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Abstract

Halin proved in 1978 that there exists a normal spanning tree in every connected
graph G that satisfies the following two conditions: (i) G contains no subdivision
of a ‘fat’ Kℵ0 , one in which every edge has been replaced by uncountably many
parallel edges; and (ii) G has no Kℵ0 subgraph. We show that the second condition
is unnecessary.
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1 Introduction

A spanning tree of an infinite graph is normal if the endvertices of any chord are com-
parable in the tree order defined by some arbitrarily chosen root. (In finite graphs, these
are their ‘depth-first search’ trees; see [2] for precise definitions.) Normal spanning trees
are perhaps the most important single structural tool for analysing an infinite graph –
see [4] for a typical example, and the exercises in [2, Chapter 8] for many more – but they
do not always exist. The question of which graphs have normal spanning trees thus is an
important question.

All countable connected graphs have normal spanning trees [2]. But not all connected
graphs do. For example, if T is a normal spanning tree of G and G is complete, then T
defines a chain on its vertex set. Hence T must be a single path or ray, and G is countable.

For connected graphs of arbitrary order, there are three characterizations of the graphs
that admit a normal spanning tree:

Theorem 1. The following statements are equivalent for connected graphs G.

(i) G has a normal spanning tree;

(ii) V (G) is a countable union of dispersed sets (Jung [7, 3]);
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(iii) |G| is metrizable [1];

(iv) G contains neither an (ℵ0,ℵ1)-graph nor an Aronszajn-tree graph as a minor [5].

Here, a set of vertices in G is dispersed if every ray can be separated from it by some
finite set of vertices. (The levels of a normal spanning tree are dispersed; see [2].) The
dispersed vertex sets in a graph G are precisely those that are closed in the topological
space |G| of (iii), which consists of G and its ends [1]. The space |G| will not concern us
in this note, so we refer to [1] for the definition of the topology on |G|. But we shall use
the equivalence of (i) and (iv) in our proof, and the forbidden minors mentioned in (iv)
will be defined in Section 3.

Despite the variety in Theorem 1, it can still be hard in practice to decide whether a
given graph has a normal spanning tree.1 In most applications, none of these characteri-
zations is used, but a simpler sufficient condition due to Halin. This condition, however,
is much stronger, and hence does not always hold even if a normal spanning tree exists.
It is the purpose of this note to show that this condition can be considerably weakened.

2 The result

Halin’s [6] most-used sufficient condition for the existence of a normal spanning tree in a
connected graph is that it does not contain a TKℵ0 . This is usually easier to check than
the conditions in Theorem 1, but it is also quite a strong assumption. However, Halin [6]
also proved that this assumption can be replaced by the conjunction of two independent
much weaker assumptions:

• G contains no fat TKℵ0 : a subdivision of the multigraph obtained from a Kℵ0 by
replacing every edge with ℵ1 parallel edges;

• G contains no Kℵ0 (as a subgraph).

We shall prove that the second condition is unnecessary:

Theorem 2. Every connected graph not containing a fat TKℵ0 has a normal spanning
tree.

We remark that all the graphs we consider are simple, including our fat TKℵ0s. When
we say, without specifying any graph relation, that a graph G contains another graph H,
we mean that H is isomorphic to a subgraph of G. Any other undefined terms can be
found in [2].

3 The proof

Our proof of Theorem 2 will be based on the equivalence (i)↔(iv) in Theorem 1, so let
us recall from [2] the terms involved here.

1In particular, the two types of graph mentioned in (iv) are not completely understood; see [5] for the –
quite intriguing – problem of how to properly understand (or meaningfully classify) the (ℵ0,ℵ1)-graphs.
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An Aronszajn tree is a poset (T,6) with the following properties:2

• T that has a least element, its root ;

• the down-closure of every point in T is well-ordered;

• T is uncountable, but all chains and all levels in T are countable.

Here, the down-closure dte of a point t ∈ T is the set {x | x 6 t }; its up-closure is the
set btc := { y | t 6 y }. More generally, if x < y we say that x lies below y and y above x.
The height of a point t ∈ T is the order type of the chain dte r {t}, and the levels of T
are its maximal subsets of points of equal height.

