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Abstract

For a positive integer k, a k-relation on a set Ω is a non-empty subset ∆ of the
k-fold Cartesian product Ωk; ∆ is called a k-relation for a permutation group H on
Ω if H leaves ∆ invariant setwise. The k-closure H(k) of H, in the sense of Wielandt,
is the largest permutation group K on Ω such that the set of k-relations for K is
equal to the set of k-relations for H. We study k-relations for finite semi-linear
groups H ≤ ΓL(d, q) in their natural action on the set Ω of non-zero vectors of the
underlying vector space. In particular, for each Aschbacher class C of geometric
subgroups of ΓL(d, q), we define a subset Rel(C) of k-relations (with k = 1 or k = 2)
and prove (i) that H lies in C if and only if H leaves invariant at least one relation
in Rel(C), and (ii) that, if H is maximal among subgroups in C, then an element
g ∈ ΓL(d, q) lies in the k-closure of H if and only if g leaves invariant a single
H-invariant k-relation in Rel(C) (rather than checking that g leaves invariant all
H-invariant k-relations). Consequently both, or neither, of H and H(k) ∩ ΓL(d, q)
lie in C. As an application, we improve a 1992 result of Saxl and the fourth author
concerning closures of affine primitive permutation groups.
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1 Introduction

Let H be a group of semi-linear transformations of a finite vector space V . If H is
reducible, then it preserves a nonzero proper subspace of V ; we can regard this as a unary
relation preserved by H . Similarly, if H preserves a symplectic form, up to scalars and field
automorphisms, then H preserves the binary relation of orthogonality on V with respect
to this form. The aim of this paper is to determine similar unary or binary invariant
relations that characterise each of the Aschbacher classes C1, . . . , C8 of semi-linear groups.
We do this in terms of natural geometric invariants. The Aschbacher classes are defined in
Section 2.2 and the corresponding relations are given in Section 4, following a discussion
of special cases in Section 3. We then apply our results to k-closures (in the sense of
Wielandt [19]) of affine permutation groups, extending work of Jan Saxl and the fourth
author [14].

More formally, for a positive integer k, a k-relation on a set Ω is a non-empty subset

of Ωk =

k
︷ ︸︸ ︷

Ω × · · · × Ω, and for H ≤ Sym(Ω), the set of H-invariant k-relations is denoted
Rel(H, k). The k-closure H(k) of a permutation group H ≤ Sym(Ω) is the largest subgroup
of Sym(Ω) with the same set of invariant k-relations as H , and Wielandt [19] noted that
if k > k′ then H ≤ H(k) ≤ H(k′).

In this paper we consider subgroups of ΓL(d, q) lying in certain classes Ci, for i ∈
{1, . . . , 7,Sp,U,O}, which are defined in Subsection 2.2 and are similar to the classes
in Aschbacher’s classification [1]. For each i, we define an integer ki ∈ {1, 2} and a set
Rel(i, ki) of ki-relations on Ω. The definitions of the ki and references to the definitions
of Rel(i, ki), given in Section 4, are summarised in Table 1. We prove that membership
of a subgroup in the class Ci is equivalent to invariance of some relation in the relation
set Rel(i, ki).

i 1 2 3 4 5 6 7
ki 1 1 2 1 1 2 1
Definitions (4.1.1) (4.2.1) (4.3.1) (4.4.2) (4.5.1) (4.6.2) (4.4.4)
i Sp U O
ki 2 1 1
Definitions (4.7.1) (4.7.4) (4.7.3)

Table 1: References for definitions of the relation sets Rel(i, ki).

Theorem 1.1. Let d ≥ 2, H ≤ ΓL(d, q), i ∈ {1, . . . , 7,Sp,U,O}, and ki be as in Table 1.
Then H ∈ Ci if and only if Rel(H, ki) ∩ Rel(i, ki) 6= ∅.

This result has a number of important consequences, including a broad-brush result
for linear groups, concerning their ‘Aschbacher types’ and the types of their ki-closures.

Corollary 1.2. Let H, i and ki be as in Theorem 1.1 and let g ∈ ΓL(d, q). Then the
following all hold.
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(a) If H ∈ Ci and g leaves invariant some relation in Rel(H, ki) ∩ Rel(i, ki), then also
〈H, g〉 ∈ Ci.

(b) H ∈ Ci if and only if H(ki) ∩ ΓL(d, q) ∈ Ci.

(c) If H is a maximal Ci-subgroup then H(ki) ∩ ΓL(d, q) = H.

Thus, for a maximal Ci-subgroup H , membership of g ∈ ΓL(d, q) in H(ki) can be
guaranteed if g preserves a single relation in Rel(i, ki) ∩ Rel(H, i), (rather than needing
to check that g preserves every ki-relation in Rel(H, ki)).

Remark 1.3. For completeness we give information, in Section 3, about Wielandt closures
in the cases not covered by Corollary 1.2. In terms of the notation for the Frobenius
automorphism introduced in Subsection 2.1, we prove in Proposition 3.1.1 that, if d = 1
then H(2) = H ; and in Proposition 3.2.1 that, if H contains SL(d, q), then H(2) ∩ΓL(d, q)
is GL(d, q) ⋊ 〈τ〉 if d ≥ 3, or is contained in H〈τ j〉 if d = 2, where 〈τ j〉 = {τ(h) | h ∈ H}.
Finally we prove in Proposition 3.3.1 that if H ∈ C9 (defined in Subsection 2.2), then
either H(2) ∩ ΓL(d, q) ∈ C9 also, or H = A7 < GL(4, 2) < H(2) = A15.

This investigation was inspired by the 1992 paper [14] of Jan Saxl and the fourth
author studying the k-closures of primitive permutation groups G on a finite set Ω. It
was shown in [14] that, for k ≥ 2, either G and G(k) have the same socle, or their socles are
known explicitly. (The socle of a group is the product of its minimal normal subgroups.)
In the case of an affine primitive group G the socle is an elementary abelian p-group, say
N = Zd

p , and G = NH with H an irreducible subgroup of GL(d, p), for some prime p

and d ≥ 1. Thus, knowing that G(k) has socle N in this case is a rather weak conclusion.
The authors of [14] asked whether more information could be given about closures of
finite affine primitive groups. An application of our main Theorem 1.1 provides such
additional information for the 3-closures. All the proofs up to this point use elementary
group theoretic and geometric methods. However, in making this application we use the
finite simple group classification to determine (more precisely than in [14]) all the affine
primitive groups G for which G(3) is not affine.

Theorem 1.4. Suppose that G is an affine primitive permutation group such that G =
NH with N = Zd

p and H ≤ GL(d, p), where d ≥ 1 and p is a prime. Then either

(a) [non-affine] G(3) is not an affine group, p = 2, and if G < L ≤ G(3) and L is not an
affine group, then H, L are as in one of the lines of Table 2, or

(b) [affine] G(3) = NK with K ≤ GL(d, p) and one of the following holds.

(i) d = 1 or 2 and G(3) = G,

(ii) d ≥ 3, p is odd, and SL(d, p) ≤ H ≤ K ≤ GL(d, p),

(iii) d ≥ 3 and, for some i ∈ {1, . . . , 7,Sp,U,O}, both H, K ∈ Ci, and Rel(K, ki)∩
Rel(i, ki) 6= ∅, with Rel(i, ki) as in Table 1,
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d H L
≥ 3 GL(d, 2) A2d or S2d

4 A7 A16 or S16

nm GL(n, 2) ≀ Y A2n ≀ Y ≤ L ≤ G(3) ≤ S2n ≀ Sm

4m A7 ≀ Y A16 ≀ Y ≤ L ≤ G(3) ≤ S16 ≀ Sm

Table 2: Result table for Theorem 1.4(a). In Lines 3 and 4, m ≥ 2, n ≥ 3 and Y ≤ Sm is
transitive.

(iv) d ≥ 3, both H, K ∈ C9, but (d, p, H) 6= (4, 2, A7).

Acknowledgements We thank an anonymous referee for helpful comments which
improved the exposition of the paper.

2 Preliminaries

2.1 Semi-linear transformations

Throughout the rest of the paper, let V = V (d, q) be a vector space of dimension d ≥ 1
over a finite field Fq of order q, where q = pf with p a prime and f ≥ 1. Also let
Ω = V \ {0}, and let Z denote the subgroup of non-zero scalar transformations of V , so
Z ∼= F ∗

q . Suppose that H ≤ ΓL(d, q), so that H acts on Ω faithfully.
Pick a basis {v1, ..., vd} of V and use it to identify V with F d

q . Let τ denote the
Frobenius automorphism of Fq, that is, τ : λ → λp for each λ ∈ Fq. We define an action
of τ on Ω as follows: (λ1v1 + . . . + λdvd)

τ = λτ
1v1 + . . . + λτ

dvd = λp
1v1 + . . . + λp

dvd for
λi ∈ Fq. Then ΓL(d, q) = GL(d, q) ⋊ 〈τ〉, the group of semi-linear transformations of V .
In the following discussion, when we say ‘the Frobenius automorphism τ ∈ ΓL(d, q)’, τ
will always be defined as above with respect to a specified basis.

For any h ∈ ΓL(d, q) = GL(d, q) ⋊ 〈τ〉, let τ(h) be the associated field automorphism,
that is, τ(h) ∈ 〈τ〉 and

(λv)h = λτ(h)vh for any v ∈ V and λ ∈ Fq. (2.1.1)

Then τ(h) is well defined (independently of the basis {v1, ..., vd}). Moreover, τ(h) = τ j

for some integer j satisfying 0 ≤ j < f , and τ(h1h2) = τ(h1)τ(h2).

2.2 Aschbacher’s classification

As we indicated in Section 1, our proof of Theorem 1.1 is based on Aschbacher’s description
of subgroups of ΓL(d, q) not containing SL(d, q), (see [1] and [11]). Let V, Z be as above.
The families of subgroups C1, . . . , C9 of ΓL(d, q) are described as follows. Because the
groups behave differently in our investigations, we subdivide the class C8 as C8 = CSp ∪
CU ∪ CO.
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C1: These subgroups act reducibly on V , and maximal subgroups in this family are
the stabilizers of proper non-trivial Fq-subspaces.

C2: These subgroups act irreducibly but imprimitively on V , and maximal subgroups
in this family are the stabilizers of direct sum decompositions V = ⊕t

i=1Vi, where t ≥ 2
and, for each i, dimVi = d/t.

C3: These subgroups preserve on V the structure of a vector space over an extension
field Fqb of Fq, for some divisor b of d with b > 1, and a maximal subgroup in this family,
relative to a fixed value of b, is the stabilizer of a d/b-dimensional vector space structure
on V over the extension field Fqb .

C4: These subgroups preserve on V the structure of a tensor product of subspaces, and
maximal subgroups in this family are the stabilizers of tensor decompositions V = V1⊗V2

such that dim Vi ≥ 2 for i = 1, 2 and dim V1 6= dim V2.
C5: These subgroups preserve, modulo scalars, a structure on V of a vector space over

a proper subfield Fq0 of Fq, where q0 = pf/b for some divisor b > 1 of f . A maximal
subgroup in this family, relative to a fixed value of b, is a central product of the scalar
subgroup Z and the stabilizer of a d-dimensional Fq0-subspace of V .

C6: These subgroups have as a normal subgroup an r-group R of symplectic type
(where r is a prime, r 6= p, and d is a power of r), R acts absolutely irreducibly on V ,
and maximal subgroups in this family are the normalizers of these subgroups.

C7: These subgroups preserve on V a tensor decomposition V = ⊗t
i=1Vi with t ≥ 2 and

each dimVi = c where d = ct, and maximal subgroups in this family are the stabilizers of
such decompositions.

C8: Here C8 = ∪X∈XCX, where X = {Sp,U, or O}, and CX consists of all subgroups
that preserve modulo scalars a non-degenerate X-form on V , namely a non-degenerate
alternating, hermitian, or quadratic form according as X = Sp,U,O respectively. Maxi-
mal subgroups in CX are normalizers of the corresponding classical groups that stabilize
such X-forms.

C9: These subgroups H are not contained in Ci for any i = 1, . . . , 8. In particular the
action of H on V is absolutely irreducible, primitive, not definable over any proper subfield
of Fq, etc., and H does not preserve modulo scalars any non-degenerate sesquilinear or
quadratic form. In addition, d ≥ 2 and there is a nonabelian simple group T such that
T ≤ H/(H ∩ Z) ≤ AutT .

Remark 2.2.1. (a) We have defined the classes Ci (i = 1, ..., 8) as subgroups possessing
a particular property. As a consequence some subgroups may belong to more than one
class. For example, we include the normalizers of SO(2m+1, 2f) as maximal CO-subgroups
as they are classical groups. In addition, they are C1-subgroups as they preserve the 1-
dimensional radicals of the associated non-degenerate quadratic forms. We allow these
overlaps in all cases except in the case d = 2 where stabilisers of quadratic forms modulo
scalars are C3-subgroups: we will not consider such groups as C8-groups. See also Section
4.7.

(b) Aschbacher’s Theorem [1] may be viewed as the assertion that, if d ≥ 2, then every
subgroup of ΓL(d, q) not containing SL(d, q) lies in at least one of the classes C1, . . . , C9.
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Aschbacher’s Theorem also applies to analogous classes of the finite classical groups, and
we use the version for classical groups in the proof of Lemma 4.6.8.

