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Abstract

For a polynomial with palindromic coefficients, unimodality is equivalent to hav-
ing a nonnegative g-vector. A sufficient condition for unimodality is having a non-
negative γ-vector, though one can have negative entries in the γ-vector and still
have a nonnegative g-vector.

In this paper we provide combinatorial models for three families of γ-vectors that
alternate in sign. In each case, the γ-vectors come from unimodal polynomials with
straightforward combinatorial descriptions, but for which there is no straightforward
combinatorial proof of unimodality.

By using the transformation from γ-vector to g-vector, we express the entries
of the g-vector combinatorially, but as an alternating sum. In the case of the q-
analogue of n!, we use a sign-reversing involution to interpret the alternating sum,
resulting in a manifestly positive formula for the g-vector. In other words, we give
a combinatorial proof of unimodality. We consider this a “proof of concept” result
that we hope can inspire a similar result for the other two cases,

∏n
j=1(1 + qj) and

the q-binomial coefficient
[
n
k

]
.

1 Introduction

A sequence of numbers a1, a2, . . . is unimodal if it never increases after the first time
it decreases, i.e., if for some index k we have a1 6 · · · 6 ak−1 6 ak > ak+1 > · · · .
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Unimodality problems abound in algebraic, enumerative, and topological combinatorics.
Many of the interesting examples involve Hilbert series of certain graded algebras, and
combinatorial invariants of polytopes related to both face enumeration and lattice-point
enumeration. Surveys on the topic include one by Stanley [17], another by Brenti [6], and
more recently, one from Brändén [5].

Unimodality can be surpisingly difficult to prove combinatorially, even when there is
a good combinatorial understanding of the sequence. See, e.g., Zeilberger’s discussion
in [20]. Some stronger properties that imply unimodality include log-concavity, real-
rootedness (of the corresponding generating function), and, under the assumption that
the sequence is palindromic, gamma-nonnegativity.

The main purpose of this paper is to show that there are interesting families of uni-
modal sequences whose gamma vectors (defined in Section 2.1) are not nonnegative, but
in fact alternate in sign. Moreover, we give a combinatorial paradigm for how unimodality
can be deduced from such gamma vectors. Specifically, we will discuss three families of
polynomials:

• the q-analogue of n!, [n]! =
∏n

i=1(1− qi)/(1− q),

• the q-binomial coefficients,
[
n
k

]
= [n]!

[k]![n−k]! , and

• the polynomials
∏n

j=1(1 + qj).

For the first example, [n]!, unimodality follows easily from a lemma that says products
of unimodal and palindromic polynomials are unimodal [2]. It is well known that [n]!
is the generating function for permutations according to the number of inversions, so a
combinatorial explanation of unimodality can be given with a family of injections that
take permutations with k − 1 inversions to permutations with k inversions. Such maps
are implicit in the fact that there is a symmetric chain decomposition of the Bruhat order
on the symmetric group [16, Section 7].

For the q-binomial coefficients, we have that
[
n
k

]
counts lattice paths in a k × (n− k)

box according to area below the path. Despite this simple interpretation, a combinatorial
proof of unimodality was elusive for a long time. Stanley showed how unimodality follows
from algebraic considerations [17, Theorem 11], and a combinatorial proof was given by
O’Hara in the 1990s, in what was a considered a combinatorial tour-de-force [13]. See [20]
for an exposition.

The third kind of polynomial we discuss is given by
∏n

j=1(1 + qj). These polynomials
count integer partitions with distinct parts of size at most n. Proof of unimodality follows
from work of Odlyzko and Richardson [12] using analytic techniques. Stanley gave an
algebraic explanation for unimodality and highlighted the absence of a combinatorial
proof of unimodality in [17, Example 3]. To date, there is still no combinatorial proof of
unimodality. See [19] for recent related results.

In this paper, we provide a roadmap for proving unimodality for all these polynomials
(Section 2.4). The final step in the process is to find a sign-reversing involution on a
set of decorated ballot paths, where the decorations depend on the family of polynomials
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under consideration. Sadly, we have only been clever enough to identify the sign-reversing
involution in the simplest case, of [n]!. We provide details of the other two cases in the
hope that others can use this idea to give new, combinatorial proofs of unimodality.

2 Background and terminology

2.1 Two bases for palindromic polynomials

Suppose h =
∑
hiq

i is a polynomial with integer coefficients such that qdh(1/q) = h(q)
for some positive integer d. Then hi = hd−i and we will call such polynomial palindromic.
It is easy to verify that if such a d exists, it is the sum of largest and smallest powers of
q appearing in h. We define this integer d to be the palindromic degree of h.

Palindromic polynomials of palindromic degree d span a vector space of dimension
roughly d/2, and with this in mind, we can express such polynomials in the bases

Gd = {qi + · · ·+ qd−i}062i6d

and
Γd = {qi(1 + q)d−2i}062i6d.

