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Abstract

In a recent article, G. Malle and G. Navarro conjectured that the p-blocks of a
finite group all of whose height 0 characters have the same degree are exactly the
nilpotent blocks defined by M. Broué and L. Puig. In this paper, we check that this
conjecture holds for spin-blocks of the covering group 2.An of the alternating group
An, thereby solving a case excluded from the study of quasi-simple groups by Malle
and Navarro.

1 Introduction

In a recent paper ([3]), G. Malle and G. Navarro have formulated a conjecture about
nilpotent blocks of finite groups. The notion of nilpotent block was first introduced by M.
Broué and L. Puig in [1], and should be the most natural to study from a local point of
view. However, the definition given by Broué and Puig uses the Alperin-Broué subpairs,
making the detection of nilpotent blocks a difficult problem. One strong property of
nilpotent blocks is that, if a p-block B of a finite group G is nilpotent, then all the height
zero characters χ ∈ Irr0(B) have the same degree. In [3], Malle and Navarro conjecture
that the converse also holds, therefore giving a global characterization of nilpotent blocks
which is visible in the character table of G.

In their paper, Malle and Navarro prove that their conjecture is true whenever B is the
principal block of G ([3, Theorem 3.1]), or if the defect group D of B is normal in G ([3,

Keywords: Representation Theory, Symmetric Group, Covering Groups, Bar-Partitions

the electronic journal of combinatorics 18 (2011), #P217 1



Theorem 5.2]). They also prove that it holds whenever D is abelian, provided Brauer’s
Height Zero Conjecture holds ([3, Theorem 4.1]), and make considerable progress in the
case of p-solvable groups. Finally, they give a proof of their conjecture for all finite quasi-
simple groups ([3, Theorem 6.1]), with the possible exception of quasi-isolated blocks
of exceptional groups of Lie type in bad characteristic, and faithful blocks of the 2-fold
covering group 2.An of the alternating group An (n ≥ 14).

The object of this paper is to prove that the covering group 2.An does not in fact
yield any counter-example to the conjecture of Malle and Navarro, i.e. that any block of
2.An all of whose height zero characters have the same degree is nilpotent (Corollary 4.2).
In Section 2, we introduce the classical results about characters and blocks we need to
study the case of 2.An. In Section 3, we construct, for blocks of 2.Sn with non-abelian
defect group, height zero characters with distinct degrees. Finally, Section 4 is devoted to
restricting these characters to 2.An and checking that they do provide the desired result
in this case.

Note that, even though our method is analogous to that used by Malle and Navarro
in the case of An, the fact that we use bar-partitions and bars instead of partitions and
hooks induces several complications. Also, there is no clear bar-analogue of the relative
hook-formula for character degrees they use in the symmetric group.

2 Characters and blocks of covering groups

In this section, we present an overview of the representation theory of the covering groups
of Sn and An. These groups were first introduced and studied by I. Schur in [6]. Unless
stated otherwise, all the results in this section (and references for proofs) can found for
example in [5].

The symmetric group Sn has, for n ≥ 4, two non-isomorphic 2-fold covering groups
(only one if n = 6), which have the same character table. We therefore denote, slightly
abusively, by 2.Sn one of these covering groups. Then 2.Sn has center 〈 z 〉 of order 2,
and 2.Sn/〈 z 〉 ∼= Sn. The group 2.Sn has a (unique, normal) subgroup of index 2, which
is the unique 2-fold covering group 2.An of the alternating group An.

The irreducible complex characters χ of 2.Sn and 2.An fall into two categories. If
z ∈ ker(χ), then χ is just lifted from an irreducible character of Sn or An. Otherwise, χ
is a faithful character, also called spin-character , and corresponds to a projective repre-
sentation of Sn or An.

The spin-characters of 2.Sn and 2.An are canonically labelled by the bar-partitions of
n, i.e. partitions of n in distinct parts. If λ = (a1 > · · · > am > 0) is a bar-partition of n,
then we let m(λ) = m and σ(λ) = (−1)n−m(λ). If σ(λ) = 1, then λ labels a unique spin-
character of 2.Sn. The restriction to 2.An of this character is the sum of two associate

spin-characters, both labelled by λ. If, on the other hand, σ(λ) = −1, then λ labels two
associate spin-characters of 2.An; both have the same restriction to 2.An, which is the
unique spin-character of 2.An labelled by λ.
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The notion that replaces that of hooks in partitions is given by bars in bar-partitions.
If λ = (a1 > · · · > am > 0) is a bar-partition of n, then the set of bar-lengths in λ is

H̄(λ) =
⋃

1≤i≤m

{1, . . . , ai} ∪ {ai + aj | j > i} \ {ai − aj | j > i}.

For any integer ℓ, we call ℓ̄-weight of λ the number of bars in λ whose length is divisible
by ℓ. Such a bar is called an (ℓ)-bar.

Writing H(λ) for the product of all the bar-lengths in λ, we have, in analogy with the
Hook-Length Formula for the degree of characters of Sn, that any spin-character of 2.Sn

labelled by λ has degree 2⌊(n−m(λ))/2⌋ n!
H(λ)

.

