quires the construction of an appropriate harmonic function whose existence is difficult to
establish in full generality. Nevertheless, if we restrict ourselves to the homogeneous case,
the method applies quite generally and offer an alternative to the probabilistic approach.
This allows us to answer some open questions in the subject. We show in particular in
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§5, that for the three models with nonsingular small step set, zero-drift and infinite group
(among the 51 nonsingular models considered in [5]) the length generating function is not
D-finite.

2 Model description and main result

We consider walks that starts at (x, y) ∈ Q and take their steps w = w1, w2, . . . in variable
multi-sets Γ ⊂ {↙,←,↖, ↑,↗,→,↘, ↓} which depend on the position of Wj =

∑j
i=1wi.

We denote by Q(x, y) the set of all walks that stay in Q and by Qn(x, y) ⊂ Q(x, y) the
subset of walks of length n. The main quantity we investigate is νn(x, y) = |Qn(x, y)|.

We shall denote by νn(x, y;x′, y′) the number of walks ∈ Qn(x, y) ending at (x′, y′) ∈ Q.
The sequence (νn(x, y))n∈N satisfies a multivariate recurrence with non-constant coeffi-
cients:

νn+1(x, y) =
∑

(x′,y′)∈Q

νn+1(x, y;x′, y′)

=
∑

(x′,y′)∈Q

∑
(h,k)∈Γ(x,y)

νn(x+ h, y + k;x′, y′)

=
∑

(h,k)∈Γ(x,y)

∑
(x′,y′)∈Q

νn(x+ h, y + k;x′, y′)

=
∑

(h,k)∈Γ(x,y)

νn(x+ h, y + k).

Taking into account the obvious relations, ν0(x, y) = 1, (x, y) ∈ Q and νn(x, y) = 0 if
x < 0 or y < 0, we obtain that νn(x, y) is a solution of the following equation,

(1) νn+1(x, y) =
∑

(h,k)∈Γ(x,y)

νn(x+ h, y + k), for all (n; (x, y)) ∈ N×Q

with:

(2)


νn(x, y) = 0 if (x, y) ∈ ∂Q,

ν0(x, y) = 1 for all (x, y) ∈ Q,

Equation (1) combined with the boundary conditions (2) uniquely determines the sequence
νn(x, y) (see Figure 1 which gives the number of walks starting from (1, 1) and ending at
(x′, y′), for (x′, y′) ∈ J1, 14K× J1, 14K).

A general principle in combinatorics consists in introducing, for a fixed (x, y) ∈ Q, the
trivariate generating power series of the sequence νn(x, y;x′, y′)

(3) Fx,y(t; ξ, η) =
∑
n>0

 ∑
(x′,y′)∈Q

νn(x, y;x′, y′)ξx
′
ηy

′

 tn.
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Figure 1: The number of 14-steps paths starting at (1, 1) and ending at (x′, y′), for
(x′, y′) ∈ J1, 14K× J1, 14K.
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Figure 2: Two golden paths among the 238525020 14-steps quadrant paths, starting
from (1, 1) and ending at (3, 6). The path corresponding to the solid line is much more
likely than the dotted one (it has probability 2−36 vs 2−40 for the dotted path).

We use the notation Fx,y to highlight the dependence of the generating function on
the starting point (x, y). It is the will to understand this dependence that explains our
formulation of the counting problem.

As νn(x, y;x′, y′) = 0 as soon as |x − x′| > n or |y − y′| > n, the inner sum in (3) is
finite, and Fx,y(t; ξ, η) can be identified with a power series in t with coefficients in Q[ξ, η].
Choosing ξ = η = 1 yields a power series whose coefficients count the quadrant walks
with prescribed number of steps. In the classical theory the growth of the coefficients of
the generating functions is related to the location and nature of their singularities [19,
20]. The generating function methodology, however, seems difficult to implement in the
case of spatially inhomogeneous walks, the recurrences in (1) being built with “variable”
coefficients.

In order to make a first step towards understanding spatially inhomogeneous walks we
investigate a new model of walks, taking their steps w = w1, w2, . . . wj, . . . alternately in
one of the two multi- set

Γeven = {←, ↑,→, ↓} ⊂ Γodd = {↙,←,↖, ↑,↗,→,↘, ↓}

according to the following rule: if Wj =
∑j

i=1 wi = (x, x+ 2k), k ∈ Z, then the step wj+1

is taken from Γeven and it is taken from Γodd otherwise (see Figure 2). We call them
golden walks.