That is, if h is palindromic, there we can identify vectors g = (g0, g1, g2, . . . , gbd/2c) and
γ = (γ0, γ1, . . . , γbd/2c) such that

h(q) =
∑

062i6d

gi

d−i∑
j=i

qj, (1)

=
∑

062i6d

γiq
i(1 + q)d−2i. (2)

The vectors of coefficients are known as the g-vector and γ-vector of h, respectively.
It will be convenient to define the γ-polynomial of h by γh(z) =

∑bd/2c
i=0 γiz

i and the g-

polynomial of h by gh(z) =
∑bd/2c

i=0 giz
i. The general study of g-vectors and g-polynomials

dates to McMullen’s conjectures of the early 1970s, see [18], while work on γ-polynomials
dates at least to 1985 work of Andrews [3] (and appears notably in 1970 work of Foata
and Schützenberger on Eulerian polynomials [9]). More recently Gal made connections
between γ-vectors and the same sort of topological questions that inspired work with
g-polynomials [10].

The definition of the γ-polynomial immediately yields the following observation about
the multiplicative nature of γ-polynomials.

Observation 2.1. If h and k are palindromic polynomials, then h · k is palindromic and
its γ-polynomial is γh·k = γh · γk.

In particular, to calculate the γ-vectors of products of polynomials, it is enough to
calculate the γ-vectors of their factors. Notice that the g-polynomial is not multiplicative
in the same way, e.g., the g-polynomial of 1 + q is g1+q(z) = 1, while the g-polynomial of
(1 + q)2 is g(1+q)2(z) = 1 + z 6= 12.
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2.2 Ballot paths

In [11, Section 6] Nevo, Petersen, and Tenner give the following transformation that
provides a change of basis from Γd to Gd:

Bd :=

[(
d− 2j

i− j

)
−
(
d− 2j

i− j − 1

)]
06i,j6d/2

.

These are lower triangular matrices with ones on the diagonal, so they are invertible and
their inverses are also lower triangular with ones on the diagonal.

Let Bd(i, j) denote the (i, j) entry of this change of basis matrix, i.e.,

Bd(i, j) =

(
d− 2j

i− j

)
−
(
d− 2j

i− j − 1

)
.

A standard combinatorial interpretation for these numbers is the number of ballot paths
of length d− 2j with i− j North steps. Recall ballot paths are lattice paths that start at
(0, 0) and take steps “East” from (i, j) to (i + 1, j) and “North” from (i, j) to (i, j + 1),
such that the path never crosses above the line y = x in the cartesian plane. (Ballot paths
that end on the diagonal at (n, n) are known as Dyck paths, and are counted by Catalan
numbers.)

In terms of words, we can encode ballot paths as words on the alphabet {N,E}
such that no initial segment of the word contains more letters N than letters E. The(
6
2

)
−
(
6
1

)
= 9 ballot paths of length six with two North steps are displayed in Figure 1.

Let Bd(i, j) denote the set of paths of length d − 2j with i − j North steps, so that
|Bd(i, j)| = Bd(i, j). We will have more to say about ballot paths in Section 4.

2.3 Unimodality

A polynomial h(q) =
∑
hiq

i is called unimodal if there is an index k such that

h0 6 · · · 6 hk−1 6 hk > hk+1 > · · · ,

When h is palindromic, unimodality is equivalent to saying that the g-vector is nonnega-
tive, i.e.,

gi = hi − hi−1 > 0 for i 6 d/2,

where d is the palindromic degree of h.
The elements of the basis Γd are obviously unimodal. Thus a sufficient condition for

unimodality of h is that its γ-vector is nonnegative. However, this condition is far from
necessary.

For example, consider

h(q) = 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6.
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Figure 1: Ballot paths of length 6 with 2 North steps.

This polynomial is clearly palindromic and unimodal. Its g-vector is g = (1, 2, 2, 1), since

h(q) = 1 · (1 + q + q2 + q3 + q4 + q5 + q6)

+ 2 · (q + q2 + q3 + q4 + q5)

+ 2 · (q2 + q3 + q4)

+ 1 · (q3),

while its γ-vector is γ = (1,−3, 2, 0), since

h(q) = 1 · (1 + 6q + 15q2 + 20q3 + 15q4 + 6q5 + q6)

− 3 · (q + 4q2 + 6q3 + 4q4 + q5)

+ 2 · (q2 + 2q3 + q4)

+ 0 · (q3).

2.4 A paradigm for proving unimodality

The obvious approach to proving unimodality for a palindromic polynomial is to consider
the entries of the g-vector directly. In a combinatorial setting, we want to know: what do
the entries of the g-vector count?

