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Abstract

Based on weighted noncrossing partitions of type B, we obtain type B analogues
of Coker’s identities on the Narayana polynomials. A parity reversing involution is
given for the alternating sum of Narayana numbers of type B. Moreover, we find
type B analogues of the refinements of Coker’s identities due to Chen, Deutsch and
Elizalde. By combinatorial constructions, we provide type B analogues of three
identities of Mansour and Sun also on the Narayana polynomials.

1 Introduction

The objective of this paper is to give type B analogues of combinatorial identities on the
Narayana polynomials [4, 9, 10, 21, 22]
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be the n-th Catalan number. Using generating functions, Coker [9, 10] has derived the
following identities
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xk(1 + x)k. (1.2)

Chen, Yan and Yang [9] have given combinatorial interpretations of these two identities
based on weighted Dyck paths and 2-Motzkin paths in answer to a question raised by
Coker. It should be noticed that identity (1.1) can also be derived from the following
identity due to Simion and Ullman [19], see also Chen, Deng and Du [5]:
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Cr.

Recently, Mansour and Sun [16] have established the following three identities for the
Narayana polynomials and have given both algebraic and combinatorial proofs:
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Nk+1(x)(1 + x)n−k, (1.3)

xn+2Cn+1 =
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Nk(x)(1 − x)n−k, (1.5)

where Cn

2
is set to zero if n is odd.

We obtain type B analogues of the above identities of Coker, and Mansour and Sun,
based on the structure of type B noncrossing partitions. Recall that a type B partition
of [n] is a partition of the set {1, 2, . . . , n,−1,−2, . . . ,−n}, which may have a unique
block called the zero block in which i and −i appear in pairs, such that for any block B
of π, the set −B, obtained by negating the elements of B, is also a block of π, see, for
example, [2, 3, 17, 20]. Evidently, the zero block is a union of antipodal pairs {i,−i} if it
exists. Moreover, there does not exist any other block B such that B = −B. By a pure
block we mean a block that contains only positive elements or only negative elements. A
block is called a mixed block if it is not pure. A type B partition π can be represented
by a diagram, with the elements 1, 2, . . . , n,−1,−2, . . . ,−n drawn on a horizontal line in
the following order

1 < 2 < · · · < n < −1 < −2 < · · · < −n. (1.6)
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Accordingly, one can list the elements of a block in the above order. Suppose that B =
{i1, i2, . . . , ik} is a nonzero block of a type B partition π. One may represent this block
B by a path from i1 to ik with arcs drawn above the horizontal line from i1 to i2, i2 to
i3, and so on. A block with one element is called a singleton block. Such a diagram is
called the linear representation of a type B partition. A type B partition is said to be
noncrossing if its diagram contains no crossing arcs, see, Athanasiadis [3]. It is worth
mentioning that we may also place the elements 1, 2, . . . , n,−1,−2, . . . ,−n on a circle,
and use a cycle to represent a block. This is called the cyclic representation of a type B
partition. This leads to an equivalent definition of noncrossing partitions of type B, see,
Reiner [17]. An illustration of these two representations of a type B noncrossing partition
is given in Figure 1.1, where

π = {1,−7}{7,−1}{2, 4,−6}{6,−2,−4}{3}{−3}{5,−5}{8}{−8}.

1 2 3 4 5 6 7 8 -1 -2 -3 -4 -5 -6 -7 -8

1
2

3

4

5

6

7

8-1-2
-3

-4

-5

-6

-7

-8

Figure 1.1: The linear and cyclic representations of a type B noncrossing partition.

In this paper, we adopt the linear representation of type B noncrossing partitions. The
set of type B noncrossing partitions of [n] will be denoted by NCB(n). It is well known
that the cardinality of NCB(n) equals

(
2n
n

)
, see, for example, Reiner [17, Proposition 6].

Furthermore, the set of type B noncrossing partitions of [n] having k pairs of nonzero
blocks will be denoted by NCB(n, k). The cardinality of NCB(n, k), which is known to be
(

n
k

)2
, has been referred to as the Narayana number of type B by Fomin and Reading [12].

The polynomials

Pn(x) =

n∑

k=0

(
n

k

)2

xk, n ≥ 1,

will be called the Narayana polynomials of type B.
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This paper is organized as follows. In Section 2, we give type B analogues of Coker’s
identities and combinatorial proofs in terms of weighted type B noncrossing partitions.
We find an involution for the evaluation of the alternating sum of the Narayana numbers
of type B. We also provide refinements of Coker’s identities of type B. Section 3 is
devoted to type B analogues of three identities due to Mansour and Sun [16].