It is well known that the number of n-steps walks on the square lattice, with ←, ↑,→
and ↓ steps (this is the so-called Pólya walk) that start from the origin and stay in the
first quadrant grows like 4n/n. On the other hand, the number of n-steps quadrant walks
taking their steps in the full set {↙,←,↖, ↑,↗,→,↘, ↓} (the so-called King walk) grows
like 8n/n. In our model the Pólya walk is modified so that it is allowed to move from the
points whose coordinates are of opposite parity in the four additional directions↙,↖,↗
and↘. How does the asymptotics of walks of length n, restricted to the positive quadrant,
change?

The answer is given by
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Theorem 1. There exist C, c > 0 such that

(4)
(4φ)n xy

Cn
6 νn(x, y) 6 C

(4φ)n xy

n

for all (x, y) ∈ Q satisfying x, y 6 c
√
n, n = 1, 2, . . . and where φ = 1+

√
5

2
denotes the

Golden ratio.

The following remarks may be helpful in placing the above theorem in the right per-
spective.

(i) As we are interested mainly by the asymptotic behavior of νn(x, y), n → ∞, the
condition x, y 6 c

√
n is not really restrictive.

(ii) The factor (4φ)n that appears in (4) is related to the number of unrestricted paths
of length n (see §3.2. below). The same factor appears in the estimates of the number
of n-steps paths confined to the half-space H = {(x, y) ∈ Z2, y > 0} and starting at
(x, y) ∈ H. Note this number νHn (x, y). Our method allows to show that

(5)
(4φ)n y

C
√
n

6 νHn (x, y) 6 C
(4φ)n y√

n
, y 6 c

√
n.

(iii) It is important to clarify the connection between the functions u(x, y) = xy,
uH(x, y) = y and the factors 1/n and 1/

√
n that appear in the lower and upper bounds

of (4) and (5). It will be shown in §3.1 below that the function u satisfies a discrete heat
type equation (see Eq. (9) below). Moreover, it is positive and vanishes on ∂Q. The
same kind of verification is easily done with uH which vanishes on ∂H. The existence and
uniqueness of discrete harmonic functions was recently established, in a related context,
for spatially inhomogeneous random walks on orthants in Zd [7]. The same reasoning used
in [7], based on an analog of Theorem 3 below, allows to show in the case here considered
the uniqueness (up to multiplicative constants) of time-independent positive solutions of
Eq. (9) vanishing on ∂Q. In terms of the function u (resp. uH) the factor 1/n (resp.
1/
√
n) can be interpreted as

1

u(
√
n,
√
n)
,

(
resp.

1

uH(
√
n,
√
n)

)
and the quotient xy/n (resp. y/n) as

u(x, y)

u(
√
n,
√
n)
,

(
resp.

uH(x, y)

uH(
√
n,
√
n)

)
.

What counts in the choice of the point (
√
n,
√
n) is that it is at a distance ≈

√
n from

the boundary of Q.
(iv) Due to the previous considerations, it is natural to divide νn(x, y) by (4φ)n in (4)

and try to find a similar interpretation for the resulting quotient in terms of a positive
solution of (9) normalized by its value at a point located at a distance ≈

√
n from ∂Q.

This can be achieved by considering unrestricted paths.
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3 The heat type equation and the unrestricted paths

Let Nn(x, y) denote the number of unconstrained walks starting at (x, y) and of length
n ∈ N. We set Nn(x, y) = 1 for n = 0 and denote by 1Γ(x,y) the characteristic function of
the set Γ(x, y). Nn(x, y) satisfies the equation

Nn+1(x, y) =
∑

(h,k)∈Z2

1Γ(x,y)(h, k)Nn(x+ h, y + k), for all (n; (x, y)) ∈ N× Z2

which implies the relation

(6)
∑

(h,k)∈Γ(x,y)

Nn(x+ h, y + k)

Nn+1(x, y)
= 1, for all (n; (x, y)) ∈ N× Z2.

Let

(7) U(n; (x, y)) =
νn(x, y)

Nn(x, y)
, (n; (x, y)) ∈ N×Q.