In general, this is not as easy as it appears, even for simple examples. See Zeilberger’s
article on this topic in combinatorial enumeration [20].
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Our main purpose with this article is to give a new paradigm for combinatorial proofs
of unimodality. We consider examples in which the combinatorial description of the g-
vector is difficult or nonexistent, but for which the γ-vector is not too bad. Then we use
the change of basis matrix Bd to write

gi =
∑
j>0

γjBd(i, j). (3)

Now, if the γ-vector contained only nonnegative entries, unimodality follows immedi-
ately, so we focus on “interesting” examples, in which the entries of the γ-vector alternate
between positive and negative. This means that Equation (3) is an alternating sum for-
mula. Such formulas can be found throughout mathematics, and in combinatorics, the
way one understands such a formula is via a “sign-reversing involution.” See Benjamin
and Quinn’s excellent introduction to the subject [4].

For example, with h as in the previous section, we have that h is palindromic of degree
d = 6 and γ = (1,−3, 2, 0). The transformation B6 is

B6 =


1 0 0 0
5 1 0 0
9 3 1 0
5 2 1 1

 .
Computing B6γ we get

B6γ = 1 ·


1
5
9
5

− 3 ·


0
1
3
2

+ 2 ·


0
0
1
1

+ 0 ·


0
0
0
1

 =


1
2
2
1

 = g.

That is,

g0 = 1 · 1 = 1,

g1 = 1 · 5− 3 · 1 = 2,

g2 = 1 · 9− 3 · 3 + 2 · 1 = 2,

g3 = 1 · 5− 3 · 2 + 2 · 1 + 0 · 1 = 1.

In Section 4, we will see that γjBd(i, j) counts pairs of the form (matching, path) and
that the parity of j determines the sign of the pair. We will describe a matching on these
pairs that puts together pairs of opposite sign. Then gi counts the pairs that have no
partner in the matching. If we construct our matching optimally, all the leftovers will
have the same (positive) sign.

3 Three families of alternating gamma vectors

In this section, we will present three families of palindromic polynomials whose gamma
vectors alternate in sign. The particular γj we come up with are described in terms of
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interesting and well-studied polynomials: the Fibonacci polynomials, the Lucas polyno-
mials, and the lucanomial (fibinomial) coefficients. Our discussion of these relies heavily
on facts established in work of Sagan and Savage [15] and in Amdeberhan, Chen, Moll,
and Sagan [1]. In each case the combinatorial model for the gamma vector is a set of
matchings counted according to the number of edges.

3.1 Fibonacci polynomials and the q-factorials

Let
Fn(s, t) =

∑
T∈1×n

sm(T )td(T ),

where the sum is over all monomer-dimer tilings of a 1× n rectangle, or equivalently, the
number of (not necessarily perfect) matchings of a path of length n − 1. The statistic
m(T ) is the number of monomers (isolated nodes) in T and d(T ) is the number of dimers
(edges) in T . The weight of a matching is w(T ) = sm(T )td(T ).

For example with n = 6 there are thirteen matchings, shown in Figure 2. We find the
Fibonacci polynomial F6(s, t) is

F6(s, t) = s6 + 5s4t+ 6s2t2 + t3.

There are many formulas and recurrences for the Fibonacci polynomials that generalize
known facts for Fibonacci numbers. Such results for these polynomials can be found, e.g.,
in [1, 8, 15]. Here we mention two straightforward observations.

First, since every matching must end in either an edge or an isolated node, we get

Fn(s, t) = sFn−1(s, t) + tFn−2(s, t), (4)

with F0(s, t) = 1 and F1(s, t) = s. This generalizes the numeric recurrence for Fibonacci
numbers.

Further, the familiar identity for Fibonacci numbers as a sum of binomial coefficients,
Fn =

∑
k>0

(
n−k
k

)
, is generalized to

Fn(s, t) =
∑
k>0

(
n− k
k

)
sn−2ktk. (5)

For example,

F6(s, t) =

(
6

0

)
s6 +

(
5

1

)
s4t+

(
4

2

)
s2t2 +

(
3

3

)
t3.

This identity has a straightforward combinatorial interpretation: if a matching has k
edges (and hence n − 2k isolated nodes), then there are (n − 2k) + k = n − k items to
be positioned, and we have to choose k of the positions in which to place the edges. For
convenience later on, we will denote by T (n, k) the set of all matchings of the 1× n path
graph with k edges, so that

|T (n, k)| =
(
n− k
k

)
.
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matching weight

t3

s2t2

s2t2

s2t2

s4t

s2t2

s2t2

s4t

s2t2

s4t

s4t

s4t

s6

Figure 2: The thirteen Fibonacci matchings for n = 6, with corresponding weight.

