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Abstract

To each finite subset of Z2 (a diagram), one can associate a subvariety of a
complex Grassmannian (a diagram variety), and a representation of a symmetric
group (a Specht module). Liu has conjectured that the cohomology class of a diagram
variety is represented by the Frobenius characteristic of the corresponding Specht
module. We give a counterexample to this conjecture.

However, we show that for the diagram variety of a permutation diagram, Liu’s
conjectured cohomology class σ is at least an upper bound on the actual class τ , in
the sense that σ − τ is a nonnegative linear combination of Schubert classes. To do
this, we exhibit the appropriate diagram variety as a component in a degeneration
of one of Knutson’s interval positroid varieties (up to Grassmann duality). A priori,
the cohomology classes of these interval positroid varieties are represented by affine
Stanley symmetric functions. We give a different formula for these classes as ordinary
Stanley symmetric functions, one with the advantage of being Schur-positive and
compatible with inclusions between Grassmannians.

Mathematics Subject Classifications: 05E05, 05E10, 14N15

1 Introduction

1.1 Diagram varieties

A diagram is a finite subset D of Z2. Write [n] for {1, 2, . . . , n}. Given a diagram contained
in [k]× [n− k], define a subvariety XD of the Grassmannian Grk(n) of k-planes in Cn as
the Zariski closure of

{rowspan [A | Ik] : A ∈Mk,n−k with Aij = 0 when (i, j) ∈ D} .
∗The author was partially supported by grant DMS-1101017 from the NSF
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Here Mk,n−k is the set of k× (n− k) complex matrices, and Ik is the k× k identity matrix.
Call this variety XD a diagram variety. For example, if D = {(1, 1), (1, 2), (2, 1)}, k = 2,
n = 4, then XD is the closure of the set of 2-planes in C4 which are the rowspans of
matrices of the form [

0 0 1 0
0 ∗ 0 1

]
.

Let SD denote the set of permutations of D. One can associate a (complex) represen-
tation SpD of the symmetric group SD to a diagram D, called the Specht module of D.
These generalize the usual irreducible Specht modules, which occur when D is the Young
diagram of a partition; the definition for general diagrams is due to James and Peel [8].

Each of these objects, diagram variety and Specht module, naturally leads to a class in
the cohomology ring H∗Grk(n) := H∗(Grk(n),Z). For the diagram variety, we take the
Chow ring class of XD and use the natural isomorphism between H∗(Grk(n),Z) and the
Chow ring of Grk(n) to obtain a cohomology class [XD] ∈ H2#D(Grk(n),Z).

As for the Specht module, let sD be the Frobenius characteristic of SD, meaning
sD =

∑
λ aλsλ if SD '

⊕
λ aλS

λ, where sλ is a Schur function. Here λ runs over partitions,
and Sλ is an irreducible Specht module. There is a surjective ring homomorphism φ from
the ring of symmetric functions to H∗(Grk(n),Z), sending the Schur function sλ to the
Schubert class σλ := [Xλ], or to 0 if λ 6⊆ (kn−k) [6]. Hence we can consider the cohomology
class φ(sD).

Conjecture (Liu [14], Conjecture 5 below). For any diagram D, the cohomology classes
[XD] and φ(sD) are equal.

Liu proved Conjecture 5, or the weaker variant claiming equality of degrees, for various
classes of diagrams [14]. However, it turns out that this conjecture fails in general, as we
show in Section 2.

Theorem. Conjecture 5 fails for XD ⊆ Gr4(8) where D = {(1, 1), (2, 2), (3, 3), (4, 4)}.
Let D(w) denote the Rothe diagram of w ∈ Sn: the diagram with a cell (i, w(j)) for

each inversion i < j, w(i) > w(j) of w. Work of Kraśkiewicz and Pragacz [11] and of
Reiner and Shimozono [17] shows that sD(w) is the Stanley symmetric function Fw [21].
Thus, if Conjecture 5 were to hold for D(w), we would have [XD(w)] = φ(Fw).

Building on work of Postnikov [16], Knutson, Lam, and Speyer [10] have defined a
collection of subvarieties Πf of Grassmannians called positroid varieties, indexed by certain
affine permutations f . A positroid variety is defined by imposing some rank conditions on
cyclic intervals of columns of matrices representing points in Grk(n), and any irreducible
variety defined by such rank conditions is a positroid variety. They show that the positroid
variety Πf has cohomology class φ(F̃f ), where F̃f is the affine Stanley symmetric function
of f , as defined in [12]. Given an ordinary permutation w ∈ Sn, define fw : Z→ Z by

fw(i) =

{
i+ n if 1 6 i 6 n

w(i) + 2n if n 6 i 6 2n

and f(i+ 2n) = f(i) + 2n. One can show that F̃fw = Fw.
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By the previous two paragraphs, Conjecture 5 would imply equality of the classes [Πfw ]
and [XD(w)]. As we will see, Conjecture 5 can fail for permutation diagrams D = D(w), and
in general [Πfw ] and [XD(w)] need not be equal. Nevertheless, we will give a degeneration
of Πfw to a (possibly reducible) variety containing XD(w) as a component, which implies
the following upper bound on [XD(w)].

Theorem (Theorem 31). The cohomology class φ(Fw)− [XD(w)] is a nonnegative integer
combination of Schubert classes.

1.2 Limits of classes of interval positroid varieties

The positroid varieties defined by rank conditions only involving honest intervals of
columns (as opposed to cyclic intervals) are called interval positroid varieties [9]. For
w ∈ Sn, the Grassmann duals of the varieties Πfw described above are examples of interval
positroid varieties. There are several ways to compute the class [Σ] of an interval positroid
variety Σ. First, [Σ] = φ(F̃f ) for some affine permutation f by the work of Knutson-Lam-
Speyer described above. Second, Coskun [3] gives a recursive rule for computing [Σ] by
degenerating Σ to a union of Schubert varieties, and in [9], Knutson computes the more
general torus-equivariant K-theory class of Σ in this way.