If we now take a prime p, then the distribution of irreducible characters of 2.Sn and
2.An into p-blocks depends on the parity of p.

If p is odd, then every p-block B of 2.Sn or 2.An contains either no spin-character, or
only spin-characters. A block with no spin-character is really just a block of Sn or An,
and its defect groups are the same as in these groups. In particular, the conjecture of
Malle and Navarro holds for these blocks of 2.An because it holds in An (by [3, Corollary
9.3]). If B contains only spin-characters, then B is refered to as a spin-block , or faithful

block . Such a block has either defect 0, hence contains a unique spin-character (labelled
by a bar-partition with p̄-weight 0), or it consists exactly of all the spin-characters labelled
by bar-partitions with a given p̄-core (the bar-partition obtained by removing from a bar-
partition all the bars of length divisible by p). This is known as the Morris Conjecture,
which is the analogue of the Nakayama Conjecture for the symmetric group. Each spin-
block B of 2.Sn of p̄-weight w ≥ 1 covers a unique block B∗ of 2.An which is labelled by
the same p̄-core (and each spin-block of 2.An is covered by a unique spin-block of 2.Sn).
The defect groups of B and B∗ are entirely determined by w, and are the same as the
defect groups of any block of p-weight w in Sn. We also see from the degree formula
that a spin-character of B has height 0 if and only if it’s labelled by a bar-partition of
(p̄-weight w and) maximal p̄2-weight, maximal p̄3-weight, ...

If, on the other hand, p = 2, then each p-block of positive defect of 2.Sn or 2.An

contains both spin-characters and non-spin-characters. To check that Malle and Navarro’s
conjecture holds in this case, it is thus sufficient to check that, if such a block has non-
abelian defect, then it contains two non-spin-characters of height 0 with distinct degrees.
But, by [3, Corollary 9.3], any non-spin-block B of 2.An all of whose height zero non-
spin-characters have the same degree would correspond to a block b of An with the same
property, and thus of weight 0 in An, so that B has (abelian) defect group of order 2 in
2.An.

From now on, we therefore always suppose that p is an odd prime, and only consider
spin-blocks.
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3 Bar-partitions with different products of bar-

lengths

Take any odd prime p, and let γ be a p̄-core. Until the last result of this section, we
assume furthermore that γ 6= ∅.

We write γ = (a1 > · · · > am > 0) and Xγ = {a1, . . . , am}. The bars in γ correspond
to

• pairs (x, y), with 0 ≤ x < y, x 6∈ Xγ and y ∈ Xγ (these have length y− x, and type
2 if x = 0 and type 1 if x 6= 0), and

• pairs (i, j), with 1 ≤ i < j ≤ m (these have length ai + aj and type 3).

We start by giving three easy consequences of the fact that γ is a p̄-core. Firstly, for
all 1 ≤ i ≤ m, we have ai 6≡ 0 (mod p) (otherwise, γ would have a (p)-bar of type 2). We
can thus arrange the ai’s according to their value mod p, and let

X0 = {ai | ai ≡ 0 (mod p)} = ∅ and Xj = {ai | ai ≡ j (mod p)} for 1 ≤ j ≤ p− 1.

If Xj 6= ∅, then Xp−j = ∅ (otherwise, we would have at = pkt + j ∈ Xj and as =
pks + (p− j) ∈ Xp−j, and thus the (p)-bar at + as = p(kt + ks + 1) of type 2). Finally, if
Xj 6= ∅, then Xj = {j + kp , 0 ≤ k ≤ bj}. Indeed:

• j ∈ Xj since, otherwise, (j, ai) (for any ai ∈ Xj) would give a (p)-bar of type 1
(Note that, obviously, if j ∈ Xγ , then j ∈ Xj);

• if j + sp ∈ Xj for some s > 0, then j + tp ∈ Xj for all 0 ≤ t < s (since, otherwise,
(j + tp, j + sp) would give a (p)-bar of type 1).

If Xj = ∅, then we set bj = −1. Note that our definition of bj differs from that of Malle
and Navarro (see [3, Theorem 9.1]), which is the number of beads on the j-th runner of
the p-abacus of γ∗, the partition (which is a p-core) corresponding to the β-set Xγ. Our
bj is always exactly 1 less.
For any 0 ≤ j ≤ p− 1, we also write cj = j + bjp. Here again, our definition differs from
that of Malle and Navarro.

Now take any integer w ≥ 1. We define some bar-partitions with p̄-core γ and p̄-weight
w.

• Define λ
(w)
0 by letting X

λ
(w)
0

= Xγ ∪{pw} =
⋃p−1

j=0 X
0,(w)
j (so that X

0,(w)
0 = {pw} and

X
0,(w)
j = Xj for 1 ≤ j ≤ p− 1). Note that λ

(w)
0 can be defined even if γ = ∅.