An important specialization of Fn(s, t) is obtained by setting s = 1 + q and t = −q.
By induction and the recurrence in (4) we quickly get

Fn(1 + q,−q) = 1 + q + q2 + · · ·+ qn, (6)

which is denoted by [n + 1]q (or simply by [n + 1] when the q is understood from the
context), and called the q-analogue of n+ 1.

Note that [n] has palindromic degree n− 1, and hence it has a γ-vector as defined in
Section 2.1. With Equation (6) together with (5) we get

[n] = Fn−1(1 + q,−q) =
∑
k>0

(−1)k
(
n− 1− k

k

)
qk(1 + q)n−1−2k,
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from which we conclude that the γ-vector of [n] has

γj = (−1)j
(
n− 1− j

j

)
= (−1)j|T (n− 1, j)|,

i.e., up to sign it counts matchings on a path with n− 1 nodes that have j edges.
To state this another way, Fn−1(1,−z) is the γ-polynomial for [n].
Now recall the q-analogue of n! is defined to be

[n]! = [n][n− 1] · · · [2][1].

Since γ-polynomials are multiplicative (Observation 2.1), we have established the following
proposition.

Proposition 3.1. The γ-polynomial for [n] is Fn−1(1,−z) for any n > 1. Hence, the
γ-polynomial for [n]! is

n−1∏
i=0

Fi(1,−z) = F0(1,−z)F1(1,−z) · · ·Fn−1(1,−z).

Thus we can give the following combinatorial interpretation to the γ-vector for [n]!.

Corollary 3.2. If (γ0, . . . , γbd/2c) is the γ-vector of [n]!, then

γi = (−1)i

∣∣∣∣∣∣
⋃

j1+j2+···+jn−1=i

T (1, j1)× T (2, j2)× · · · × T (n− 1, jn−1)

∣∣∣∣∣∣ .
In other words, up to sign, the ith entry of the γ-vector for [n]! counts (n−1)-tuples of

matchings (of paths with 1, 2, . . . , n−1 nodes) such that there are a total of i edges among
all the matchings. We will call such tuples of matchings fibotorial matchings. Denote the
set of all fibotorial matchings with i edges by

T (n, i) =
⋃

j1+j2+···+jn−1=i

T (1, j1)× T (2, j2)× · · · × T (n− 1, jn−1),

and let Tn denote the set of all fibotorial matchings for fixed n:

Tn =
⋃
i>0

T (n, i).

Setting z = −1 in Proposition 3.1, we get the following fun corollary.

Corollary 3.3. Let γ[n]!(z) denote the γ-polynomial of the q-analogue of n!. Then

γ[n]!(−1) = |Tn| = F0F1F2 . . . Fn−1

is the product of the first n Fibonacci numbers, with initial values F0 = F1 = 1.

This curious result was proved differently by Doron Zeilberger. Our approach is es-
sentially Richard Stanley’s, and Johann Cigler has a similar argument. See Zeilberger’s
note [21].
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3.2 Lucas polynomials and partitions with distinct parts

The Lucas polynomials are defined analogously to the Fibonacci polynomials. We have

Ln(s, t) =
∑

T∈cycn

sm(T )td(T ),

where the sum is over all matchings on a cycle graph with n nodes and edges. For
example, in Figure 3 we see the seven matchings of a 4-cycle, from which we find Ln(s, t) =
s4 + 4s2t+ 2t2.

matching weight

t2

t2

s2t

s2t

s2t

s2t

s4

Figure 3: The seven Lucas matchings for n = 4, with corresponding weight.

The Lucas polynomials satisfy the same recurrence as the Fibonacci polynomials, i.e.,

Ln(s, t) = sLn−1(s, t) + tLn−2(s, t), (7)

but with initial conditions L0(s, t) = 2 and L1(s, t) = s. In terms of the tilings, this
recurrence is easiest to understand by first relating Ln(s, t) with Fn(s, t). We have

Ln(s, t) = sFn−1(s, t) + 2tFn−2(s, t). (8)
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This identity follows by considering the neighborhood of a fixed node. This node is either
isolated, or it is connected to one of the nodes on either side of it. If the node is isolated,
the remaining n− 1 nodes form a linear matching whose weight is counted by Fn−1(s, t).
If the node is matched to an adjacent node, the remaining n − 2 nodes form a linear
matching, with weight Fn−2(s, t).

Equation (7) follows by using (8) and then applying the Fibonacci recurrence (4) as
follows:

sLn(s, t) + tLn−1(s, t) = s2Fn−1(s, t) + 2stFn−2(s, t) + stFn−2(s, t) + 2t2Fn−3(s, t),

= s(sFn−1(s, t) + tFn−2(s, t)) + 2t(sFn−2(s, t) + tFn−3(s, t)),

= sFn(s, t) + 2tFn−1(s, t),

= Ln+1(s, t).