2 Type B Analogues of Coker’s Identities

This section is concerned with type B analogues of Coker’s identities. We shall use
weighted type B noncrossing partitions as the underlying combinatorial structure. The
following two identities can be regarded as type B analogues of Coker’s identities.

Theorem 2.1. For n ≥ 0,

n∑

k=0

(
n

k

)2
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xk(1 + x)n−2k, (2.1)
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x2k(1 + x)2(n−k) =
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(
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k

)(
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)

xk(1 + x)k. (2.2)

Note that identity (2.1) was first derived by Riordan [18] by using generating functions.
Before presenting the combinatorial proof of the above theorem, we present a property of
the linear representation of a type B noncrossing partition. The proof is straightforward
and hence is omitted.

Proposition 2.2. Let π be a type B noncrossing partition. In the linear representation
of π, for any pair of antipodal blocks B and −B, either one lies entirely on the left of the
other, or one is completely covered (or nested) by an arc of the other.

In light of the above property, for a pair of antipodal blocks B and −B, we need
only one of them to represent this pair. We shall choose the one that is on the left
of the other or the one that is nested by an arc of the other. Moreover, we shall list
the representative blocks B1, B2, . . . , Bk in the increasing order of their minimum el-
ements. In particular, we use B0 to denote the set of positive elements of the zero
block. We shall call B0/B1/B2/ · · · /Bk the canonical representation of π. It is clear
that the elements appearing in the canonical representation of a type B partition of
[n] form a set such that for any i ∈ [n], either i or −i appears once, but not both.
For example, the representative blocks of the noncrossing partition π in Figure 1.1 are
B0 = {5}, B1 = {3}, B2 = {6,−2,−4}, B3 = {7,−1} and B4 = {8}.

From now on, we shall use the above canonical representation π = B0/B1/ · · ·/Bk for
a type B noncrossing partition. The elements appearing in the canonical representation,
namely, the elements of B0, B1, . . . , Bk, will be classified into five types. Let i ∈ Bj . Then
we say that
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1. i is a zero point if j = 0, that is, i ∈ B0; Otherwise,

2. i is a singleton if |Bj| = 1;

3. i is a transient point if i is neither the smallest nor the largest element of Bj ,
according to the order (1.6);

4. i is a departure point if i is the smallest element of Bj and |Bj | > 1;

5. i is a destination point if i is the largest element of Bj and |Bj | > 1.

For the type B partition π in Figure 1.1, 5 is a zero point; 3 and 8 are singletons;
−2 is a transient point; 6 and 7 are departure points; −1 and −4 are destination points.
Before proving Theorem 2.1, we first present a formula that will be used later.

Proposition 2.3. The number of partitions in NCB(n) with exactly k pairs of nonzero
blocks but no singletons equals to (

n

2k

)(
2k

k

)

.

Proof. From the correspondence of Reiner [17] between type B noncrossing partitions and
pairs (L, R) of k-subsets of [n], it is not hard to see that a point i is a singleton of π if
and only if i appears in both L and R. Thus a type B noncrossing partition π without
singletons is uniquely determined by a pair (L, R) of disjoint subsets of [n] with equal
cardinality, namely L, R ⊆ [n], L ∩ R = ∅ and |L| = |R|. Moreover, the number of pairs
of nonzero blocks equals the cardinality of |L| and |R|. Clearly, there are

(
n
2k

)(
2k
k

)
ways

to choose (L, R). This completes the proof.

To make this paper self-contained, we give a more detailed description of the procedure
to generate a type B noncrossing partition π without singletons from a pair (L, R) of
disjoint k-subsets of [n] by using the beautiful construction of Reiner [17]. First, put
2n points on a horizontal line with labels 1, 2, . . . , n,−1,−2, . . . ,−n from left to right in
accordance with the order (1.6). If li ∈ L, we replace each of the points li and −li by a left
parenthesis; if ri ∈ R, replace each of the points ri and −ri by a right parenthesis. Thus
at the positions of the elements 1, 2, . . . , n,−1,−2, . . . ,−n, the pair (L, R) corresponds
to a sequence of 2k left parentheses, 2k right parentheses and 2n − 4k points.

