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Abstract

A family F of graphs is said to be (δ, χ)-bounded if there exists a function
f(x) satisfying f(x) → ∞ as x → ∞, such that for any graph G from the family,
one has f(δ(G)) ≤ χ(G), where δ(G) and χ(G) denotes the minimum degree and
chromatic number of G, respectively. Also for any set {H1,H2, . . . ,Hk} of graphs
by Forb(H1,H2, . . . ,Hk) we mean the class of graphs that contain no Hi as an
induced subgraph for any i = 1, . . . , k. In this paper we first answer affirmatively
the question raised by the second author by showing that for any tree T and positive
integer ℓ, Forb(T,Kℓ,ℓ) is a (δ, χ)-bounded family. Then we obtain a necessary and
sufficient condition for Forb(H1,H2, . . . ,Hk) to be a (δ, χ)-bounded family, where
{H1,H2, . . . ,Hk} is any given set of graphs. Next we study (δ, χ)-boundedness of
Forb(C) where C is an infinite collection of graphs. We show that for any positive
integer ℓ, Forb(Kℓ,ℓ, C6, C8, . . .) is (δ, χ)-bounded. Finally we show a similar result
when C is a collection consisting of unicyclic graphs.

1 Introduction

A family F of graphs is said to be (δ, χ)-bounded if there exists a function f(x) satisfying
f(x) → ∞ as x → ∞, such that for any graph G from the family one has f(δ(G)) ≤ χ(G),
where δ(G) and χ(G) denotes the minimum degree and chromatic number of G, respec-
tively. Equivalently, the family F is (δ, χ)-bounded if δ(Gn) → ∞ implies χ(Gn) → ∞ for
any sequence G1, G2, . . . with Gn ∈ F . Motivated by Problem 4.3 in [6], the second author
introduced and studied (δ, χ)-bounded families of graphs (under the name of δ-bounded
families) in [10]. The so-called color-bound family of graphs mentioned in the related
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problem of [6] is a family for which there exists a function f(x) satisfying f(x) → ∞ as
x → ∞, such that for any graph G from the family one has f(col(G)) ≤ χ(G), where
col(G) is defined as col(G) = max{δ(H) : H ⊆ G} + 1. As shown in [10] if we restrict
ourselves to hereditary (i.e. closed under taking induced subgraph) families then two
concepts (δ, χ)-bounded and color-bound are equivalent. The first specific results con-
cerning (δ, χ)-bounded families appeared in [10] where the following theorem was proved
(in a somewhat different but equivalent form). In the following theorem for any set C of
graphs, Forb(C) denotes the class of graphs that contains no member of C as an induced
subgraph.

Theorem 1. ([10]) For any set C of graphs, Forb(C) is (δ, χ)-bounded if and only if
there exists a constant c = c(C) such that for any bipartite graph H ∈ Forb(C) one has
δ(H) ≤ c.

Theorem 1 shows that to decide whether Forb(C) is (δ, χ)-bounded we may restrict
ourselves to bipartite graphs. We shall make use of this result in proving the following
theorems.

Similar to the concept of (δ, χ)-bounded families is the concept of χ-bounded families.
A family F of graphs is called χ-bounded if for any sequence Gi ∈ F such that χ(Gi) → ∞,
it follows that ω(Gi) → ∞. The first author conjectured in 1975 [2] (independently by
Sumner [9]) the following

Conjecture 1. For any fixed tree T , Forb(T ) is χ-bounded.

2 (δ, χ)-bounded families with a finite set of forbidden

subgraphs

The first result in this section shows that for any tree T and positive integer ℓ, Forb(T, Kℓ,ℓ)
is (δ, χ)-bounded which answers affirmatively a problem of [10].

Theorem 2. For every fixed tree T and fixed integer ℓ, and for any sequence Gi ∈ Forb(T ,
Kℓ,ℓ), δ(Gi) → ∞ implies χ(Gi) → ∞.

We shall prove Theorem 2 in the following quantified form.

Theorem 3. For every tree T and for positive integers ℓ, k there exist a function f(T, ℓ, k)
with the following property. If G is a graph with δ(G) ≥ f(T, ℓ, k) and χ(G) ≤ k then G
contains either T or Kℓ,ℓ as an induced subgraph.