By induction we also have the following explicit formula for Lucas polynomials:

Ln(s, t) =
∑
k>0

n

n− k

(
n− k
k

)
sn−2ktk. (9)

Letting T ′(n, k) denote the number of matchings of an n-cycle with k edges, we have

|T ′(n, k)| = n

n− k

(
n− k
k

)
.

Finally, note that we have the following specialization of the Lucas polynomials. If we
set s = 1 + q and t = −q, then using induction and (7) we get

Ln(1 + q,−q) = 1 + qn. (10)

Since 1 + qn has palindromic degree n, it has a γ-vector. Putting (9) together with
(10) we have

1 + qn = Ln(1 + q,−q) =
∑
k>0

(−1)k
n

n− k

(
n− k
k

)
qk(1 + q)n−2k,

from which we conclude that the γ-vector of 1 + qn has

γj = (−1)j
n

n− j

(
n− j
j

)
= (−1)j|T ′(n, j)|,

so that up to sign, the γ-vector counts matchings on an n-cycle with j edges.
Stated differently, Ln(1,−z) is the γ-polynomial for 1 + qn.
Now fix n and consider the polynomial

n∏
j=1

(1 + qj).
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The coefficient of qi in this polynomial is equal to the number of integer partitions of
i with at most n nonzero parts, all distinct, and each bounded by n. This polynomial
is discussed at length in [17]. While it is known to be unimodal, to date there is no
combinatorial proof of its unimodality. See also [19].

By the multiplicative nature of γ-polynomials, we get the following result, which is
similar to Proposition 3.1.

Proposition 3.4. The γ-polynomial for 1 + qn is Ln(1,−z) for any n > 1. Hence, the
γ-polynomial for

∏n
j=1(1 + qj) is

n∏
i=j

Lj(1,−z) = L1(1,−z)L2(1,−z) · · ·Ln(1,−z).

Therefore we obtain the following combinatorial interpretation for the γ-vector of∏n
j=1(1 + qj).

Corollary 3.5. If (γ0, . . . , γbd/2c) is the γ-vector of
∏n

j=1(1 + qj), then

γi = (−1)i

∣∣∣∣∣ ⋃
j1+j2+···+jn=i

T ′(1, j1)× T ′(2, j2)× · · · × T ′(n, jn)

∣∣∣∣∣ .
In other words, up to sign, the ith entry of the γ-vector for

∏n
j=1(1 + qj) counts n-

tuples of matchings (of cycles with 1, 2, . . . , n nodes) such that there are a total of i edges
among all the matchings. We will call such a tuple of matchings a lucatorial matching.
Denote the set of lucatorial matchings with i edges by

T ′(n, i) =
⋃

j1+j2+···+jn=i

T ′(1, j1)× T ′(2, j2)× · · · × T ′(n, jn),

and denote the set of all lucatorial matchings with fixed n by

T ′n =
⋃
i>0

T ′(n, i).

3.3 Lucanomial coefficients and q-binomial coefficients

The “fibotorial” numbers are obtained by replacing n! with the product of the first n
Fibonacci numbers, and the “fibinomial” coefficients are obtained by taking the formula
for binomial coefficients and replacing the usual factorials with fibotorials. The polynomial
analogue of this is what Sagan and Savage refer to as lucanomials, which are defined as
follows. For n > 1, let

{n}! =
n−1∏
i=0

Fi(s, t),
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and set {0}! = 1 by definition. Then with 0 6 k 6 n, define{
n

k

}
=

{n}!
{k}!{n− k}!

.

For example, one can check that{
5

3

}
=
F4(s, t)F3(s, t)

F1(s, t)F0(s, t)
= s6 + 5s4t+ 7s2t2 + 2t3.

The fact that
{
n
k

}
is a polynomial in s and t follows by induction from the recurrence{

m+ n

m

}
= Fn(s, t)

{
m+ n− 1

m− 1

}
+ tFm−2(s, t)

{
m+ n− 1

n− 1

}
.

The Sagan-Savage combinatorial model for the lucanomial coefficients takes a bit of ex-
planation (this is the main content of their paper).

Before we give their combinatorial interpretation, recall an integer partition with m
parts is a sequence of nonnegative integers λ = (λ1, λ2, . . . , λm) with λ1 > λ2 > . . . >
λm > 0. We think of partitions visually in terms of an array of left-justified boxes with
λ1 boxes in the first row, λ2 boxes in the second row, and so on, known as a Ferrers
diagram. We say that λ is contained in an m×n rectangle if the largest part of λ has size
at most n, i.e., λ1 6 n. The complement of λ within the m× n rectangle is the partition
λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
n) where λ∗i = m−#{j | λj > n+ 1− i}.

Figure 4: The partition λ = (3, 3, 2, 0, 0) inside a 5×4 rectangle and a matching of weight
s6t7.