It is important to recall a property of the 2k parentheses in the positions 1, 2, . . . n,
as discovered by Greene and Kleitman [13] in the construction of a symmetric chain de-
composition of the poset of subsets of a finite set. To be more specific, any sequence of
left parentheses and right parentheses consists of well-parenthesized segments separated
by parentheses which can be read from left to right as ) · · · ) (· · · (. In other words, the
unpaired right parentheses appear before the unpaired left parentheses. Thus any se-
quence of parentheses can be decomposed into well-parenthesized segments, separated by
a sequence of right parentheses followed by left parentheses. For example, the sequence
) ( ( ) ) ) ( ( ) ( has the following decomposition into well-parenthesized segments.
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) ( ( ) ) ) ( ( ) (

For the well-paired segments at the positive positions, or at the negative positions, we
can easily construct pure blocks. For a pair of the form ( · · ·), that is, a pair of parentheses
for which there are no parentheses between them, we simply form a pure block by selecting
the corresponding elements of the parentheses along with the points between them. After
such a block is formed, we may delete the underlying elements and continue the above
procedure until all well-paired parentheses at the positive positions or at the negative
positions are processed.

Upon the deletion of the elements of all pure blocks, the remaining parentheses have
the following form

· · · ) · · · ) · · · ) · · · (· · · (· · · (· · ·
︸ ︷︷ ︸

+

| · · · ) · · · ) · · · ) · · · (· · · (· · · (· · ·
︸ ︷︷ ︸

−

.

The rightmost left parenthesis at the positive position and the leftmost right parenthesis
at the negative position can be well-paired, leading to a mixed block. Once a mixed block
B is produced, its negative block −B is determined. It can be shown that a mixed block
B formed in the above procedure must be nested by its antipodal block. If (i,−j) is a
paired parentheses which yields a mixed block B, then j is the largest positive element
of −B and −i is the smallest negative element of −B. Clearly, the mixed block B is
nested by the arc (j,−i) of −B since j < i. Moreover, one readily sees that the block
B forms a consecutive segment with respect to the order (1.6) after removing the pure
blocks, whereas the block −B occupies two consecutive segments at both ends. Then we
delete the elements of the antipodal blocks B and −B and iterate this process to get all
the noncrossing mixed blocks. When all the pure and mixed blocks are obtained, if there
are still some elements left, we collect them together to form the zero block.

Conversely, given a type B noncrossing partition, the pair of subsets (L, R) can be
easily determined by the absolute values of the departure points and the destination
points. Thus we have obtained the desired bijection. An illustration of this correspondence
is given in Figure 2.1.

Combinatorial Proof of (2.1). We shall assign a weight to each point, and the weight of
a partition is the product of the weights of all the points. More precisely, we shall assign
weights only to half of the elements appearing in the canonical representation of a type
B noncrossing partition. The departure points and singletons are assigned weight x, the
other points (in the canonical representation) are assigned weight 1. Thus the left-hand
side of (2.1) equals the total weight of the set NCB(n).

To give a combinatorial interpretation of the right-hand side, let Sk denote the set of
partitions in NCB(n) with exactly k pairs of nonzero blocks but with no singletons, and
let Tk denote the set of partitions in NCB(n) with exactly k pairs of nonzero blocks which
have at leat two elements. Clearly, every nonzero block of a partition in Sk contains at
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1 2 3 4 5 6 7 8 9 10 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

) ( ) ( ) ( ( ) ) ( ) ( ) ( ( )

?

1 2 3 4 5 6 7 8 9 10 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

Figure 2.1: The correspondence between a pair (L, R) and a noncrossing partition.

least two elements. By Proposition 2.3, the total weight of Sk equals
(

n
2k

)(
2k
k

)
xk. From

the above description of the construction for Proposition 2.3, it is clearly seen that a
zero point (in the canonical representation) can not be covered by an arc of a nonzero
block. Furthermore, a partition in Tk can be obtained by changing some zero points and
transient points to singletons. Conversely, given a partition in Tk, there is only one way
to change it back to a partition in Sk by switching every singleton to either a zero point
or a transient point. This implies that the total weight of Tk equals the total weight of
Sk multiplied by a factor (1 + x)n−2k. This completes the proof.

Our combinatorial interpretation of (2.2) is based on the set Vn of colored type B
noncrossing partitions, which consists of all type B noncrossing partitions of [n] for which
a pair of antipodal singletons may be colored by one of the two colors, say, black and
white.

