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Abstract

In this paper prove results concerning restrictions on the cardinality of the
wildcard set in the density Hales-Jewett theorem, establishing in particular
that for general k one may choose this cardinality from any IP set and that for
k = 2 it may be chosen to be a square, thus providing an abstract extension
of Sárközy’s theorem on square differences in sets of positive upper density.

1. Introduction.

Let k, N ∈ N. We view members of {0, 1, . . . , k − 1}N as words of length N on the
alphabet {0, 1, . . . , k − 1}. A variable word is a word w1w2 · · ·wN on the alphabet
{0, 1, . . . , k−1, x} in which the letter x (the variable) occurs. Indices i for which wi = x

will be called wildcards, and {i : wi = x} will be called the wildcard set. We denote
variable words by w(x), e.g. w(x) = 02x1x3210x is a variable word. If w(x) is a variable
word and i ∈ {0, 1, . . . , k−1}, we denote by w(i) the word that results when all instances
of “x” in w(x) are replaced by “i”. E.g. w(2) = 0221232102 for the variable word w(x)
considered above.

In [HJ], A. Hales and R. Jewett proved the following theorem.

Theorem 1.1. Let k, r ∈ N. There exists N = N(k, r) having the property that for
any r-cell partition {0, 1, . . . , k − 1}N =

⋃r
i=1 Ci, there are j, 1 ≤ j ≤ r, and a variable

word w(x) such that
{

w(i) : i ∈ {0, 1, . . . , k − 1}
}

⊂ Cj .

In [FK2], H. Furstenberg and Y. Katznelson proved a density version of the theorem.

Theorem 1.2. Let ǫ > 0, k ∈ N. There exists M = M(ǫ, k) having the property that
if E ⊂ {0, 1, . . . , k − 1}M with |E| ≥ ǫkM then there exists a variable word w(x) such
that

{

w(t) : t ∈ {0, 1, . . . , k − 1}
}

⊂ E.

We now change our perspective slightly, viewing members of {0, 1, . . . , k − 1}N2

as N × N matrices whose entries come from {0, 1, . . . , k − 1}. A variable matrix is a
matrix on the alphabet {0, 1, . . . , k − 1, x} in which the letter x occurs. We denote
variable matrices by m(x). If m(x) = (mij)

N
i,j=1, the wildcard set of m(x) is the set of
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pairs (i, j) for which mij = x. If the wildcard set of m(x) is equal to α × α for some
α ⊂ {1, 2, . . . , N}, we say that m(x) is a square variable matrix.

In [BL], V. Bergelson and A. Leibman proved a “polynomial Hales-Jewett theorem”.
Here is a special case.

Theorem 1.3. Let k, r ∈ N. There exists N = N(k, r) having the property that for

any r-cell partition {0, 1, . . . , k − 1}N2

=
⋃r

i=1 Ci, there are j, 1 ≤ j ≤ r, and a square
variable matrix m(x) such that

{

m(i) : i ∈ {0, 1, . . . , k − 1}
}

⊂ Cj .

It is natural to ask whether Theorem 1.3 admits of a density version.

Conjecture 1.4. Let ǫ > 0, k ∈ N. There exists M = M(ǫ, k) having the property

that if E ⊂ {0, 1, . . . , k − 1}M2

with |E| ≥ ǫkM2

then there exists a square variable
matrix m(x) such that

{

m(i) : i ∈ {0, 1, . . . , k − 1}
}

⊂ E.

This question was first asked perhaps fifteen years ago, by V. Bergelson. Though
a few of its would-be consequences have been established (see, e.g., [BLM], [M], [BM]),
these results pay a high price for their polynomiality as none is strong enough to recap-
ture the density Hales-Jewett theorem itself. It’s a good time for renewed interest in
the matter; a recent online collaboration initiated by T. Gowers, Polymath 1, resulted
in the discovery of a beautiful new proof of Theorem 1.2; see [P]. At around the same
time, T. Austin found yet another proof; see [A]. Despite these positive results, however,
Conjecture 1.4 has remained recalcitrant, and is open even for k = 2.

In the meantime, we seek to popularize here a somewhat weaker polynomial ex-
tension of Theorem 1.2 (Conjecture 1.6 below), which is nevertheless satisfying, natural
and hopefully more amenable to attack. In support of this hope, we shall give two
proofs of the initial case k = 2. The first is a simple density increment proof using the
following theorem of A. Sárközy’s as a lemma.