For example, in Figure 4 we see the Ferrers diagram for the partition λ = (3, 3, 2, 0, 0)
in a 5× 4 rectangle. Its complement is λ∗ = (5, 3, 2, 2).

Now, for a given partition λ = (λ1, . . . , λm), we let Lλ denote the set of all tuples of
matchings T = (T1, . . . , Tm), where Ti is a matching on the path graph 1× λi. We draw
these matchings in the rows of the Ferrers diagram for λ. Let L′λ denote the set of all
tuples of strict matchings on the rows of λ, where by strict we mean the matching cannot
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begin with an isolated node. Notice there are no strict matchings of the path with one
node and zero edges.

For a tuple of matchings, T , we let w(T ) denote the weight sm(T )td(T ), where m(T )
denotes the number of isolated nodes (monomers) in T and d(T ) denotes the number of
edges (dimers). In Figure 4 we see an element T of Lλ × L′λ∗ , where we draw the strict
matchings of λ∗ up the columns the complement of the Ferrers diagram of λ. For this
example there are 6 isolated nodes and 7 edges, giving a weight of w(T ) = s6t7.

One of the main results of Sagan and Savage’s paper, [15, Theorem 3], is the fact that
lucanomial coefficients count all such tilings according to weight. That is,{

m+ n

m

}
=

∑
λ⊆m×n

∑
T∈Lλ×L′λ∗

w(T ), (11)

where λ ⊆ m × n means the partition λ fits inside an m × n rectangle. Using the
matchings shown in Figure 5 we can verify the case m = 3 and n = 2 is given by{
5
3

}
= s6 + 5s4t+ 7s2t2 + 2t3.

To phrase (11) a bit differently, let Lλ,i denote the set of tuples of matchings in Lλ×L′λ∗
that have exactly i edges, and let

L(m+ n,m, i) =
⋃

λ⊆m×n

Lλ,i.

Then, by analogy with Equation (5) we have{
m+ n

m

}
=
∑
i>0

|L(m+ n,m, i)|smn−2iti. (12)

Recalling the specialization s = 1 + q and t = −q gives Fn(1 + q,−q) = [n + 1], we
have

{n}!s=1+q,t=−q =
n−1∏
i=0

Fi(1 + q,−q) = [n]!.

Thus, {
n

k

}
s=1+q,t=−q

=
[n]!

[k]![n− k]!
=

[
n

k

]
, (13)

which is known as the q-binomial coefficient.
The q-binomial coefficients have a combinatorial interpretation given by counting lat-

tice paths from (0, 0) to (k, n−k) according to area beneath the path. From this it follows
that

[
n
k

]
is palindromic of palindromic degree k(n − k). This claim can also be justified

by observing

[k]![n− k]!

[
n

k

]
= [n]!,

and [n]! has palindromic degree 1 + 2 + · · ·+ (n− 1) =
(
n
2

)
.
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matching weight

s2t2

s2t2

s2t2

t3

s4t

s4t

s2t2

matching weight

s6

s4t

s4t

s4t

s2t2

s2t2

s2t2

t3

Figure 5: The fifteen tuples of matchings counted by
{
5
3

}
.

In any event, we can put (13) together with (12) to obtain[
n

k

]
=

{
n

k

}
s=1+q,t=−q

=
∑
i>0

(−1)i|L(n, k, i)|qi(1 + q)k(n−k)−2i.

Therefore the γ-polynomial of
[
n
k

]
is
{
n
k

}
evaluated at s = 1 and t = −z.
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Proposition 3.6. The γ-polynomial for the q-binomial coefficients is the corresponding
lucanomial coefficient evaluated at s = 1, t = −z, i.e.,

[
n
k

]
has γ-polynomial{

n

k

}
s=1,t=−z

.

As a combinatorial consequence, we have the following.

Corollary 3.7. If (γ0, . . . , γbd/2c) is the γ-vector of
[
n
k

]
, then

γj = (−1)j|L(n, k, j)|.

Define the set
Ln,k =

⋃
i>0

L(n, k, i),

i.e., all possible tuples of matchings that come from partitions that fit in a k × (n − k)
rectangle. Call such a tuple a lucanomial matching. Then Corollary 3.7 means that, up
to sign, the jth entry of the γ-vector for

[
n
k

]
counts lucanomial matchings with j edges.

4 Combinatorial expressions for g-vectors

To this point we have shown that for each of three families of polynomials, the gamma
vectors are given by a signed count of certain matchings according to the number of edges.
For [n]! we count “fibotorial matchings” in Tn, for

∏n
j=1(1 + qj) we count “lucatorial

matchings” in T ′n, and for
[
n
k

]
we count “lucanomial matchings” in Ln,k.