We give a different formula for [Σ] which is stable in the following sense. Given a
list M = (S1, . . . , Sm) of intervals all contained in [n] and a vector r = (r1, . . . , rm) of
nonnegative integers, define ΣM,r,n to be

{rowspan(A) ∈ Grk(n) : the submatrix of A in columns Si has rank 6 ri for all i}.

If ΣM,r,n is irreducible, then it is an interval positroid variety.
The standard inclusion Cn ↪→ Cn+1 defines an inclusion Grk(Cn) ↪→ Grk(Cn+1), hence

a pullback map H∗Grk(n+1)� H∗Grk(n), and this pullback sends [ΣM,r,n+1] to [ΣM,r,n].
We can therefore ask for a formula for a class α in the inverse limit lim←−N H

∗Grk(N)
which represents the classes [ΣM,r,n] for every n, in the sense that for every n the map
lim←−H

∗Grk(N)→ H∗Grk(n) sends α to [ΣM,r,n].

Theorem (Theorem 26). If ΣM,r,n ⊆ Grk(n) is an interval positroid variety, there is an
ordinary permutation w such that the ordinary Stanley symmetric function Fw represents
the class ΣM,r,n for all n.

2 A counterexample to Liu’s conjecture

Definition 1. A diagram is a finite subset of Z2.

Given a diagram D contained in [k]× [n− k], define an open subset

X◦D = {rowspan [A | Ik] : A ∈Mk,n−k such that Aij = 0 whenever (i, j) ∈ D}

of the complex Grassmannian Grk(n). For example, if D = {(1, 1), (1, 2), (2, 2), (2, 3)},
k = 2, and n = 5, then

X◦D =

{
rowspan

(
0 0 ∗ 1 0
∗ 0 0 0 1

)}
.
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Definition 2. The diagram variety XD of D is X◦D, the closure being in the Zariski
topology.

Notice that X◦D is an open dense subset of XD isomorphic to Ck(n−k)−#D. In particular,
it is irreducible, so XD is also irreducible and has codimension #D.

We now describe a representation of SD associated to each diagram D. Let R(D)
denote the group of permutations σ ∈ SD for which b and σ(b) are in the same row for
any b ∈ D. Let C(D) be the analogous subgroup with “row” replaced by “column”.

Definition 3. The Specht module of D is the left ideal

SpD = C[SD]
∑

p∈R(D)

∑
q∈C(D)

sgn(q)qp

of C[SD], viewed as an SD-module.

The Specht modules associated to general diagrams were studied by James and Peel
[8]. As D runs over (Ferrers diagrams of) partitions of m, the Specht modules provide a
complete, irredundant set of complex irreducibles for Sm (see [6, 20]). The isomorphism
type of SpD is unaltered by permuting the rows or the columns of D. If the rows and
columns of D cannot be permuted to obtain a partition—equivalently, the rows of D are
not totally ordered under inclusion—then SpD will not be irreducible. For example, if
λ \ µ is a skew shape, then

Spλ\µ '
⊕
ν

cλµνSpν ,

where cλµν is a Littlewood-Richardson coefficient.
In general it is an open problem to give a combinatorial rule for decomposing SpD

into irreducibles. The widest class of diagrams for which such a rule is known are the
percent-avoiding diagrams, studied by Reiner and Shimozono [19]; see also [13] and [18].

Given a diagram D ⊂ [k]×[n−k], let D∨ be the complement of D in [k]×[n−k] rotated
by 180◦. For example, if µ ⊆ λ ⊆ [k]× [n− k] are partitions, then X◦λ∨ ∩X◦µ = X◦(λ/µ)∨ .
This intersection is transverse on the dense open subset X◦(λ/µ)∨ of X(λ/µ)∨ , and indeed one

can show that [X(λ/µ)∨ ] =
∑

ν c
λ
µνσν∨ [14, Proposition 5.5.3].

Magyar has shown that Specht module decompositions behave as nicely as possible
with respect to the box complement operation.

Theorem 4 (Magyar [15]). For any diagram D contained in [k]×[n−k], SpD '
⊕

λ aλSpλ
if and only if SpD∨ '

⊕
λ aλSpλ∨.

In particular, Sp(λ/µ)∨ '
⊕

ν c
λ
µνSpν∨ . Comparing this decomposition of Sp(λ/µ)∨ to

the expansion [X(λ/µ)∨ ] =
∑

ν c
λ
µνσν∨ discussed above suggests the next conjecture (and

proves it when D = (λ/µ)∨).

Conjecture 5 (Liu [14]). For any diagram D, the cohomology classes [XD] and φ(sD)
are equal.
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Liu proved Conjecture 5 in the case above where D∨ is a skew shape, or when it
corresponds to a forest [14] in the sense that one can represent a diagram D ⊂ [k]× [n− k]
as the bipartite graph with white vertices [k], black vertices [n− k], and an edge between
a white i and black j whenever (i, j) ∈ D. In [2], we proved Conjecture 5 when D∨ is a
permutation diagram and SpD is multiplicity-free.

One gets a weaker version of Conjecture 5 by comparing degrees. The degree of a
codimension d subvariety X of Grk(n) is the integer deg(X) defined by [X]σ

k(n−k)−d
1 =

deg(X)σ(kn−k). Under the Plücker embedding, this gives the usual notion of the degree
of a subvariety of projective space, namely the number of points in the intersection of
X with a generic d-dimensional linear subspace. One can check using Pieri’s rule that
deg(σλ) = fλ

∨
, the number of standard Young tableaux of shape λ∨. This is also dimSpλ∨ .

Since degree is additive on cohomology classes, Conjecture 5 predicts the following.