An Aronszajn-tree graph or AT-graph, is a graph G on whose vertex set there exists
an Aronszajn tree T such that

• the endvertices of every edge of G are comparable in T ;

• for all x < y, the vertex y has a neighbour x′ such that x 6 x′ < y.

The second condition says that each vertex is joined cofinally to the vertices below it. The
idea behind this is that if we were to construct any order tree T on V (G) satifying the
first condition, a tree satisfying also the second condition would be one that minimizes
the level of each vertex.

Note that intervals in T , sets of the form { t | x 6 t < y } for some given points
x < y, span connected subgraphs in G. This is because every t > x has a neighbour t′

with x 6 t′ < t, by the second condition, and hence the interval contains for each of its
elements t the vertices of a t–x path in G. Similarly, G itself is connected, because every
vertex can be linked to the unique root of T .

An (ℵ0,ℵ1)-graph with bipartition (A,B) is a bipartite graph with vertex classes A of
size ℵ0 and B of size ℵ1 such that every vertex in B has infinite degree.

Replacing the vertices x of a graph X with disjoint connected graphs Hx, and the
edges xy of X with non-empty sets of Hx–Hy edges, yields a graph that we shall call
an IX (for ‘inflated X’). More formally, a graph H is an IX if its vertex set admits a
partition {Vx | x ∈ V (X) } into connected subsets Vx such that distinct vertices x, y ∈ X
are adjacent in X if and only if H contains a Vx–Vy edge. The sets Vx are the branch sets
of the IX. Thus, X arises from H by contracting the subgraphs Hx, without deleting any
vertices or edges (other than loops or parallel edges arising in the contraction). A graph
X is a minor of a graph G if G contains an IX as a subgraph. See [2] for more details.

For our proof of Theorem 2 from Theorem 1 (i)↔(iv) it suffices to show the following:

Every IX, where X is either an (ℵ0,ℵ1)-graph or an AT-graph, contains
a fat TKℵ0 (as a subgraph).

(∗)

The rest of this section is devoted to the proof of (∗).
2Unlike the perhaps better known Suslin trees – Aronszajn trees in which even every antichain must

be countable – Aronszajn trees can be shown to exist without any set-theoretic assumptions in addition
to ZFC.
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Lemma 3. Let X be an (ℵ0,ℵ1)-graph, with bipartition (A,B) say.

(i) X has an (ℵ0,ℵ1)-subgraph X ′ with bipartition into A′ ⊆ A and B′ ⊆ B such that
every vertex in A′ has uncountable degree in X ′.

(ii) For every finite set F ⊆ A and every uncountable set U ⊆ B, there exists a vertex
a ∈ Ar F that has uncountably many neighbours in U .

Proof. (i) Delete from X all the vertices in A that have only countable degree, together
with their neighbours in B. Since this removes only countably many vertices from B, the
remaining set B′ ⊆ B is still uncountable. Every b′ ∈ B′ has all its X-neighbours in the
set A′ of the vertices in A that we did not delete, as otherwise b′ would have been deleted
too. Thus, b′ still has infinite degree in the subgraph X ′ of X induced by A′ and B′. In
particular, A′ is still infinite, and X ′ is the desired (ℵ0,ℵ1)-subgraph of X.

(ii) If there is no vertex a ∈ A r F as claimed, then each vertex a ∈ A r F has only
countably many neighbours in U . AsArF is countable, this means that UrN(ArF ) 6= ∅.
But every vertex in this set has all its neighbours in F , and thus has finite degree. This
contradicts our assumption that X is an (ℵ0,ℵ1)-graph.

Lemma 4. Let X be an (ℵ0,ℵ1)-graph with bipartition (A,B). Let A′ ⊆ A be infinite
and such that for every two vertices a, a′ in A′ there is some uncountable set B(a, a′) of
common neighbours of a and a′ in B. Then A′ is the set of branch vertices of a fat TKℵ0
in X whose subdivided edges all have the form aba′ with b ∈ B(a, a′).

Proof. We have to find a total of ℵ20 · ℵ1 = ℵ1 independent paths in X between vertices
in A′. Let us enumerate these desired paths as (Pα)α<ω1 ; it is then easy to find them
recursively on α, keeping them independent.

Lemma 5. Every IX, where X is an (ℵ0,ℵ1)-graph, contains a fat TKℵ0.