Theorem 1.5 ([S]). Let ǫ > 0. There exists S ∈ N such that every E ⊂ {1, 2, . . . , N}
with |E| ≥ ǫS contains a configuration {a, a + n2}, where n ≥ 0.

This first proof for k = 2, which of course is not, in virtue of its use of Theorem 1.5,
self-contained, is unlikely to generalize to cases k > 2. On the other hand our somewhat
lengthy albeit fully self-contained second proof (given in Section 3) develops tools and
a structure theory intended as a possibly viable first step in an attempt to prove the
conjecture in full. Here now is the formulation.

Conjecture 1.6. Let δ > 0, k ∈ N. There exists M = M(δ, k) having the property
that if E ⊂ {0, 1, . . . , k−1}M with |E| ≥ δkM then there exist n ∈ N and a variable word
w(x) having n2 occurrences of the letter x such that

{

w(t) : t ∈ {0, 1, . . . , k − 1}
}

⊂ E.

First proof for k = 2. Let δ0 be the infimum of the set of δ for which the conclusion
holds and assume for contradiction that δ0 > 0. Choose by Sárközy’s theorem m such
that for any A ⊂ {1, 2, . . . , m} with |A| ≥ δ0

3 m, A contains a configuration {a, a + n2},

with n > 0. Let δ = δ0−
δ0

4·2m and put M ′ = M
(

δ0 + δ0

3·2m , 2
)

. Finally put M = m+M ′.
We claim M works as M(δ, 2). Suppose then that E ⊂ {0, 1}M with |E| ≥ δ2M .
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Now, for each v ∈ {0, 1}m, let Ev =
{

w ∈ {0, 1}M ′

: vw ∈ E
}

. If |Ev| >
(

δ0 +
δ0

3·2m

)

2M ′

for some v we are done; Ev will by hypothesis contain {w(0), w(1)} for some
variable word w having n2 wildcards for some n, so that {vw(0), vw(1)} ⊂ E. (Notice
that vw(x) is again a variable word having n2 wildcards.)

We may therefore assume that |Ev| ≤
(

δ0 + δ0

3·2m

)

2M ′

for every v. A simple calcu-

lation now shows that |Ev| ≥
δ0

3 2M ′

for all v (otherwise, E would be too small).
Now for 1 ≤ i ≤ m, let vi be the word consisting of i 0s followed by (m−i) 1s. Since

∑m
i=1 |Evi

| ≥ mδ0

3
2M ′

, there must be some u ∈ {0, 1}M ′

with
∣

∣

{

i : u ∈ Evi

}
∣

∣ ≥ δ0

3
m.

By choice of m, there are a and n > 0 such that u ∈ Eva
∩ Ev

a+n2 . It follows that

{vau, va+n2u} ⊂ E. But this set plainly has the form {w(0), w(1)} for a variable word
w(x) having n2 wildcards.

2. Sets of word recurrence

Nothing about the set of squares beyond Sárközy’s theorem was used in the previous
section. In consequence, what holds for them should hold for more general sets of
recurrence.

Definition 2.1. Let R ⊂ N. R is a set of (k − 1)-recurrence if for every ǫ > 0
there exists S ∈ N such that every E ⊂ {1, 2, . . . , S} with |E| ≥ ǫS contains a k-term
arithmetic progression with common difference r ∈ R.

Definition 2.2. Let R ⊂ N. R is a set of word (k − 1)-recurrence if for every ǫ > 0
there exists M = M(ǫ) ∈ N having the property that if E ⊂ {0, 1, . . . , k − 1}M with
|E| ≥ δkM then there exists a variable word w(x) having r ∈ R occurrences of the letter
x such that

{

w(t) : t ∈ {0, 1, . . . , k − 1}
}

⊂ E.

A few remarks are in order. Sets of (k − 1)-recurrence are also known as sets of
(k − 1)-density intersectivity. There is an analogous notion sets of (k − 1)-chromatic

intersectivity, also known as sets of topological (k−1)-recurrence; one could define “sets
of chromatic word intersectivity” and inquire about them. Many variations are possible,
e.g. the IP Szemerédi theorem [FK1] and IP van der Waerden theorems deal with set-
valued parameters analogous to wildcard sets. Or, one could take the salient sets of
recurrence to be families of finite subsets of N from which one may always choose a
suitable wildcard set, rather than sets of natural numbers from which one can always
choose the cardinality of a suitable wildcard set. This brief discussion is intended as an
introduction to these and other possibilities.