Conjecture 6 (Liu). The degree of XD is dimSpD∨ .

Liu proved Conjecture 6 when D∨ is a permutation diagram, and when D∨ has the
property that if (i, j1), (i, j2) ∈ D and j1 < j < j2, then (i, j) ∈ D. In light of the
assertion of Theorem 4 that taking complements in the decomposition of SpD gives the
decomposition of SpD∨ , it is tempting to gloss over the distinction between D and D∨. In
fact, the analogue of Theorem 4 fails for the classes [XD], and Conjecture 5 can fail for D
while holding for D∨.

Suppose D = {(1, 1), (2, 2), (3, 3), (4, 4)}, with k = 4 and n = 8. This is the skew shape
4321/321. The Specht module SpD is simply the regular representation of S4, with

SpD ' Sp1111 ⊕ 3Sp211 ⊕ 2Sp22 ⊕ 3Sp31 ⊕ Sp4.

Theorem 4 then says

SpD∨ ' Sp3333 ⊕ 3Sp4332 ⊕ 2Sp4422 ⊕ 3Sp4431 ⊕ Sp444,

so dimSpD∨ = f 3333 + 3f 4332 + 2f 4422 + 3f 4431 + f 444 = 24024.
On the other hand, an explicit calculation in Macaulay2 shows degXD = 21384.

Therefore Conjectures 6 and 5 both fail for D. (One may wonder how such a seemingly
small counterexample remained undetected. It is perhaps more natural to index diagram
varieties by D∨ than D—notice that the cases mentioned above for which Conjecture 5
has been established all have the property that D∨, rather than D, falls into some nice
class of diagrams—and from this point of view the counterexample is no longer so small.)

The discrepancy in degrees is 24024 − 21384 = 2640 = f 4422, which hints at how
to see this discrepancy more explicitly. Given a k-subset I of [n], write pI for the
corresponding Plücker coordinate on Grk(n), so pI(A) is the maximal minor of A in
columns I. Let Y be the subscheme determined by the vanishing of the Plücker coordinates
p1678, p2578, p3568, p4567. These are exactly the Plücker coordinates which vanish on XD.
One can check by computer that Y is a complete intersection, so that [Y ] = σ4

1 =
σ1111 + 3σ211 + 2σ22 + 3σ31 + σ4.
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Since the four Plücker coordinates cutting out Y vanish on X◦D, the diagram variety
XD is contained in Y . However, Y has another component, namely the Schubert variety
which is the closure of rowspan


∗ ∗ 1 0 0 0 0 0
∗ ∗ 0 1 0 0 0 0
∗ ∗ 0 0 ∗ ∗ 1 0
∗ ∗ 0 0 ∗ ∗ 0 1


 .

This Schubert variety has degree dimSp(22)∨ = f 4422 = 2640, which is deg Y − degXD.
Therefore

[XD] = [Y ]− σ22 = σ1111 + 3σ211 + σ22 + 3σ31 + σ4.

Larger counterexamples to Conjecture 5 can be easily manufactured from this one. For
two diagrams D1 and D2 where D1 ⊆ [a]× [b], define

D1 ·D2 = D1 ∪ {(i+ a, j + b) : (i, j) ∈ D2}.

Graphically, D1 ·D2 is the diagram

D1

D2

.

One can show that [XD1·D2 ] = [XD1 ][XD2 ] and similarly that sD1·D2 = sD1sD2 . Therefore
if Conjecture 5 holds for D1 but not D2, then it will fail for D1 ·D2.

Remark 7. It is natural to wonder about the diagram

D′ = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)},

and whether Conjecture 5 fails for D′. Trying to repeat the analysis above runs into
an immediate problem, however (I thank Ricky Liu for pointing this out). Namely, the
analogue of Y , which is the scheme Z cut out by

p1789(10), p2689(10), p3679(10), p4678(10), p56789

no longer even has the same codimension as XD. Indeed, XD has codimension 5 but Z
contains the codimension 4 Schubert cellrowspan


∗ ∗ ∗ 1 0 0 0 0 0 0
∗ ∗ ∗ 0 1 0 0 0 0 0
∗ ∗ ∗ 0 0 ∗ ∗ 1 0 0
∗ ∗ ∗ 0 0 ∗ ∗ 0 1 0
∗ ∗ ∗ 0 0 ∗ ∗ 0 0 1


 .
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3 Cohomology classes of interval positroid varieties

3.1 Positroid varieties

Definition 8. An affine permutation of quasi-period n is a bijection f : Z→ Z such that
f(i+ n) = f(i) + n for all i. Write S̃n for the set of affine permutations of quasi-period n.

Note that an f ∈ S̃n is completely determined by any sequence f(a), f(a+1), . . . , f(a+
n− 1), which we call a window. We will usually specify an affine permutation f ∈ S̃n by
giving the sequence f(1), . . . , f(n), so that 14825 ∈ S̃5 fixes 1, sends 3 to 8, 7 to 9, etc.
Members of any window are all distinct modulo n, so

∑n
i=1 f(i) ≡ n(n + 1)/2 (mod n).

Let av(f) be the integer 1
n

∑n
i=1(f(i)− i).

Write S̃kn for the set of affine permutations with av(f) = k. In particular, S̃0
n is

a Coxeter group with simple generators s0, . . . , sn−1, where si interchanges i + np and
i + 1 + np for every p. The groups S̃0

n are the affine Weyl groups of type A, and one
should beware that affine permutations are frequently defined to be members of S̃0

n rather
than by our broader definition. The shift map τ : Z→ Z, τ(i) = i+ 1 yields a bijection
S̃0
n → S̃kn for each k, namely f 7→ τ kf , and we will use these bijections to transport Coxeter

structure from S̃0
n to any S̃kn. For instance, we define the reduced words of f ∈ S̃kn to be

the reduced words of τ−kf ∈ S̃0
n. The next definition provides another example.