Returning to the unimodality paradigm outlined in Section 2.4, we want to interpret
the entries of the g-vector as a linear combination of entries in the corresponding γ-
vector. Applying Equation (3) in each circumstance yields a combinatorial alternating
sum. Generically, we have

gi =
∑
j>0

γjBd(i, j),

where d is the palindromic degree, and we recall that Bd(i, j) = |Bd(i, j)| counts the
number of ballot paths of length of d− 2j with i− j North steps. We summarize each of
these combinatorial formulas in the following theorem.

Theorem 4.1. The entries of the g-vector have the following expressions.

1. When g is the g-vector of [n]!,

gi =
∑
j>0

(−1)j|T (n, j)× Bd(i, j)|,

where d =
(
n
2

)
.
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2. When g is the g-vector of
∏n

k=1(1 + qk),

gi =
∑
j>0

(−1)j|T ′(n, j)× Bd(i, j)|,

where d =
(
n+1
2

)
.

3. When g is the g-vector of
[
n
k

]
,

gi =
∑
j>0

(−1)j|L(n, k, j)× Bd(i, j)|,

where d = k(n− k).

To prove unimodality, in the first case say, the goal is to find a sign-reversing involution
on the set

X =
⋃
j>0

T (n, j)× Bd(i, j), (14)

where i is fixed, d =
(
n
2

)
, and the sign of a pair (T, p) in X is given by the parity of the

number of edges in T .
We will demonstrate such an involution for the case of [n]! in Section 4.1, though at

present we cannot execute this plan in the other cases. We discuss our partial progress in
Section 4.2

4.1 A new proof of unimodality for q-factorials

Let X = Xd,i denote the set of all pairs of the form (T, p) as as described in (14). To
define our sign-reversing involution on X, we will first create a set Y that is in bijection
with X to make our involution easier to understand.

Let Y = Yd,i denote the set of all decorated ballot paths of length d with i North steps.
These are ballot paths in the usual sense, except that some of the vertices and edges can
come in more than one style. First, with d = 1 + 2 + · · · + (n − 1), we will draw the
vertices 1, 3, 6, . . . , (1 + 2 + · · ·+ i), . . . in a different color and refer to these vertices as
anchors. For example, Figure 6 shows a path of length d = 15. The anchors are in white.

Every decorated path of length d has the same anchor nodes. The interesting decora-
tions come from “valleys” in the path that are not anchors, i.e., consecutive steps of the
form EN . We call such a valley an active valley. Each such valley can be decorated or
not. There are four active valleys shown in Figure 6, and the first and third of these are
decorated. In the picture these are indicated with a dashed line.

Notice that while there is a valley after the sixth step in the path, it is not active since
it contains an anchor node. When writing decorated paths as words, we put vertical bars
in the anchor positions. The path above is written as follows:

p = E|en|ENE|NEEE|enEEN.

The decorated valleys are indicated with lowercase letters.
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active valleys

anchor valley (non-active)

Figure 6: A decorated path of length d = 15.

The correspondence between a decorated path like this one and a pair is straightfor-
ward. Suppose p is a decorated ballot path of length d with i North steps and j decorated
valleys. We want to associate p with a pair (T, p), where T is a fibotorial matching with
j edges and p is a ballot path with d− 2j steps and i− j North steps.

This pair is nearly obvious in p. The edges of the matching T correspond precisely
to adjacent lowercase valleys, en, that don’t have a bar in them. To get the ballot path,
we delete all lowercase letters and bars from p. As there are j lowercase “en” pairs, this
leaves a ballot path with d− 2j steps, i− j of which are North steps.

For example, with p = E|en|ENE|NEEE|enEEN as in Figure 6, we get

T = ( , , , , ),

and
p = E ENENEEE EEN.

Constructing a decorated path p from a pair (T, p) is equally straightforward. We
think of the letters of p as corresponding to unmatched nodes in T . The matched nodes
of T correspond to lowercase en pairs, which we insert as the decorated valleys in p.
(Notice that inserting an en pair into a ballot path results in another ballot path, i.e.,
one which does not cross the line y = x.) For example, if

T = ( , , , , ),

and
p = E EEN EENN E,

then
p = E|EE|Nen|EENN |enenE.

Let us summarize this correspondence in the following proposition.

Proposition 4.2. The sets Xd,i and Yd,i are in bijection as described above. If

p↔ (T, p),

the number of decorated valleys in p equals the number of edges in T .
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n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1
2 1
3 1 1
4 1 2 2 1
5 1 3 5 6 5 2
6 1 4 9 15 20 22 19 11
7 1 5 14 29 49 71 90 100 96 76 42
8 1 6 20 49 98 169 259 359 454 525 553 524 433 286 100

Table 1: The entries of the g-vector for [n]!.

Given this proposition, we construct an involution ι : Y → Y that matches decorated
paths with an odd number of decorated valleys with those having an even number of
decorated valleys.