Theorem 2.3. Let R ⊂ N. If R is a set of word (k − 1)-recurrence then R is a set of
(k − 1)-recurrence.

Proof. Let ǫ > 0 and choose M = M( ǫ
2
) as in Definition 2.2. Let J >> (k−1)M , let

E ⊂ {1, 2, . . . , J} with |E| ≥ ǫJ and let X be a random variable uniformly distributed
on {1, 2, . . . , J − (k − 1)M}. Finally let E′ =

{

w1w2 . . . wM ∈ {0, 1, . . . , k − 1}M :

X + w1 + w2 + · · · + wM ∈ E
}

. E′ is a random subset of {0, 1, . . . , k − 1}M ; since
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each word is expected to be in E′ with probability approaching ǫ as J → ∞, by fixing
J large enough we can ensure there is always a possible value of X for which |E′| ≥
ǫ
2kM . Therefore, there is a variable word w(x) having a wildcard set of size r ∈ R for
which L =

{

w(j) : j ∈ {0, 1, . . . , k − 1}
}

⊂ E′. But the image of L under the map
w1w2 · · ·wM → X + w1 + w2 + · · · + wM is an arithmetic progression contained in E

and having common difference r.

Question 2.4. Is every set of (k − 1)-recurrence a set of word (k − 1)-recurrence?

The answer is yes for k = 2. To see this, simply note that in the proof of the k = 2
case of Conjecture 1.6, all that was used of the set of squares was Theorem 1.5, the
analog of which for an arbitrary set of recurrence R is true by definition. We suspect
the answer in general to be no.

The only (non-trivial) class of sets that we know to be sets of word (k−1)-recurrence
for all k are IP sets. (An IP set in N consists of an infinite sequence (xi) and its finite
sums formed by adding terms with distinct indices, i.e.

{
∑

i∈α xi : α ⊂ N, 0 < |α| <

∞
}

.) This is the content of the following theorem, the proof of which requires the
following notion: given an “M -variable word” w(x1, x2, . . . , xM) = w1w2 · · ·wJ , i.e. a
word on the alphabet {0, 1, . . . , k − 1} ∪ {x1, x2, . . . , xM} in which each of the symbols
xi occurs at least once, the range of the map {0, 1, . . . , k − 1}M → {0, 1, . . . , k − 1}J

defined by a1a2 · · ·aM → w(a1, a2, . . . , aM) is called an M -dimensional subspace of
{0, 1, . . . , k − 1}J .

Theorem 2.5. IP sets are sets of word (k − 1)-recurrence for all k.

Proof. Let (xi) be an infinite sequence in N and let ǫ > 0, k ∈ N. Let M = M( ǫ
2 , k)

as in Theorem 1.2 and let J >> x1 +x2 + · · ·+xM . Let now E ⊂ {0, 1, . . . , k−1}J with
|E| ≥ ǫkJ . Select a random M -dimensional subspace I of {0, 1, . . . , k − 1}J as follows:
choose disjoint sets αi ⊂ {1, 2, . . . , J} with |αi| = xi, 1 ≤ i ≤ M uniformly at random.

Next, fix random letters at positions outside
⋃M

i=1 αi. I consists of words having those

fixed letters at positions outside
⋃M

i=1 αi that are also constant on each αi.
I may be identified with {0, 1, . . . , k−1}M under a map that preserves combinatorial

lines. Such lines in I are associated with variable words whose wildcard sets are unions
of αis, so we will be done if |I∩E|

kM ≥ ǫ
2

with positive probability. Notice that if each
word belonged to I with the same probability kM−J this would be immediate. Such
is not the case; for fixed J , P (w ∈ I) is a function of the frequencies of occurrence of
each letter of {0, 1, . . . , k − 1} in the word w, indeed is proportional to the probability
that wi is constant on each αj . Constant words jj · · · j are most likely to belong to I

(with probability kx1+···+xM−J ). However, as J → ∞ the minimum over all words w

of P (w ∈ I) is asymptotically equivalent to the average value kM−J . Indeed, P (w ∈ I)

is asymptotically equivalent to kx1+···+xM−J
∏M

i=1

∑

λ∈{0,1,...,k−1} fxi

λ , where fλ is the
relative frequency of λ in w. The latter function is continuous in the variables fλ and
subject to the constraint

∑

λ fλ = 1 its minimum value of kM−J obtains at fλ = 1
k

for
all λ (a calculus exercise). Choosing J large enough that P (w ∈ I) > 1

2kM−J uniformly

and summing over w ∈ E yields an expectation for |I∩E|
kM of at least ǫ

2 , as required.
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3. A self-contained proof of Conjecture 1.6 for k = 2

We use a correspondence principle that recasts the problem as a recurrence question
in ergodic theory (cf. [F]). Furstenberg and Katznelson developed such a principle for
the density Hales-Jewett theorem in [FK2] via the Carlson-Simpson theorem [CS]. That
approach is not useful here as it loses information about the size of the wildcard set.
Therefore we use an alternate scheme proposed by T. Tao on the Polymath 1 blog [P].