• If Xi 6= ∅ (for some 1 ≤ i ≤ p−1), then define λ
(w)
i by letting X

λ
(w)
i

= Xγ∪{i+bip+

pw} \ {i+ bip} =
⋃p−1

j=0 X
i,(w)
j (so that X

i,(w)
0 = ∅, X

i,(w)
j = Xj for 1 ≤ j 6= i ≤ p− 1,

and X
i,(w)
i = Xi ∪ {i+ bip+ pw} \ {i+ bip}).
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Note that λ
(w)
0 and (if Xi 6= ∅) λ

(w)
i are bar-partitions of |γ| + pw, with p̄-weight at

least w and p̄-core γ, and thus p̄-weight exactly w.
Note also that, by definition, all the (p)-bars in λ

(w)
0 are of type 1 or of type 2 (and

there’s exactly one of these), while, if Xi 6= ∅, then all the (p)-bars in λ
(w)
i are of type 1.

Finally, note that m(λ
(w)
0 ) = m(γ) + 1, while, if Xi 6= ∅, then m(λ

(w)
i ) = m(γ).

First, we suppose that Xi 6= ∅, and we want to compare H(λ
(w)
i ) and H(λ

(w−1)
i ) (the

products of all bar-lengths in λ
(w)
i and λ

(w−1)
i respectively). Note that, if w = 1, then

λ
(w−1)
i = γ. Write H(λ

(w)
i ) = Hm(λ

(w)
i )Hu(λ

(w)
i ) and H(λ

(w−1)
i ) = Hm(λ

(w−1)
i )Hu(λ

(w−1)
i ),

where Hm (respectively Hu) stands for the product of all mixed (respectively unmixed)
bar-lengths, i.e. of type 2 or 3 (respectively of type 1).

Proposition 3.1. With the above notation, we have

Hu(λ
(w)
i )

Hu(λ
(w−1)
i )

= pw
∏

0≤j 6=i≤p−1

|p(w − 1) + ci − cj|

and
Hm(λ

(w)
i )

Hm(λ
(w−1)
i )

=
∏

j 6=i,Xj 6=∅

ci + cj + pw

ci + p(w − 1) + j
.

Proof. To prove the first part, one can simply compare explicitly all the unmixed bars in
λ

(w)
i and λ

(w−1)
i . Another, more elegant way, is to apply [3, Theorem 9.1] (or the special

case that immediately follows) to the partitions (λ
(w)
i )∗ and (λ

(w−1)
i )∗, which correspond

to the β-sets X
λ
(w)
i

and X
λ
(w−1)
i

. Indeed, these do have p-core γ∗, p-weight w and w − 1

respectively, and their hooks and hook-lengths correspond exactly to the unmixed bars
and their lengths in λ

(w)
i and λ

(w−1)
i . The fact that our definition of the cj’s differs from

that of Malle and Navarro doesn’t matter, since only the difference ci − cj appears, and
this doesn’t depend on the definition used.

We now turn to the second part. The only mixed bars which are not common to λ
(w)
i

and λ
(w−1)
i have lengths:

• in λ
(w)
i : {i+ bip+ pw + x

(j)
k | j 6= i, Xj 6= ∅, 0 ≤ k ≤ bj}, where x

(j)
k = j + kp;

• in λ
(w−1)
i : {i+ bip+ p(w − 1) + x

(j)
k | j 6= i, Xj 6= ∅, 0 ≤ k ≤ bj}.

Since i+ bip+ pw + x
(j)
k = i+ bip+ p(w − 1) + x

(j)
k+1, when we divide out, we’re only left

with k = bj in λ
(w)
i and k = 0 in λ

(w−1)
i . This yields

Hm(λ
(w)
i )

Hm(λ
(w−1)
i )

=
∏

j 6=i,Xj 6=∅

i+ bip+ pw + j + bjp

i+ bip+ p(w − 1) + j
=

∏

j 6=i,Xj 6=∅

ci + cj + pw

ci + p(w − 1) + j
.
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Corollary 3.2. If Xi 6= ∅, then

H(λ
(w)
i )

H(λ
(w−1)
i )

= pw
∏

j 6=i, Xj 6=∅

|p(w − 1) + ci − cj|(pw + ci + cj)
∏

Xk=Xp−k=∅

|pw + ci − k|.

Proof. From Proposition 3.1, we easily obtain, if Xi 6= ∅,

H(λ
(w)
i )

H(λ
(w−1)
i )

= pw
∏

0≤j 6=i≤p−1

|p(w − 1) + ci − cj |
∏

j 6=i,Xj 6=∅

ci + cj + pw

ci + p(w − 1) + j
.

Separating the first product according to whether Xj = ∅ or not, we get

pw
∏

j 6=i, Xj 6=∅

|p(w−1)+ci−cj |(pw+ci+cj)
∏

k 6=i,Xk=∅

|p(w−1)+ci−ck|
∏

j 6=i,Xj 6=∅

1

p(w − 1) + ci + j
.