The involution is simple. If p is a decorated path with at least one active valley, then
ι “toggles” the first active valley from upper to lower case or vice-versa, while keeping the
rest of the path fixed. For example, if

p = E|EE|Nen|EENN |enenE,

then
ι(p) = E|EE|NEN |EENN |enenE.

If p has no active valleys (e.g., if p is the path consisting of all East steps), then
ι(p) = p.

In either case, it is clear that ι(ι(p)) = p for all p in Y , so ι is an involution.
The ι map changes the parity of the number of decorated valleys, so it does indeed

change sign, and all the fixed points have zero active valleys (and hence positive sign).
As a corollary of this involution we can characterize the g-vector of [n]!.

Corollary 4.3. The entries of the g-vector for [n]! are given by

gi = |{p ∈ Yd,i : p has no active valleys }|,

where d =
(
n
2

)
.

We know of no simpler (manifestly positive) description for the entries of this g-vector.
As these numbers are not available in the Online Encyclopedia of Integer Sequences
(OEIS) [14], we provide some more detail here.

Let gn,i denote the ith entry for the g-vector of [n]!, where i ranges from 0 to bd/2c =
b
(
n
2

)
/2c and gn,i = 0 otherwise. We have these numbers, for small n, in Table 1.

From our lattice path description, we can show these numbers are given by the fol-
lowing linear recurrence.
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Proposition 4.4. For any n > 2, we have

gn,i =



i∑
j=i−(n−1)

gn−1,j if i 6 d
(
n−1
2

)
/2e,

(n2)−i−(n−1)∑
j=i−(n−1)

gn−1,j if i > d
(
n−1
2

)
/2e.

Proof. A valley-less path is a path that has no EN in it. There are clearly n valley-less
paths with n−1 steps: there can be no North steps, EE · · ·E, one North step, NEE · · ·E,
two North steps, NNE · · ·E, and so on, up to the path with all North steps, NN · · ·N .

Each decorated ballot path with no active valleys consists of the concatenation of
ordinary valley-less paths, of lengths 1, 2, 3, and so on. However, the ballot condition
means that not every concatenation of valley-less paths is a decorated ballot path with
no active valleys.

Suppose p = p1|p2| · · · |pn−2|pn−1 is a decorated ballot path with no active valleys, so
that pk is a valley-less path of length k. Then the path p′ = p1|p2| · · · |pn−2 is also a
decorated ballot path with no active valleys. Moreover, if p has i North steps and p′ has
j North steps, then pn−1 is the unique valley-less path of length n − 1 with i − j North
steps.

Thus if we group the elements of Y(n2),i
according to the number of North steps in their

final valley-less path, we get

gn,i 6 gn−1,i + gn−1,i−1 + gn−1,i−2 + · · ·+ gn−1,i−(n−1),

since this final path can have anywhere from 0 to n− 1 North steps.
Fix j between i and i− (n− 1).
For some choices of j, every ballot path p′ of length

(
n−1
2

)
with j North steps can be

uniquely extended to a ballot path of length
(
n
2

)
with the valley-less path consisting of

i − j North steps. In this case the inequality above is an equality. This can be done
precisely when i 6 d

(
n−1
2

)
e.

However, if j and i are too close to b
(
n
2

)
/2c, appending this valley-less path will take the

lattice path above the line y = x, violating the ballot condition. By careful examination,
we find this happens when i > d

(
n−1
2

)
/2e and j >

(
n
2

)
− i − (n − 1). Hence we arrive at

the cases stated in the proposition. See the illustration in Figure 7.

4.2 The harder cases

We would like to report that we can replicate the approach of Section 4.1 for the polyno-
mials

∏n
k=1(1 + qk) and

[
n
k

]
. The combinatorial setup is there in Theorem 4.1. All that

we lack is a clever sign-reversing involution.
For

∏n
k=1(1 + qk), the difficulty seems to be that there is no canoncial linear ordering

on the edges in a cyclic matching, and hence ballot paths and lucatorial matchings are
not as obviously compatible as ballot paths and fibotorial matchings.
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y = x

y =
(
n
2

)
− x

y = d
(
n−1
2

)
/2e

i > d
(
n−1
2

)
/2e

i 6 d
(
n−1
2

)
/2e

Figure 7: The boundary conditions for the recurrence given in Proposition 4.4. Possible
locations for anchor nodes are indicated in white.

With
[
n
k

]
, the edges within each row of a given Ferrers diagram λ (and within each

column of λ∗) are linearly ordered. However, the tuple of matchings of the rows does not
have a canonical ordering. Moreover, as our lucanomial matchings range over different
partitions λ, the number and size of the rows varies. Thus lucanomial matchings prove
tricky to relate to ballot paths as well. A sign-reversing involution using this model will
require some subtlety.
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