Dividing (1) by Nn+1(x, y) we see that U satisfies

U(n+ 1; (x, y)) =
∑

(h,k)∈Z2

1Γ(x,y)(h, k)
Nn(x+ h, y + k)

Nn+1(x, y)
U(n; (x+ h, y + k)).

Setting

(8) π (n; (x, y), (h, k)) = 1Γ(x,y)(h, k)
Nn(x+ h, y + k)

Nn+1(x, y)
;

and using (6) we can rewrite this equation

U(n+1; (x, y))−U(n; (x, y)) =
∑
(h,k)

π (n; (x, y), (h, k))
(
U(n; (x+h, y+k))−U(n; (x, y))

)
.

Introducing the discrete time and space derivatives

∂nU(n; (x, y)) = U(n+ 1; (x, y))− U(n; (x, y))

∇(h,k)U(n; (x, y)) = U(n; (x+ h, y + k))− U(n; (x, y)),

we see that U(n; (x, y)) satisfies the following discrete heat type equation:

(9) ∂nU(n; (x, y)) =
∑

(h,k)∈Z2

π (n; (x, y), (h, k))∇(h,k)U(n; (x, y)).
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3.1 The harmonic function u.

Let us show that the function u : Q → R, (x, y) → u(x, y) = xy satisfies equation (9) in
the case of golden walks. As u is independent of n the left-hand side is zero. To compute
the right-hand side we first observe that u(x + h, y + k) − u(x, y) = xk + yh + hk. This
implies that∑

(h,k)∈Z2

π (n; (x, y), (h, k))∇(h,k)u(x, y) = x
∑

(h,k)∈Z2

π (n; (x, y), (h, k)) k

+ y
∑

(h,k)∈Z2

π (n; (x, y), (h, k))h+
∑

(h,k)∈Z2

π (n; (x, y), (h, k))hk.

This shows that for u to be solution of (9) requires (see (8))∑
(h,k)∈Γ(x,y)

Nn(x+ h, y + k)h =
∑

(h,k)∈Γ(x,y)

Nn(x+ h, y + k)k(10)

=
∑

(h,k)∈Γ(x,y)

π (n; (x, y), (h, k))hk = 0.

3.2 Counting the unrestricted paths.

Let Nn(x, y) denote the number of unrestricted walks starting at (x, y) and of length
n ∈ N. We have

Nn(x, y) = N o
n(x, y) +N e

n(x, y),

where N o
n(x, y) (resp. N e

n(x, y)) denote the number of walks ending on odd sites, i.e.
sites (x′, y′) such that y′ − x′ ≡ 1 mod(2) (resp. on even sites). Since every odd site is
accessible from its eight neighbors, we have

(11) N o
n+1(x, y) = 4N o

n(x, y) + 4N e
n(x, y).

In contrast, even sites are accessible only from their four odd neighbors. This implies that

(12) N e
n+1(x, y) = 4N o

n(x, y)

Adding (11) and (12) we obtain

Nn+1(x, y) = 4(N o
n(x, y) +N e

n(x, y)) + 4N o
n(x, y) = 4Nn(x, y) + 16Nn−1(x, y).

Setting Fn(x, y) = 4−nNn(x, y) we obtain

Fn+1(x, y) = Fn(x, y) + Fn−1(x, y)

which shows that (Fn(x, y)) is a Fibonacci sequence. Using the initial conditions
F0(x, y) = 1, F1(x, y) = 1 if y − x ≡ 0 mod(2)

F0(x, y) = 1, F1(x, y) = 2 if y − x ≡ 1 mod(2)
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we deduce the following formulas:

(13) Nn(x, y) = 4nFn+1 =
4n√

5

(
φn+1 − φn+1

)
if y − x ≡ 0 mod(2)

(14) Nn(x, y) = 4nFn+2 =
4n√

5

(
φn+2 − φn+2

)
if y − x ≡ 1 mod(2)

where φ = 1−
√

5
2

and Fn denotes the nth Fibonacci number; the second equality in (13)
and (14) results from the Binet’s Fibonacci number formula.

From (13) and (14) it follows immediately that Nn(x + h, y + k) = Nn(x− h, y + k),
Nn(x + h, y + k) = Nn(x + h, y − k) for each step (h, k) ∈ Γ(x, y). Combining with the
symmetries of Γ(x, y), we deduce (10).