Definition 9. The length `(f) of an affine permutation f is the number of inversions
i < j, f(i) > f(j), provided that we regard any two inversions i < j and i+ pn < j + pn
as equivalent.

Clearly `(τf) = `(f), and one checks that `(f) agrees with the usual Coxeter length
when f ∈ S̃0

n.

Definition 10. An affine permutation f ∈ S̃n is bounded if i 6 f(i) 6 i+ n for all i. Let
Bound(k, n) denote the set of bounded affine permutations in S̃kn.

The next proposition makes it easy to identify members of Bound(k, n).

Proposition 11. An affine permutation f is in Bound(k, n) if and only if it is bounded
and exactly k of f(1), . . . , f(n) exceed n.

Any affine permutation f has a permutation matrix, the Z×Z matrix A with Ai,f(i) = 1
and all other entries 0. For any i, j ∈ Z, define

[i, j](f) = {p < i : f(p) > j}.

That is, #[i, j](f) is the number of 1’s strictly northeast of (i, j) in the permutation matrix
of f , in matrix coordinates.

Fix a basis e1, . . . , en of Cn. With this choice in mind, we adopt the following abuse
of notation: if X ⊆ Cn, 〈X〉 will mean the span of X, while if X ⊆ [n], 〈X〉 will mean
the span of {ei : i ∈ X}. For X ⊆ [n], let PrjX : Cn → 〈X〉 be the projection which fixes
those basis vectors ei with i ∈ X and sends the rest to 0. For integers i 6 j, write [i, j] for
{i, i+ 1, . . . , j}. We interpret indices of basis vectors modulo n, so that 〈[i, j]〉 ⊆ Cn even
if i, j fail to lie in [1, n].
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Definition 12 ([10]). Given a bounded affine permutation f ∈ Bound(k, n), the positroid
variety Πf ⊆ Grk(n) is

{V ∈ Grk(n) : dim Prj[i,j] V 6 k −#[i, j](f) for all i 6 j}.

Theorem 13 ([10], Theorem 5.9). The positroid variety Πf ⊆ Grk(n) is irreducible of
codimension `(f).

Knutson–Lam–Speyer also computed the cohomology class of Πf in terms of affine
Stanley symmetric functions. These are a class of symmetric functions indexed by affine
permutations introduced by Lam in [12], which we now define.

A reduced word for f ∈ S̃0
n is a word a1 · · · a` in the alphabet [0, n−1] with sa1 · · · sa` = f

and such that ` is minimal with this property. Let Red(f) denote the set of reduced
words for f . A reduced word a = a1 · · · a` is cyclically decreasing if all the ai are distinct,
and if whenever some j and j + 1 appear in a (modulo n), j + 1 precedes j. An affine
permutation is cyclically decreasing if it has a cyclically decreasing reduced word. For a
partition λ, let mλ be the monomial symmetric function indexed by λ.

Definition 14. The affine Stanley symmetric function of f ∈ S̃0
n is

F̃f =
∑

(f1,...,fp)

x
`(f1)
1 · · ·x`(fp)

p ,

where (f 1, . . . , f p) runs over all factorizations f = f 1 · · · fp with each fi cyclically decreas-
ing.

As above, we extend this definition to f ∈ S̃kn for arbitrary k by defining F̃f as F̃τ−kf .

Theorem 15 ([10], Theorem 7.1). For f ∈ Bound(k, n), the cohomology class [Πf ] is
φ(F̃f ).

The ordinary Stanley symmetric functions indexed by members of Sn, introduced by
Stanley in [21], are examples of affine Stanley symmetric functions. To be precise, we can
view w ∈ Sn as the affine permutation in S̃0

n sending i + pn to w(i) + pn for 1 6 i 6 n.
Then the Stanley symmetric function Fw of w is F̃w. This is Proposition 5 in [12], but
we will simply take it as a definition of Fw. One should be aware, however, that the Fw
defined in [21] is our Fw−1 .

3.2 Grassmann duality

Let Grk(n) be the Grassmannian of k-planes in (Cn)∗. The annihilator of V ∈ Grk(n) is

ann(V ) = {α ∈ (Cn)∗ : α|V = 0} ∈ Grn−k(n).

The map Grk(n)→ Grn−k(n) sending V to ann(V ) is an isomorphism, and we refer to a
pair of closed subvarieties which correspond under this isomorphism as Grassmann duals.

Let ε1, . . . , εn denote the dual basis of e1, . . . , en. For S ⊆ [n], we write S̄ for [n] \ S
and 〈S∗〉 for 〈εi : i ∈ S〉. Observe that if f ∈ Bound(k, n), then τnf−1 ∈ Bound(n−k, n).
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Lemma 16 ([9], Proposition 2.1). For f ∈ Bound(k, n), the positroid varieties Πf ⊆
Grk(n) and Πτnf−1 ⊆ Grn−k(n) are Grassmann dual.

Lemma 16 is straightforward given the following technical lemma, which will also be
useful later on.

Lemma 17. For f ∈ Bound(k, n) and i 6 j 6 i + n, let a = #[i, j](f) and b be the
number of 1’s in the permutation matrix of f which are strictly northeast and weakly
southwest of (i, j), respectively. Then #[i, j] + a = k + b.

Proof. Consider the following part of the permutation matrix of f , divided into four
regions:

(i,j)
(i,i) (i,i+n)

(j−n,j)(j−n,j−n)

(j,j) (j,j+n)

C
A

B
D

Here a line segment on the boundary of a region is included in the region if the segment is
solid, and not included if it is dotted. For instance, C = {(p, q) : j−n < p < i, p 6 q 6 j}.
Let a, b, c, d denote the number of 1’s in the regions A,B,C,D. Boundedness of f implies
that all the 1’s in its permutation matrix lie (weakly) between the two diagonal lines in this
picture, so since B∪D contains #[i, j] rows we have b+d = #[i, j]. Since f ∈ Bound(k, n),
exactly k of f(1), . . . , f(n) exceed n, and by quasi-periodicity this says a + d = k. But
now #[i, j] + a = b+ d+ a = k + b.