In Theorem 3 we may assume that the tree T is a complete p-ary tree of height r, T r
p ,

because these trees contain any tree as an induced subgraph. Using Theorem 1 we note
that to prove Theorem 3 it is enough to show the following lemma.

the electronic journal of combinatorics 18 (2011), #P108 2



Lemma 1. For every p, r, ℓ there exists g(p, r, ℓ) such that the following is true. Every
bipartite graph H with δ(H) ≥ g(p, r, ℓ) contains either T r

p or Kℓ,ℓ as an induced subgraph.

Proof. To prove the lemma, we prove slightly more. Call a subtree T ⊆ H a distance
tree rooted at v ∈ V (H) if T is rooted at v and for every w ∈ V (T ) the distance of v and
w in T is the same as the distance of v and w in H . In other words, let T be a subtree of
H rooted at v and let Li be the set of vertices at distance i from v in T . If T is a distance
tree then Li is a subset of the vertices at distance i from v in H . Notice that a distance
tree T of H is an induced subtree of H if and only if xy ∈ E(H) implies xy ∈ E(T ) for
any x ∈ Li, y ∈ Li+1. (In this statement it is important that H is a bipartite graph.)

We claim that with a suitable g(p, r, ℓ) lower bound for δ(H), every vertex of a bipartite
graph H is the root of an induced distance tree T r

p in H .
The claim is proved by induction on r. For r = 1, g(p, 1, ℓ) = p is a suitable function

for every ℓ, p. Assuming that g(p, r, ℓ) is defined for some r ≥ 1 and for all p, ℓ, define
P = pr(ℓ − 1) and

u = g(p, r + 1, ℓ) = max{g(P, r, ℓ), 1 + 2Ppr−1

(max{p − 1, ℓ − 1})} (1)

Suppose that δ(H) ≥ u, v ∈ V (H). By induction, using that u ≥ g(P, r, ℓ) by (1),
we can find an induced distance tree T = T r

P rooted at v. In fact we shall only extend a
subtree T ∗ of T , defined as follows. Keep p from the P subtrees under the root and repeat
this at each vertex of the levels 1, 2, . . . r − 2. Finally, at level r − 1, keep all of the P

children at each vertex. Let L denote the set of vertices of T ∗ at level r, L = ∪pr−1

i=1 Ai where
the vertices of Ai have the same parent in T ∗, |Ai| = P . Let X ⊆ V (H) \ V (T ∗) denote
the set of vertices adjacent to some vertex of L. (In fact, since T is a distance tree and
H is bipartite, X ⊆ V (H) \ V (T ).) Put the vertices of X into equivalence classes, x ≡ y

if and only if x, y are adjacent to the same subset of L. There are less than q = 2Ppr−1

equivalence classes (since each vertex of X is adjacent to at least one vertex of L). Delete
from X all vertices of those equivalence classes that are adjacent to at least ℓ vertices of
L. Since H has no Kℓ,ℓ subgraph, at most q(ℓ − 1) vertices are deleted. Delete also from
X all vertices of those equivalence classes that have at most p − 1 vertices. During these
deletions less than q(max{p−1, ℓ−1}) < u−1 vertices were deleted, the set of remaining
vertices is Y . It follows from (1) that every vertex of L is adjacent to at least one vertex
y ∈ Y , in fact to at least p vertices of Y in the equivalence class of y.

Now we plan to select p-element sets {xi,1, . . . , xi,p} ⊂ Ai and a set Bi,j ⊂ Y of p
neighbors of xi,j so that the Bi,j-s are pairwise disjoint and if xi,j ∈ Ai is adjacent to

some v ∈ Bs,t then s = i, t = j. Then ∪pr−1

i=1
∪p

j=1
Bi,j extends T ∗ to the required induced

distance tree T r+1

p (there are no edges of H connecting any two Bi,j-s since H is bipartite).
Start with an arbitrary vertex x1,1 ∈ A1. There are at least p neighbors of x1,1 in

an equivalence class C of Y , define B1,1 as p elements of C. Delete all vertices of L
defining C and repeat the procedure. Since at most (ℓ − 1) vertices are deleted from
L at each step, the inequality |Ai| = P = pr(ℓ − 1) > (pr − 1)(ℓ − 1) ensures that
{xi,j : 1 ≤ i ≤ pr−1, 1 ≤ j ≤ p} (and their neighboring sets Bi,j) can be defined. �
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Using Theorem 2 we can characterize (δ, χ)-bounded families of the form Forb(H1, . . . , Hk)
where {H1, . . . , Hk} is any finite set of graphs. In the following result by a star tree we
mean any tree isomorphic to K1,t for some t ≥ 1.