(c) If d = 1 the only non-empty Aschbacher classes are C5 (if f > 1) and CO (if q is
odd), and even in these cases the maximal Ci-subgroup is the whole group ΓL(1, q). The
only assertions claimed in Section 1 for this case are those in Theorem 1.4 related to
affine primitive groups. These assertions, and more, follow from Proposition 3.1 and an
application of Lemma 2.3.1(4).

2.3 General results about k-closures

Let G ≤ Sym(Ω) be a permutation group on a set Ω of n points, and let k be a positive
integer. Then G has a natural action on Ωk = Ω×· · ·×Ω (k copies). From the definition
of the k-closure G(k) in Section 1 we see that

G(k) := {g ∈ Sym(Ω)|∆g = ∆ for each orbit ∆ of G on Ωk}.

This implies that, for k ≥ 2, G ≤ . . . ≤ G(k+1) ≤ G(k) ≤ . . . ≤ G(2). We say that G
is k-closed if G = G(k). Recall that Rel(G, k) is the set of all G-invariant k-relations on
Ω. For L ≤ Sym(Ω), we say that G is k-equivalent to L if Rel(G, k) = Rel(L, k). This
condition is equivalent to the condition that G and L have the same orbit set on Ωk. In
particular, G is k-equivalent to G(k).

We collect some useful fundamental results here. Proofs may be found in the Lecture
Notes of Wielandt [19]. The proof of Lemma 2.3.1 (1), (2), (3) and (4) can be found in
Theorems 5.8, 5.7, 5.12, 4.3 and Lemma 4.12 of [19] respectively.

Lemma 2.3.1. [19, Wielandt] Let k ≥ 1 and let G and L be permutation groups on a set
Ω. Then

(1) G ≤ G(k+1) ≤ G(k).
(2) If G ≤ L, then G(k) ≤ L(k).
(3) If there exist α1, ..., αk ∈ Ω such that Gα1,...,αk

= 1, then G(k+1) = G.
(4) If G is (k +1)-equivalent to L, then G is k-equivalent to L and for any α ∈ Ω, Gα

is k-equivalent to Lα.

The following lemma is an easy result about the k-closure of an induced quotient
action.

Lemma 2.3.2. Suppose k ≥ 1 and G, L ≤ Sym(Ω). Suppose further that G is k-equivalent
to L on Ω. Let N be an intransitive normal subgroup of both G and L. Let Ω be the set
of N-orbits. Then G = G/N is k-equivalent to L = L/N on Ω.

Proof. For α ∈ Ω, let [α] denote the N -orbit containing α. Suppose ([α1], ..., [αk]) ∈ Ω
k
.

For any x̄ = xN ∈ L where x ∈ L, the normality of N implies that ([α1], ..., [αk])
x̄ =

([αx
1 ], ..., [α

x
k]). Since G is k-equivalent to L on Ω, there exists g ∈ G such that (αx

1 , ..., α
x
k) =

(αg
1, ..., α

g
k). Hence ([α1], ..., [αk])

x̄ = ([α1], ..., [αk])
ḡ where ḡ = gN ∈ G. Therefore G is k-

equivalent to L on Ω. �
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2.4 Dickson’s Theorem

When we handle the subgroups of GL(2, q), the 1901 classification by L. E. Dickson [4] of
the subgroups of PSL(2, q) is one of our main tools (see [17, Chapter 3, §6] or [7, Chaper
2, §8] for a proof).

Theorem 2.4.1. [Dickson] Let q = pf , where p is a prime and f ≥ 1, and let s =
gcd(2, q − 1). Also let z be an integer dividing q+1

s
or q−1

s
. Then a subgroup of PSL(2, q)

is isomorphic to one of the following groups:
(a) an elementary abelian p-group Zm

p , where 1 ≤ m ≤ f ;
(b) a cyclic group of order z;
(c) a dihedral group of order 2z;
(d) A4 if p is odd;
(e) S4 if p2f − 1 ≡ 0 (mod 16);
(f) A5 if p2f − 1 ≡ 0 (mod 10);
(g) Zm

p ⋊ Zt where m ≤ f , t|p
m−1
s

and t|(pf − 1);
(h) PSL(2, pm) if m|f , or PGL(2, pm) if 2m|f .

2.5 Primitive permutation groups preserving a product decom-
position

A permutation group G on Ω is said to preserve a product decomposition Γm of Ω, where
m ≥ 2, if Ω can be identified with the Cartesian product Γm = Γ1 × ...×Γm (with Γi = Γ
for 1 ≤ i ≤ m) in such a way that G is a subgroup of the wreath product

W = Sym(Γ) ≀ Sm = Sym(Γ)m
⋊ Sm

in product action. This means that, for g = (g1, ..., gm) in the ‘base group’ Sym(Γ)m,

(γ1, ..., γm)g = (γg1
1 , ..., γgm

m ),

and for t in the ‘top group’ Sm,

(γ1, ..., γm)t−1

= (γ1t , ..., γmt),

where (γ1, ..., γm) ∈ Ω = Γm. Thus if α = (δ, . . . , δ) ∈ Ω, then Wα = (Sym(Γ))δ ≀ Sm.
The projection of W = Sym(Γ)m

⋊ Sm onto Sm, which we denote by π, may be
considered as a permutation representation of W on {1, . . . , n}. Then, for 1 ≤ i ≤ m, the
subgroup

Wi = Sym(Γi) × (Sym(Γ) ≀ Sm−1)

is the full preimage under π of the stabilizer of i. Let πi denote the projection Wi →
Sym(Γi) of Wi onto the first factor of this direct product.

Now suppose that G ≤ W and G is primitive on Ω = Γm. The primitivity of G implies
that Y := π(G) ≤ Sm is transitive. The subgroup G ∩ Wi consists of all the elements of
G which fix i, and the restriction of πi to G ∩ Wi is a homomorphism from G ∩ Wi onto
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a subgroup of Sym(Γi). Set G0 := π1(G ∩ W1) and Γ = Γ1 so that G0 ≤ Sym(Γ). By
a result of Kovacs [12, 2.2], replacing G by a conjugate of G under an element of W , if
necessary, we may assume that

G ≤ G0 ≀ Sm.

Moreover, see [12, 2.3], G0 is primitive on Γ and not of prime order.
In summary, when dealing with primitive groups G on Ω that preserve a product

decomposition Ω = Γm, we may assume that G ≤ G0 ≀ Y , where Y = π(G) ≤ Sm is
transitive, and G0 = π1(G ∩ W1) ≤ Sym(Γ) is primitive and not of prime order. The
group G0 is called the group induced by G on Γ .

3 Proofs for special cases

3.1 1-dimensional semi-linear groups

Let q = pf and Ω = V \{0} as in Subsection 2.1 with d = 1. As mentioned in Remark 2.2.1,
when d = 1 the only non-empty Aschbacher classes are C5 (if f > 1) and CO (if q is odd),
and in these cases the unique maximal Ci-subgroup is ΓL(1, q). As promised in Remark 1.3,
we prove here that each subgroup H of ΓL(1, q) is 2-closed. If H = ΓL(1, q) this fact and
more follows from [15, Corollary 4.1]. Define the 2-relation ∆ on Ω by:

∆ := {(x, xξpi

) | x ∈ Ω, 0 ≤ i < f}, where ξ is a primitive element of Fq. (3.1.1)

Proposition 3.1.1. Let G = ΓL(1, q), H ≤ G ≤ Sym(Ω), and g ∈ Sym(Ω). Then

(a) g ∈ G(2) if and only if g leaves ∆ invariant; and

(b) H = H(2).

Proof. Part (a) follows from [15, Corollary 4.1], and this implies in particular that G =
G(2). Then by Lemma 2.3.1(2), H(2) ≤ G(2) = G. For a primitive element ξ ∈ Fq,

the stabilizer in G of the pair (1, ξ) is trivial. By definition, (1, ξ)H = (1, ξ)H(2)
. Hence

|H| = |(1, ξ)H| = |(1, ξ)H(2)
| = |H(2)|, and so H = H(2). �

Proposition 3.1.1 will also be used when considering groups H of type C3 in Section 4.

3.2 The Case SL(d, q) ≤ H ≤ ΓL(d, q) (d ≥ 2)

Let q = pf , Ω = V \ {0}, Z, τ (defined relative to the basis {v1, . . . , vd} of V ), as in
Subsection 2.1. In this subsection we prove Proposition 3.2.1 and Proposition 3.2.2, as
promised in Remark 1.3. Recall the definition of τ(h) for h ∈ GL(d, q) from (2.1.1).

Proposition 3.2.1. Suppose that SL(d, q) ≤ H ≤ ΓL(d, q) with d ≥ 2, and let 〈τ i〉 =
{τ(h)| h ∈ H} and K = H(2) ∩ ΓL(d, q). Then either d ≥ 3 and K = GL(d, q) ⋊ 〈τ i〉, or
d = 2 and H ≤ K ≤ H〈τ i〉.
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We see from Proposition 3.2.2 below that the case d = 2 is really different from the
general case of larger d. Proposition 3.2.2 both yields the second assertion of Propo-
sition 3.2.1, and also shows, for example, that for H = SL(2, q) the subgroup K =
H(2)∩ΓL(2, q) is equal to H (rather than GL(2, q)). On the other hand we can sometimes
have K = GL(d, q) ⋊ 〈τ i〉 when d = 2, see Example 3.2.3.

Proposition 3.2.2. Suppose that H ≤ ΓL(2, q), and let 〈τ i〉 = {τ(h)| h ∈ H} and
K = H(2) ∩ ΓL(2, q). Then K ≤ H〈τ i〉, and in particular, if either H ≤ GL(2, q) or
τ i ∈ H, then H = K.

Proof. Let 〈ξ〉 = F ∗
q and let v ∈ Ω = V \ {0}. Since (v, ξv)H = (v, ξv)K, for any g ∈ K,

there exists h ∈ H such that (vh, (ξv)h) = (vg, (ξv)g). Thus

ξτ(h)vh = (ξv)h = (ξv)g = ξτ(g)vg = ξτ(g)vh.

Therefore, τ(g) = τ(h), and so gh−1 ∈ K ∩ GL(2, q). Then K = H(K ∩ GL(2, q)).
Now for any g ∈ GL(2, q)∩K, g is determined by the images of the basis vectors v1 and

v2 under g. Since (v1, v2)
H = (v1, v2)

K , there exists h ∈ H such that (vg
1 , v

g
2) = (vh

1 , vh
2 ).

Thus h = τ(h)g and so τ(h) = hg−1 ∈ K. It follows that K ≤ H〈τ i〉. Finally, if either
τ i ∈ H or i = f , then K = H . �

Example 3.2.3. Let F = F52 and 〈ξ〉 = F ∗ ∼= Z24. Let det : GL(2, 25) → F ∗ denote the
determinant map det : g 7→ det(g). Define

H = 〈SL(2, 25), τg1, g2〉 where g1 =

(
ξ3 0
0 1

)

and g2 =

(
ξ8 0
0 1

)

.

Then SL(2, 25) ≤ H ≤ ΓL(2, 25) and 〈τ〉 = {τ(h)| h ∈ H}. We claim that H 6= ΓL(2, 25)
and that K = H(2)∩ΓL(2, 25) is equal to GL(2, 25)⋊〈τ〉 = ΓL(2, 25). (See Lemma 3.2.4.)

Lemma 3.2.4. The claims made in Example 3.2.3 are true.

Proof. Now det(〈g1, g2〉) = F ∗ and det(〈g2
1, g2〉) ∼= Z12, and in particular ΓL(2, 25) =

〈SL(2, 25), g1, g2, τ〉. Also, τg1τg1 = gτ
1g1 =

(
ξ18 0
0 1

)

= g6
1, so that 〈(τg1)

2〉 = 〈g6
1〉 =

〈g2
1〉 and H ∩GL(2, 25) = 〈SL(2, 25), g2

1, g2〉. Thus |H| = 2|H∩GL(2, 25)| = 2(|SL(2, 25)| ·
12) = |ΓL(2, 25)|/2.

Let L = ΓL(2, 25) and consider ∆ = (v1, v2)
L. Then the stabilizer L(v1,v2) = 〈τ〉, and

∆ = {(w1, w2)| w1, w2 ∈ Ω and w1 /∈ 〈w2〉}. Observe that |∆| = |GL(2, 25)| = |H|. Now
since τ 6∈ H , H(v1,v2) = 1 and so |(v1, v2)

H | = |H| = |∆|. Hence ∆ is also an orbit of H .
Also if ∆λ = {(v, λv)| v ∈ Ω} where λ ∈ F ∗, then ∆H

λ = ∆L
λ = ∆λ ∪ ∆λ5 . Thus L and H

have the same orbits in Ω × Ω. Hence L is 2-equivalent to H on Ω, so L ≤ H(2). �

Finally we prove Proposition 3.2.1.