Combinatorial Proof of (2.2). We assign weight x2 to departure points and singletons,
and assign weight (1 + x)2 to zero points, transient points, and destination points. Then
the left-hand side of (2.2) equals the total weight of the set NCB(n).

As far as the right-hand side is concerned, we need to classify the set NCB(n) as
follows. Given a partition π ∈ NCB(n), let Lπ and Rπ denote the sets of departure points
and destination points respectively in the canonical representation of π. Two partitions
π and σ are in the same class if (Lπ, Rπ) = (Lσ, Rσ). Suppose that (L, R) is a pair
of feasible sets of departure points and destination points, namely, there exists π such
that (L, R) = (Lπ, Rπ). Let G(L, R) be the set of partitions π ∈ NCB(n) such that
(Lπ, Rπ) = (L, R). We further assume that both L and R contain k elements. Since the
departure points and destination points always appear in pairs and x2(1+x)2 = (x(1+x))2,
the above weight assignment is equivalent to the effect of assigning weight x(1 + x) to
both departure points and destination points. By the same argument in the proof of (2.1),
the noncrossing property implies that the other points can be either singletons or non-
singletons (transient points or zero points), we deduce that the total weight of G(L, R)
equals

(x(1 + x))2k(x2 + (1 + x)2)n−2k. (2.3)
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We next proceed to give an alternative interpretation of the total weight (2.3) in terms
of colored type B noncrossing partitions in Vn. Assign weight x(1+x) to black singletons,
zero points, transient points, departure points, destination points and weight 1 to white
singletons. Let us define H(L, R) for Vn in the same way as we defined G(L, R), that
is, the set of colored type B noncrossing partitions π such that (Lπ, Rπ) = (L, R) and
|L| = |R| = k. By the weight assignment for the partitions in Vn, we see that the total
weight of H(L, R) equals

(x(1 + x))2k(1 + x(1 + x) + x(1 + x))n−2k, (2.4)

which coincides with (2.3). This implies that the right-hand side of (2.2) can be reinter-
preted in terms of partitions in Vn. It remains to show that the total weight of Vn equals
the right-hand side of (2.2). To construct a partition of Vn with n − k white singletons,
we may choose n−k white singletons from [n] in

(
n
k

)
ways. Observe that white singletons

have weight 1 and the remaining 2k elements can form a type B noncrossing partition
with each element (in the canonical representation) having weight x(1+x). Clearly, there
are

(
2k
k

)
choices of such partitions with weight xk(1 + x)k. This completes the proof.

Setting x = 1, identity (2.1) takes the form

⌊n

2
⌋

∑

m=0

(
n

2k

)(
2k

k

)

2n−2k =

(
2n

n

)

, (2.5)

which can be regarded as a type B-analogue of Touchard’s formula

⌊(n−1)/2⌋
∑

k=0

(
n − 1

2k

)

Ck2
n−1−2k = Cn.

Simion [20] has given a combinatorial interpretation of (2.5) by means of a symmetric
boolean decomposition of the lattice NCB(n) with the refinement order.

When x = −1, identity (2.1) becomes

n∑

k=0

(−1)k

(
n

k

)2

=

{

(−1)r
(
2r
r

)
, ifn = 2r;

0, otherwise.
(2.6)

We shall provide an involution as an explanation of identity (2.6). It should be noted
that (2.6) is a type B analogue of the following identity on the alternating sum of Narayana
numbers,

n∑

k=0

(−1)k 1

n

(
n

k − 1

)(
n

k

)

=

{

(−1)r+1Cr, if n = 2r + 1;

0, otherwise.
(2.7)

The above identity (2.7) was first discovered by Bonin, Shapiro and Simion [4] in their
study of Schröder paths. It was also studied by Coker [10], Klazar [14], Eu, Liu and
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Yeh [11]. A combinatorial proof of (2.7) was given by Chen, Shapiro and Yang [8] by
using plane trees and 2-Motzkin paths.

In the case of x = −1
2
, identity (2.2) reduces to

n∑

k=0

(−1)k

(
n

k

)(
2k

k

)

4n−k =

(
2n

n

)

. (2.8)

This identity can be found in Riordan [18]. It was derived by means of generating func-
tions.