Now, if Xj 6= ∅, then Xp−j = ∅ (since γ is a p̄-core), so that p− j 6= i (since Xi 6= ∅), and
j = −[(p− j) − p] = −cp−j . We thus have

∏

k 6=i, Xk=∅

|p(w − 1) + ci − ck|
∏

j 6=i,Xj 6=∅

1

p(w − 1) + ci + j

=
∏

k 6=i, Xk=∅

|p(w − 1) + ci − ck|
∏

p−j 6=i,Xj 6=∅, Xp−j=∅

1

p(w − 1) + ci − cp−j

=
∏

k 6=i, Xk=∅, Xp−k 6=∅

|p(w − 1) + ci − ck|

p(w − 1) + ci − ck

∏

k 6=i, Xk=Xp−k=∅

|p(w − 1) + ci − ck|.

If Xk = ∅, then ck = k − p < 0, so that p(w − 1) + ci − ck > 0 (since ci ≥ 0), whence the
first product is 1, and p(w − 1) + ci − ck = pw + ci − k. Finally, if Xk = ∅, then k 6= i.
We therefore get, if Xi 6= ∅,

H(λ
(w)
i )

H(λ
(w−1)
i )

= pw
∏

j 6=i, Xj 6=∅

|p(w − 1) + ci − cj|(pw + ci + cj)
∏

Xk=Xp−k=∅

|pw + ci − k|.

Remark: If Xi 6= ∅, then ci ≥ i, so that ci − k ≥ i − k > −p and, whenever w ≥ 1,
we have |pw + ci − k| = pw + ci − k.

We now establish the analogous result for the bar-partitions λ
(w)
0 and λ

(w−1)
0 :

Proposition 3.3. With the above notation, we have
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• if w > 1, then

Hu(λ
(w)
0 )

Hu(λ
(w−1)
0 )

= pw
∏

0<j≤p−1

|p(w − 1) − cj|

and
Hm(λ

(w)
0 )

Hm(λ
(w−1)
0 )

=
∏

j 6=0, Xj 6=∅

cj + pw

p(w − 1) + j
;

• if w = 1, then

Hu(λ
(w)
0 )

Hu(λ
(w−1)
0 )

= p

∏

j 6=0 |cj|
∏

1≤i≤m ai

and
Hm(λ

(w)
0 )

Hm(λ
(w−1)
0 )

=
∏

j 6=0, Xj 6=∅

∏

0≤k≤bj

(p+ j + kp) =
∏

1≤i≤m

(ai + p).

Proof. We start with the unmixed bars. All the unmixed bars (x, y) in λ
(w)
0 such that

x 6≡ 0 (mod p) and y 6≡ 0 (mod p) are also in λ
(w−1)
0 , and conversely. Hence we just need

to consider the unmixed bars (x, y) with x ≡ 0 (mod p) or y ≡ 0 (mod p).

Those with x ≡ y ≡ 0 (mod p) contribute exactly pw to
Hu(λ

(w)
0 )

Hu(λ
(w−1)
0 )

.

Next suppose y ≡ 0 (mod p), and x ≡ j (mod p), with 0 < j ≤ p− 1. The bar-lengths
to consider are thus:

• in λ
(w)
0 : {pw−x

(j)
k | j 6= 0, bj ≤ w−2, 1 ≤ k ≤ w−bj −1}, where x

(j)
k = j+bjp+kp;

• in λ
(w−1)
0 : {p(w − 1) − x

(j)
k | j 6= 0, bj ≤ w − 3, 1 ≤ k ≤ w − bj − 2}. These only

appear if w > 1; however, since, when w = 1, {j | bj ≤ w−3} = ∅, the result applies
in this case too.

Now, for any j 6= 0 such that bj ≤ w − 3, we have pw − x
(j)
k = p(w − 1) − x

(j)
k−1 for all

1 ≤ k ≤ w − bj − 1, so that everything cancels out in
Hu(λ

(w)
0 )

Hu(λ
(w−1)
0 )

, except for k = 1. We’re

thus left exactly with pw − x
(j)
1 = p(w − 1) − cj. If, on the other hand, bj = w − 2, then

the only bar that appears is given by k = 1 in λ
(w)
0 , and it contributes p(w − 1) − cj to

Hu(λ
(w)
0 )

Hu(λ
(w−1)
0 )

.

Finally, suppose x ≡ 0 (mod p), and y ≡ j (mod p), with 0 < j ≤ p − 1. Now, for
X ∈ {X

λ
(w)
0
, X

λ
(w−1)
0

}, we must have x = pr 6∈ X, y = j + kp ∈ X, whence k ≤ bj , and

y > x, so that k ≥ r. Hence we just need to exclude r = w in λ
(w)
0 (since wp ∈ X

λ
(w)
0

),

and r = w − 1 in λ
(w−1)
0 (since (w − 1)p ∈ X

λ
(w−1)
0

), except if w = 1 (in which case

x = (w − 1)p = 0 6∈ X
λ
(w−1)
0

= Xγ). We thus get, for the product of these bar-lengths,

the electronic journal of combinatorics 18 (2011), #P217 7



• in λ
(w)
0 :

∏

r≥0, r 6=w

∏

r≤k≤bj (bj≥r)

(j + kp− pr);

• in λ
(w−1)
0 :

∏

r≥0, r 6=w−1 if w>1

∏

r≤k≤bj (bj≥r)

(j + kp− pr).