Proof of Lemma 16. Take V ∈ Grk(n). We claim that for any cyclic interval [i, j] in [n],

dim Prj[i,j] V 6 k −#[i, j](f) ⇐⇒ dim Prj[i,j]∗ ann(V ) 6 (n− k)−#[i, j](τnf−1),

which will prove the lemma according to Definition 12. For any S ⊆ [n], the rank of the
composite V ↪→ Cn � Cn/〈S̄〉 is dim PrjS V , and by dualizing one sees that this is the
same as #S − (n−k) + dim PrjS̄∗ ann(V ). Taking S = [i, j],

dim Prj[i,j] V 6 k −#[i, j](f) ⇐⇒ dim Prj[i,j]∗ ann(V ) 6 n−#[i, j]−#[i, j](f).

Thus, to prove the claim we must show that

#[i, j] + #[i, j](f) = k + #[i, j](τnf−1). (1)

The permutation matrix of f is the permutation matrix of τnf−1 shifted left n units and
reflected across the diagonal of Z× Z, and so #[i, j](τnf−1) = #[j+1, n+i−1](τnf−1) is
the number of 1’s weakly southwest of (i, j) in the permutation matrix of f . Lemma 17
now implies equation (1).
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3.3 Interval positroid varieties

An interval positroid variety is one for which all rank conditions in Definition 12 are
implied by conditions involving actual intervals in [n].

Theorem 18 ([9]). For f ∈ Bound(k, n), Πf is an interval positroid variety if and only
if the subsequence of f(1), . . . , f(n) consisting of the entries exceeding n is increasing.

Any f as in the preceding theorem is determined by the subsequence of f(1), . . . , f(n)
of entries not exceeding n, which is a partial permutation, i.e. an injection from a subset
of [n] into [n]. Let f̄ denote the partial permutation associated to f ∈ Bound(k, n) in this
way. For instance, if f = 15748 then f̄ = 15 4 , where a in position i indicates that i is
not in the domain of f̄ . Conversely, if the domain dom(f̄) has size n− k and f̄(i) > i for
i ∈ dom(f̄), then f̄ labels an interval positroid variety. We now describe a different way
to index interval positroid varieties, following [1] (up to Grassmann duality).

Definition 19 ([1]). A rank set in [n] is a finite set of intervals M = {[a1, b1], . . . , [am, bm]}
with ai 6 bi 6 n positive integers, where all ai are distinct and all bi are distinct. For
S ⊆ [n], let S(M) denote the set of intervals S ′ ∈M such that S ′ ⊆ S.

To a rank set M in [n] with n− k intervals we associate the variety

ΠM = {V ∈ Grk(n) : dim PrjS V 6 #S −#S(M) for all intervals S ⊆ [n]}.

This is in fact an interval positroid variety, labelled by the affine permutation constructed
as follows. Say M = {[a1, b1], . . . , [an−k, bn−k]} is a rank set with a1 < · · · < an−k 6 n.
Define

{c1 < · · · < ck} = [n] \ {a1, . . . , an−k} and {d1 < · · · < dk} = [n] \ {b1, . . . , bn−k}.

Let fM ∈ S̃n be the affine permutation which maps ai to bi and ci to di + n. Then fM is
bounded because ai 6 bi, which implies di 6 ci.

Example 20. Take M = {[1, 1], [2, 5], [4, 4]} and n = 5. Then fM = 15748 and f̄M = 15 4 .

Lemma 21. For a rank set M in [n] we have ΠM = ΠfM .

Proof. By construction, the entries of fM(1), . . . , fM(n) exceeding n appear in increasing
order, so ΠM is an interval positroid variety by Theorem 18. Therefore it suffices to show
that #[i, j]−#[i, j](M) = k −#[i, j](fM) for all intervals [i, j] in [n].

Let B = {q ∈ Z : (q, fM(q)) is weakly southwest of (i, j)}. We claim that #B =
#[i, j](M), in which case we are done by Lemma 17. Clearly [ap, bp] = [ap, fM (ap)] ⊆ [i, j]
if and only if ap ∈ B, so #[i, j](M) = B ∩ {a1, . . . , an−k}. But in fact every q ∈ B is some
ap, because fM(q) 6 j 6 n and 1 6 i 6 q force q ∈ {a1, . . . , an−k}.

It follows from Theorem 13 that ΠM is irreducible of dimension k(n− k)− `(fM ). The
next lemma gives a formula for this dimension more directly in terms of M (cf. [3, Lemma
3.29]).
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Lemma 22. For any rank set M , dim ΠM =
∑

S∈M(#S −#S(M)).

Proof. As before, write M = {[a1, b1], . . . , [an−k, bn−k]} where a1 < · · · < an−k. Also, write
dim(M) for

∑
S∈M(#S − #S(M)), so we want to prove that dim(M) = dim ΠM . Let

i(M) be the maximal i ∈ [n− k] such that ai < k + i; if no such i exists, set i(M) = −∞.
When i(M) is finite, we will define a new rank set M ′ with the property that either
dim(M ′) < dim(M), or dim(M ′) = dim(M) and i(M ′) < i(M). Thus, after finitely many
operations of the form M 7→ M ′ we obtain an M ′′ with i(M ′′) = −∞, which must be
M ′′ = {{k + 1}, {k + 2}, . . . , {n}}. In this case fM ′′ = (n+ 1) · · · (n+ k)(k + 1) · · ·n has
length k(n− k), so dim ΠM ′′ = 0 and the lemma holds. It therefore suffices to show that
dim(M)− dim(M ′) = dim ΠM − dim ΠM ′ .