We now give a combinatorial interpretation of (2.6). Let NCB
e (n) (resp. NCB

o (n))
denote the set of type B noncrossing partitions of [n] into even (resp. odd) pairs of
nonzero blocks. We give a parity reversing involution on type B noncrossing partitions
which implies the following formulation of (2.6):

|NCB
e (n)| − |NCB

o (n)| =

{

(−1)r
(
2r
r

)
, if n = 2r;

0, otherwise.
(2.9)

Let An denote the set of type B noncrossing partitions of [n] without the zero block
such that every nonzero block contains exactly two elements. Notice that An is empty if
n is odd and

|A2n| =

(
2n

n

)

.

Define the parity of a type B noncrossing partition as the parity of the number of pairs
of nonzero blocks. Moreover, we define the sign of a partition as −1 if it is odd, and as 1
if it is even.

Theorem 2.4. There is a parity reversing involution ρ on the set NCB(n) \ An.

Proof. Let π = B0/B1/ · · · /Bk ∈ NCB(n) \ An be the canonical representation of π. We
first list the elements of B0, B1, . . . , Bk in the increasing order of their absolute values.
Then we define the critical point i of π as the first element in the above order that is
neither a departure point nor a destination point, or equivalently, is either a zero point,
or a transient point, or a singleton. We now define the map ρ based on the following cases
with respect to the critical point:

If the critical point i is a zero point or a transient point, we take the element i out of
the block and form a singleton block {i}.

If the critical point i is a singleton, we need to determine whether i should be put into
the zero block or a nonzero block. We consider the arc between i and −i in the linear
representation of π. If this arc does not cross any nonzero block, then we put i into the
zero block. Otherwise, there exits at least one arc covering i or −i or both. In this case,
we put i into the nonzero block (resp. the negative of the nonzero block) that has an arc
covering i (resp. −i) and there are no arcs of other blocks covered by this arc.
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It is not hard to see that the above map changes the number of blocks by one. More-
over, the critical point remains unchanged under the above map. Thus we deduce that ρ
is a parity reversing involution.

Figure 2.2 gives an example of the involution ρ, where the italic 1 is the critical point.

1 2 3 4 5 6 7 8 9 -1 -2 -3 -4 -5 -6 -7 -8 -9

?

6

1 2 3 4 5 6 7 8 9 -1 -2 -3 -4 -5 -6 -7 -8 -9

Figure 2.2: The involution ρ.

Since A2n+1 is empty and any partition in A2n has n pairs of nonzero blocks, the
involution ρ leads to a combinatorial proof of (2.9).

Appealing to the correspondence between plane trees and 2-Motzkin paths, Chen,
Deutsch and Elizalde [6] obtained the following refinements of Coker’s identities:

n∑

i=1

n−2i+1∑

j=0

1

n

(
n

i

)(
n − 1

j

)(
n − i − j

i − 1

)

xi−1yj =

⌊(n−1)/2⌋
∑

k=0

Ck

(
n − 1

2k

)

xk(1 + y)n−2k−1,

(2.10)
n∑

i=1

n−2i+1∑

j=0

1

n

(
n

i

)(
n − 1

j

)(
n − i − j

i − 1

)

x2(i−1)yjzn−2i−j+1 =

n−1∑

k=0

Ck+1

(
n − 1

k

)

xk(y + z − 2x)n−1−k.

(2.11)

The following refinements of (2.1) and (2.2) can be viewed as type B analogues of (2.10)
and (2.11).

Theorem 2.5. For n ≥ 1, we have

n∑

i=0

⌊n−i

2
⌋

∑

j=0

(
n

i

)(
n − i

j

)(
n − j − i

j

)

xjyi =

⌊n

2
⌋

∑

k=0

(
n

2k

)(
2k

k

)

xk(1 + y)n−2k, (2.12)

n∑

i=0

⌊n−i

2
⌋

∑

j=0

(
n

i

)(
n − i

j

)(
n − j − i

j

)

x2jyizn−2j−i =

n∑

k=0

(
n

k

)(
2k

k

)

xk(y+z−2x)n−k. (2.13)
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Proof. We first consider (2.12) and shall also use weighted type B noncrossing partitions
to give the combinatorial interpretations of both sides of (2.12). The weight assignment
is almost the same as in the proof of identity (2.1) except that a singleton is endowed
with weight y. Suppose that π is a type B noncrossing partition with i singletons (in
the canonical representation, to be precise). The remaining n − i elements form a type
B noncrossing partition σ such that each nonzero block contains at leat two elements
(in the canonical representation as well). Assume that σ contains j nonzero blocks, by
Proposition 2.3, there are

(
n−i
j

)(
n−j−i

j

)
=

(
n−i
2j

)(
2j
j

)
choices for σ. According to the weight

assignment, σ has weight xj . In view of the number of singletons, we see that the left-hand
side of (2.12) equals the sum of the weights of all type B noncrossing partitions of [n].