After cancellations (corresponding to fixed r 6∈ {w, w − 1}), we’re left with

• in λ
(w)
0 :

∏

w−1≤k≤bj (bj≥w−1)

(j + kp− p(w − 1));

• in λ
(w−1)
0 :

∏

w≤k≤bj (bj≥w)

(j + kp− pw),

and also, if w = 1,
∏

w−1≤k≤bj (bj≥w−1)

(j + kp− p(w − 1)).

After further cancellations, we see that, whether bj ≥ w or bj = w − 1, we’re only left

with k = bj in λ
(w)
0 , which contributes j + bjp− p(w− 1) = cj − p(w− 1) to

Hu(λ
(w)
0 )

Hu(λ
(w−1)
0 )

. In

addition to this, and only in the case w = 1, we have, left in λ
(w−1)
0 ,

∏

w−1≤k≤bj (bj≥w−1)

(j +

kp− p(w − 1)) =
∏

0≤k≤bj (bj≥0)

(j + kp) =
∏

1≤i≤m

ai.

Putting together the three cases for the values of x and y, we obtain the announced

expressions for
Hu(λ

(w)
0 )

Hu(λ
(w−1)
0 )

.

Turning now to mixed bars, we see that the only ones which are not common to λ
(w)
0

and λ
(w−1)
0 have lengths

• in λ
(w)
0 : {pw + x

(j)
k | j 6= 0, Xj 6= ∅, 0 ≤ k ≤ bj}, where x

(j)
k = j + kp;

• in λ
(w−1)
0 , only if w > 1: {p(w − 1) + x

(j)
k | j 6= 0, Xj 6= ∅, 0 ≤ k ≤ bj}.

If w > 1, then pw+x
(j)
k = p(w− 1)+ x

(j)
k+1, so that we’re only left with k = bj in λ

(w)
0 and

k = 0 in λ
(w−1)
0 . This yields

Hm(λ
(w)
0 )

Hm(λ
(w−1)
0 )

=
∏

j 6=0, Xj 6=∅

pw + j + bjp

p(w − 1) + j
.

If w = 1, then we obtain

Hm(λ
(w)
0 )

Hm(λ
(w−1)
0 )

=
∏

j 6=0, Xj 6=∅

∏

0≤k≤bj

(p+ j + kp) =
∏

1≤i≤m

(ai + p),

as announced.
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Corollary 3.4.

H(λ
(w)
0 )

H(λ
(w−1)
0 )

=



















pw
∏

j 6=0

|p(w − 1) − cj|
∏

j 6=0

pw + cj
p(w − 1) + j

if w > 1

p
∏

j 6=0

|cj|
∏

1≤i≤m

ai + p

ai
if w = 1

.

We can now show that it’s always possible to construct two bar-partitions with same
bar-core γ 6= ∅ and weight w ≥ 2 such that the corresponding products of bar-lengths are
distinct.

Theorem 3.5. Suppose there exist i1 6= i2 such that i1, i2 > 0, Xi1 6= ∅ and Xi2 6= ∅, and

suppose ci1 > ci2 > cj for all j 6∈ {i1, i2}. Then, whenever w ≥ 2, we have H(λ
(w)
i1

) >

H(λ
(w)
i2

). If, on the other hand, there exists a unique i 6= 0 such that Xi 6= ∅, then,

whenever w ≥ 1, we have H(λ
(w)
i ) > H(λ

(w)
0 ).

Proof. First suppose i1, i2 > 0, Xi1 6= ∅, Xi2 6= ∅, and ci1 > ci2 > cj for all j 6∈ {i1, i2}.
We use Corollary 3.2.

Whenever Xk = Xp−k = ∅, we have k 6∈ {i1, i2}, and pw + ci1 − k > pw + ci2 − k > 0
as soon as w ≥ 1. Thus

∏

Xk=Xp−k=∅

(pw + ci1 − k) >
∏

Xk=Xp−k=∅

(pw + ci2 − k).

If, on the other hand, j 6∈ {i1, i2} and Xj 6= ∅, then 0 < cj < ci1 < ci2 . Hence ci1 +
cj , ci2 + cj, ci1 − cj , ci2 − cj > 0. Thus 0 < pw + ci2 + cj < pw + ci1 + cj, and

|p(w − 1) + ci2 − cj | = p(w − 1) + ci2 − cj < p(w − 1) + ci1 − cj = |p(w − 1) + ci1 − cj |,

whence

|p(w − 1) + ci1 − cj|(pw + ci1 + cj) > |p(w − 1) + ci2 − cj |(pw + ci2 + cj).