(a) First suppose ai < bi. Let M ′ be M with S = [ai, bi] replaced by S ′ = [ai + 1, bi]. The
choice of i implies that ai+1 remains in [n] and is not the left endpoint of an interval in
M , so M ′ is a valid rank set. Moreover, the multiset of numbers #T (M) for T ∈M is
the same as the multiset of numbers #T ′(M ′) for T ′ ∈M ′, so dim(M)− dim(M ′) = 1.
On the other hand, fM and fM ′ agree except in positions ai and ai + 1, where

fM(ai) = bi, fM(ai + 1) = dj + n (for some j)
fM ′(ai) = dj + n, fM ′(ai + 1) = bi.

In particular, fM ′ = fMsai > fM in weak Bruhat order, so

dim ΠM − dim ΠM ′ = `(fM ′)− `(fM) = 1 = dim(M)− dim(M ′).

(b) Now suppose ai = bi.

(i) Suppose ai + 1 is not the right endpoint of an interval. Define M ′ to be M
with [ai, ai] replaced by [ai + 1, ai + 1]. Then M ′ is a valid rank set with
dimM ′ = dimM , On the other hand, ΠM ′ is the image of ΠM under the
invertible linear map switching eai with eai+1 and fixing all other ej, and so
dim ΠM ′ = dim ΠM .

(ii) Suppose ai + 1 = bh for some h. Define M ′ to be M with [ai, ai] replaced by
[ai + 1, ai + 1] and [ah, bh] replaced by [ah, bh − 1] = [ah, ai]. This is a valid rank
set, and one checks that dim(M) = dim(M ′) again. The affine permutations fM
and fM ′ agree except that

fM(ah) = ai + 1, fM(ai) = ai, fM(ai + 1) = dj + n (for some j)
fM ′(ah) = ai, fM ′(ai) = dj + n, fM ′(ai + 1) = ai + 1

Hence, fM ′ = saifMsai with fM < fMsai > saifMsai in weak Bruhat order. In
particular, `(fM) = `(fM ′) so that dim ΠM = dim ΠM ′ .

In either case, dim(M) = dim(M ′) and dim ΠM = dim ΠM ′ . If ai + 1 < k + i, then
i(M ′) = i(M), but after k + i− ai steps of type (b) the statistic i must decrease.
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3.4 Stability

Fix inclusions C ⊆ C2 ⊆ · · · and linearly independent vectors e1, e2, . . . with ei ∈ Ci for all i.
Let Rk,n denote the homogeneous coordinate ring of Grk(n) under the Plücker embedding,

so Rk,n is generated by Plücker coordinates pI for I ∈
(

[n]
k

)
. Any Plücker relation in

Rk,n is still a Plücker relation in Rk,n+1, so there are injective ring homomorphisms
Rk,n ↪→ Rk,n+1 ↪→ · · · sending pI to pI , which we view as inclusions. Given a subscheme
Z ⊆ Grk(n) determined by a homogeneous ideal J ⊆ Rk,n, let Z+ be the subscheme of
Grk(n+ 1) determined by the ideal Rk,n+1J . That is, Z+ is cut out by the same equations
as Z, but now inside Grk(n+ 1).

Proposition 23. Let ι : Grk(n) → Grk(n+1) be the inclusion, inducing a pullback
ι∗ : H∗Grk(n+1)→ H∗Grk(n). Then ι∗[Z+] = [Z].

Proof. Whenever Y ⊆ Grk(n + 1) intersects ιGrk(n) transversely it holds that ι∗[Y ] =
[Y ∩ ιGrk(n)] with [Y ∩ ιGrk(n)] viewed as a cycle on Grk(n), and one can verify that Z+

intersects ιGrk(n) transversely by working in charts.

Let Λk be the ring of symmetric polynomials over Z in x1, . . . , xk. Then H∗Grk(n) '
Λk/(sλ : λ 6⊆ [k]× [n− k]), and these isomorphisms induce an isomorphism of the inverse
limit lim←−

N

H∗Grk(N) with Λk. Here, we take the inverse limit with respect to the maps

· · · ι
∗
−→ H∗Grk(k + 1)

ι∗−→ H∗Grk(k).

Proposition 23 shows that the classes [Z], [Z+], [Z++], . . . define an element α of the inverse
limit lim←−H

∗Grk(N); we say F ∈ Λk is a stable representative for [Z] if it represents α.
Now suppose M is a rank set for Grk(n). Define M+ to be M ∪ {[a, n+ 1]} where a is

the minimal member of [n+ 1] which is not a left endpoint in [n]. Evidently M+ is a rank
set for Grk(n+ 1).

Lemma 24. ΠM+ = Π+
M .

Proof. Let S ⊆ [n+ 1] be an interval, and consider a rank condition

dim PrjS V 6 #S −#S(M+) (2)

for ΠM+ . We must see that (2) follows from the rank conditions defining ΠM . Consider
three cases.

(a) If n+ 1 /∈ S, then S(M+) = S(M), and (2) is itself a rank condition defining ΠM .

(b) Suppose S = [i, n + 1] with i > a, and set S ′ = [i, n]. Then #S − #S(M+) =
#S ′−#S ′(M)+1, so (2) follows from the rank condition dim PrjS′ V 6 #S ′−#S ′(M)
for ΠM .

(c) Suppose S = [i, n + 1] with i 6 a. Then S contains every interval of M+ except
[1, b1], . . . , [i − 1, bi−1], and so #S −#S(M+) = #[i, n + 1] − (#M+ − (i − 1)) = k:
the rank condition (2) is vacuous.
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Let M+r denote the result of applying the + operation r times starting with M ; when
f = fM , we also write f+r and f̄+r to mean fM+r and f̄M+r . Write S∞ for the union⋃∞
n=0 Sn, identifying Sn with the subgroup of Sn+1 fixing n+ 1.