Proof. Let H be an IX for an (ℵ0,ℵ1)-graph X with bipartition (A,B), with branch sets
Vx for vertices x ∈ X. Replacing X with an appropriate (ℵ0,ℵ1)-subgraph Y (and H
with the corresponding IY ⊆ H) if necessary, we may assume by Lemma 3 (i) that every
vertex in A has uncountable degree in X. We shall find our desired fat TKℵ0 in H as
follows.

We construct, inductively, an infinite set A′ = {a0, a1, . . . } ⊆ A such that, for each
ai ∈ A′, there is an uncountable subdivided star S(ai) ⊆ H[Vai ] whose leaves send edges
of H to the branch sets of distinct vertices b ∈ B. The sets Bi of these b will be nested
as B0 ⊇ B1 ⊇ . . . . We shall then apply Lemma 4 to find a fat TKℵ0 in X, and translate
this to the desired fat TKℵ0 in H.

Pick a0 ∈ A arbitrarily. For each of the uncountably many neighbours b of a0 in B we
can find a vertex vb ∈ Vb that sends an edge of H to Va0 . For every b, pick one neighbour
ub of vb in Va0 . Consider a minimal connected subgraph H0 of H[Va0 ] containing all these
vertices ub, and add to it all the edges ubvb to obtain the graph T = T (a0). By the
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minimality of H0,

T is a tree in which every edge lies on a path between two vertices of the
form vb.

(1)

Since there are uncountably many b and their vb are distinct, T is uncountable and
hence has a vertex s0 of uncountable degree. For every edge e of T at s0 pick a path in T
from s0 through e to some vb; this is possible by (1). Let S(a0) be the union of all these
paths. Then S(a0) is an uncountable subdivided star with centre s0 all whose non-leaves
lie in Va0 and whose leaves lie in the branch sets Vb of distinct vertices b ∈ B. Let B0 ⊆ B
be the (uncountable) set of these b, and rename the vertices vb with b ∈ B0 as v0b .

Assume now that, for some n > 1, we have picked distinct vertices a0, . . . , an−1 from A
and defined uncountable subsets B0 ⊇ . . . ⊇ Bn−1 of B so that each ai is adjacent in X
to every vertex in Bi. By Lemma 3 (ii) there exists an an ∈ A r {a0, . . . , an−1} which,
in X, has uncountably many neighbours in Bn−1. As before, we can find an uncountable
subdivided star S(an) in H whose centre sn and any other non-leaves lie in Van and whose
leaves vnb lie in the branch sets Vb of (uncountably many) distinct vertices b ∈ Bn−1. We
let Bn be the set of those b. Then Bn is an uncountable subset of Bn−1, and an is adjacent
in X to all the vertices in Bn, as required for n by our recursion.

By construction, every two vertices ai, aj in A′ := {a0, a1, . . . } have uncountably many
common neighbours in B: those in Bj if i < j. By Lemma 4 applied with B(ai, aj) := Bj

for i < j, we deduce that A′ is the set of branch vertices of a fat TKℵ0 in X whose
subdivided edges ai . . . aj with i < j have the form aibaj with b ∈ Bj. Replacing each of
these paths aibaj with the concatenation of paths si . . . v

i
b ⊆ S(ai) and vib . . . v

j
b ⊆ H[Vb]

and vjb . . . sj ⊆ S(aj), we obtain a fat TKℵ0 in H with s0, s1, . . . as branch vertices. (It is
important here that b is not just any common neighbour of ai and aj but one in Bj: only
then do we know that S(ai) and S(aj) both have a leaf in Vb.)

Let us now turn to the case of (∗) where X is an AT-graph. As before, we shall first
prove that X itself contains a fat TKℵ0 , and later refine this to a fat TKℵ0 in any IX. In
this second step we shall be referring to the details of the proof of the lemma below, not
just to the lemma itself.

Lemma 6. Every AT-graph contains a fat TKℵ0.

Proof. Let X be an AT-graph, with Aronszajn tree T , say. Let us pick the branch vertices
a0, a1, . . . of our desired TKℵ0 inductively, as follows.

Let t0 be the root of T0 := T , and X0 := X. Since X0 is connected, it has a vertex a0
of uncountable degree. Uncountably many of its neighbours lie above it in T0, because its
down-closure is a chain and hence countable, and all its neighbours are comparable with
it (by definition of an AT-graph). As levels in T0 are countable, a0 has a successor t1 in T0
such that uncountably many X0-neighbours of a0 lie above t1; let B0 be some uncountable
set of neighbours of a0 in bt1cT0 . (We shall specify B0 more precisely later.)