Proof of Proposition 3.2.1. If d = 2 the assertions have been proved already in Propo-
sition 3.2.2, so suppose that d ≥ 3. Then SL(d, q) is 2-equivalent to GL(d, q) as these two
groups have the same orbit sets on Ω × Ω, namely,

∆ = {(v, w)| v, w ∈ Ω and v /∈ 〈w〉} and ∆λ = {(v, λv)| v ∈ Ω} where λ ∈ F ∗
q .
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Since each H-orbit in Ω×Ω is a union of SL(d, q)-orbits, GL(d, q) ≤ H(2). Thus GL(d, q) ≤
K ≤ ΓL(d, q) = GL(d, q) ⋊ 〈τ〉, and so K = GL(d, q)⋊ 〈τ j〉 for some integer j dividing f .

Recall that 〈τ i〉 = {τ(h)| h ∈ H}. Then

∆H = ∆〈τ i〉 = ∆ and (∆λ)
H = (∆λ)

〈τ i〉 = ∪µ∈λ〈τi〉∆µ.

But if 〈τ i〉 6= 〈τ j〉, then there exists λ ∈ F ∗
q such that λ〈τ i〉 6= λ〈τj〉. This would imply that

H is not 2-equivalent to K = GL(d, q) ⋊ 〈τ j〉, which would be a contradiction. Hence
〈τ i〉 = 〈τ j〉 and the result follows. �

3.3 The Case H ∈ C9

Recall that H ∈ C9 if H does not contain SL(d, q), d ≥ 2, and H is not contained in
any maximal Ci-subgroup for i = 1, 2, ..., 8. In this subsection we identify the exceptional
C9-group in Theorem 1.4(a), and prove some parts of Theorem 1.4 in Lemma 3.3.2.

Proposition 3.3.1. Suppose H ∈ C9 and let K = H(2) ∩ ΓL(d, q). Then either K ∈ C9

or (d, q, H) = (4, 2, A7).

Proof. By the definition of the class C9, and since H ∈ C9, it follows that either K ∈ C9

or K ≥ SL(d, q). Assume the latter, and consider the natural action of PΓL(d, q) on the
set Ω of 1-dimensional subspaces of V . By Lemma 2.3.2, H := HZ/Z is 2-equivalent to
K := KZ/Z on Ω. By assumption K ≥ PSL(d, q), so K is 2-transitive on Ω. Thus H is
2-transitive on Ω, and by the definition of the class C9, H does not contain PSL(d, q). If
d = 2 then by Theorem 2.4.1, A5 E H ≤ S5 and q2 ≡ 1 (mod 10). In particular q ≥ 9.
However, since H is 2-transitive on Ω, (q + 1)q must divide 120, and this is impossible.
Hence d ≥ 3. By [2], d = 4, q = 2 and H = A7, as in the statement. �

Lemma 3.3.2. Suppose that G = Zd
p · H, with H ≤ GL(d, p), and G acts primitively on

V = V (d, p). If one of d ≤ 2, or SL(d, p) ≤ H, or H ∈ C9, then the assertions made
about such groups in Theorem 1.4 all hold.

Proof. If d = 1, then V = Fp and the stabilizer G0,1 = 1. Hence by Lemma 2.3.1(3),
G(3) = G, as in Theorem 1.4(b)(i). So suppose that d ≥ 2. If p = 2 and either H =
GL(d, 2), or d = 4 and H = A7, then G is 3-transitive and hence G(3) = S2d . It follows
from [14, Lemma 4.1] that in these cases Theorem 1.4 holds (part (b)(i) if d = 2, or part
(a), Line 1 or 2 of Table 2, if d ≥ 3). In all other cases we have to consider here, G is not
3-transitive.

It follows from [14, Theorem 2] that, in each of these remaining cases, G(3) ≤ AGL(d, p)
and hence G(3) = Zd

p · K where H ≤ K ≤ GL(d, p). By Lemma 2.3.1 (4), H and K are

2-equivalent and so H ≤ K ≤ H(2) ∩ GL(d, p). If d = 2, then by Proposition 3.2.2,
H(2) ∩ GL(2, p) = H and hence K = H and G(3) = G, as in Theorem 1.4(b)(i) (and also
in part (b)(iv) if H ∈ C9). We may assume now that d ≥ 3 and (d, p, H) 6= (4, 2, A7).
If H ∈ C9 then, by Proposition 3.3.1, H(2) ∩ GL(d, p) ∈ C9. In particular since K ≤
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H(2) ∩GL(d, p), it follows that K does not contain SL(d, p). Since H ≤ K, it follows from
the definition of the class C9 that K does not lie in Ci for any i ≤ 8, and hence K ∈ C9,
as in Theorem 1.4(b)(iv). Finally if H ≥ SL(d, p) with p odd and d ≥ 3, then we have
already proved that G(3) ≤ AGL(d, p) and K ≤ GL(d, p), as in Theorem 1.4(b)(iii). We
note in passing that a similar argument to that given in the proof of Proposition 3.2.1
would yield that G(3) = AGL(d, p) in Theorem 1.4(b)(iii) if d ≥ 4. This however is not
the case if, for example, d = 3 and H = SL(3, p). �

4 Proof of Theorem 1.1

Throughout Section 4, we use the notation of Subsection 2.1, and the definitions of the
families Ci in Subsection 2.2, together with the following. Let d ≥ 2, and H ≤ ΓL(d, q) =
GL(d, q) ⋊ 〈τ〉 such that H 6≥ SL(d, q). Let i ∈ {1, 2, . . . , 7,Sp,U,O}. We will define an
integer ki ∈ {1, 2}, and a set Rel(i, ki) of ki-relations on Ω, and prove that H ∈ Ci if and
only if there exists an H-invariant relation in Rel(i, ki). This will prove Theorem 1.1, and
allow us to deduce Corollary 1.2 as follows.

Proof of Corollary 1.2.
(a) Suppose H ∈ Ci and g ∈ ΓL(d, q) leaves invariant some ∆ ∈ Rel(i, ki)∩Rel(H, ki).

Then 〈H, g〉 leaves ∆ invariant so ∆ ∈ Rel(i, ki) ∩ Rel(〈H, g〉, ki). By Theorem 1.1,
〈H, g〉 ∈ Ci.

(b) By Theorem 1.1, H ∈ Ci if and only if Rel(i, ki) ∩ Rel(H, ki) 6= ∅, and since
by definition Rel(H, ki) = Rel(H(ki), ki), this holds if and only if Rel(i, ki) ∩ Rel(H(ki) ∩
ΓL(d, q), ki) 6= ∅. Finally, again by Theorem 1.1, this is true if and only if H(ki)∩ΓL(d, q) ∈
Ci.

(c) Suppose that H is a maximal Ci-subgroup. By part (a), H(ki) ∩ ΓL(d, q) ∈ Ci and
contains H . By maximality, this subgroup is equal to H . �

4.1 The Case H ∈ C1

Define

k1 = 1 and Rel(1, 1) = {W \ {0}
∣
∣
∣ W is a non-zero proper subspace of V }. (4.1.1)

Since subgroups in C1 all leave invariant some non-zero proper subspace of V , Theo-
rem 1.1 follows immediately for this case.

Proposition 4.1.1. H ∈ C1 if and only if Rel(H, 1) ∩ Rel(1, 1) 6= ∅.

4.2 The Case H ∈ C2

Define k2 = 1 and

Rel(2, 1) = {(V1 ∪ ... ∪ Vt) \ {0}
∣
∣
∣ V = V1 ⊕ · · · ⊕ Vt, d = at, t > 1, a = dimVi}. (4.2.1)
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Proposition 4.2.1. H ∈ C2 if and only if Rel(H, 1) ∩ Rel(2, 1) 6= ∅.

Proof. If H is a C2-subgroup, then by definition there exists an H-invariant decomposition
V = V1 ⊕ · · · ⊕ Vt, where d = at, t > 1, and a = dimVi for each i. The group H leaves
invariant the corresponding 1-relation in Rel(2, 1).

Conversely, suppose H leaves invariant the relation ∆ = (V1∪ ...∪Vt)\{0} ∈ Rel(2, 1).
It is sufficient to prove that each h ∈ H lies in the stabilizer StabΓL(⊕Vi) in ΓL(d, q) of
the corresponding decomposition of V , since this stabilizer is a maximal C2-subgroup.

Let h ∈ H . For each v ∈ Vi \ {0}, we have v ∈ ∆ and hence vh ∈ ∆. Thus vh ∈ Vj

for some j. We claim that V h
i = Vj. Let w ∈ Vi \ {0, v}. Then v − w ∈ Vi \ {0} and so

wh ∈ Vm\{0} and (v−w)h ∈ Vl\{0} for some m, l. Thus (v−w)h = vh−wh ∈ (Vj+Vm)∩Vl

and is non-zero. Because the subspace decomposition is a direct sum, we must have
j = m = l. Thus wh ∈ Vj and since this holds for all w ∈ Vi, h maps Vi to Vj . It follows
that h ∈ StabΓL(⊕Vi). �

4.3 The Case H ∈ C3

First we describe the maximal C3-subgroups of ΓL(d, q). For each divisor b > 1 of d,
write d = ab, let F = Fqb be an extension field of Fq of degree b, and identify V with
an a-dimensional vector space V (a, qb) over F . The stabilizer in ΓL(d, q) of this F -space
structure on V is ΓL(a, qb). Every maximal C3-subgroup is conjugate to such a subgroup
for some b. Since ΓL(a, qb) is transitive on Ω, its 1-closure is Sym(Ω), so we will consider
2-closures instead. If b = d let ξ be a primitive element of F = Fqd, and define ∆1,d as
the 2-relation of (3.1.1) with q replaced by qd, that is,

∆1,d = {(x, xξpi

)| x ∈ Ω, 0 ≤ i < df}

while if b < d, choose an identification of V with V (a, qb) and define

∆a,b = {(λv, v)| v ∈ Ω, λ ∈ Fqb} (for a = d/b ≥ 2).

Define

k3 = 2 and Rel(3, 2) = {(∆a,b)
g

∣
∣
∣ g ∈ GL(d, q), d = ab, b > 1} (4.3.1)

.

Proposition 4.3.1. H ∈ C3 if and only if Rel(H, 2) ∩ Rel(3, 2) 6= ∅.

Remark 4.3.2. The proof uses a modification of [16, Proposition 84.1]. Suppose that
b < d, and consider a function h : V → V , with V identified with the vector space V (a, qb)
over F . Then [16, Proposition 84.1] proves that h ∈ ΓL(a, qb) if and only if h has the
following three properties:

1. h is an automorphism of the additive group of V ;
2. h sends one-dimensional F -subspaces to one-dimensional F -subspaces;
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3. if u and v are F -linearly independent vectors of V , then also their images uh and
vh under h are F -linearly independent.

Now properties 1 and 2 together imply property 3, and moreover, if we are given that
h ∈ ΓL(d, q), then property 1 holds. Thus for h ∈ ΓL(d, q), we conclude that h ∈ ΓL(a, qb)
if and only if property 2 holds.

Proof of Proposition 4.3.1.
It follows from the definition of Rel(3, 2) that each Ci-subgroup leaves invariant some
relation in Rel(3, 2). Conversely assume that Rel(H, 2) ∩ Rel(3, 2) contains a relation ∆.
We must prove that H ∈ C3. By definition, ∆ = ∆g

a,b for some g ∈ GL(d, q) and some
factorisation d = ab with b > 1. Since C3 is closed under conjugacy, we may assume that
∆ = ∆a,b. If b = d then ∆ is as in (3.1.1), and it follows from Proposition 3.1.1 that
H ≤ ΓL(1, qd) and hence H ∈ C3 in this case. So we may assume that b < d.

Let h ∈ H , F = Fqb . Then for v ∈ V (a, qb) and λ ∈ F , (λv, v) ∈ ∆a,b and hence
(λv, v)h ∈ ∆a,b. Thus

(λv, v)h = (µw, w) for some µ ∈ F and w ∈ Ω.

This implies that (λv)h = µw = µvh. Letting λ vary over F we conclude that the F -
subspace image (SpanF 〈v〉)

h = SpanF 〈w〉. Therefore h has property 2 of Remark 4.3.2,
and so h ∈ ΓL(a, qb). It follows that H ≤ ΓL(a, qb) and hence H ∈ C3. �

4.4 The Cases H ∈ C4 and H ∈ C7

The maximal subgroups of ΓL(V ) in these two families are stabilizers of tensor decompo-
sitions of V . The main result of this subsection is Proposition 4.4.1.

For 1 ≤ i ≤ t and t ≥ 2, let Vi be an ni-dimensional vector space over the finite field
Fq, such that V = V1 ⊗ ... ⊗ Vt. Then V has dimension n =

∏t
i=1 ni. For each i, let

{xij |1 ≤ j ≤ ni} be a basis of Vi. Then B := {x1j1 ⊗ ... ⊗ xtjt
| 1 ≤ ji ≤ ni for 1 ≤ i ≤ t}

is the corresponding tensor product basis for V . If vi =
∑ni

j=1 λijxij ∈ Vi, for each i, then
we denote by v1 ⊗ ... ⊗ vt the vector

v1 ⊗ ... ⊗ vt =
∑

(j1,...,jt)

t∏

i=1

λiji
(x1j1 ⊗ . . . ⊗ xtjt

)

of V . We call such an element of V a simple vector. Note that in this subsection we do
not use the usual convention that the vi form a specified basis of V . Also we define the
action of τ on V with respect to the tensor product basis B, so that in particular, τ lies in
the stabilizer of the tensor decomposition, and τ maps simple vectors to simple vectors.