Lemma 25. Let M be a rank set for Grk(n). There exists an integer R such that

• f+r
M τ−k ∈ Sn+r for r > R, and

• the permutations f+r
M τ−k for r > R are all the same as members of S∞.

Proof. Suppose first f̄M has domain [1, n− k], so f̄M = b1 · · · bn−k . . . . Then fMτ
−k =

d1 · · · dkb1 · · · bn−k is in Sn. In general, f̄+ is the partial permutation of [n + 1] agreeing
with f̄ on dom(f̄), and sending the minimal member of [n+ 1] \ dom(f̄) to n+ 1. Thus,
f+
Mτ
−k = d1 · · · dkb1 · · · bn−k(n+ 1), which is equal to fMτ

−k as a member of S∞.
For an arbitrary f̄M , it suffices by the previous paragraph to find R such that f̄+R

M has
domain [1, n+R− k]. Any R such that dom(f̄M ) ⊆ [1, R+ # dom(f̄M )] does the job.

Theorem 26. For any interval positroid variety ΠM , there is an ordinary permutation w
such that the Stanley symmetric function Fw is a stable representative for the class [ΠM ].

Proof. Since the reduced words of a permutation w only depend on w as an element of
S∞, the same is true of Fw. Lemma 25 therefore shows that the sequence F̃f+r

M
for r > 0

is eventually constant and equal to some Fw. These symmetric functions represent the
classes [Π+r

M ] by Lemma 24, so Fw stably represents the class [ΠM ].

Although φ(F̃f ) must be Schubert-positive, and it is known that Fw is Schur-positive
[4], the symmetric functions F̃f are not always Schur-positive. For instance, if M =
{[2, 2], [4, 4]} with ΣM ⊆ Gr2(4), then fM = 5274, and F̃5274 = s22 + s211 − s1111. On
the other hand, M++ = {[2, 2], [4, 4], [1, 5], [3, 6]}, f+

M = 526479, and F̃526479 = F135264 =
s22 + s211. Thus, Theorem 26 provides a canonical way to represent interval positroid
classes by Schur-positive symmetric functions.

4 Degenerations of dual interval positroid varieties

Given a subset E ⊆ [k]× [n], define

Σ◦E = {rowspanA : A ∈Mk,n such that Apq = 0 whenever (p, q) /∈ E} ⊆ Grk(n)

and ΣE = Σ◦E. For a generic V = rowspanA ∈ Σ◦E, the matroid of V is the transversal
matroid associated to the columns of E: the matroid on [n] whose bases are the sets
{j1, . . . , jk} for which (1, j1), . . . , (k, jk) ∈ E. Thus, ΣE is the closure of a matroid stratum.

We identify a rank set (or any collection of intervals) M = {S1, . . . , Sk} in [n] with the
subset

{(i, j) : i ∈ [k], j ∈ Si} ⊆ [k]× [n],

the electronic journal of combinatorics 25(4) (2018), #P4.4 13



and define ΣM accordingly. For instance, if M = {[1, 3], [3, 6], [4, 5]} and n = 6, then Σ◦M
is the set of rowspans of full rank matrices of the form∗ ∗ ∗ 0 0 0

0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0

 .
The varieties ΣM are the “rank varieties” defined in [1], where it is shown that they are
exactly the projections of Schubert varieties in partial flag varieties Fl(k1, . . . , kp;Cn) with
kp = k to Grk(n) (see also [3]).

Lemma 27. dim ΣM =
∑

S∈M(#S −#S(M)) for a rank set M .

Proof. Write M = {[a1, b1], . . . , [ak, bk]} where a1 < · · · < ak. Let V be the set of k×(n−k)
matrices A such that

• Ai,ai = 1 for each i;

• If j /∈ [ai, bi], then Aij = 0;

• If [a`, b`] ⊆ [ai, bi] with ` 6= i, then Ai,a` = 0;

• If Aij has not been defined already, it is nonzero.

For example, if M = {[1, 4], [2, 6], [4, 5]}, then

V =


1 ∗ ∗ ∗ 0 0

0 1 ∗ 0 ∗ ∗
0 0 0 1 ∗ 0

 : all ∗ nonzero


Note that dimV =

∑
S∈M(#S − #S(M)). The map A 7→ rowspan(A) takes V onto a

dense subset of Σ◦M , so to prove the lemma it suffices to show that this map is injective,
i.e. that if A, gA ∈ V for some g ∈ GLk(C), then g = 1.

Use the Bruhat decomposition of GLk to write g = u1tu2, where t is diagonal and u1,
u2 are respectively upper and lower triangular with 1’s on the diagonal. If gA ∈ V , then
u2 = 1, for otherwise gA would have a nonzero entry below some position (i, ai). Next,
t = 1, for otherwise gA would have an entry other than 1 in some position (i, ai). Finally,
u1 = 1, for otherwise if u1 added a multiple of some row ` to a row i < `, then gA would
have a nonzero entry in position Ai,a` (if b` 6 bi) or position Ai,ai+1 (if b` > bi).

We will not need this fact, but it is worth noting that the proof of Lemma 27 only
requires that all left endpoints of intervals in M are distinct, or that all right endpoints
are, but not both (as required by the definition of a rank set).

Lemma 28. The Grassmann dual to an interval positroid variety ΠM ⊆ Grn−k(n) is
ΣM ⊆ Grk(n).
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Proof. Let Π∗M denote the Grassmann dual of ΠM . Recall that V ∈ ΠM if and only if
dim PrjS∗ V 6 #S −#S(M) for all S ∈M . As in the proof of Lemma 16,

dim PrjS∗ V = #S − k + dim PrjS̄ ann(V ) = #S − dim(ann(V ) ∩ 〈S〉).