Finally, ci1 − ci2 > 0, so that |p(w − 1) + ci1 − ci2 | = p(w − 1) + ci1 − ci2 and

|p(w − 1) + ci1 − ci2|(pw + ci1 + ci2) ≥ |p(w − 1) + ci2 − ci1 |(pw + ci2 + ci1),

and this last inequality is in fact strict unless w = 1, in which case the spin block we
consider has abelian defect.

We thus obtain
∏

j 6=i1, Xj 6=∅

|p(w− 1) + ci1 − cj |(pw+ ci1 + cj) >
∏

j 6=i2, Xj 6=∅

|p(w− 1) + ci2 − cj |(pw+ ci2 + cj),

whence
H(λ

(w)
i1

)

H(λ
(w−1)
i1

)
≥

H(λ
(w)
i2

)

H(λ
(w−1)
i2

)
whenever w ≥ 1,
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and this inequality is strict whenever w ≥ 2. Since λ
(0)
i1

= λ
(0)
i2

= γ, induction on w gives

that H(λ
(w)
i1

) > H(λ
(w)
i2

) if w ≥ 2.

Suppose now that there exists a unique i 6= 0 such that Xi 6= ∅. Then X = Xi =
{i + kp, 0 ≤ k ≤ bi} = {am, . . . , a1} = {i, i + p, . . . , ci}. Also, ci = i + bip ≥ i, and
cj = j − p whenever j 6= i. By Proposition 3.1, we have, whenever w ≥ 1,

H(λ
(w)
i )

H(λ
(w−1)
i )

= pw
∏

0≤j 6=i≤p−1

|p(w − 1) + ci − (j − p)| (the other product being 1)

= pw
∏

0≤j 6=i≤p−1

|pw + ci − j| = pw
∏

0≤j 6=i≤p−1

(pw + ci − j).

On the other hand, by Corollary 3.4, we have, if w = 1,

H(λ
(w)
0 )

H(λ
(w−1)
0 )

= p
∏

j 6=0

|cj|
∏

1≤k≤m

ak + p

ak
= p

(

∏

j 6=0

|j − p|

)

ci + p

i

= p

(

∏

1≤j≤p−1

(p− j)

)

ci + p

i
= p(p− 1)!

ci + p

i
= p!

ci + p

i
,

while, if w > 1, then we have

H(λ
(w)
0 )

H(λ
(w−1)
0 )

= pw
∏

j 6=0

|p(w − 1) − cj | (the other product being 1)

= pw|p(w − 1) − ci|
∏

1≤j 6=i≤p−1

|p(w − 1) − (j − p)|

= pw|p(w − 1) − ci|
∏

1≤j 6=i≤p−1

(pw − j).

If w > 1, then, whenever 1 ≤ j 6= i ≤ p− 1, we have pw− j < pw+ ci − j, and (for j = 0)
|p(w − 1) − ci| < p(w − 1) + ci < pw + ci − 0. Hence, in this case,

H(λ
(w)
i )

H(λ
(w−1)
i )

>
H(λ

(w)
0 )

H(λ
(w−1)
0 )

.

If w = 1, then

H(λ
(1)
i )

H(λ
(0)
i )

= p
∏

0≤j 6=i≤p−1

(p+ ci − j) = p(p+ ci)
∏

1≤j 6=i≤p−1

(p+ ci − j).

Now
∏

1≤j 6=i≤p−1(p + ci − j) ≥
∏

1≤j 6=i≤p−1(p + i − j) (since ci ≥ i > 0). We rewrite
∏

1≤j 6=i≤p−1(p+i−j) as
∏

1≤j≤i−1(p+i−j)
∏

i+1≤j≤p−1(p+i−j). Then
∏

1≤j≤i−1(p+i−j) =
(p + 1)(p + 2) · · · (p + i − 1) > 1.2 · · · (i − 1) = (i − 1)!, and

∏

i+1≤j≤p−1(p + i − j) =
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(p−1)(p−2) · · · (p+i−(p−1)) = (p−1)!
i!

. Hence
∏

1≤j 6=i≤p−1(p+ci−j) >
(i−1)!(p−1)!

i!
= (p−1)!

i

and
H(λ

(1)
i )

H(λ
(0)
i )

> p(p+ ci)
(p− 1)!

i
= p!

p+ ci
i

=
H(λ

(1)
0 )

H(λ
(0)
0 )

.

Since λ
(0)
i = λ

(0)
0 = γ, induction on w yields that H(λ

(w)
i ) > H(λ

(w)
0 ) whenever w ≥ 1.

Finally, we deal with the case of the principal spin-blocks, that is the spin-blocks of
2.Sn and 2.An labelled by the empty bar-core.

Proposition 3.6. For any w ≥ 2 and odd prime p, the bar-partitions µ
(w)
0 = (pw) and

µ
(w)
1 = (pw − 1, 1) of pw satisfy H(µ

(w)
0 ) > 2H(µ

(w)
1 ).

Proof. This is obvious, since the bar-lengths in µ
(w)
0 are {1, 2, . . . , pw − 1, pw}, while

those in µ
(w)
1 are {1, 2, . . . , pw − 3, pw − 1, pw, 1}, and, since w ≥ 2 and p ≥ 3, we have

pw − 2 > 2.