Case C4: For each expression d = ab with a > 1, b > 1 and a 6= b, choose a decomposition
for V as above with t = 2, n1 = a, n2 = b, and write Ua = V1, Wb = V2. Let ∆a,b be the
corresponding set of non-zero simple vectors. The decomposition stabilizer is

StabΓL(Ua ⊗ Wb) = (GL(Ua) ⊗ GL(Wb)) ⋊ 〈τ〉 (4.4.1)
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and ∆a,b is a StabΓL(Ua ⊗ Wb)-invariant 1-relation. Define k4 = 1 and

Rel(4, 1) =







{(∆a,b)
g | g ∈ GL(d, q), d = ab, a 6= b, a, b ≥ 2} if d is composite but

not a square of a
prime,

∅ otherwise
(4.4.2)

Case C7: For each expression d = ct with c ≥ 2 and t ≥ 2, choose a decomposition for
V as above with n1 = · · · = nt = c, and let ∆c,t be the corresponding set of non-zero
simple vectors. We view each Vi as a copy of a single c-dimensional space Wc and write
the decomposition as V = ⊗Wc. The stabilizer is

StabΓL(⊗Wc) = (GL(Wc) ≀⊗ St) ⋊ 〈τ〉, (4.4.3)

where
GL(Wc) ≀⊗ St = (GL(Wc) ⊗ · · · ⊗ GL(Wc)) ⋊ St

and ∆c,t is a StabΓL(⊗Wc)-invariant 1-relation. Define k7 = 1 and

Rel(7, 1) =







{(∆c,t)
g | g ∈ GL(d, q), d = ct, c ≥ 2, t ≥ 2} if d is a proper power

∅ otherwise
(4.4.4)

Proposition 4.4.1. For i = 4 or 7, H ∈ Ci if and only if Rel(H, 1) ∩ Rel(i, 1) 6= ∅.

We derive some properties of simple vectors in tensor decompositions in Subsection
4.4.1, and then prove Proposition 4.4.1 in Subsection 4.4.2.

4.4.1 Properties of simple vectors

First we consider addition of simple vectors relative to a tensor decomposition V =
V1 ⊗ ... ⊗ Vt as introduced above. Let ∆ be the set of non-zero simple vectors relative to
this decomposition.

Lemma 4.4.2. Let w1 = v1 ⊗ ...⊗ vt and w2 = u1 ⊗ ...⊗ ut lie in ∆. Then w1 + w2 ∈ ∆
if and only if ui is a scalar multiple of vi for all but at most one i.

Proof. Suppose ui is a scalar multiple of vi for all but at most one i. Without loss of
generality we may assume that there exist λ2, ..., λt ∈ Fq such that u2 = λ2v2,..., ut = λtvt.
Set λ = λ2λ3...λt. Then w1 + w2 = (v1 + λu1) ⊗ v2 ⊗ ... ⊗ vt is simple.

Conversely, suppose w1 + w2 is simple. If w1 + w2 = 0, then w1 = −w2. This implies
that ui is a scalar multiple of vi for all i.
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Now suppose that w1 +w2 6= 0. Let Ui = Span(ui, vi) for each i. Suppose that {u1, v1}
and {u2, v2} are linearly independent sets. Note that w1 + w2 ∈ U1 ⊗ ...⊗Ut. Then since
w1 + w2 is simple, there exist λ1, λ2, λ3, λ4 ∈ Fq and ei ∈ Ui for 3 ≤ i ≤ t such that

w1 + w2 = (u1 ⊗ ... ⊗ ut) + (v1 ⊗ ... ⊗ vt)

= (λ1u1 + λ2v1) ⊗ (λ3u2 + λ4v2) ⊗ e3 ⊗ ... ⊗ et

= λ1λ3(u1 ⊗ u2 ⊗ e3 ⊗ ... ⊗ et) + λ1λ4(u1 ⊗ v2 ⊗ e3 ⊗ ... ⊗ et)

+λ2λ3(v1 ⊗ u2 ⊗ e3 ⊗ ... ⊗ et) + λ2λ4(v1 ⊗ v2 ⊗ e3 ⊗ ... ⊗ et).

Hence when t = 2, we have:

u1 ⊗ u2 + v1 ⊗ v2 = λ1λ3(u1 ⊗ u2) + λ1λ4(u1 ⊗ v2) + λ2λ3(v1 ⊗ u2) + λ2λ4(v1 ⊗ v2).

Since u1⊗u2, u1⊗v2, v1⊗u2 and v1⊗v2 are linearly independent, we have λ1λ3 = λ2λ4 = 1
and λ1λ4 = λ2λ3 = 0, which is impossible. When t ≥ 3,

0 = u1 ⊗ u2 ⊗ ((u3 ⊗ · · · ⊗ ut) − (λ1λ3e3 ⊗ · · · ⊗ et))

+v1 ⊗ v2 ⊗ ((v3 ⊗ · · · ⊗ vt) − (λ2λ4e3 ⊗ · · · ⊗ et))

−u1 ⊗ v2 ⊗ λ1λ4e3 ⊗ · · · ⊗ et

−v1 ⊗ u2 ⊗ λ2λ3e3 ⊗ · · · ⊗ et

If any of the four summands is non-zero, then it is linearly independent of the sum of
the other three summands, and we have a contradiction. Hence each of the summands is
0. Since w1, w2, w1 + w2 are all non-zero, it follows that all the ui, vi, ei are non-zero and
hence we must have λ1λ3 6= 0, λ2λ4 6= 0 and λ1λ4 = λ2λ3 = 0, which is impossible.

Therefore ui is a scalar multiple of vi for all but at most one i. �

For each i, choose ei, a non-zero element of Vi. Define e := e1 ⊗ e2 ⊗ ... ⊗ et and

Wi := {e1 ⊗ ... ⊗ ei−1 ⊗ vi ⊗ ei+1 ⊗ ... ⊗ et| vi ∈ Vi}.

Lemma 4.4.3. With the notation as above, let g ∈ GL(V ) be a linear transformation
such that eg = e and for any simple w ∈ V , wg is also simple. Then for each i = 1, ..., t,
there exists j, such that 1 ≤ j ≤ t and W g

i ⊆ Wj.

Proof. Without loss of generality, we may assume that i = 1. If dimV1 = 1, then W1 = 〈e〉
and W g

1 = W1, so the result holds with j = 1. Thus we may assume that dimV1 ≥ 2. Let
v ∈ V1 \ 〈e1〉. Since g preserves the set of simple vectors,

(v ⊗ e2 ⊗ ... ⊗ et)
g = u1 ⊗ ... ⊗ ut

for some ui ∈ Vi, 1 ≤ i ≤ t. Since (e1 ⊗ e2 ⊗ ... ⊗ et) + (v ⊗ e2 ⊗ ... ⊗ et) is simple, its
image (e1 ⊗ ...⊗ et)+ (u1 ⊗ ...⊗ut) under g is also simple. By Lemma 4.4.2, ui is a scalar
multiple of ei for all but at most one i. Moreover, since e1 ⊗ ...⊗et and v⊗e2⊗ ...⊗et are
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linearly independent, e1 ⊗ ... ⊗ et and u1 ⊗ ... ⊗ ut are linearly independent. Thus there
exists precisely one j such that uj /∈ 〈ej〉. If v′ ∈ V1 \ 〈e1〉 and

(v′ ⊗ e2 ⊗ ... ⊗ et)
g = u′

1 ⊗ ... ⊗ u′
t,

then the same argument gives that u′
i is a scalar multiple of ei for all but one i, say

u′
l /∈ 〈el〉. Using the fact that (v ⊗ e2 ⊗ ... ⊗ et) + (v′ ⊗ e2 ⊗ ... ⊗ et) is simple, we deduce

that u′
i is a scalar multiple of ui for all but one i. However, if j 6= l, then this means that

u′
j ∈ 〈ej〉 ∩ 〈uj〉 = {0} which is not the case. Hence l = j, and so u′

i ∈ 〈ei〉 for all i 6= j.
Thus

(v′ ⊗ e2 ⊗ ... ⊗ et)
g ∈ Wj

for each v′ ∈ V1 \ 〈e1〉. Since also eg = e ∈ Wj , it follows that W g
1 ⊆ Wj . �

Lemma 4.4.4. Let g ∈ GL(V ) such that g leaves invariant the set of simple vectors, and
g fixes each Wi pointwise. Then g = 1.

Proof. We claim that for any simple w ∈ V , wg is a scalar multiple of w. Let w =
v1 ⊗ v2 ⊗ ... ⊗ vt, and let l be the number of i such that vi /∈ 〈ei〉. We prove the claim by
induction on l. By assumption, for l = 0 and l = 1, wg = w. Now assume inductively that
the claim is true for l = m where 1 ≤ m < t. We will show that it is true for l = m + 1.

Without loss of generality, we may suppose that

w = v1 ⊗ ... ⊗ vm+1 ⊗ em+2... ⊗ et

where for i = 1, ..., m + 1, vi /∈ 〈ei〉. Let

wg = u1 ⊗ ... ⊗ ut.

Set
w1 = e1 ⊗ v2 ⊗ ... ⊗ vm+1 ⊗ em+2... ⊗ et

and
w2 = v1 ⊗ ... ⊗ vm ⊗ em+1 ⊗ em+2... ⊗ et.

Then w1 + w and w2 + w are simple and hence (w1 + w)g and (w2 + w)g are simple. Also,
by induction, wg

1 = λ1w1 and wg
2 = λ2w2 for some λ1, λ2 ∈ Fq.

Thus (w1 + w)g = λ1w1 + wg, and this is a simple vector. So by Lemma 4.4.2, ui is a
scalar multiple of the ith component of w1 for all but one i. Likewise, ui is a scalar multiple
of the ith component of w2 for all but one i. However, u1 cannot be a scalar multiple of
both e1 and v1, and um+1 cannot be a scalar multiple of both em+1 and vm+1. Therefore for
all i /∈ {1, m+1}, ui is a scalar multiple of the ith component of w. Thus wg ∈ 〈x〉, where
x = u1⊗v2⊗...⊗vm⊗um+1⊗em+2⊗...⊗et. Also, (i) either u1 ∈ 〈e1〉 or um+1 ∈ 〈vm+1〉, and
(ii) either u1 ∈ 〈v1〉 or um+1 ∈ 〈em+1〉. Since {e1, v1} and {em+1, vm+1} are both linearly
independent sets, we conclude that (〈u1〉, 〈um+1〉) = (〈e1〉, 〈em+1〉) or (〈v1〉, 〈vm+1〉). In
the former case, by induction, xg ∈ 〈x〉, and hence both xg and wg lie in 〈x〉, contradicting
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the fact that x and w are linearly independent. Hence (〈u1〉, 〈um+1〉) = (〈v1〉, 〈vm+1〉), and
so wg is a scalar multiple of w and the claim is proved by induction.

Now, using induction on l once again (with l defined as above), we show that wg = w
for every simple w ∈ W , and hence that g = 1. The case l ≤ 1 is true by assumption.
Now assume that this is true for l = m where 1 ≤ m < t and, without loss of generality,
consider w = v1 ⊗ ... ⊗ vm+1 ⊗ em+2... ⊗ et where vi /∈ 〈ei〉 for i = 1, ..., m + 1. Once
again, set w1 = e1 ⊗ v2 ⊗ ... ⊗ vm+1 ⊗ em+2... ⊗ et. Then both w and w + w1 are simple.
Hence there exist λ, µ ∈ F ∗

q such that wg = λw and (w + w1)
g = µ(w + w1). Also, by the

inductive hypothesis, (w1)
g = w1. But then µ(w+w1) = (w +w1)

g = wg +wg
1 = λw +w1.

Since w and w1 are linearly independent, µ = λ = 1 and wg = w. �

4.4.2 Proofs for C4 and C7

Before proving Proposition 4.4.1, we prove the next lemma that makes explicit the im-
portant role of simple vectors.

Lemma 4.4.5. With the above notation, let g ∈ ΓL(V ) = GL(V ) ⋊ 〈τ〉.
(1) Suppose V = U ⊗ W , with dimU ≥ 2, dimW ≥ 2, dimU 6= dimW . If g leaves

invariant the set of simple vectors, then g ∈ StabΓL(U ⊗ W ).
(2) Suppose V = V1 ⊗ ...⊗Vt is the tensor product of t ≥ 2 copies V1, ..., Vt of a vector

space W . If g leaves invariant the set of simple vectors, then g ∈ StabΓL(⊗Vi).

Proof. (1) By suitable choice of bases for U, W we may assume that τ ∈ StabΓL(U ⊗W ),
as in (4.4.1), and hence that τ maps simple vectors to simple vectors. Thus replacing g
by gτ i for some i, we may assume that g ∈ GL(V ).