On the other hand, using (8), (13) and (14) we deduce that

π (n; (x, y), (h, k)) =
1

4
1Γeven(h, k),

in the case where y − x ≡ 0 mod(2), and that

π (n; (x, y), (h, k)) =
Fn+1

4Fn+3

1Γeven(h, k) +
Fn+2

4Fn+3

1Γodd\Γeven(h, k)

in the case where y − x ≡ 1 mod(2). We will retain from the previous calculations, the
following facts:

(15)
1

C
(4φ)n 6 Nn(x, y) 6 C(4φ)n, uniformly in (x, y) ∈ Z2

and

(16) π (n; (x, y), (h, k)) > α1Γeven(h, k), uniformly in (x, y); (h, k) ∈ Z2

for appropriate C, α > 0.

3.3 Towards the proof of Theorem 1

It follows from (15) that

νn(x, y)

CNn(x, y)
6
νn(x, y)

(4φ)n
6 C

νn(x, y)

Nn(x, y)
.

Using (7) and the obvious inequality U(n; (x, y)) 6 1; we see then that in order to establish
the upper bound of Theorem 1, it is sufficient to show that

(17)
U(n; (x, y))

U(n; (
√
n,
√
n))

6 C
u(x, y)

u(
√
n,
√
n)
.

For the lower estimate we will need to reverse inequality (17) and a lower bound

(18) U(n; (
√
n,
√
n)) > c, n > C,

for appropriate c, C > 0. It is discrete potential theory that will allow us to establish
(17), its reverse and the lower bound (18).
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4 Discrete potential theory and Proof of Theorem 1

Ideas from potential theory, in particular, harmonic functions, maximum principle, Har-
nack inequalities and their parabolic and boundary variants have strong connections with
our problem. In fact general concepts of potential theory, have been borrowed since a
long time by discrete probability theory [15, 39]. This proved very useful and successful
for random walk analysis [28, 29]. While it is beyond the scope of this paper to explain
in detail the related concepts, we will try to explain the main tools that are relevant to
our problem, i.e. Harnack inequalities. For this we need to introduce some notation.

Two points in Z2 will be said to be adjacent if the distance between them is unity. A
subset A ⊂ Z2 of cardinality |A| > 2 will be called connected if for any two points of A
there is a path consisting of segments of unit length connecting them in such a manner
that the end points of these segments are all in A. A set of points is a domain if it is
connected. The symbol A will be used in the following to denote a domain of Z2.

Given a map Γ : (s, t) ∈ Z2 → Γ(s, t) ⊂ Z2, we define the boundary ∂ΓA of A (with
respect to Γ) by

∂ΓA = {(x′, y′) ∈ Ac, (x′, y′) = (x+h, y+k), for some (x, y) ∈ A and (h, k) ∈ Γ(x, y)}.

We shall assume that Γ satisfies:

(19) There exists C > 0, |Γ(x, y)| 6 C, {←, ↑,→, ↓} ⊂ Γ(x, y), (x, y) ∈ Z2.

The closure of A will be denoted by A and defined by

A = A ∪ ∂ΓA.

For a cylindrical subset B = A × {a 6 n 6 b} ⊂ Z2 × Z where a < b ∈ Z we define
the lateral boundary and the parabolic boundary of B by

∂lB =
⋃

a<n<b

∂ΓA× {n}, ∂pB = ∂lB ∪
(
A× {a}

)
,

and we let
B = B ∪ ∂pB.

Let Γ satisfying (19) and Π : N× Z2 × Z2 → [0, 1] be such that

(20) Π(n; (x, y); (h, k)) = 0, if (h, k) 6∈ Γ(x, y)

and

(21)
∑

(h,k)∈Γ(x,y)

Π(n; (x, y); (h, k)) = 1, n ∈ N, (x, y) ∈ Z2,

(22)
∑

(h,k)∈Γ(x,y)

Π(n; (x, y); (h, k))h =
∑

(h,k)∈Γ(x,y)

Π(n; (x, y); (h, k))k = 0, n ∈ N, (x, y) ∈ Z2,
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there exists α > 0 such that

(23) Π(n; (x, y); (h, k)) > α; n ∈ N, (x, y) ∈ Z2, (h, k) ∈ {←, ↑,→, ↓}.