Suppose to the contrary that there is an ǫ > 0 such that for every n, there is a set
An ⊂ {0, 1}n with |An| ≥ ǫ2n containing no pair {w(0), w(1)} where w is a variable
word having r2 wildcards for some r (we will call such sets “square line free”). Now
for 0 ≤ m ≤ n we can form random square line free sets An

m ⊂ {0, 1}m by randomly
embedding {0, 1}m in {0, 1}n. More precisely,

1. Pick distinct x1, . . . , xm in {1, 2, . . . , n} uniformly at random.
2. Pick a word (yi)i6∈{x1,x2,...,xm} in {0, 1}n−m to fill in the other positions, uni-

formly at random.
3. Put w = (wi)

m
i=1 ∈ An

m if (zi)
n
i=1 ∈ An, where zxi

= wi, 1 ≤ i ≤ m and zj = yj,
j 6∈ {x1, x2, . . . , xm}.

Notice that for each w ∈ {0, 1}m, P (w ∈ An
m) ≥ ǫ. By restricting n to a subsequence

S, one may ensure that as n → ∞, n ∈ S, the random sets stabilize in distribution for
all m. Denote by µm the measure on 2{0,1}m

giving the limiting distribution. Thus if I

is a set of words of length m,

µm

(

{I}
)

= lim
n→∞,n∈S

P (An
m = I).

Since each An
m is square line free, µm

(

{E}
)

= 0 for any E containing a square line.
Let i ∈ {0, 1} and let J be a family of sets of words of length m. Define a new

family of words J ∗ i of length m + 1 as follows: if B is a set of words of length m + 1,
first throw away any member of B whose last letter is not i and truncate the remaining
words to length m (i.e. knock off the final i). If (and only if) the set of words that
remains is a member of J , then B ∈ J ∗ i. Observe now the following stationarity
condition: µm+1(J ∗ i) = µm(J ).

It is convenient to have the measures µm defined on the same space, so let X =
∏∞

m=1 2{0,1}m

, and let Bm be the algebra of sets
{

∏∞
r=1 Er : Er = 2{0,1}r

if r 6= m
}

;
µm can be viewed as a measure on Bm. Let B be the σ-algebra generated by the Bm

and let µ be the product of the µm. We now require the following elementary lemma.

Lemma 3.1. Let C and D be finite algebras of measurable sets in a probability space
(X,B, µ). Assume there is a measure preserving isomorphism U : C → D. There exists
an invertible measure preserving transformation T : X → X with U(C) = T−1(C),
C ∈ C.

If w ∈ {0, 1}m, put Bw = {E ∈ 2{0,1}m

: w ∈ E}. Then µm(Bw) ≥ ǫ. If
{w(0), w(1)} is a square line, then any E ∈ Bw(0) ∩ Bw(1) contains {w(0), w(1)}, which
implies that µm(E) = 0. Summing over all such E, we get µm(Bw(0) ∩Bw(1)) = 0. The
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sets Bw may of course be viewed as members of Bm; doing this we get µ(Bw) ≥ ǫ and
µ(Bw(0) ∩ Bw(1)) = 0 for square lines {w(0), w(1)}.