Let e1 ∈ U, e2 ∈ W be any non-zero elements of U and W . Replacing g by gh1 for
an appropriate h1 ∈ GL(U) ⊗ GL(W ) we may assume further that (e1 ⊗ e2)

g = e1 ⊗ e2.
Since dim U 6= dim W and g ∈ GL(V ), Lemma 4.4.3 implies that (e1 ⊗ W )g = e1 ⊗ W
and (U ⊗ e2)

g = U ⊗ e2. Thus g induces linear transformations on e1 ⊗W and U ⊗ e2, so
replacing g by gh2 for an appropriate h2 ∈ GL(U) ⊗GL(W ), we may assume in addition
that g fixes e1 ⊗ w and u ⊗ e2 for all u ∈ U, w ∈ W . Then by Lemma 4.4.4, g = 1. Thus
we deduce that our original element g was in StabΓL(U ⊗ W ).

(2) Again by suitable choice of bases for the Vi we may assume that τ ∈ StabΓL(⊗Vi),
as in (4.4.3), and hence that τ maps simple vectors to simple vectors. Thus we may
replace g by gτ i for some i and assume that g ∈ GL(V ).

Let e1, ..., et be any non-zero vectors of W . Replacing g by gh1 for an appropriate
h1 ∈ GL(W )⊗ ...⊗GL(W ) we may assume that (e1 ⊗ ...⊗ et)

g = e1 ⊗ ...⊗ et. By Lemma
4.4.3, we then have that, for each i = 1, ..., t, there exists ji such that 1 ≤ ji ≤ t and
(e1 ⊗ ...⊗ ei−1 ⊗Vi ⊗ ei+1 ⊗ ...⊗ et)

g ⊆ e1 ⊗ ...⊗Vji
⊗ ...⊗ et. Since g : V → V is bijective,

the map i → ji defines an element of St.
Thus we may further replace the above g by gh2 for an appropriate h2 ∈ GL(W ) ≀⊗ St,

and assume that g fixes e1 ⊗ ... ⊗ ei−1 ⊗ w ⊗ ei+1 ⊗ ... ⊗ et for every w ∈ Vi and every i
with 1 ≤ i ≤ t. Then an application of Lemma 4.4.4 concludes the proof. �

Now we are ready to prove Proposition 4.4.1.
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Proof of Proposition 4.4.1: Note that the same arguments apply to the case C7, so we
only give details of the proof for the case C4. If H is a C4-subgroup then, by definition, H
preserves some relation in Rel(4, 1). Conversely suppose that H leaves invariant a relation
∆ = (∆a,b)

g in Rel(4, 1), for some g ∈ GL(d, q). Since C4 is closed under conjugacy we
may assume that ∆ = ∆a,b. By Lemma 4.4.5, H ≤ StabΓL(Ua ⊗ Wb), and hence we
conclude that H ∈ C4 �

4.5 The Case H ∈ C5

First we describe the maximal C5-subgroups of ΓL(d, q). Recall that q = pf , that Z is
the subgroup of scalars, and that {v1, . . . , vd} is a specified basis for V . For a divisor a
of f with a < f let q0 = pa, let Fq0 denote the proper subfield of Fq of order q0, and let
V0 = SpanFq0

〈v1, ..., vd〉. Then the stabilizer StabΓL(FqV0) of FqV0 = {λv | v ∈ V0, λ ∈ Fq}

in ΓL(d, q) is a maximal C5-subgroup. We describe its structure below. Let

∆a = {λu
∣
∣
∣ λ ∈ F ∗

q , u ∈ V0 \ {0}} = FqV0 \ {0}

and define

k5 = 1 and Rel(5, 1) =

{
{(∆a)

g | g ∈ GL(d, q), a|f, a < f} if f > 1
∅ if f = 1

(4.5.1)

Proposition 4.5.1. H ∈ C5 if and only if Rel(H, 1) ∩ Rel(5, 1) 6= ∅.

We will see that this result follows from Proposition 4.4.1. Using the notation of
Subsection 4.4, identify V with the vector space V0 ⊗ Fq = V0 ⊗Fq0

Fq of dimension df/a
over Fq0 , regarding Fq as a vector space of dimension f/a over Fq0, see [11, Section 4.5].
Then V0 is identified with the subset {u⊗1|u ∈ V0} of V ⊗Fq. The corresponding maximal
C5-subgroup is

StabΓL(FqV0) = ΓL(d, q) ∩ StabΓL(df/a,q0)(V0 ⊗ Fq) = (GL(d, q0) ◦ Z) ⋊ 〈τ〉, (4.5.2)

the stabilizer in ΓL(d, q) of the tensor decomposition V0 ⊗Fq0
Fq (as distinct from the

stabilizer in ΓL(df/a, q0) of V0 ⊗Fq0
Fq, which as in Subsection 4.4.2 is a maximal C4-

subgroup of ΓL(df/a, q0), see (4.4.1)). Under this identification, FqV0 is identified with
the set of simple vectors in V0 ⊗ Fq. Thus, by Proposition 4.4.1 (and its short proof), H
preserves ∆a if and only if H is contained in the subgroup displayed at (4.5.2), which is
a maximal C5-subgroup. Now Proposition 4.5.1 follows immediately.

4.6 The Case H ∈ C6

For a prime r, an r-group R is said to be of symplectic type if every characteristic abelian
subgroup of R is cyclic. Each C6-subgroup has, as a normal subgroup, an absolutely
irreducible symplectic type r-group of exponent r gcd(2, r), for some r 6= p, and the
maximal C6-subgroups are the normalizers of such r-groups in ΓL(d, q).
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Let R be such an r-subgroup of ΓL(d, q). We refer to [11, Sections 4.6 and 7.6] for
much of the information in this subsection. By [11, Proposition 4.6.3], R ≤ GL(d, q) and
the representation of R on V can be realised over the subfield Fpe of Fq, where e is the least
positive integer such that pe ≡ 1 (mod |Z(R)|). Replacing R by a conjugate in ΓL(d, q)
we may assume that R ≤ GL(V0), where V0 = SpanFpe

〈v1, ..., vd〉 and {v1, . . . , vd} is the

basis introduced in Subsection 2.1. Choose a set R of representatives of the ΓL(d, q)-
conjugacy classes of these subgroups R such that each subgroup is contained in GL(V0).
By [1, Theorem BΓ] (or see [11, Theorem 3.1.1 and Table 4.6A]), |R| = 1 if r is odd, and
is 3 if r = 2. For each R ∈ R, define a 2-relation ∆R by

∆R = {(v, w) | v, w ∈ FqV0, vR = wR} (4.6.1)

let k6 = 2, and define

Rel(6, 2) =

{
{(∆R)g | g ∈ ΓL(d, q), R ∈ R} if d is a prime power

∅ otherwise
(4.6.2)

Proposition 4.6.1. H ∈ C6 if and only if Rel(H, 2) ∩ Rel(6, 2) 6= ∅.

4.6.1 Structure of the groups R and their normalisers

By [1, 3.15 and Theorem A.4], the normalizer M := NΓL(d,q)(R) leaves FqV0 invariant and,
identifying V with V0 ⊗Fpe Fq (as discussed in Subsection 4.5), M is given by

M = NΓL(d,q)(R) = (Z ◦ M0).〈τ〉 where M0 = NGL(V0)(R). (4.6.3)

The possible structures for the groups R ∈ R, and the corresponding subgroups M0 =
Zpe−1 ◦M1, are summarized in Table 3, see [11, Tables 4.6A and 4.6.B], where R0 denotes
the group

R0 = 〈x, y, z|xr = yr = zr = [x, z] = [y, z] = 1, [y, x] = z〉 (4.6.4)

and m is such that d = rm and m ≥ 1 for all types. Note that no ± sign appears in the
notation 21+2m for Type 4 since Z4 ◦ 21+2m

+
∼= Z4 ◦ 21+2m

− .
A crucial link between the definition of C6-subgroups and the relation set Rel(6, 2) is

explored in the next lemma. Note that, by its definition, ∆R =
⋃

Σ Σ×Σ where the union
is over all R-orbits Σ ⊆ FqV0.

Lemma 4.6.2. Let g ∈ ΓL(d, q), R ∈ R, and let ∆R, M = NΓL(d,q)(R), M0 be as in
(4.6.1), (4.6.3). Then

(a) ∆R is M-invariant;

(b) g leaves ∆R invariant if and only if g = λhτ i ∈ (Z ◦ GL(V0))〈τ〉, where λ ∈ Z and
h ∈ GL(V0) such that h leaves ∆R invariant;

(c) if h ∈ GL(V0) and h leaves ∆R invariant, then h permutes amongst themselves the
R-orbits in V0.
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Type r e Structure |Z(R)| Notation Structure
of R for R of M0

1 odd e

m
︷ ︸︸ ︷

R0 ◦ · · · ◦ R0 r r1+2m R.Sp(2m, r)

2 2 1

m
︷ ︸︸ ︷

D8 ◦ · · · ◦ D8 2 2+
1+2m R.O+

2m(2)

3 2 1

m−1
︷ ︸︸ ︷

D8 ◦ · · · ◦ D8 ◦Q8 2 2−
1+2m R.O−

2m(2)

4 2 1 or 2 Z4 ◦

m
︷ ︸︸ ︷

D8 ◦ · · · ◦ D8 4 4 ◦ 21+2m R.Sp(2m, 2)

Table 3: Posssible structures for R and M0

Proof. (a) Let Σ = vR ⊆ FqV0. Since M leaves FqV0 invariant and REM , for each h ∈ M
we have vh ∈ FqV0, and Σh = (vR)h = (vh)R. Hence Σh is also an R-orbit in FqV0, and it
follows from the description of ∆R above that h leaves ∆R invariant.

(b) Suppose that g leaves ∆R invariant. Then by the definition of ∆R, g leaves the
set FqV0 invariant. By Proposition 4.5.1, g ∈ StabΓL(FqV0) = (Z ◦ GL(V0)) ⋊ 〈τ〉. Thus
g = λhτ i for some i, with λ ∈ Z and h ∈ GL(V0). Now λ, τ i ∈ M by (4.6.3), and hence
by part (a), λ and τ i leave ∆R invariant. Therefore also h leaves ∆R invariant.

Conversely, suppose that g = λhτ i ∈ (GL(V0) ◦Z) ⋊ 〈τ〉 with λ ∈ Z, h ∈ GL(V0), and
h leaves ∆R invariant. By (a), λ and τ i both leave ∆R invariant, and hence so also does
g.

(c) Finally suppose that h ∈ GL(V0) and h leaves ∆R invariant. Let Σ = vR ⊆ V0,
and consider an arbitrary w ∈ Σ. Then (v, w) ∈ Σ×Σ ⊆ ∆R and so, by assumption, also
(v, w)h = (vh, wh) ∈ ∆R. As we noted above, this means that (vh, wh) ∈ Σ′ ×Σ′ for some
R-orbit Σ′ in FqV0, and in fact Σ′ ⊆ V0 since h ∈ GL(V0). Hence Σ′ = (vh)R and wh ∈ Σ′,
and since this holds for arbitrary w ∈ Σ it follows that Σh = Σ′. �

We now use this information to partially prove Proposition 4.6.1.

Lemma 4.6.3. Proposition 4.6.1 holds provided the implication (4.6.5) below holds for
each R ∈ R and its corresponding subgroup M0 defined in (4.6.3).

If h ∈ GL(V0) and h leaves ∆R invariant, then h ∈ M0. (4.6.5)

Proof. We assume that (4.6.5) holds and use it to prove Proposition 4.6.1. Suppose first
that H ∈ C6. Then H has as a normal subgroup Rg for some R ∈ R and g ∈ ΓL(d, q).
By Lemma 4.6.2(a), H leaves (∆R)g invariant and hence Rel(6, 2) ∩ Rel(H, 2) 6= ∅.

Conversely, suppose that H ≤ ΓL(d, q) and Rel(H, 2)∩Rel(6, 2) contains ∆g
R for some

R ∈ R and g ∈ ΓL(d, q). It is sufficient to prove that H normalises Rg, since this implies
that H ∈ C6. Since both C6 and Rel(6, 2) are closed under conjugacy by elements of
ΓL(d, q), we may assume that g = 1. Let x ∈ H . Then ∆x

R = ∆R. By Lemma 4.6.2(b),
x = λhτ i ∈ (Z ◦ GL(V0))〈τ〉, where λ ∈ Z and h ∈ GL(V0) such that ∆h

R = ∆R. Now λ
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and τ i normalise R, and by our assumption (4.6.5) holds, so also h normalises R. Hence
x normalises R. �

Remark 4.6.4. We sketch the strategy that we will use to complete the proof of the
implication (4.6.5). Assume that h ∈ GL(V0) and (∆R)h = ∆R, and M0 = NGL(V0)(R) so
that M0 contains the scalars Zpe−1 of GL(V0). We must prove that h ∈ M0 or equivalently,
setting H := 〈M0, h〉, that H = M0. By Lemma 4.6.2(c), it follows that H permutes
amongst themselves the R-orbits in V0. We will obtain information about these R-orbits
and argue that no proper overgroup of M0 in GL(V0) can permute the R-orbits in V0.
For a subgroup L ≤ GL(d, pe), we write L for LZpe−1/Zpe−1 ≤ PGL(d, pe). Some of our
arguments concern overgroups of M0 in PGL(d, pe).