We shall also assume that Π is strongly aperiodic. This means that, given any (x, y) ∈
Z2, there exists some integer n0 = n0(x, y) such that Π(n; (0, 0); (x, y))) > 0 for all n > n0.

Let v : B −→ R, where B = A×{a 6 n 6 b} ⊂ Z2×Z. We say that v is Π-caloric in
B if

v((x, y);n+ 1) =
∑

(h,k)∈Γ(x,y)

Π(n; (x, y); (h, k))v((x+ h, y + k);n),

for all ((x, y);n) ∈ A× {a 6 n < b}.
The concept of a Π-caloric function generalizes the notion of discrete harmonic func-

tion. In particular, caloric functions satisfy an adapted version of the maximum principle.
More precisely, a caloric function on a finite set B attains its maximum in B on the lateral
boundary ∂lB. Another basic property of harmonic functions is Harnack principle, which
states that a positive harmonic function on a ball of radius R is roughly constant on the
ball with the same center and radius R/2. Harnack principle generalizes for nonnegative
Π-caloric as follows.

Theorem 2. (Refer to [25, 24]) Let Γ and Π satisfy (19)-(23). Then there exists a
constant C = C(α,Γ) > 0 such that, for any ((x, y); s) ∈ Z2 × Z, R > 1 and any
nonnegative Π-caloric function v : B2R(x, y)× {s− 4R2 6 n 6 s} −→ R, we have

max
{
v((x′, y′);n); (x′, y′) ∈ BR(x, y), s− 3R2 6 n 6 s− 2R2

}
(24)

6 C min
{
v((x′, y′);n); (x′, y′) ∈ BR(x, y), s−R2 6 n 6 s

}
,

where BR(x, y) denotes the discrete ball in Z2 centered on (x, y) and of radius R.

Kuo and Trudinger proved their Harnack principle in the setting of implicit difference
schemes. To see how the explicit case, which corresponds to our Theorem 2, can be
obtained by their method one can proceed as follows. Start with [[24], §2] and replace it
by [[25], §3] (rewritten in the case α = 1, and taking into account all the simplifications
implied by the assumptions (19)-(23)), then carry out the same steps as in [[24], §3] until
Eq. (3.17) on page 409. This is sufficient because we can always assume R large enough
and there is no need to remove the restriction contained in (3.17). This gives an analogue
of Lemma 3.2 of [[24], §3] valid in the present context. A weak Harnack inequality can be
derived by an adaptation of the procedure introduced by Krylov and Safanov [[23], §2] for
the continuous case. Harnack principle follows then as a direct consequence of the weak
Harnack inequality (see [24], §4).

In the proof of Theorem 1, together with Theorem 2 we need the following boundary
variant of (24). In classical potential theory, the boundary Harnack principle describes the
boundary behavior of positive harmonic functions vanishing on a portion of the bound-
ary [1, 21]. It asserts that two positive harmonic functions vanishing on a portion of the
boundary decay at the same rate. This principle generalizes to Π-caloric functions. The
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proof in [[35], §5.1, §5.2 and §5.3], given for nonnegative L-caloric functions in cylindri-
cal domains, is based only on the maximum and Harnack principles and can be readily
extended to Π-caloric functions.

Theorem 3. Let Γ and Π satisfying (19)-(23). Then, there exists a constant K > 1 such
that for all s ∈ N, R > K and all couple of nonnegative Π-caloric functions

v1, v2 : (Q∩B3KR)× {s− 9K2R2 6 n 6 s+ 9K2R2} ⊂ Z2 × Z −→ R

with v1 = 0 on (∂ΓQ∩B2KR)× {s− 4K2R2 6 n 6 s+ 4K2R2}, we have

max
{v1((x, y);n)

v2((x, y);n)
, ((x, y);n) ∈ (Q∩BR))× {s− 2R2 6 n 6 s}

}
6 C

v1((KR,KR); s+ 2K2R2)

v2((KR,KR); s− 2K2R2)
,

where BR denotes the discrete ball BR(0, 0) and C = C(α,Γ) > 0.

We now have all the ingredients to prove Theorem 1. The kernel π defined by (8)
satisfies all the conditions required in order to apply Theorems 2 and 3. Γeven, Γodd
satisfy in an obvious way (19). (21) is implied by the normalization condition (6). (22) is
a consequence of (10) and (23) follows from (16).