If J is a set of words of length m, write λ(J) = µm

(
⋂

w∈J Bw

)

. By stationarity,

λ(Ji) = λ(J) for i ∈ {0, 1}. (Note Ji ⊂ F if and only if F ∈ {E ⊂ 2{0,1}m

: J ⊂ E} ∗ i.)
For m ∈ N and i ∈ {0, 1}, let C be the algebra generated by

{

Bw : w ∈ {0, 1}m
}

and let D be the algebra generated by
{

Bwi : w ∈ {0, 1}m
}

. The stationarity just
noted, i.e. λ(Ji) = λ(J), implies that the map C → D induced by Bw → Bwi is an
isomorphism. Moreover, it is easy to show that µ(Bw) is a constant across words of
length 1, hence across all words. It follows that by picking an arbitrary set Bnullword

having this same measure, we can consider the case m = 0 simultaneously.
We apply Lemma 3.1 to obtain measure preserving transformations Rm+1 and Sm+1

such that Bw0 = R−1
m+1Bw and Bw1 = S−1

m+1Bw for all w ∈ {0, 1}m. It follows that if
for a word w = w1w2 · · ·wm ∈ {0, 1}m we write Zw = Z1Z2 · · ·Zn, where Zi = Ri if
wi = 0 and Zi = Si if wi = 1, then Bw = Z−1

w B, where B = Bnullword.
If w = w1w2 · · ·wm is a fixed word in {0, 1}m and α ⊂ {1, 2, . . . , m}, write w(α)(x)

for the word u1u2 · · ·um, where ui = x if i ∈ α and ui = wi otherwise. Finally put
ρw(α) = Zw(α)(0) and σw(α) = Zw(α)(1). If |α| = r2, then {w(α)(0), w(α)(1)} is a square
line and µ(Bw(α)(0) ∩ Bw(α)(1)) = 0. In other words,

µ(Z−1
w(α)(0)

B ∩ Z−1
w(α)(1)

B) = µ(ρw(α)−1B ∩ σw(α)−1B) = 0.

Thus, the proof will be complete if we can establish the following:

Theorem 3.2. Let ǫ > 0. There exist m, r ∈ N, a word w1w2 · · ·wm ∈ {0, 1}m and a
set α ⊂ {1, 2, . . . , m} with |α| = r2 such that µ(ρw(α)−1B ∩ σw(α)−1B) ≥ µ(B)2 − ǫ.

Proof. For i ∈ N let w(i)(x) be the variable word consisting of (i − 1) 1s followed
by an x. Let Ti = T{i} = ρw(i)

(α)σw(i)
(α)−1. We wish to take products of the Ti, and

as they need not commute, order is important. Accordingly, we shall write ↑
∏

i for a
product taken in increasing order of i and ↓

∏

i for product taken in decreasing order of
i. For α ∈ F let

Tα = ↑
∏

i∈α

Ti.

Next define unitary operators Uα on L2(X) by the rule Uαf(x) = f(Tαx). Note that

Uα = ↓
∏

i∈α

Ui.

Lemma 3.3. For α ∈ F one has Tα = ρw(α)σw(α)−1, where w is a word of maxα =
{max j : j ∈ α} 1s. For α, β ∈ F with α < β one has Tα∪β = TαTβ and Uα∪β = UβUα.

Proof. Formal.

Recall Ramsey’s theorem [R]: for given k ∈ N, if the k-element subsets of N are
partitioned into finitely many cells, there exists an infinite set A ⊂ N, all of whose

the electronic journal of combinatorics 18 (2011), #P114 6



k-element subsets belong to the same cell of the partition. A “compact version” (just
mimic the proof of the Bolzano-Weierstrass theorem) is as follows: let k ∈ N and let
f : {α ⊂ N : |α| = k} → X , where (X, d) is a compact metric space. One can find a
sequence (ni) along which f converges to some x in the sense that for every ǫ > 0 there
is M such that for M < ni1 < ni2 < · · · < nik

, d
(

f({ni1 , ni2 , . . . , nik
}), x

)

< ǫ.
Recall that if H is a separable Hilbert space then the closed unit ball B1 of H is

compact and metrizable in the weak topology. Choose by Ramsey’s theorem and the
separability of L2(X) (via a diagonal argument, obtaining convergence for a dense set
of functions) a sequence i1 < i2 < · · · having the property that for every k ∈ N,

lim
nk>nk−1>···>n1→∞

U{in1
,in2

,...,ink
} = Pk

exists in the weak operator topology.

Lemma 3.4. For k, m ∈ N one has Pk+m = PkPm.

Proof. Let f ∈ B1. Using weak continuity of Pk, for any choice of n1 < n2 < · · · <

nm+k with n1 far enough out,

PkPmf ≈ PkU{in1
,in2

,...,inm
}f

and
Pk+mf ≈ U{in1

,in2
,...,inm+k

}f,

where we use ≈ to denote proximity in a metric for the weak topology on B1. Fix
n1, . . . , nm. For nm+1 < nm+2 < · · · < nm+k, with nm+1 far enough out,

PkU{in1
,in2

,...,inm
}f ≈ U{inm+1

,inm+2
,...,inm+k

}U{in1
,in2

,...,inm
}f = U{in1

,in2
,...,inm+k

}f.