Corollary 1. Given a finite set of graphs {H1, H2, . . . , Hk}. Then Forb(H1, H2, . . . , Hk)
is (δ, χ)-bounded if and only if one of the following holds:
(i) For some i, Hi is a star tree.
(ii) For some i, Hi is a forest and for some j 6= i, Hj is complete bipartite graph.

Proof. Set for simplicity F = Forb(H1, H2, . . . , Hk). First assume that F is (δ, χ)-
bounded. From the well-known fact that for any d and g there are bipartite graphs of
minimum degree d and girth g, we obtain that some Hi should be forest. If Hi is star tree
then (i) holds. Assume on contrary that none of Hi’s is neither star tree nor complete
bipartite graph. Then Kn,n belongs to F for some n. But this violates the assumption
that F is (δ, χ)-bounded.

To prove the converse, first note that by a well known fact (see [10]) if Hi is a star tree
then Forb(Hi) is (δ, χ)-bounded. Now since F ⊆ Forb(Hi) then F too is (δ, χ)-bounded.
Now let (ii) hold. We may assume that Hi0 is forest and Hj0 is an induced subgraph of
Kℓ,ℓ for some l. It is enough to show that Forb(Hi0, Kℓ,ℓ) is (δ, χ)-bounded. If Hi0 is a
tree then the assertion follows by Theorem 2. Let T1, . . . , Tk be the connected compo-
nents of Hi0 where k ≥ 2. We add a new vertex v and connect v to each Ti by an edge.
The resulting graph is a tree denoted by T . We have Forb(Hi0, Kℓ,ℓ) ⊆ Forb(T, Kℓ,ℓ)
since Hi0 is induced subgraph of T . The proof now completes by applying Theorem 2 for
Forb(T, Kℓ,ℓ). �

3 (δ, χ)-bounded families with an infinite set of for-

bidden subgraphs

In this section we consider Forb(H1, H2, . . .) where {H1, H2, . . .} is any infinite collection
of graphs. When at least one of the Hi-s is a tree then the related characterization problem
is easy. The following corollary is immediate.

Corollary 2. Let T be any non star tree. Then Forb(T, H1, . . .) is (δ, χ)-bounded if and
only if at least one of Hi-s is complete bipartite graph.

When no graph is acyclic in our infinite collection H1, H2, . . . we are faced with non-
trivial problems. The first result in this regard is a result from [8]. They showed that if G is
any even-cycle-free graph then col(G) ≤ 2χ(G)+ 1. This shows that Forb(C4, C6, C8, . . .)
is (δ, χ)-bounded. Another result concerning even-cycles was obtained in [10] where the
following theorem has been proved. Note that d̄(G) stands for the average degree of G.
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Theorem 4.([10]) Let G be a graph and F (G) denote the set of all even integers t such
that G does not contain any induced cycle of length t. Set A = E \ F (G) where E is the
set of even integers greater than two. Assume that A = {g1, g2, . . .}. Set λ = 2d(d + 1)
where d = gcd(g1 − 2, g2 − 2, . . .). If d ≥ 4 then

χ(G) ≥
d̄(G)

λ
+ 1.

In the following, using a result from [4] we show that for any positive integer ℓ,
Forb(Kℓ,ℓ, C6, C8, C10, . . .) is (δ, χ)-bounded. For this purpose we need to introduce bi-
partite chordal graphs. A bipartite graph H is said to be bipartite chordal if any cycle
of length at least 6 in H has at least one chord. Let H be a bipartite graph with bipar-
tition (X, Y ). A vertex v of H is simple if for any u, u′ ∈ N(v) either N(u) ⊆ N(u′) or
N(u′) ⊆ N(u). Suppose that L : v1, v2, . . . , vn is a vertex ordering of H . For each i ≥ 1
denote H [vi, vi+1, . . . , vn] by Hi. An ordering L is said to be a simple elimination ordering
of H if vi is a simple vertex in Hi for each i. The following theorem first appeared in [4]
(see also [5]).

Theorem 5. ([4]) Let H be a bipartite graph with bipartition (X, Y ). Then H is
chordal bipartite if and only if it has a simple elimination ordering. Furthermore, suppose
that H is chordal bipartite. Then there is a simple ordering y1, . . . , ym, x1, . . . , xn where
X = {x1, . . . , xn} and Y = {y1, . . . , ym}, such that if xi and xk with i < k are both
neighbors of some yj, then NH′(xi) ⊆ NH′(xk) where H ′ is the subgraph of H induced by
{yj, . . . , ym, x1, . . . , xn}.