Proof Theorem 1. Note that in the proof of Theorem 1 we can assume n > C for a large
constant C > 0. Otherwise (4) becomes evident because

1 6 νn(x, y) 6 8C ,
1

C
6
xy

n
6 1

if we assume 1 6 x , y 6
√
n and n 6 C.

Assuming n large enough, it becomes possible to apply Theorem 3. The crucial obser-
vation is that each of the functions (n; (x, y)) −→ u(x, y) and (n; (x, y)) −→ U(n; (x, y)),
initially defined on N × Q, can be extended to all Z × Q. As for the first, this simply
happens because it is independent of n; as for the second, the extension can be done by
setting

(25) U(n; (x, y)) ≡ 1, (n; (x, y)) ∈ (Z−)×Q.

The second relation in the boundary conditions (2) satisfied by ν(n; (x, y)) guarantees
that the extension (25) is π-caloric in Z×Q. The idea of such a construction is inspired
by the proof of Lemma 4.1 in [38].

We now have at our disposal two positive π-caloric functions satisfying conditions
of Theorem 3 that we will be able to compare. Setting v1((x, y);n) = U(n; (x, y)),
v2((x, y);n) = u(x, y), s = n and R =

√
n/4K, we deduce then that

(26)
U
(
n; (x, y)

)
u
(
x, y
) 6 C

U
(
9n/8; (

√
n/4,

√
n/4)

)
u
(√

n/4,
√
n/4
) .
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Now we observe that if (x, y) ∈ Q is such that x, y > c
√
n then U(n; (x, y)) > c′,

for appropriate positive constants c, c′ > 0. This follows from (25) and an application of
Harnack inequality (24). This remark also allows to see that, in the same way, (18) is an
immediate consequence of Harnack principle.

Using the fact that

c 6 U
(
9n/8; (

√
n/4,

√
n/4)

)
≈ U(n; (

√
n,
√
n)) 6 1

and
u(
√
n/4,

√
n/4) ≈ u(

√
n,
√
n)

which easily results from the application of Harnack principle (24) we deduce (17).
To reverse inequality (26) we repeat the above reasoning exchanging v1 and v2. This

gives
u(x, y)

U
(
n; (x, y

)
)
6 C

u
(√

n/4,
√
n/4
)

U
(
7n/8; (

√
n/4,

√
n/4)

) .
Using Harnack inequality and (18) we get the desired inequality. This completes the proof
of Theorem 1.

5 Extensions and excursions

Our potential theoretic strategy relies on two crucial points: the existence of a positive
harmonic function u vanishing on the boundary of ∂Q and the centering assumption (22).
Once achieved the construction of such a function, the machinery applies and gives, the
following bounds:

(27)
Nn(x, y)u(x, y)

Cu
(√

n,
√
n
) 6 νn(x, y) 6

CNn(x, y)u(x, y)

u
(√

n,
√
n
) ,

(x, y) ∈ Q, x, y 6 c
√
n, n = 1, 2, . . . , where Nn(x, y) denotes the number of unrestricted

walks starting at (x, y) and having length n.
In the case of centered homogeneous small steps walks, the existence of u follows from

the results of K. Raschel [37] since in this case the kernel π(n; (x, y); (h, k)) is given by

π(n; (x, y); (h, k)) =
1

|Γ|

and the function u is the discrete harmonic function explicitly constructed in [37].
Using the results of [5] (see step sets with number 30, 40 and 42 in column “Tag” of

Table 2 of [5]), we easily deduce the following.

Theorem 4. Let Γ be any of the three nonsingular step sets associated with an infinite
group and having zero-drift (i.e. Γ = {↗, ↑,←,↙,↘}, {↙,↖, ↑,→,↘} or {↖,↗,←
,↘, ↓}). Then for any (x, y) ∈ Q the length generating function for walks that start from
(x, y) and always stay in Q is not D-finite.
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The proof of Theorem 4 is based on the form of the function u(x, y) constructed in
[37]. It follows from [13], that in case of step set Γ = {↗, ↑,←,↙,↘}, this function

satisfies u
(√

n,
√
n
)
≈ nπ/2 arccos(− 1

4) = nπ/2(π−arccos( 1
4)), n → ∞, and u

(√
n,
√
n
)
≈

nπ/2 arccos( 1
4), n→∞ in the case of step sets {↙,↖, ↑,→,↘} or {↖,↗,←,↘, ↓}

On the other hand, it is easy to see that π/2 arccos(1/4) is irrational (see [41]).
A consequence of the irrationality of π/2 arccos (1/4) is that the asymptotics obtained
for u

(√
n,
√
n
)

are not compatible with the growth of coefficients of D-finite series with
integer-valued exponentially bounded coefficients (see [5], Theorem 3).