The proof reduces therefore to the triangle inequality.

Next recall Hindman’s theorem [H]: let F denote the family of all finite non-empty
subsets of N, and for α, β ∈ F write α < β if maxα < minβ. If (αi) is a sequence
in F with αi < αi+1 then the set of finite unions of the αi is an IP ring. Hindman’s
theorem states that for any partition of an IP ring F (1) into finitely many cells, some
cell contains an IP ring F (2). A compact version: let g : F → X be a function, where
(X, d) is compact metric. There exists an IP ring F (1) and an x ∈ X such that for any
ǫ > 0 there is an M ∈ N such that if α ∈ F (1) with minα > M then d

(

g(α), x
)

< ǫ.
We write in this case

IP-lim
α∈F(1)

g(α) = x.

Now let n : F → N be any function satisfying n(α ∪ β) = n(α) + n(β) whenever
α < β (such functions are called IP systems) and choose by compact Hindman an IP
ring F (1) such that

IP-lim
α∈F(1)

Pn(α) = P and IP-lim
α∈F(1)

Pn(α)2 = Q
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exist in the weak operator topology.

Lemma 3.5. P is an orthogonal projection.

Proof. Since ||P || ≤ 1, it suffices to show that Pf = P 2f for f in the unit ball of
L2(X). For all choices α, β ∈ F (1) with α < β and α sufficiently far out,

P 2f ≈ Pn(α)Pf

and
Pf ≈ Pn(α∪β)f = Pn(α)+n(β)f = Pn(α)Pn(β)f.

Fix α. For all β ∈ F (1) sufficiently far out,

Pn(α)Pn(β)f ≈ Pn(α)Pf.

The proof reduces therefore to the triangle inequality.

By the same token, for an appropriate IP ring (continue to call it F (1)),

IP-lim
α∈F(1)

Pkn(α) = P (k)

exists weakly and is an orthogonal projection for all k ∈ N. Note now that if P (r)f = f ,
so that Prn(α)f → f weakly, then since ||Prn(α)|| ≤ 1, in fact Prn(α)f → f strongly as

well. It follows now from the triangle inequality that Pkrn(α)f → f , i.e. P (kr)f = f , for

every k ∈ N. (P (k!))∞k=1 is, therefore, an increasing sequence of orthogonal projections.
Denote by R the limit of this sequence. Note that R is an orthogonal projection, if
Rg = g then ||P (k!)g − g|| → 0 as k → ∞, and if Rh = 0 then P (k)h = 0 for all k ∈ N.

Lemma 3.6. Q is an orthogonal projection.

Proof. Again, it suffices to show that Q2f = Qf for f in the unit ball of L2(X).
Fix f and write g = Rf , h = f − g (so that Rg = g and Rh = 0).

Claim 1: Q2g = Qg. Choose a large k such that ||P (k!)g − g|| ≈ 0. Now for α, β ∈ F (1)

with α < β and α sufficiently far out,

Qg ≈ Pn(α∪β)2g = P(n(α)+n(β))2g = Pn(α)2Pn(β)2P2n(α)n(β)g (1)

and
Q2g ≈ Pn(α)2Qg.

Fix such α with the additional property that k!|n(α). (By Hindman’s theorem, one may
assume in passing to an IP-ring that n(α) is constant modulo k!; the additive property
n(α1∪α2) = n(α1)+n(α2) ensures that this constant value is idempotent, i.e. 0, under
addition modulo k!.) Now we have

||P (2n(α))g − g|| ≈ 0.
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Now for β ∈ F (1) sufficiently far out,

Pn(α)2Pn(β)2g ≈ Pn(α)2Qg

and

||P2n(α)n(β)g − P (2n(α))g||

≤||P2n(α)n(β)g − P2n(α)n(β)P
(2n(α))g||+ ||P2n(α)n(β)P

(2n(α))g − P (2n(α))g||

≤||g − P (2n(α))g|| + ||g′ − P2n(α)n(β)g
′|| ≈ 0.

(Here g′ = P (2n(α))g′, so the second summand goes to zero and the first was previously
noted to be small.) It follows that

||P2n(α)n(β)g − g|| ≈ 0.

Combining this with (1) we get

Qg ≈ Pn(α)2Pn(β)2g.

Claim 1 now follows from the triangle inequality.