Let T1 be the down-closure of B0 in bt1cT0 . Since T1 is an uncountable subposet of T0
with least element t1, it is again an Aronszaijn tree, and the subgraph X1 it induces in
X0 is an AT-graph with respect to T1.
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Starting with t0, T0 and X0 as above, we may in this way select for n = 0, 1, . . . an
infinite sequence T0 ⊇ T1 ⊇ . . . of Aronszajn subtrees of T with roots t0 < t1 < . . .
satisfying the following:

• Xn := X[Tn] is an AT-graph with respect to Tn;

• the predecessor an of tn+1 in Tn has an uncountable set Bn of Xn-neighbours above
tn+1 in Tn;

• Tn+1 = btn+1cTn ∩ dBneTn .

By the last item above, there exists for every b ∈ Tn+1 a vertex b′ ∈ Bn ∩ bbc (possibly
b′ = b). Applied to vertices b in Bn+1 ⊆ Tn+1 this means that, inductively,

Whenever i < j, every vertex in Bj has some vertex of Bi in its up-
closure.

(2)

Let us now make a0, a1, . . . into the branch vertices of a fat TKℵ0 in X. As earlier,
we enumerate the desired subdivided edges as one ω1-sequence, and find independent
paths Pα ⊆ X to serve as these subdivided edges recursively for all α < ω1. When we
come to construct the path Pα, beween ai and aj with i < j say, we have previously
constructed only the countably many paths Pβ with β < α. The down-closure Dα in T of
all their vertices and all the an is a countable set, since the down-closure of each vertex
is a chain in T and hence countable. We can thus find a vertex b ∈ Bj outside Dα, and a
vertex b′ > b in Bi by (2). The interval of T between b and b′ thus avoids Dα, and since
it is connected in X it contains the vertices of a b′–b path Qα in X − Dα. We choose
Pα := aib

′Qαbaj as the αth subdivided edge for our fat TKℵ0 in X.

Lemma 7. Every IX, where X is an AT-graph, contains a fat TKℵ0.

Proof. Let H be an IX with branch sets Vx for vertices x ∈ X, where X is an AT-graph
with respect to an Aronszajn tree T . Rather than applying Lemma 6 to X formally, let
us re-do its proof for X. We shall choose the sets Bn more carefully this time, so that we
can turn the fat TKℵ0 found in X into one in H.

Given n, the set Bn chosen in the proof of Lemma 6 was an arbitrary uncountable
set of upper neighbours of an in Tn above some fixed successor tn of an. We shall replace
Bn with a subset of itself, chosen as follows. For every b ∈ Bn, pick a vertex vnb ∈ Vb
that sends an edge of H to a vertex unb ∈ Van . As in the proof of Lemma 5, there is
a subdivided uncountable star Sn in H whose leaves are among these vnb and all whose
non-leaves, including its centre sn, lie in Van . Let us replace Bn with its (uncountable)
subset consisting of only those b whose vnb is a leaf of Sn.

Let K ⊆ X be the fat TKℵ0 found by the proof of Lemma 6 for these revised sets Bn.
In order to turn K into the desired TKℵ0 in H, we replace its branch vertices an by the
centres sn of the stars Sn, and its subdivided edges Pα = aib

′Qαbaj between branch vertices
ai, aj by the concatenation of paths si . . . v

i
b′ ⊆ Si and Q′α = vib′ . . . v

j
b and vjb . . . sj ⊆ Sj,

where Q′α is a path in H expanded from Qα, i.e. whose vertices lie in the branch sets of
the vertices of Qα. These paths P ′α are internally disjoint for distinct α, because the Pα
were internally disjoint.
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Proof of Theorem 2. Let G be a connected graph without a normal spanning tree; we
show that G contains a fat TKℵ0 . By Theorem 1, G has an X-minor such that X is either
an (ℵ0,ℵ1)-graph or an Aronszajn-tree graph. Equivalently, G has a subgraph H that is
an IX, with X as above. By Lemmas 5 and 7, this subgraph H, and hence G, contains
a fat TKℵ0 .
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