4.6.2 Proof of (4.6.5) for d = 2, and for Type 2 with d = 4

Suppose first that d = r = 2. Then p is odd and, by Table 3, there are three groups R to
consider. Let H be as in Remark 4.6.4. If R = D8 or Q8 then e = 1 and we give explicit
generators for these groups R in terms of the following matrices

a =

(
λ µ
µ −λ

)

, b =

(
0 1
−1 0

)

and c =

(
1 0
0 −1

)

where λ, µ ∈ Fp such that λ2 + µ2 = −1. The group Q8 = 〈a, b〉 (see [11, p.154]) and
D8 = 〈b, c〉.

Type 2. R = D8, e = 1, so V0 = SpanFp
〈v1, v2〉 and this time M0 = (Zp−1 ◦R).O+(2, 2).

We may take R = 〈b, c〉. There are precisely two, or three pairs of 1-spaces in V0 (according
as p ≡ 3 or 1 (mod 4) respectively) such that each R-orbit containing a vector in one of
these 1-spaces consists entirely of vectors from one of the pairs of 1-spaces. These are
the pairs {SpanFp

〈v1〉, SpanFp
〈v2〉} and {SpanFp

〈v1 + v2〉, SpanFp
〈v1 − v2〉}, and also, if

p ≡ 1 (mod 4), the pair {SpanFp
〈iv1 + v2〉, SpanFp

〈−iv1 + v2〉}, where i2 = −1. All other
R-orbits in V0 \ {0} contain vectors from four 1-spaces in V0. Thus H preserves this set of
four, respectively six, 1-spaces setwise, permuting them in pairs, and moreover M0 induces
a transitive action of D8 on four of these 1-spaces (and fixes the other two setwise in the
case p ≡ 1 (mod 4)). It follows that H acts as D8 or S4 on these 1-spaces with kernel the
scalars Z(GL(V0)) = Zp−1 (since the kernel fixes at least four 1-spaces). Thus H = M0, or
p ≡ 1 (mod 4) and |H| = 3|M0|. Suppose that H = M0.3. Then H = NGL(V0))(〈iI〉 ◦ R),
that is, the normaliser of a symplectic type 2-group of Type 4 (see Table 3). Now

h =

(
0 −1
−i 0

)

(4.6.6)

normalises 〈iI〉 ◦ R and hence belongs to H . Moreover, (v1, v2) ∈ ∆R. Now vR
1 =

{v1,−v1, v2,−v2} while (v1, v2)
h = (−v2,−iv1) /∈ ∆R. This contradicts the fact that H

preserves ∆R. Thus H = M0.

Type 3. R = Q8, e = 1, so V0 = SpanFp
〈v1, v2〉 and M0 = (Zp−1◦R).O−(2, 2) ∼= Zp−1.S4.

If pe = p = 3 then M0 = GL(V0) and hence H = M0 in this case, so we may assume that
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p > 3. We claim that H cannot contain SL(2, p). Each R-orbit in V0 involves vectors
in either two or four 1-spaces (note that −I ∈ R). Thus for a non-zero vector v ∈ V0

there exist u, w ∈ V0 such that u ∈ vR, w 6∈ vR, u, v, w lie in distinct 1-spaces, and
some element of SL(2, p) maps (v, u) to (v, w). By the definition of ∆R, (v, u) ∈ ∆R

and (v, w) 6∈ ∆R, and hence SL(2, p) does not preserve ∆R. Hence H does not contain
SL(2, p), as claimed. By Dickson’s Theorem 2.4.1, the only proper overgroups of M 0 in
PGL(2, p) contain PSL(2, p), and hence H = M0.

Type 4. R = Z4 ◦ Q8 = Z4 ◦ D8, e ≤ 2, so V0 = SpanF e
p
〈v1, v2〉 and in particular,

pe ≥ 5. We may take R to be the group generated by the matrices a, b above together
with iI ∈ Zpe−1, where i2 = −1. Here M0 = (Zpe−1 ◦ R).Sp(2, 2) ∼= Zpe−1.S4. As in the
Type 3 case, each R-orbit in V0 involves vectors in either two or four 1-spaces. Thus for
a non-zero vector v ∈ V0 there exist u, w ∈ V0 such that u ∈ vR, w 6∈ vR, u, v, w lie in
distinct 1-spaces, and some element of SL(2, p) maps (v, u) to (v, w). By the definition of
∆R, (v, u) ∈ ∆R and (v, w) 6∈ ∆R, and hence SL(2, p) does not preserve ∆R. By Dickson’s
Theorem 2.4.1, the only proper overgroups of M 0 in PGL(2, p) contain PSL(2, p) and
hence H = M0.

Finally we consider the Type 2 group when d = 4. We first give a general result
concerning Type 2 and Type 3 groups in arbitrary dimension d = 2m ≥ 4.

Lemma 4.6.5. As in Remark 4.6.4, suppose that M0 < H ≤ GL(V0) and that H permutes
amongst themselves the R-orbits in V0. Then H does not lie in C6.

Proof. Suppose that H lies in the class C6 and so is the normaliser of a symplectic type
r-group R̂. Note that r is determined by d. Since H does not normalise R, it follows that
R is of Type 2 or 3 and R̂ = Z4 ◦ R is of Type 4. Since H 6= M0, it follows that H is
equal to the normaliser of R̂ (since M0 is maximal in NGL(V0)(R̂))).

Let S = 〈b, c〉 and S ′ = 〈a, b〉 with a, b, c as defined at the beginning of this Subsection
and let U be a 2-dimensional Fp-vector space upon which S and S ′ act. Then V0 =
U ⊗ · · · ⊗ U and R = S ◦ · · · ◦ S if R is of Type 2 and R = S ◦ · · · ◦ S ◦ S ′ if R
is of Type 3. Let v1 = (1, 0), v2 = (0, 1) ∈ U and let Σ = (v1 ⊗ · · · ⊗ v1)

R. Then
Σ = {w1 ⊗ · · · ⊗ wm | w1, . . . , wm−1 ∈ vS

1 , wm ∈ Σ0}, where Σ0 = vS
1 if R is of Type 2, or

Σ0 = vS′

1 if R is of Type 3. Let h ∈ GL(2, p) as given in (4.6.6), and let h = (h, 1, . . . , 1) ∈
GL(2, p) ◦ · · · ◦ GL(2, p). Since h normalises 〈 iI〉 ◦ S, where i2 = −1, it follows that h
normalises 〈 iI〉◦R. Thus h ∈ H = NGL(V0)(〈 iI〉◦R). As seen in the proof for Type 2 with
d = 2, (v1, v2) ∈ ∆S, but (v1, v2)

h /∈ ∆S , with ∆S as in (4.6.1) on U ×U . Hence it follows

that (v1 ⊗ · · ·⊗ v1, v2 ⊗ v1 ⊗ · · ·⊗ v1) ∈ ∆R while (v1 ⊗ · · ·⊗ v1, v2 ⊗ v1 ⊗ · · ·⊗ v1)
h /∈ ∆R.

Thus H does not preserve ∆R, and hence does not permute the R-orbits in V0. This
contradiction completes the proof. �

Type 2 with d = 4. R = D8 ◦ D8 = Q8 ◦ Q8, e = 1, so V0 = SpanFp
〈v1, v2, v3, v4〉, and

M0 = (Zp−1◦R).O+(4, 2). Here M0 preserves a tensor decomposition V0 = U1⊗Fp
U2, where

each Ui
∼= F 2

p . Thus writing M 0 = M0/Zp−1, we have M0 = R ⋊ O+(4, 2) = (S4 × S4).2
contained in PGO+(4, p) = (PGL(2, p)×PGL(2, p)).2. Suppose first that H preserves this
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tensor decomposition. Since M0 interchanges the two tensor factors U1 and U2, so also
does H . Thus the index 2 subgroup H0 of H fixing U1 and U2 projects to isomorphic
subgroups of the two factors PGL(2, p) in PGO+(4, p). Since each proper overgroup of
S4 in PGL(2, p) contains PSL(2, p), and since H0 contains S4 × S4, it follows that either
H = M0, or H0 contains PSL(2, p)×PSL(2, p). Assume the latter. Then H0 is transitive
on the (p + 1)2 1-spaces of simple vectors in V0. Now H0 must permute R-orbits, and it
follows from the discussion of Type 2 groups with d = 2 that H0 fixes a subset of 36 = 6×6,
or 16 = 4 × 4 such 1-spaces. Hence p = 3 or 5. In the former case M 0 = PGO+(4, p)
and hence H = M0. Also if p = 5 then PSL(2, 5) is 2-transitive on the six 1-spaces of the
Ui, whereas H0 preserves a pairing of these 1-spaces. Thus again in this case we can only
have H = M0.

Thus we may assume that H does not preserve the tensor decomposition (and in
particular does not preserve modulo scalars an orthogonal form of +-type on V0). Since
e = 1 and since M0 is absolutely irreducible on V0, it follows (see Subsection 2.2) from
Lemma 4.6.5 that the group induced by H on V0 does not lie in the class Ci for i = 1 and
3 ≤ i ≤ 7. Also H fixes setwise a subset of 36 or 16 of the 1-spaces of V0, and hence H
does not contain SL(4, p). Thus H lies in C2 ∪ C8 ∪ C9.

Suppose first that H lies in C2. Then since M0 6 H , H must preserve a decomposition
V = W1⊕W2 with dimWi = 2. Hence H contains a subgroup K of index 2 fixing W1 and
W2 setwise. This means that K is reducible. However K ∩ M0 must contain R, as R is
the unique minimal normal subgroup of M0, and the subgroup R is irreducible, implying
that that K is irreducible. Therefore H does not lie in C2.

Thus H lies in C8 ∪ C9. As we remarked above, H does not preserve modulo scalars
a quadratic form of +-type. If R ≤ H ≤ GO−(4, p) then, modulo scalars, R ∼= Z4

2 ≤
PΩ−(4, p) ∼= PSL(2, p2), which is impossible. Since e = 1, the only other possibility is
that H 6 GSp(4, p) or H ∈ C9. Since Sp(4, p) is transitive on the 1-spaces of V0 while
H fixes setwise a subset of 36 or 16 of these 1-spaces, it follows that H does not contain
Sp(4, p). Applying Aschbacher’s theorem [1] to H (as subgroup of GL(4, p) or GSp(4, p))
we deduce that H is almost simple. Using the results of [6, 13], we conclude that the
simple group involved in H must be among An for some n ≤ 7, PSL(2, q′) (with q′ = p, p2

or 7), PSL(3, 4), or PSU(4, 2). Since H contains M 0 = (S4 × S4).2, and has an orbit of
length 36 or 16 on 1-spaces, we obtain a contradiction.

4.6.3 Completion of the proof of (4.6.5)

As in Remark 4.6.4, suppose that M0 < H ≤ GL(V0) and that H permutes amongst
themselves the R-orbits in V0. We will derive a contradiction. First we find possibilities
for proper overgroups of M0 in GL(V0). By the previous subsection we may assume that
d ≥ 3, and if d = 4 then R is of Type 3 or 4.

We observe that, modulo scalars, we have

M ′
0 =







R.Sp(2m, r)′ d = rm ≥ 3, R of Type 1 or 4
R.Ω+(2m, 2), d = 2m ≥ 8, R of Type 2
R.Ω−(2m, 2), d = 2m ≥ 4, R of Type 3
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and that R is the unique minimal normal subgroup of M ′
0. It is important to our proof

that M ′
0 permutes the R-orbits nontrivially and we prove this next.

Lemma 4.6.6. For d ≥ 3, the group M ′
0 acts non-trivially on the set of R-orbits.

Proof. Suppose that M ′
0 fixes each R-orbit setwise. It can be easily seen from the repre-

sentations of the groups R given in [11, p151–154] that there is an orbit ∆ of R on V0 upon
which R is not regular. (See also [20, Lemma 4.6.2].) Let v ∈ ∆. Since R is transitive on
∆ we have M ′

0 = (M ′
0)vR and it follows that (M ′

0)v = Rv.(M
′
0/R) with 1 < Rv < R. Also

Rv ∩ Z = 1 and since R acts irreducibly on V0 we have RvZ 6= R. Thus Rv = RvZ/Z
satisfies 1 6= Rv < R, and Rv is a normal subgroup of (M ′

0)v. Thus Rv is normalised
by 〈(M ′

0)v, R〉 = M ′
0, contradicting the fact that R is a minimal normal subgroup of M ′

0.
Thus M ′

0 acts non-trivially on the set of R-orbits. �

As in [11, Chapter 5], for a finite group G, define

P (G) = min{n | G has a non-trivial permutation representation of degree n},

and
Rr′(G) = min{n | G ≤ PGL(n, F ), F has characteristic coprime to r}.

We prove the following extension of [11, Lemma 7.6.1]. (Note that we do not need this
result to handle the case d = 3.)