Claim 2: Qh = 0. Suppose not. We will reach a contradiction by showing that for any
T ∈ N and λ > 0, it is possible to choose x1, x2, . . . , xT from the orbit of h such that
〈

xi, xj

〉

< λ and
〈

xi, Qh
〉

>
||Qh||2

2 , 1 ≤ i 6= j ≤ T .
We adopt notation Qn = Pn2 , so that Q = IP-lim

α∈F(1)
Qn(α) as a weak limit. Note

that
〈

Qn(α)h, Qh
〉

>
||Qh||2

2 for all α ∈ F (1) sufficiently far out. Let α1 < α2 be from

F (1) and at least this far out and put m1 = n(α1), m2 = n(α2). Next choose α3 > α2

from F (1) in such a way that letting m3 = n(α3) one has

〈

Qm2
h, P ∗

2m2m3
h
〉

≈ 0,
〈

P2m1m2
Qm1

h, P ∗
2m1m3

h
〉

≈ 0 and
〈

Qm1+m2
h, P ∗

2(m1+m2)m3
h
〉

≈ 0.

(Regarding the first of these, note that α3 may be chosen so that
〈

Qm2
h, P ∗

2m2m3
h
〉

=
〈

P2m2m3
Qm2

h, h
〉

≈
〈

P (2m2)Qm2
h, h

〉

=
〈

Qm2
h, P (2m2)h

〉

= 0. The others are similar.)
Note the following:

〈

Qm1+m2+m3
h, Qh

〉

>
||Qh||2

2
,
〈

Qm2+m3
h, Qh

〉

>
||Qh||2

2
and

〈

Qm3
h, Qh

〉

>
||Qh||2

2
.

We now map N×N onto the sequence (in) as follows. Let π(1, 1) = i1, π(2, 1) = i2,
π(1, 2) = i3, π(3, 1) = i4, π(2, 2) = i5, π(1, 3) = i6, π(4, 1) = i7, etc. Write Uij for Uπ(i,j)

and for α ∈ F define
V (α) = ↓

∏

(i,j)∈(α×α)

Uij .
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Let ⊗ denote symmetric product, i.e. α ⊗ β = (α × β) ∪ (β × α). For α < β, we write

DαV (β) = ↓
∏

(i,j)∈(α⊗β)

Uij .

Notice that if minβ > 2 maxα, one has V (α ∪ β) = V (β)DαV (β)V (α). We will write
α << β when this condition is met.

Fix a large number R0 having the property that if {R0} < α1 < α2 < α3 for some
αi ∈ F (it is instructive to notice that we do not require α ∈ F (1) here) with |αi| = mi

then
〈

V (α1 ∪ α2 ∪ α3)h, Qh
〉

≈
〈

Qm1+m2+m3
h, Qh

〉

,
〈

V (α2 ∪ α3)h, Qh
〉

≈
〈

Qm2+m3
h, Qh

〉

,
〈

V (α3)h, Qh
〉

≈
〈

Qm3
h, Qh

〉

and
〈

V (α1 ∪ α2)h, P ∗
2(m1+m2)m3

h
〉

≈
〈

Qm1+m2
h, P ∗

2(m1+m2)m3
h
〉

.

Choose α1 > {R0} with |α1| = m1 and

〈

V (α1)h, P ∗
2m1m2

P ∗
2m1m3

h
〉

≈
〈

Qm1
h, P ∗

2m1m2
P ∗

2m1m3
h
〉

.

Now pick α2 >> α1 with |α2| = m2,

〈

Dα1
V (α2)V (α1)h, P ∗

2m1m3
h
〉

≈
〈

P2m1m2
V (α1)h, P ∗

2m1m3
h
〉

and
〈

V (α2)h, P ∗
2m2m3

h
〉

≈
〈

Qm2
h, P ∗

2m2m3
h
〉

.

Finally, pick α3 >> α2 with |α3| = m3,

〈

Dα1∪α2
V (α3)V (α1 ∪ α2)h, h

〉

≈
〈

P2(m1+m2)m3
V (α1 ∪ α2)h, h

〉

,
〈

Dα1
V (α3)Dα1

V (α2)V (α1)h, h
〉

≈
〈

P2m1m3
Dα1

V (α2)V (α1)h, h
〉

and
〈

Dα2
V (α3)V (α2)h, h

〉

≈
〈

P2m2m3
V (α2)h, h

〉

.