4 Height zero spin-characters of 2.Sn and 2.An

We can now prove our main result

Theorem 4.1. Let n ≥ 4 be any integer and p be an odd prime. If B is a spin p-block of

2.An with non-abelian defect groups, then B contains two height 0 characters which have

distinct degrees.

Proof. Let γ be the p̄-core labelling B and the corresponding spin p-block B∗ of 2.Sn.
Let w be the p̄-weight of B and B∗. Since B has non-abelian defect, we have w ≥ p. We
use the notation of Section 3.

First suppose that γ = ∅, so that n = pw. Take any two spin-characters χ0 and χ1

of 2.Sn labelled respectively by the bar-partitions µ
(w)
0 = (pw) and µ

(w)
1 = (pw − 1, 1),

and take spin-characters ψ0 and ψ1 appearing in the restrictions to 2.An of χ0 and χ1

respectively. In particular, we have ψ0, ψ1 ∈ Irr0(B). We have

χ0(1) = 2⌊(n−1)/2)⌋ n!

H(µ
(w)
0 )

and χ1(1) = 2⌊(n−2)/2)⌋ n!

H(µ
(w)
1 )

.

First suppose that n = pw is odd. Then σ(µ
(w)
0 ) = 1 and σ(µ

(w)
1 ) = −1, so that,

when restricted to 2.An, χ0 splits while χ1 doesn’t. We thus have ψ0(1) = 1
2
χ0(1) and

ψ1(1) = χ1(1). Since, in this case, ⌊(n−2)/2)⌋ = ⌊(n−1)/2)⌋−1, we have, by Proposition
3.6

1

2
χ0(1) =

2⌊(n−1)/2)⌋−1n!

H(µ
(w)
0 )

=
2⌊(n−2)/2)⌋n!

H(µ
(w)
0 )

<
2⌊(n−2)/2)⌋n!

H(µ
(w)
1 )

= χ1(1),

so that ψ0, ψ1 ∈ Irr0(B) satisfy ψ0(1) < ψ1(1).

the electronic journal of combinatorics 18 (2011), #P217 11



Suppose now that n is even. In this case, when restricted to 2.An, χ1 splits while χ0

doesn’t, and ⌊(n− 2)/2)⌋ = ⌊(n− 1)/2)⌋. By Proposition 3.6, we get

ψ0(1) = χ0(1) =
2⌊(n−1)/2)⌋n!

H(µ
(w)
0 )

<
2⌊(n−2)/2)⌋n!

2H(µ
(w)
1 )

=
1

2
χ1(1) = ψ1(1),

so that ψ0, ψ1 ∈ Irr0(B) satisfy ψ0(1) < ψ1(1).
This proves that, whenever the principal spin p-block B of 2.An has weight w ≥ 2

(in particular, when B has non-abelian defect group), B contains two height 0 characters
with distinct degrees.

From now on, we therefore suppose that γ 6= ∅. If there exist i 6= j such that Xi 6= ∅
and Xj 6= ∅, then we can suppose ci > cj > ck for all k 6∈ {i, j}, and consider the bar-

partitions λ
(w)
i and λ

(w)
j of n constructed in Section 3. They have the same number of

parts m(λ
(w)
i ) = m(λ

(w)
j ) = m(γ) = m. If χi and χj are spin-characters of 2.Sn labelled

by λ
(w)
i and λ

(w)
j respectively, then, by construction, χi and χj have p-height 0, and, by

Theorem 3.5

χi(1) = 2⌊(n−m)/2)⌋ n!

H(λ
(w)
i )

< 2⌊(n−m)/2)⌋ n!

H(λ
(w)
j )

= χj(1).

Also, σ(λ
(w)
i ) = σ(λ

(w)
j ), so that both χi and χj split when restricted to 2.An, or none of

them does. In both cases, we thus obtain ψi, ψj ∈ Irr0(B) which satisfy ψi(1) < ψj(1).

Now suppose there exists a unique i such that Xi 6= ∅, and consider the bar-partitions
λ

(w)
i and λ

(w)
0 of n. Then m(λ

(w)
i ) = m(γ) = m and m(λ

(w)
0 ) = m + 1. If χi and χ0 are

spin-characters of 2.Sn labelled by λ
(w)
i and λ

(w)
0 respectively, then, by construction, χi

and χ0 have p-height 0, and we have

χi(1) = 2⌊(n−m)/2)⌋ n!

H(λ
(w)
i )

and χ0(1) = 2⌊(n−m−1)/2)⌋ n!

H(λ
(w)
0 )

.

First suppose that n − m is even, so that σ(λ
(w)
i ) = 1 and σ(λ

(w)
0 ) = −1. When

restricted to 2.An, χi thus splits, while χ0 doesn’t. Taking characters ψi and ψ0 in
these restrictions, we obtain, by Theorem 3.5, and since in this case ⌊(n−m− 1)/2)⌋ =
⌊(n−m)/2)⌋ − 1,

1

2
χi(1) =

2⌊(n−m)/2)⌋−1n!