Lemma 4.6.7. Let d ≥ 4 and when d = 4 assume that R is not of Type 2. Then

1. P (M ′
0) ≥ d.

2. Rr′(M ′
0) ≥ d.

Proof. We follow the proof of [11, Lemma 7.6.1] but making various necessary adjust-
ments, as [11, Lemma 7.6.1] applies only for d ≥ 13. Let X be a proper subgroup
of M ′

0. Suppose first that RX = M ′
0, so that R 6≤ X (since X is a proper sub-

group). Then, as R ∩ X is normal in both R and X, it is normal in M ′
0. Since R

is a minimal normal subgroup of M ′
0, and R ∩ X 6= R, we have R ∩ X = 1. Hence

|M ′
0 : X| = |R| = r2m = d2 > d, and part 1 holds in this case. Suppose now that

RX 6= M ′
0. Then |M ′

0 : X| ≥ |M ′
0 : RX| ≥ P (M ′

0/R). As seen in the proof of [11,
Lemma 7.6.1], when d ≥ 13 we have P (M ′

0/R) > d, so that part 1 holds in these
cases also. It remains to check the values d = 4, 5, 7, 8, 9 and 11. For d = 5, 7 or 11,
P (M ′

0/R) = P (PSL(2, d)) = d (by [11, Table 5.2A], which we also use in the following).
For d = 9, P (M ′

0/R) = P (PSp(4, 3)) = 27 > d. For d = 4, note that P (Sp(4, 2)′) = 6 > d
and P (Ω−(4, 2)) = 5 > d. For d = 8 we have P (Sp(6, 2)) = 28, P (Ω−(6, 2)) = 27 and
P (Ω+(6, 2)) = 8. This completes the proof of part 1.

Now we prove part 2. By [11, Lemma 5.5.3], either Rr′(M ′
0) ≥ min{P (Sp(2m, r)), rm}

or Rr′(M
′
0) ≥ min{P (Ω±(2m, 2)), 2m}. It follows from part 1 that Rr′(M

′
0) ≥ rm = d and

so the result follows. �
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We now prove the following extension of [11, Proposition 7.6.2], the proof of which
used the assumption d ≥ 13, and had slightly more restrictive hypotheses on M0.

Lemma 4.6.8. Suppose that M0 < H ≤ GL(V0). Then H := H/Zpe−1 is an almost
simple group.

Proof. If H leaves invariant, modulo scalars, a symplectic, unitary or quadratic form κ,
let X be the stabilizer in GL(V0) of κ modulo scalars, so H ≤ X. In the case where p = 2
and H leaves invariant modulo scalars both a symplectic and a quadratic form, choose
κ to be the quadratic form. If H leaves no such form invariant modulo scalars, then let
X = GL(V0). If H contains the corresponding subgroup X0 = Sp(V0), SU(V0), Ω

ε(V0) or
SL(V0), then H is almost simple. Thus we may assume that H does not contain X0.
Because of this choice of classical group X, the subgroup H is not in the class C8 for X.
Moreover, since R is absolutely irreducible and not writable over any proper subfield it
follows that H is not in the classes C1, C3 or C5 for X.

Suppose now that H is in the class C2 for X. Then M0 preserves a decomposition
V0 = U1 ⊕ . . . ⊕ Ut for some t ≤ d. Since R is irreducible on V0 it follows that R is
transitive on the decomposition. Moreover, R is a minimal normal subgroup of M ′

0 and
acts irreducibly on V0 and hence acts faithfully on the set of t parts of the decomposition.
Since |R| = d2 and R is abelian this contradicts t ≤ d. Thus H /∈ C2.

Next suppose that H lies in the class C4 or C7 for X. Then M0 preserves a tensor
decomposition V0 = U1 ⊗ · · ·⊗Ut for some t < d and each Ui has dimension at least 2. In
particular d is not prime so d ≥ 4. By Lemma 4.6.7(1), M ′

0 6 PGL(U1)× · · · ×PGL(Ut).
Since R is a minimal normal subgroup of M ′

0, it follows that R projects faithfully on at
least one of the direct factors, so R is isomorphic to a subgroup of PGL(Ui), for some i.
Moreover, since R is the unique minimal normal subgroup of M ′

0, it follows that M ′
0 also

projects faithfully onto this factor, so M ′
0 is isomorphic to a subgroup of PGL(Ui). This

contradicts Lemma 4.6.7(2).
Finally, H does not lie in the class C6 for X by Lemma 4.6.5. It then follows from

Aschbacher’s Theorem [1] that H lies in the class C9 for X, and in this case H is almost
simple. �

Now we complete the proof of Proposition 4.6.1.

Proof of Proposition 4.6.1. By Lemma 4.6.3, it is sufficient to prove the implication
(4.6.5). We adopt the strategy of Remark 4.6.4. Thus we suppose that M0 < H ≤ GL(V0)
and that H permutes amongst themselves the R-orbits in V0. Note in particular that
SL(V0) 66 H since SL(V0) is 2-transitive on the 1-spaces in V0 and hence does not permute
the R-orbits among themselves. It is sufficient to derive a contradiction for each choice of
the group R ∈ R. By Subsection 4.6.2, we may assume that d ≥ 3, and if d = 4 then R is
not of Type 2. In each of these cases, M ′

0 acts non-trivially on the set of R-orbits in V0 by
Lemma 4.6.6. Also either M ′

0 is perfect or d = 3, M0 = Z2
3 : Sp(2, 3), and M ′

0 = Z2
3 : Q8.

Moreover, by Lemma 4.6.8, H = H/Zpe−1 is an almost simple group with nonabelian
simple socle T , say, so that H/T is soluble and PSL(d, pe) 6= T .
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Let Zpe−1 < T ≤ H be such that T/Zpe−1 = T . Suppose first of all that d = 3, and
note that e = 1 or 2, M ′

0 = Z2
3 : Q8 6 PSL(3, pe), and 3 = |M0 : M ′

0| so that 33 divides
|H|. If q is even then pe = 4 and we see from [3, p23] that M0 is maximal in PGL(3, 4) so
that SL(3, 4) 6 H which is a contradiction. Hence q is odd. The subgroups of PSL(3, q)
for q odd were determined by Mitchell and are given in [8, Theorem 2.4]. Since e is
minimal such that pe ≡ 1 (mod |)Z(R)|, the only possibilities for T are PSU(3, p) (when
e = 2) and A6. Since 33 does not divide |Aut(A6)| we cannot have the latter and so
T = PSU(3, p). Moreover, in this case T contains M ′

0, see [8, Theorem 2.6]. Hence T
contains M ′

0 and so by Lemma 4.6.6, T acts non-trivially on the set of R-orbits. Since T
is simple, it follows that the kernel of this action is contained in the scalars Zpe−1. This is
a contradiction since R fixes each of its orbits setwise and yet does not consist of scalars.
Thus d 6= 3, and in particular M ′

0 is perfect. Since H/T is soluble, it follows that T
contains M ′

0. Thus T contains M ′
0, and by Lemma 4.6.6, T acts non-trivially on the set

of R-orbits in V0. Since T is simple, it follows that the kernel of this action is contained
in the scalars Zpe−1. Once again this is a contradiction since R fixes each of its orbits
setwise. This completes the proof. �

4.7 The Case H ∈ C8

As described in Subsection 2.2, the family of C8-subgroups is the union of three sub-
families CX, for X ∈ {Sp,U,O}. The sub-family CX consists of all subgroups that
preserve modulo scalars an X-form on V defined as follows.

A form f is an Sp-form (or symplectic form) if it is bilinear f : V × V → Fq, non-
degenerate and skew symmetric, and if in addition q is even then f(v, v) = 0 for all v ∈ V .
For such a form d is even and we define ∆f := {(u, v) | f(u, v) = 0},

kSp = 2 and Rel(Sp, 2) =

{

{∆f

∣
∣
∣ f a symplectic form on V } if d is even

∅ if d is odd.
(4.7.1)

A form Q is an O-form if it is a quadratic form Q : V → Fq (that is, Q(λv) = λ2Q(v)
for all v ∈ V and λ ∈ Fq) and is non-degenerate, that is, the associated bilinear form

fQ(v, w) := Q(v + w) −Q(v) − Q(w) (4.7.2)

is non-degenerate. If d is even, say d = 2m, there are two types of forms with different
stabilizers in ΓL(d, q), namely +-type forms for which maximal totally singular subspaces
have dimension m, and −-type forms for which such subspaces have dimension m− 1. In
particular if d = 2 then the −-type forms Q have no Q-singular vectors (non-zero vectors
v such that Q(v) = 0); as mentioned in Remark 2.2.1(a), the stabilizers of such forms
modulo scalars are maximal C3-subgroups and are treated as such. We assume that Q
has +-type if d = 2. If d is odd there is only one ΓL(d, q)-conjugacy class of stabilizers of
O-forms. For an O-form Q we define ∆Q := {v |Q(v) = 0},

kO = 1 and Rel(O, 1) = {∆Q

∣
∣
∣ f an O-form on V }. (4.7.3)
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A form f is a U-form (or unitary form) if the field order q = q2
0 so that α : λ → λq0 is an

involutory automorphism of Fq, and if f : V × V → Fq is non-degenerate and hermetian
symmetric (that is, f is left-linear and f(w, v) = f(v, w)α for all v, w ∈ V ). For such a
form we define ∆f := {v | f(v, v) = 0},

kU = 1 and Rel(U, 1) =

{

{∆f

∣
∣
∣ f a unitary form on V } if q is a square

∅ if not.
(4.7.4)

Proposition 4.7.1. For X ∈ {Sp,U,O}, H ∈ CX if and only if Rel(H, kX)∩Rel(X, kX)
6= ∅.

More precisely, when we say that an element g ∈ ΓL(d, q) ‘preserves an X-form f
modulo scalars’ we mean that g is an f-semisimilarity, that is, there exist λ ∈ F ∗

q and
σ ∈ Aut(Fq) such that f(ug, vg) = λf(u, v)σ for all u, v ∈ V in case Sp or U, or f(vg) =
λf(v)σ for all v ∈ V in case O. The maximal CX-group corresponding to f is the group of
all f-semisimilarities.

Regarding the proof of Proposition 4.7.1, it follows from the definition of the relation
sets that, if H ∈ CX then H consists of f-semisimilarities for some X-form f , and hence
that H leaves ∆f invariant. Thus to prove Proposition 4.7.1, we assume conversely that
H preserves a relation ∆f ∈ Rel(X, kX), for some X, and we prove that H consists of
f-semisimilarities. We do this separately for each X ∈ {Sp,U,O}.

4.7.1 The symplectic groups

Since ∆f ∈ Rel(Sp, 2), d = 2m, and V has a ‘symplectic basis’ {e1, . . . , em, f1, . . . , fm}
such that for all i, j, f(ei, ej) = f(fi, fj) = 0 and f(ei, fj) = δij . Then ∆f contains (ei, ej)
and (fi, fj) for all i, j, and (ei, fj) for i 6= j. Let g ∈ H . Then since g preserves ∆f , the
relation ∆f also contains the images of all these pairs under g, and hence

f(eg
i , e

g
j ) = f(f g

i , f g
j ) = 0 for all i, j, and f(eg

i , f
g
j ) = 0 when i 6= j.

Since f(e1, f1) = 1, the pair (e1, f1) /∈ ∆f and hence (eg
1, f

g
1 ) /∈ ∆f . Thus λ := f(eg

1, f
g
1 ) 6= 0.

Since, for i > 1, f(−e1 + ei, f1 + fi) = −1 + 1 = 0, we have

0 = f(−eg
1 + eg

i , f
g
1 + f g

i ) = −f(eg
1, f

g
1 ) + f(eg

i , f
g
i ) = −λ + f(eg

i , f
g
i ).

Therefore f(eg
i , f

g
i ) = λ for all i. For arbitrary u =

∑m
i=1(µiei +µ′

ifi) and v =
∑m

i=1(νiei +
ν ′

ifi) in V , we have, since f(fj , ei) = −f(ei, fj) = −δij , that

f(u, v) =

m∑

i=1

(µiν
′
if(ei, fi) + µ′

iνif(fi, ei)) =

m∑

i=1

(µiν
′
i − µ′

iνi).

Let σ = τ(g) (as defined in Subsection 2.1). Then ug =
∑m

i=1(µ
σ
i e

g
i + µ′σ

i f g
i ), vg =

∑m
i=1(ν

σ
i eg

i + ν ′σ
i f g

i ), and

f(ug, vg) =

m∑

i=1

((µiν
′
i)

σf(eg
i , f

g
i ) + (µ′

iνi)
σf(f g

i , eg
i )) = λ

m∑

i=1

(µiν
′
i − µ′

iνi)
σ = λf(u, v)σ.
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Therefore g is an f-semisimilarity and hence H is contained in the maximal CSp-group
consisting of f-semisimilarities.

4.7.2 The orthogonal groups

For the orthogonal case we write Q instead of f , and speak also of the corresponding
bilinear form fQ defined in (4.7.2). We assume that H preserves the (non-empty) relation
∆Q ∈ Rel(O, 1) (recall if d = 2 then Q is of +-type.) Let g ∈ H . We will prove that g is
a Q-semisimilarity. Our proof is a modification of [10, Lemma 1] suggested to us by Dr.
Oliver King, and we are grateful to him for this. The result [10, Lemma 1] proves what
we need in the special case where H ⊆ GL(d, q) and q is odd.

We subdivide the set of 2-subspaces U of V that contain a Q-singular vector. We write
U⊥ for the orthogonal complement {w ∈ V | fQ(u, w) = 0 for all u ∈ U }. If dim(U⊥∩U) =
0 or 1, then U is in case 1 or 2 below, respectively, while if dim(U⊥ ∩U) = 2 then U may
or may not be totally singular, and satisfies case 3 or 2 below, respectively.