Regarding the right-hand side, let Sk be the set of the partitions in NCB(n) with
k pairs of nonzero blocks but with no singletons, and let Tk be the set of partitions in
NCB(n) with exactly k pairs of nonzero and nonsingleton blocks. The weight of any
partition in Sk is xk. Meanwhile, there are

(
n
2k

)(
2k
k

)
partitions in Sk. Using the same

argument as in the proof of (2.1), we see that the total weight of Tk equals the total
weight of Sk multiplied by a factor (1 + y)n−2k. Thus the right-hand side of (2.12) also
equals the total weight of NCB(n). This proves (2.12).

We now proceed to prove (2.13) by using a different weight assignment. Assign weight
x to departure points and destination points, weight y to singletons and weight z to zero
points, transient points. Suppose that π is a partition with i singletons and j nonzero
blocks with at least two elements. Since the departure points and destination points
appear in pairs, there are n − 2j − i other elements with weight z. From Proposition 2.3
it follows that the left-hand side of (2.13) equals the total weight of the set NCB(n).

On the other hand, we may consider the set Vn of colored type B noncrossing partitions,
as defined before. Assign weight x to black singletons, zero points, transient points,
departure points, destination points, and assign weight y+z−2x to white singletons. Let
G(L, R) and H(L, R) denote the subsets of NCB(n) and Vn respectively as in the proof of
identity (2.2). According to the weight assignment, the departure points and destination
points have weight x, singletons have weight y and the other points have weight z, thus
the total weight of the set G(L, R) is x2k(y+z)n−2k. Similarly, the total weight of H(L, R)
equals x2k(x + x + y + z − 2x)n−2k, which coincides with the total weight of G(L, R).

Now it suffices to show that the total weight of Vn agrees with the right-hand side
of (2.2). In order to compute the total weight of Vn, we can first choose n − k white
singletons from [n] in

(
n
k

)
ways. These white singletons have weight (y + z − 2x)n−k. The

remaining 2k elements form a type B noncrossing partition with each point having weight
x. There are

(
2k
k

)
choices of such partitions and the weight of such a partition equals xk.

This completes the proof.
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3 Type B Analogues of the Identities of Mansour and

Sun

In this section, we provide type B analogues along with combinatorial proofs of the
identities (1.3), (1.4) and (1.5) due to Mansour and Sun [16]. We begin with the following
identity which can be considered as a type B analogue of (1.3).

Theorem 3.1. For n ≥ 0, we have

n∑

k=0

(−1)n−k

(
n

k

)

Pk(x)(1 + x)n−k =

{

xr
(
2r
r

)
, if n = 2r;

0, otherwise.
(3.1)

Setting x = 1, (3.1) reduces to the following identity of Dawson, see, Riordan [18, p.71],

n∑

k=0

(−1)n−k

(
n

k

)(
2k

k

)

2n−k =

{ (
2r
r

)
, ifn = 2r;

0, otherwise.
(3.2)

Andrews [1] has given a proof of (3.2) by employing Gauss’s second summation theorem,
which states that

2F1

[
a, b

1/2 + a/2 + b/2
; 1/2

]

=
Γ(1/2)Γ(1/2 + a/2 + b/2)

Γ(1/2 + a/2)Γ(1/2 + b/2)
.

Combinatorial Proof of Theorem 3.1. The left-hand side of (3.1) can be interpreted in
terms of weighted type B colored partitions in Vn. We use the following weight assignment.
Transient points, zero points and destination points are given weight 1; black singletons
and departure points are given weight x; white singletons are given weight −1 − x.

To construct a partition in Vn, we first choose a subset S of n − k elements from [n]
to form white singletons with weight −1 − x. There are

(
n
k

)
ways to choose S, and these

white singletons will contribute a factor (−1 − x)n−k to the weight. On the other hand,
the remaining elements constitute a noncrossing partition of 2k elements with the same
weight assignment except that the singletons are assumed to be black. It follows that
such partitions have total weight Pk(x). Thus the left-hand side of (3.1) equals the total
weight of the set Vn.