In [8] it was shown that Forb(C4, C6, C8, . . .) is (δ, χ)-bounded. In the following theo-
rem we replace C4 by Kℓ,ℓ for any ℓ ≥ 2.

Theorem 6. Forb(Kℓ,ℓ, C6, C8, C10, . . .) is (δ, χ)-bounded.

Proof. By Theorem 1 it is enough to show that the minimum degree of any bipartite
graph H ∈ Forb(Kℓ,ℓ, C6, C8, C10, . . .) is at most ℓ − 1.

Let H be a bipartite (Kℓ,ℓ, C6, C8, C10, . . .)-free graph with δ(H) ≥ ℓ. Let y1, . . . , ym, x1,
. . . , xn be the simple ordering guaranteed by Theorem 5. Let dH(y1) = k. Note that k ≥ ℓ.
The vertex y1 has at least k neighbors say z1, . . . , zk such that N(z1) ⊆ N(z2) ⊆ . . . ⊆
N(zk). Now since dY (z1) ≥ k, there are k vertices in Y which are all adjacent to z1. From
the other side N(z1) ⊆ N(zi) for any i = 1, . . . , k. Therefore all these k neighbors of z1

are also adjacent to zi for any i. This introduces a subgraph of H isomorphic to Kℓ,ℓ, a
contradiction. �

We conclude this section with another (δ, χ)-bounded (infinite) family of graphs. By
a unicyclic graph G we mean any connected graph which contains only one cycle. Such
a graph is either a cycle or consists of an induced cycle C of length say i and a number
of at most i induced subtrees such that each one intersects C in exactly one vertex. We
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call these subtrees (which intersects C in exactly one vertex) the attaching subtrees of G.
Recall from the previous section that T r

p is the p-ary tree of height r. For any positive
integers p and r by a (p, r)-unicyclic graph we mean any unicyclic graph whose attaching
subtrees are subgraph of T r

p . We also need to introduce some special instances of unicyclic
graphs. For any positive integers p, r and even integer i, let us denote the graph consisting
of the even cycle C of length i and i vertex disjoint copies of T r

p which are attached to
the cycle C by Ui,p,r (to each vertex of C one copy of T r

p is attached).

Proposition 1. For any positive integers t, p and r, there exists a constant c = c(t, p, r)
such that for any K2,t-free bipartite graph H if δ(H) ≥ c then for some even integer i, H
contains an induced subgraph isomorphic to Ui,p,r.

Proof. Let H be any K2,t-free bipartite graph. There are two possibilities for the
girth g(H) of H .

Case 1. g(H) ≥ 4r + 3. Let C be any smallest cycle in H . Since H is bipartite then
C has an even length say i = g(H). We prove by induction on k with 0 ≤ k ≤ i that
if δ(H) ≥ g(p, r, t) + 2 then H contains an induced subgraph isomorphic to the graph
obtained by C and k attached copies of T r

p , where g(p, r, t) is as in Lemma 1. The as-
sertion is trivial for k = 0. Assume that it is true for k and we prove it for k + 1. By
induction hypothesis we may assume that H contains an induced subgraph L consisting
of the cycle C plus k copies of T r

p attached to C. Let v be a vertex of C at which no
tree is attached. Let e and e′ be two edges on C which are incident with the vertex v.
We apply Lemma 1 for H \ {e, e′}. Note that since δ(H) ≥ g(p, r, t) + 2 then the degree
of v in H \ {e, e′} is at least g(p, r, t). We find an induced copy of T r

p grown from v in
H \ {e, e′}. Denote this copy of T r

p by T0. Consider the union graph L ∪ T0. We show
that L ∪ T0 is induced in H . We only need to show that no vertex of T0 is adjacent to
any vertex of L. The distance of any vertex in T0 from the farthest vertex in C is at most
r + i/2. The distance of any vertex in the previous copies of T r

p in L from C is at most
r. Then any two vertices in T0 ∪ L have distance at most 2r + i/2. Now if there exists
an edge between two such vertices we obtain a cycle of length at most 2r + i/2 + 1 in
H . By our condition on the girth of H we obtain 2r + i/2 + 1 < g(H), a contradiction.
This proves our induction assertion for k + 1, in particular the assertion is true for k = i.
But this means that H contains the cycle C with i copies of T r

p attached to C in induced
form. The latter subgraph is Ui,p,r. This completes the proof in this case.