1. Non-degenerate: U ∩ U⊥ = 0; here U has +-type, |U ∩ ∆Q| = 2(q − 1) + 1, and
v⊥ ∩ U = 〈v〉 for v ∈ (U ∩ ∆Q)\{0}.

2. Tangent: U∩∆Q = 〈v〉 so |U∩∆Q| = q; and U ⊆ v⊥. In fact either U⊥∩U = U∩∆Q,
or q is even and U ⊆ U⊥.

3. Totally singular: U ⊆ ∆Q so |U ∩ ∆Q| = q2. Here U ⊆ v⊥ for 0 6= v ∈ U .

Since the sizes |U ∩∆Q| are pairwise distinct for the three cases, and since g preserves
∆Q, it follows that g preserves the above three kinds of 2-subspaces. We record a few
easy facts about the g-action.

Lemma 4.7.2. Suppose that U = 〈u, v〉 is a 2-subspace and Q(v) = 0.
(a) If fQ(u, v) = 0 then U is not non-degenerate.
(b) If U is not non-degenerate, then U ⊆ v⊥ and Ug ⊆ (vg)⊥.

Proof. If fQ(u, v) = 0 then U ⊆ v⊥, so U is not non-degenerate. Next suppose that U
is either a tangent or totally singular kind of 2-space. Then U ⊆ v⊥. Since g preserves
∆Q and preserves these three kinds of 2-spaces, vg ∈ Ug is a Q-singular vector and Ug is
tangent or totally singular, so Ug ⊆ (vg)⊥. �

Since ∆Q is non-empty, V has a non-degenerate 2-subspace U of +-type, so U = 〈e, f〉
where Q(e) = Q(f) = 0 and fQ(e, f) = Q(e + f) = 1 (see [18, 11.3]). Set e1 := eg and
f1 := f g. Since g preserves ∆Q, Q(e1) = Q(f1) = 0, and as g preserves non-degenerate
2-spaces of +-type, Ug is non-degenerate of +-type. Hence fQ(e1, f1) = λ for some λ ∈ F ∗

q .
For an arbitrary v = µe + νf ∈ U , we have Q(v) = µν and, writing σ = τ(g) for the
associated field automorphism of g,

Q(vg) = Q(µσe1 + νσf1) = fQ(µσe1, ν
σf1) = λ(µν)σ = λQ(v)σ.
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For w ∈ U⊥, by Lemma 4.7.2 (a), the 2-subspaces 〈e, w〉 and 〈f, w〉 are not non-degenerate,
and so by Lemma 4.7.2 (b), 〈e1, w

g〉 ⊆ 〈e1〉
⊥ and 〈f1, w

g〉 ⊆ 〈f1〉
⊥. Hence wg ∈ 〈e1, f1〉

⊥,
and as this holds for all w ∈ U⊥, we have (U⊥)g ⊆ (Ug)⊥. It follows that (U⊥)g = (Ug)⊥.

Consider the vector x = w + e − Q(w)f where w ∈ U⊥. Using the properties of
Q, Q(x) = Q(w) + Q(e − Q(w)f) = 0, and therefore, since g preserves ∆Q and since
wg ∈ (Ug)⊥,

0 = Q(xg) = Q(wg) + Q(e1 −Q(w)σf1) = Q(wg) − λQ(w)σ.

Thus Q(wg) = λQ(w)σ, and this holds for any w ∈ U⊥. A typical vector of V is of
the form v + w with v ∈ U and w ∈ U⊥. Now Q(v + w) = Q(v) + Q(w), and since
(U⊥)g = (Ug)⊥, we have fQ(vg, wg) = 0, and hence

Q((v + w)g) = Q(vg) + Q(wg) = λQ(v)σ + λQ(w)σ = λQ(v + w)σ.

Therefore g is a Q-semisimilarity. Thus we conclude that H is contained in the maximal
CO-subgroup of Q-semisimilarities.

4.7.3 The unitary groups

We assume here that H leaves ∆f invariant for some unitary form f . Let g ∈ H . We
must prove that g is an f-semisimilarity. Now the subgroup X of all f-semisimilarities in
ΓL(d, q) satisfies ΓL(d, q) = X(GL(d, q)), and hence there is an f-semisimilarity h such
that τ(g) = τ(h) (the field automorphism induced by these elements). Thus gh−1 ∈
GL(d, q) and gh−1 leaves ∆f invariant. It follows from [9, Proposition 1] that gh−1 is
an f-similarity, and hence g is an f-semisimilarity. Thus H is contained in the maximal
CU-subgroup of f-semisimilarities.

This completes the proof of Proposition 4.7.1.

Proof of Theorem 1.1. Theorem 1.1 now follows from Propositions 4.1.1, 4.2.1, 4.3.1,
4.4.1, 4.5.1, 4.6.1, and 4.7.1. �

5 Proof of Theorem 1.4

In this section let G be an affine primitive permutation group on a finite set Ω, so G = NH
with N = Zd

p the group of translations of a finite vector space V = F d
p and H ≤ GL(d, p),

where d ≥ 1 and p is a prime. We identify Ω with V . If one of d ≤ 2, or SL(d, p) ≤ H ,
or H ∈ C9, then the assertions made about such groups in Theorem 1.4 all hold, by
Lemma 3.3.2. Thus we may assume that d ≥ 3, that H does not contain SL(d, p), and
that H ∈ Ci for some i ∈ {1, . . . , 7,Sp,U,O}.

Suppose first that G(3) is an affine primitive group. Then G(3) = NK where H ≤
K ≤ GL(d, p). By Lemma 2.3.1(4), H ≤ K ≤ H(2), so K ≤ H(2) ∩ GL(d, p). By
Corollary 1.2, H(ki) ∩ GL(d, p) ∈ Ci also. Since H(2) ≤ H(1), by Lemma 2.3.1(1), this
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implies that, in all cases, H(2) ∩ GL(d, p) ∈ Ci. Hence K ∈ Ci, and then by Theorem 1.1,
Rel(K, ki) ∩ Rel(i, ki) 6= ∅. Thus Theorem 1.4(b)(iii) holds.

Thus we may assume that G(3) is not an affine primitive group. We denote the socle
of a finite group X by Soc(X) (the product of its minimal normal subgroups). Thus,
Soc(G) = N 6= Soc(G(3)). Let G < L ≤ G(3) be such that the socle Soc(L) 6= N . Then
the following result [14, Lemma 4.1] of Saxl and the fourth author applies. The result
refers to primitive permutation groups in product action, as discussed in Subsection 2.5.

lemma 5.1. [14, Lemma 4.1] Let G = NH, d, L, G(3) be as above. Then p = 2 and one
of the following holds.

(a) (d, H, Soc(L)) = (4, A7, A16) as in Theorem 1.4(a), Line 2 of Table 2.

(b) d ≥ 3 and (H, Soc(L)) = (GL(d, 2), A2d) as in Theorem 1.4(a), Line 1 of Table 2.

(c) L preserves a product decomposition Γm of Ω, where |Γ| = 2n, d = nm, m ≥ 2, and
the permutation group G0 induced by G on Γ is Z4

2 ⋊ A7 (with n = 4) or AGL(n, 2)
(with n ≥ 3). Moreover, the group induced by L on Γ contains A2n and

Soc(L) = Soc(G(3)) ∼=

m
︷ ︸︸ ︷

A2n × ... × A2n .

To complete the proof we may therefore assume that Lemma 5.1(c) holds. Thus
L ≤ L0 ≀ Sm acting in product action on Ω = Γm, Soc(L) = Am

2n , and the permutation
group G0 induced by G on Γ is either Z4

2 ⋊ A7 (with n = 4) or AGL(n, 2) (with n ≥ 3).
It follows, from the discussion of product action in Subsection 2.5, that we may take
G ≤ G0 ≀ Y , where Y = π(G), the projection of G on Sm, is a transitive subgroup of Sm.
We will prove that G contains the base group Gm

0 of the wreath product G0 ≀ Sm. This
will imply that G = G0 ≀ Y , and that L contains A2n ≀ Y , so that Theorem 1.4(a) holds
(Line 3 or 4 of Table 2), thus completing the proof.

Consider the stabilizer Gα of the point α = (δ, ..., δ) ∈ Γm. We have Gα ≤ (G0)δ ≀ Sm,
and the point stabilizer (G0)δ

∼= GL(n, 2) (with 2n ≥ 8) or A7 (with n = 4). In particular,
(G0)δ is a nonabelian simple group.

lemma 5.2. (2n − 1)m(2n − 2)m divides |Gα| where α = (δ, ..., δ) ∈ Γm.

Proof. First, consider the action of G(3). Since Soc(G(3)) = Am
2n ≤ G(3), the point stabilizer

(G(3))α ≥ (A2n−1)
m where 2n − 1 ≥ 7. Let µ, ν be distinct points in Γ \ {δ}, let β =

(µ, ..., µ) ∈ Γm and γ = (ν, ..., ν) ∈ Γm. Let ∆ be the orbit of (A2n−1)
m containing the

pair (β, γ) = ((µ, ..., µ), (ν, ..., ν)). Since A2n−1 is 2-transitive on Γ \ {δ}, we have

∆ = {((µ1, ..., µm), (ν1, ..., νm))|µi, νi ∈ Γ \ {δ} and µi 6= νi for all i ≤ m}.

Since this subset is invariant under (G(3))α, it follows that ∆ is a (G(3))α-orbit. By Lemma
2.3.1 (4), Gα is 2-equivalent to (G(3))α, and so ∆ is also a Gα-orbit. Hence |Gα| is divisible
by |∆| = (2n − 1)m(2n − 2)m. �
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A prime s dividing 2n −1 is said to be a primitive prime divisor of 2n −1 if s does not
divide 2i − 1 for any i such that 1 ≤ i < n. By Zsigmondy [21], and since n ≥ 3, 2n − 1
has a primitive prime divisor unless n = 6.

Let s be a primitive prime divisor of 2n − 1 if n 6= 6, and let s = 31 = 25 − 1 if n = 6.
Let sa be the highest power of s dividing (2n − 1)(2n−1 − 1). Then a ≥ 1 and, by Lemma
5.2, sam divides |Gα|. Let

M = Gα ∩

m
︷ ︸︸ ︷

((G0)δ × ... × (G0)δ) .

Then M is the intersection of Gα with the base group of G0 ≀ Sm, and hence M E Gα

and Gα/M ∼= Y ≤ Sm. Now the highest power of s dividing |Sm| = m! is sc where
c ≤ [m−1

s−1
] ≤ [m−1

2
] (see, for example, [5, Exercise 2.6.8]). Then since sam divides |Gα|, it

follows that sam−[ m−1
2

] divides |M |. In particular, since am − [m−1
2

] ≥ 1, the group M is
non-trivial.

Let T := (G0)δ, and recall that T = GL(n, 2) or A7, a nonabelian simple group, and
write

m
︷ ︸︸ ︷

(G0)δ × ... × (G0)δ = T1 × ... × Tm where Ti = T = (G0)δ.

Next we prove that M ∼= T u, for some u dividing m.
Recall from Subsection 2.5 the subgroups

Wi = Sym(Γi) × (Sym(Γ) ≀ Sm−1)

and projection maps πi : G ∩ Wi → Sym(Γi) and note that M ≤ Wi for all i. Since
G ≤ G0 ≀ Sm, for each i,

πi(Gα ∩ Wi) = (πi(G ∩ Wi))δ
∼= (G0)δ. (5.0.5)

Since Y = π(G) = π(Gα) ≤ Sm is transitive, it follows that Gα acts transitively on
Σ = {T1, ..., Tm} by conjugation. Let i, j ∈ {1, ..., m}. Then there exists x ∈ Gα such that
π(x) : i → j. Since M ⊳Gα, x−1πi(M)x = πj(M). Thus πi(M) ∼= πj(M) for 1 ≤ i, j ≤ m.
Now, the facts that {1} 6= M E (Gα ∩Wi) and (G0)δ = T is simple together with (5.0.5).
imply that

πi(M) ∼= (G0)δ = T for i = 1, 2, ..., m.

By [5, Lemma 4.3A], there exists a partition {Λ1, ..., Λu} of {1, ..., m} such that M =
D1 × ...×Du where Di

∼= T is a full diagonal subgroup of the subproduct
∏

j∈Λi
Tj. Since

M ⊳ Gα and Gα acts on Σ transitively, the integer u divides m and each |Λi| = m/u.
Finally we prove that u = m. Now

|GL(n, 2)| = 2
n(n−1)

2

n∏

i=1

(2i − 1).

By the choice of s, sau is the highest power of s that divides |GL(n, 2)u|. Therefore the
power of s that divides |M | = |T |u is at most sau. On the other hand, we showed above
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that sam−[ m−1
2

] divides |M |, and hence au ≥ am − [m−1
2

] > (a − 1
2
)m. This implies that

u > m
2
, and since u divides m, we conclude that u = m. Thus M = Gm

0 ≤ G, and hence,
as discussed above, G = G0 ≀ Y , completing the proof of Theorem 1.4.
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