We now aim to construct a sign reversing involution θ on Vn \An, where An is defined
in the preceding section. By the definition of An, we may regard the partitions in An as
noncrossing partitions in Vn with no zero block, no singletons and no transient points.
The involution θ can be described as follows.

Given a type B colored noncrossing partition π ∈ Vn \ An, we define the critical
point as the first point i (in the increasing order of the absolute values) in the canonical
representation of π that is neither a departure point nor a destination point of π. Then
we conduct the following operations:
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• If i is a black singleton, then we change it to a white singleton with weight −x;

• If i is a transient point or a zero point, then we change it to a white singleton with
weight −1;

• If i is a white singleton with weight −x, then we change it to a black singleton;

• If i is a white singleton with weight −1, then we change it to a transient point or a
zero point according to whether the arc (i,−i) crosses any arc of nonzero blocks as
in the proof of Theorem 2.4.

It is easily seen that the critical cannot be mapped to a departure point or a destina-
tion point. Moreover, in the increasing order of the absolutes, the elements before i stay
unchanged since the above operations do not cause additional departure points or desti-
nation points. Therefore, the critical point remains the same. Thus θ is a sign reversing
and weight preserving involution.

Our final task is to compute the total weight of An. First consider the case when n
is odd. For a type B noncrossing partition π of [n], it is clear that there exists at least
one point which is neither a departure point nor a destination point. By the involution θ,
we deduce that the sum of weights of type B colored noncrossing partitions of [n] equals
zero. For n = 2r, the total weight of Vn equals to the total weight of An, which equals
xr

(
2r
r

)
. This completes the proof.

Figure 3.1 is an illustration of the involution θ, where a circle stands for a white
singleton.

1 2 3 4 5 6 7 8 -1 -2 -3 -4 -5 -6 -7 -8

x 1 -1 x 1 x -x 1

?
6

1 2 3 4 5 6 7 8 -1 -2 -3 -4 -5 -6 -7 -8

x 1 1 x 1 x -x 1

Figure 3.1: The involution θ on a type B colored noncrossing partition.

We now turn to a type B analogue of identity (1.4).

Theorem 3.2. For n ≥ 0, we have

n∑

k=0

(−1)n−k

(
n

k

)

Pk(x
2)(1 − x)2(n−k) = xn

(
2n

n

)

. (3.3)
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It should be noted that setting x = −1 in (3.3), we arrive at (2.8) again.

Combinatorial Proof of (3.3). The proof is similar to that of (3.1). We also consider type
B colored noncrossing partitions with a different weight assignment. Destination points,
zero points and transient points are given weight 1; departure points and black singletons
are given weight x2; white singletons are given weight −1 + 2x− x2, or, equivalently, the
weight of a white singleton can be either −1, or 2x or −x2. Then the left-hand side of
(3.3) can be interpreted as the total weight of the set Vn.

Let Dn be the set of colored noncrossing partitions in Vn that have only two types of
points (in the canonical representation): (1) departure points or destination points. (2)
white singletons with weight 2x. In other words, for any partition in Dn, the following four
types of points are not allowed: (1) zero points; (2) transient points; (3) black singletons;
(4) white singletons with weight −1 or −x2. To prove (3.3), we proceed to construct a
sign reversing and weight preserving involution η on the set Vn \ Dn.

Given a type B colored noncrossing partition π ∈ Vn \ Dn, we seek the first point i
in the increasing order of the absolute values which is neither a departure point nor a
destination point. As usual, i is called the critical point. The map η is defined by the
following operations:

• If i is a black singleton, then set i to be a white singleton with weight −x2;

• If i is a transient point or a zero point, then set i to be a white singleton with weight
−1;

• If i is a white singleton with weight −x2, then set i to be a black singleton;

• If i is a white singleton with weight −1, then set i to be a transient point or a zero
point according to the criterion as given before.

It can be verified that η is a sign reversing and weight preserving involution. Thus the
total weight of Vn equals the total weight of Dn.

It remains to show that the total weight of the set Dn equals the right-hand side of
(3.3), namely, xn

(
2n
n

)
. To construct a weighted type B colored noncrossing partition in

Dn, we may choose 2k elements from [n] to construct a type B noncrossing partition with
k departure points and k destination points. There are

(
n
2k

)(
2k
k

)
choices. The remaining

n − 2k points are taken to be white singletons with weight 2x. Thus the total weight of
the set Dn equals

⌊n/2⌋
∑

k=0

(
n

2k

)(
2k

k

)

x2k(2x)n−2k,

which can be rewritten as

xn

⌊n/2⌋
∑

k=0

(
n

2k

)(
2k

k

)

2n−2k.