H(λ
(w)
i )

=
2⌊(n−m−1)/2)⌋n!

H(λ
(w)
i )

<
2⌊(n−m−1)/2)⌋n!

H(λ
(w)
0 )

= χ0(1),

so that ψi, ψ0 ∈ Irr0(B) satisfy ψi(1) < ψ0(1).

Suppose now that n−m is odd, so that σ(λ
(w)
i ) = −1 and σ(λ

(w)
0 ) = 1. When restricted

to 2.An, χ0 thus splits, while χi doesn’t. Taking characters ψ0 and ψi in these restrictions,
we have

ψi(1) = χi(1) = 2⌊(n−m)/2)⌋ n!

H(λ
(w)
i )

,
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and, since in this case ⌊(n−m− 1)/2)⌋ = ⌊(n−m)/2)⌋,

ψ0(1) =
1

2
χ0(1) =

2⌊(n−m−1)/2)⌋n!

2H(λ
(w)
0 )

=
2⌊(n−m)/2)⌋n!

2H(λ
(w)
0 )

.

We therefore obtain ψ0(1) 6= ψi(1), unless H(λ
(w)
i ) = 2H(λ

(w)
0 ).

To exclude this last possibility, write H(λ
(w)
i ) = Hp(λ

(w)
i )Hp′(λ

(w)
i ) and H(λ

(w)
0 ) =

Hp(λ
(w)
0 )Hp′(λ

(w)
0 ). Since χi and χ0 both have p-height 0, we have Hp(λ

(w)
i ) = Hp(λ

(w)
0 ).

Also, since all the (p)-bars in λ
(w)
i and λ

(w)
0 are of type 1 or of type 2, Proposition 2.5

in [2] gives Hp′(λ
(w)
i ) ≡ ±H(γ) (mod p) and Hp′(λ

(w)
0 ) ≡ ±H(γ) (mod p). If H(λ

(w)
i ) =

2H(λ
(w)
0 ), and since H(γ) is invertible (mod p), this implies 1 ≡ ±2 (mod p). This can

only happen if p = 3, in which case 1 ≡ −2 (mod p).
We therefore suppose that p = 3, and we first suppose that ci ≥ i+ p. Looking at the

case w = 1 in the proof of Theorem 3.5, we see that, writing {1, 2} \ {i} = {j}, we have

H(λ
(1)
i )

H(γ)
= 3(3 + ci)(3 + ci − j) and

H(λ
(1)
0 )

H(γ)
= 3(3 + ci)

2

i
.

But since ci ≥ i + p, we have 3 + ci − j ≥ 6 + i − j ∈ {5, 7}, so that 3 + ci − j > 2
i

and

H(λ
(1)
i ) > 2H(λ

(1)
0 ). Since, for each 2 ≤ k ≤ w, we have

H(λ
(k)
i )

H(λ
(k−1)
i )

>
H(λ

(k)
0 )

H(λ
(k−1)
0 )

, we finally

obtain that, if p = 3 and ci ≥ i+ p, then H(λ
(w)
i ) > 2H(λ

(w)
0 ). Thus, in this case, we get,

as above, ψi, ψ0 ∈ Irr0(B) such that ψ0(1) 6= ψi(1).
The last case to study is thus when p = 3 and ci = i. In this case, we have γ = (i),

λ
(w)
i = (pw + i) and λ

(w)
0 = (pw, i). The bar lengths in λ

(w)
i are {1, 2, . . . , pw + i}, while

those in λ
(w)
0 are {1, . . . , pw − (i + 1), pw − (i− 1), . . . , pw, pw + i, 1, . . . , i}. We thus

have
H(λ

(w)
i )

H(λ
(w)
0 )

=

{

pw − 1 if i = 1
(pw+1)(pw−2)

2
if i = 2

.

Since p = 3 and w ≥ 2, we obtain in both cases that H(λ
(w)
i ) > 2H(λ

(w)
0 ). Thus, in this

case also, we get ψi, ψ0 ∈ Irr0(B) such that ψ0(1) 6= ψi(1).
Finally, we have shown that, if there exists a unique i such that Xi 6= ∅, then we can

find ψi, ψ0 ∈ Irr0(B) such that ψ0(1) 6= ψi(1). This ends the proof.

Corollary 4.2. Let n ≥ 4 be any integer and p be a prime. If B is a p-block of 2.An all

of whose height zero characters have the same degree, then B is nilpotent.

Proof. As we mentionned in Section 2, if p = 2 or if p is odd and B is a non-faithful block,
then B must have cyclic defect groups. Since Brauer’s Height Zero Conjecture is obvious
in this case (as all the characters are linear), [3, Theorem 4.1] implies that B is nilpotent.

If p is odd and B is a spin-block, then, by Theorem 4.1, B must have abelian defect
groups. Since Brauer’s Height Zero Conjecture holds for 2.An for p odd (see [4]), we
deduce from [3, Theorem 4.1] that B is nilpotent.
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