Note now the following:

〈

V (α1 ∪ α2 ∪ α3)h, V (α3)h
〉

=
〈

Dα1∪α2
V (α3)V (α1 ∪ α2)h, h

〉

≈
〈

P2(m1+m2)m3
V (α1 ∪ α2)h, h

〉

≈
〈

P2(m1+m2)m3
Qm1+m2

h, h
〉

=
〈

Qm1+m2
h, P ∗

2(m1+m2)m3
h
〉

≈ 0,

〈

V (α1 ∪ α2 ∪ α3)h, V (α2 ∪ α3)h
〉

=
〈

Dα1
V (α3)Dα1

V (α2)V (α1)h, h
〉

≈
〈

P2m1m3
Dα1

V (α2)V (α1)h, h
〉

≈
〈

P2m1m3
P2m1m2

V (α1)h, h
〉

≈
〈

P2m1m3
P2m1m2

Qm1
h, h

〉

=
〈

P2m1m2
Qm1

h, P ∗
2m1m3

h
〉

≈ 0,
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〈

V (α2 ∪ α3)h, V (α3)h
〉

=
〈

Dα2
V (α3)V (α2)h, h

〉

≈
〈

P2m2m3
V (α2)h, h

〉

≈
〈

P2m2m3
Qm2

h, h
〉

=
〈

Qm2
h, P ∗

2m2m3
h
〉

≈ 0.

What we have shown is that for any λ > 0 there are some α1 << α2 << α3 with

〈

V (α1 ∪ α2 ∪ α3)h, V (α3)h
〉

< λ,
〈

V (α1 ∪ α2 ∪ α3)h, V (α2 ∪ α3)h
〉

< λ,
〈

V (α2 ∪ α3)h, V (α3)h
〉

< λ,

〈

V (α1 ∪ α2 ∪ α3)h, Qh
〉

>
||Qh||2

2
,

〈

V (α2 ∪ α3)h, Qh
〉

>
||Qh||2

2
and

〈

V (α3)h, Qh
〉

>
||Qh||2

2
.

By an elaboration of the same method, one can show, as promised, that for any T ∈ N

and λ > 0, it is possible to choose α1 << α2 << · · · << αT such that, letting xi =

V (αi ∪αi+1 ∪ · · · ∪αT )h, 1 ≤ i ≤ T ,
〈

xi, xj

〉

< λ and
〈

xi, Qh
〉

>
||Qh||2

2 , 1 ≤ i 6= j ≤ T .
As mentioned at the outset, choosing λ small and T large leads to a contradiction.

With Lemma 3.6 in hand the proof of Theorem 3.2 is almost complete. Let ǫ > 0.
One has

IP-lim
α∈F(1)

∫

1BPn(α)21B dµ =
〈

1B , Q1B

〉

= ||Q1B||
2.

Fix n with
〈

1B , Pn21B

〉

> µ(B)2 − ǫ
2 . Let w be a word of necessary length con-

sisting of all 1s. Now for n1 < n2 < · · · < nn2 with n1 far enough out, letting
α = {in1

, in2
, . . . , in

n2 },

µ
(

σw(α)−1B ∩ ρw(α)−1B
)

= µ
(

ρw(α)σw(α)−1B ∩ B
)

=

∫

1Bρw(α)σw(α)−11B dµ

=
〈

1B , Uα1B

〉

≥
〈

1B, Pn21B

〉

−
ǫ

2
> µ(B)2 − ǫ.

The proof of Theorem 3.2, and hence of the k = 2 case of Conjecture 1.6, is thus
complete.
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systems and combinatorial theory, J. d’Analyse Math. 45 (1985), 117-168.

[FK2] H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem,
J. d’Analyse Math. 57 (1991), 64-119.

[HJ] A. Hales and R. Jewett, Regularity and positional games, Trans. Amer. Math.

Soc. 106 (1963), 222-229.

[H] N. Hindman, Finite sums from sequences within cells of a partition of N, J. Com-

binatorial Theory (Series A) 17 (1974) 1-11.

[M] R. McCutcheon, FVIP systems and multiple recurrence, Israel J. Math. 146 (2005),
157-188.

[P] Polymath1, A combinatorial approach to the density Hales-Jewett theorem. Online
project at http://michaelnielsen.org/polymath1/index.php?title=Polymath1; also
D.H.J. Polymath, A new proof of the density Hales-Jewett theorem. Preprint,
available online at ArXiv.org:0910.3926.

[R] F. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930),
264-286.
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