Invoking identity (2.5) gives (3.3). This completes the proof.
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We remark in passing that (1.5) is related to the following identity obtained by Chen
and Pang [7]

n∑

k=0

1

n

(
n

k − 1

)(
n

k

)

xk(x + 1)n−k =
n∑

k=0

(−1)n−k

(
n + k

n − k

)
1

k + 1

(
2k

k

)

(x + 1)k, (3.4)

which was independently derived by Mansour and Sun [15] in a slightly different form

n∑

k=0

1

n

(
n

k − 1

)(
n

k

)

xk =

n∑

k=0

(
n + k

n − k

)
1

k + 1

(
2k

k

)

(x − 1)n−k. (3.5)

Upon substituting x with x/(1 − x), we see that (3.4) can be recast in the form of (3.5),
that is,

Nn(x)

(x − 1)n
=

n∑

k=0

(
n + k

n − k

)

Ck
1

(x − 1)k
. (3.6)

Then identity (1.5) follows from the Legendre inversion formula [18]

an =
n∑

k=0

(
n + k

n − k

)

bk ⇐⇒ bn =
n∑

k=0

(−1)n−k 2k + 1

2n + 1

(
2n + 1

n − k

)

ak.

Below is a type B analogue of (3.4), which yields a type B analogue of (1.5).

Theorem 3.3. For n ≥ 0, we have

n∑

k=0

(
n

k

)2

xk(x − 1)n−k =

n∑

k=0

(−1)n−k

(
n + k

k

)(
n

k

)

xk. (3.7)

Proof. We use weighted type B noncrossing partitions of [n] to give a combinatorial
interpretation of the left-hand side. A departure point or a singleton is endowed with
weight x, whereas the other kinds of points are endowed with weight x − 1. In this way,
the left-hand side of (3.7) equals the total weight of the set NCB(n).

We proceed to show that the summand of the right-hand side equals the sum of weights
of type B noncrossing partitions of [n] with exactly k elements having weight x. Such
partitions can be constructed as follows. We first choose a k-subset S of [n] under the
condition that if an element i or −i has weight x, then i ∈ S. Then we choose m elements
from S to be departure points or singletons, denoted by L = {l1, l2, . . . , lm}. Meanwhile,
we choose another set of m elements from the set [n], denoted by R = {r1, r2, . . . , rm}.
Applying the bijection of Reiner [17] to the pair (L, R), we get a noncrossing partition
with m pairs of antipodal nonzero blocks.

We need to compute the sum of weights of such partitions. Note that the departure
points and singletons always have weight x and consequently belong to S. It suffices to
determine which of the other types of points can be given weight x. The weight of the
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destination points, zero points and transient points can be either x or −1 subject to the
condition for the choice of S. If the absolute value of such an element belongs to the set
S, then it has weight x; otherwise, it has weight −1. Thus, subject to the condition on
the choice of S, the weight assignment for all the elements are uniquely determined. So
the weight of a partition constructed by the above procedure equals (−1)n−kxk. On the
other hand, the number of such partitions equals

(
n

k

) k∑

m=0

(
k

m

)(
n

m

)

=

(
n

k

)(
n + k

k

)

.

This completes the proof.

In virtue of identity (3.7), we can express the central binomial coefficients in terms of
the Narayana polynomials of type B.

Theorem 3.4. For n ≥ 0,

(
2n

n

)

=

n∑

k=0

2k + 1

2n + 1

(
2n + 1

n − k

)

Pk(x)(1 − x)n−k. (3.8)

Proof. Substituting x with 1
1−x

in (3.7), and observing that

(
n + k

k

)(
n

k

)

=

(
n + k

n − k

)(
2k

k

)

,

we find
n∑

k=0

(
n

k

)2

xk =

n∑

k=0

(−1)n−k

(
n + k

n − k

)(
2k

k

)

(1 − x)n−k, (3.9)

which serves as a type B analogue of (3.6). Rewriting (3.9) as

Pn(x)

(x − 1)n
=

n∑

k=0

(
n + k

n − k

)(
2k

k

)
1

(x − 1)k
,

applying the Legendre inversion formula, we arrive at (3.8). This completes the proof.
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