Case 2. g(H) ≤ 4r + 2. In this case we prove a stronger claim as follows. If H is any
K2,t-free bipartite graph and δ(H) ≥ (4r + 2)(t− 1)(max{r + 1, pr+1}) + 1 with g(H) = i
then H contains any graph G which is obtained by attaching k trees T1, . . . , Tk to the
cycle of length i such that any Tj is a subtree of T r

p and k is any integer with 0 ≤ k ≤ i.
It is clear that if we prove this claim then the main assertion is also proved.

Now let G be any graph obtained by the above method. We prove the claim by
induction on the order of G. If G consists of only a cycle then its length is i and any
smallest cycle of H is isomorphic to G. Assume now that G contains at least one vertex
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of degree one and let v be any such vertex of G. Set G′ = G \ v. We may assume that
H contains an induced copy of G′. Denote this copy of G′ in H by the very G′. Let
u ∈ G′ be the neighbor of v in G. It is enough to show that there exists a vertex in
H \ G′ adjacent to u but not adjacent to any vertex of G′. Define two subsets as follows:
A = {a ∈ V (G′) : au ∈ E(G′)}, B = {b ∈ V (H) \ V (G′) : bu ∈ E(H)}.

Since H is bipartite and contains no triangle, clearly A ∪ B is independent. Let
C = V (G′) \ A \ {u}. The number of edges between B and C is at most (t − 1)|C|. We
claim that there is a vertex, say z ∈ B, which is not adjacent to any vertex of C, since oth-
erwise there will be at least |B| edges between B and C. This leads us to |B| ≤ (t−1)|C|.
From other side for the order of C we have |C| ≤ (4r + 2)(max{r + 1, pr+1}). Let
np,r = (4r + 2)(max{r + 1, pr+1}). We have therefore |B| ≤ (t − 1)(np,r − |A| − 1) and
|A| + |B| ≤ (t − 1)np,r. But |A| + |B| = d(u) > (t − 1)np,r, a contradiction. Therefore
there is a vertex z that is adjacent to u in H but not adjacent to G′ \ {u}. By adding the
edge uz to G′ we obtain an induced subgraph of H isomorphic to G, as desired.

Finally by taking c = max{g(p, r, t) + 2 , (4r + 2)(t − 1)(max{r + 1, pr+1}) + 1} the
proof is completed. �

Using Proposition 1 and Theorem 1, we obtain the following result.

Theorem 7. Fix positive integers t ≥ 2, p and r. For any i = 1, 2, 3, . . ., let Gi be
any (p, r)-unicyclic graph whose cycle has length 2i + 2. Then Forb(K2,t, G1, G2, . . .) is
(δ, χ)-bounded.

4 Concluding remarks

If a family F is both (δ, χ)-bounded and χ-bounded then it satisfies the following stronger
result. For any sequence G1, G2, . . . with Gi ∈ F if δ(Gi) → ∞ then ω(Gi) → ∞. Let us
call any family satisfying the latter property, (δ, ω)-bounded family.

The following result of Rödl (originally unpublished) which was later appeared in
Kierstead and Rödl ([7] Theorem 2.3) proves the weaker form of Conjecture 1.

Theorem 8. For every fixed tree T and fixed integer ℓ, and for any sequence Gi ∈ Forb(T ,
Kℓ,ℓ), χ(Gi) → ∞ implies ω(Gi) → ∞.

Combination of Theorem 3 with Theorem 8 shows that Forb(T, Kℓ,ℓ) is (δ, ω)-bounded.
As we noted before the class of even-hole-free graphs is (δ, χ)-bounded. It was proved

in [1] that if G is even-hole-free graph then χ(G) ≤ 2ω(G) + 1. This implies that
Forb(C4, C6, . . .) too is (δ, ω)-bounded.
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[3] A. Gyárfás, E. Szemerédi, Zs. Tuza, Induced subtrees in graphs of large chromatic
number, Discrete Math. 30 (1980) 235-244.

[4] P. L. Hammer, F. Maffray, M. Preissmann, A characterization of chordal bipar-
tite graphs, RUTCOR Research Report, Rutgers University, New Brunswick, NJ,
RRR#16-89, 1989.

[5] J. Huang, Representation characterizations of chordal bipartite graphs, J. Combin.
Theory Ser. B 96 (2006) 673-683.

[6] T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley, New York 1995.
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