Thus, W = ann(V ) ∈ Π∗M if and only if dim(W ∩ 〈S〉) > #S(M) for S ∈M . These rank
conditions hold when W ∈ Σ◦M , so ΣM ⊆ Π∗M . Since Π∗M is irreducible and has the same
dimension as ΣM by Lemmas 22 and 27, we are done.

Let φt,i→j be the linear transformation sending ei to tei + (1 − t)ej. For t 6= 0, the
varieties φt,i→jΣM are all isomorphic, so they form a flat family [5, Proposition III-56].
The flat limit limt→0 φt,i→jΣM then exists as a scheme [7, Proposition 9.8]. The key fact
for us is that ΣM and limt→0 φt,i→jΣM have the same Chow ring class, hence the same
cohomology class. Other authors have used these degenerations to calculate cohomology
classes or K-theory classes of subvarieties of Grassmannians, including Coskun [3] and
Vakil [22]. Our goal in this section is to exhibit a degeneration of ΣM , for an appropriate
M , which contains the diagram variety XD(w) as an irreducible component.

For a closed subscheme X ⊆ Grk(n), let Ci→jX = limt→0 φt,i→jX. For E ⊆ [k]× [n],
let Ci→jE be the subset of [k]× [n] obtained from E by replacing columns i and j by their
intersection and union, respectively. That is, (p, q) ∈ Ci→jE if and only if

• q /∈ {i, j} and (p, q) ∈ E, or

• q = i and (p, i), (p, j) ∈ E, or

• q = j and (p, i) ∈ E or (p, j) ∈ E.

Lemma 29 ([14], Proposition 5.3.3). For any E ⊆ [k]× [n] we have ΣCi→jE ⊆ Ci→jΣE.

Given a permutation w ∈ Sn, define a rank set M(w) = {[w(i), i+ n] : 1 6 i 6 n}, so
ΣM(w) ⊆ Grn(2n). Then

τ 2nf−1
M(w) = (n+ 1) · · · (2n)(w(1) + 2n) · · · (w(n) + 2n) = (w × 12 · · ·n)τ−n.

Here, for w ∈ Sn and v ∈ Sm, w × v is the permutation in Sn+m sending i to w(i) if i 6 n
and to v(i− n) + n otherwise. By Lemmas 28 and 16, ΣM(w) = Πτ2nf−1

M(w)
. It is clear from

Definition 14 that Fw×12···n = Fw, so Theorem 15 gives

[ΣM(w)] = [Πτ2nf−1
M(w)

] = φ(Fw×12···n) = φ(Fw).

In fact, ΣM(w) is a graph Schubert variety as defined in [10, §6], where it is also shown that
[ΣM(w)] = φ(Fw).

On the other hand, it is known [17] that sD(w) = Fw where D(w) is the Rothe diagram
of w:

D(w) = {(i, w(j)) ∈ [n]× [n] : i < j, w(i) > w(j)}.
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For example,

D(3142) =

◦ ◦ · ·
· · · ·
· ◦ · ·
· · · ·

Here we are using ◦ for points of [n]× [n] in D(w) and · for points not in it. We also use
matrix coordinates, meaning that (1, 1) is at the upper left.

Let Cw be the composition of the (commuting) operators Cn+i→w(i) for i ∈ [n], acting
either on subsets of [2n] or subschemes of Grn(2n) as before.

Theorem 30. For w ∈ Sn, the diagram variety XD(w) is an irreducible component of
CwΣM(w).

Proof. Define
E(w) = ([n]× [n] \D(w)) ∪ {(i, n+ i) : i ∈ [n]},

so that XD(w) = ΣE(w). Since codim ΣM(w) = `(w) = codimXD(w), it suffices by Lemma 29
to show that ΣCwM(w) = ΣE(w).

Recall that we identify M(w) with the set {(i, j) : i ∈ [n], w(i) 6 j 6 i + n}. First,
if j 6 n then (i, j) /∈ CwM(w) if and only if (i, j), (i, w−1(j) + n) /∈M(w), if and only if
j < w(i) and i < w−1(j), if and only if (i, j) ∈ D(w): thus CwM(w) and E(w) agree on
[n]× [n]. For instance, ΣM(3142) containsrowspan


0 0 ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 ∗ ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗




as a dense subset, and C3142ΣM(3142) accordingly containsrowspan


0 0 ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ 0 ∗ ∗ 0 0 ∗ 0
∗ ∗ ∗ ∗ ∗ 0 ∗ ∗


 .

As we see in this example, CwM(w) and E(w) need not agree on [n] × [n + 1, 2n].
However, note that (i, j + n) ∈ CwM(w) if and only if i > j and w(j) > w(i), and it is
easy to check that this is equivalent to row j of D(w) containing row i. Thus, if A is a
matrix whose nonzero entries are exactly in positions CwM(w), then a row operation can
be performed on rows i and j which replaces the ∗ in position (i, j + n) by 0 without
changing the pattern of ∗’s in [n]× [n]. This shows that ΣCwM(w) = ΣE(w).

Since [limt→0 φt,wΣM(w)] = [ΣM(w)], an immediate corollary is an upper bound on
[XD(w)].

Theorem 31. φ(Fw)− [XD(w)] is a nonnegative combination of Schubert classes.
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However, this difference of classes can be nonzero. Indeed, the counterexample D =
{(1, 1), (2, 2), (3, 3), (4, 4)} to Conjecture 5 discussed in Section 2 provides an example.
Take w = 21436587. Then D(w) = {(1, 1), (3, 3), (5, 5), (7, 7)} can be obtained from D
by permuting rows and columns, and viewing D in a larger rectangle. Neither of these
operations on diagrams affects sD or [XD], identifying the latter with its pullback along
the embeddings of Grk(n) into Grk(n+1) or Grk+1(n+1).
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