Another interesting aspect of (27) is that it generalizes to models with longer steps and
also in higher dimensions (we should then use [7] instead of [37] to deduce the existence of
the harmonic function u). For instance, the asymptotics obtained by Melczer and Mishna
in [32] for d-dimensional highly symmetric walks

sn ≈ |S|nn−d/2,

where sn denotes the number of walks of length n taking steps in S, starting at the origin,
and never leaving the positive orthant, can be retrieved easily using (27). Indeed, one can
readily verify that for d-dimensional highly symmetric walks the function

u(x1, x2, .., xd) = x1x2 . . . xd, (x1, x2, . . . , xd) ∈ N?d

is a positive harmonic function vanishing on the boundary of N?d and it is immediate that
u(
√
n,
√
n, . . .

√
n) equals the polynomial factor nd/2.

For symmetric walks in Weyl chambers one can use the harmonic functions constructed
in [16, 22] (see also [40]).

Finally the upper bound in (27) can also be used to derive upper estimates for excur-
sions. Let us take, for example, the highly symmetric walks considered in [32]. Let us use
the same notation as in §2 and denote by νn(x1, . . . , xd; y1, . . . , yd) the number of walks
of length n taking steps in S, starting from (x1, . . . , xd), ending at (y1, . . . , yd), and never
leaving the positive orthant. We have:

ν3n(x1, . . . xd; y1, . . . yd)

|S|3n
=

∑
(z1,...zd)∈N?d

∑
(z′1,...z

′
d)∈N?d

νn(x1, . . . xd; z1, . . . zd)

|S|n

× νn(z1, . . . zd; z
′
1, . . . z

′
d)

|S|n
× νn(z′1, . . . z

′
d; y1, . . . yd)

|S|n

Using the well known upper bound random walk estimate ([39], Chapter II, Proposition
7.6)

νn(z1, . . . zd; z
′
1, . . . z

′
d)

|S|n
6 Cn−d/2

and combining with (27) we deduce that

νn(x1, . . . xd; y1, . . . yd) 6 C
|S|n(x1 . . . xd)(y1 . . . yd)

n3d/2
.
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It follows that the number of walks en of length n taking steps in S, beginning and ending
at the origin, and never leaving the positive orthant satisfies

en = O
(
C|S|n

n3d/2

)
,

which gives an alternative proof of Theorem 7.2 of [32].
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elliptique dans un domaine Lipschitzien. Ann. Inst. Fourier, 37:313–338, 2001.

[2] C. Banderier and P. Flajolet. Basic analytic combinatorics of directed lattice paths.
Theoret. Comput. Sci., 281:37–80, 2002.

[3] A. Bostan and M. Kauers. Automatic classification of restricted lattice walks. In
DMCTS Proceedings of the 21st Internatinal Conference on Formal Powers and Al-
gebraic Combinatorics, pages 203–217, FPSAC’09, Hagenberg, Austria, 2009.

[4] A. Bostan and M. Kauers. The complete generating function for Gessel walks is
algebraic. Proc. Amer. Math. Soc., 138:3063–3078, 2010.

[5] A. Bostan, K. Raschel and B. Salvy. Non-D-finite excursions in the quarter plane.
J. Combin. Theory Ser. A, 121:45–63, 2014.

[6] A. Bostan, M. Bousquet-Mélou, M. Kauers and S. Melczer. On 3-dimensional
lattice walks confined to the positive octant, to appear in Annals of Comb.,
arXiv:1409.3669, 2014.

[7] A. Bouaziz, S. Mustapha and M. Sifi. Discrete harmonic functions on an orthant in
Zd. Elect. Com. Proba., 1-13, 2015.

[8] M. Bousquet-Mélou. Counting walks in the quarter plane. In Mathematics and com-
puter science, II (Versailles 2001), Trends Math., pages 49–67, Birkhäuser, Basel,
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